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0. Introduction

In some unpublished work dating back to the 1980’s, Dale Peterson has defined and

studied what he calls “λ-minuscule” elements of (symmetrizable Kac-Moody) Weyl groups.

(The precise definition is given in Section 2 below.) The terminology presumably derives

from the fact that if λ is the highest weight of a minuscule representation of a simple Lie

algebra, then for every µ in the orbit of λ, the shortest element of the Weyl group such

that wλ = µ is λ-minuscule.

Associated with any λ-minuscule element w is a partially ordered set (the “heap”)

whose vertices are labeled by nodes of the Dynkin diagram; the linear extensions of the

heap encode the reduced expressions for w. In type A, the heaps are Young diagrams, and

the reduced expressions are in one-to-one correspondence with standard Young tableaux.

Similarly, plane partitions can be viewed as order-preserving assignments of integers to the

vertices of a Young diagram, so there is an analogous notion of “λ-minuscule partition.”

Starting with [P1–3], Proctor has begun the development of a combinatorial theory for

simply-laced λ-minuscule elements, including classification theorems and a generalization

of jeu de taquin. In a forthcoming paper, Peterson and Proctor give an explicit hooklength

formula for the generating function for λ-minuscule partitions, generalizing well-known

results for both shifted and unshifted plane partitions.

This paper has two main objectives.

First, it has been clear from the beginning of Proctor’s work in [P1] that λ-minuscule

elements are “fully commutative” in the sense of [St1], or “commutative” in the sense

of [F], a property characterized by the non-existence of certain subwords in the set of

reduced expressions. (For the definition, see Section 2.) Here we clarify more directly the

exact nature of the relationship, providing reduced-word characterizations of minuscule

elements, as well as order-theoretic characterizations of their heaps.

We should explain that the “wave” posets of [P1] are the simply-laced cases of the

heaps we consider here, although they are defined in a completely different way. Similarly,

the “colored d-complete” posets of [P1–2] provide an order-theoretic characterization of

wave posets that, although different in appearance, is equivalent to the simply-laced case

of the heap characterization we provide in Section 3.

Our second objective is to extend Proctor’s classification of (dominant) λ-minuscule

elements (or equivalently, their heaps) from the simply-laced case to any symmetrizable

Kac-Moody Weyl group. There is a natural way to decompose heaps of dominant minus-

cule elements into irreducible components. In the simply-laced case, Proctor has shown

that the irreducible cases can be grouped into 15 families, 14 of which are infinite [P2].

Here we show that in the multiply-laced cases, there are two more infinite families (see
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Theorem 4.2). It is noteworthy that the members of these two families are isomorphic, as

unlabeled posets, to simply-laced heaps. Thus every abstract poset that occurs as a dom-

inant λ-minuscule heap can be obtained from a simply-laced (Kac-Moody) Weyl group,

and is therefore “d-complete” in the sense of Proctor. It is conceivable that one could

prove that every multiply-laced dominant minuscule heap is d-complete by some direct

argument, bypassing the need for a classification. However, there may be applications of

the theory in which the labeling of the posets plays a role, and hence increased significance

for the multiply-laced cases.

In the final section of the paper, we show (Theorem 5.5) that the heap of any (dominant)

λ-minuscule element w can also be obtained by restricting the standard partial ordering of

the positive co-roots to those co-roots that are “inverted” by w (i.e., α∨ > 0 and wα∨ < 0).

A key ingredient of the proof is a reduced-word and heap characterization of the elements

w having no triple of inversions of the form α∨, β∨, α∨ + β∨ (Theorem 5.3), generalizing

the simply-laced result of [FS].

In a sequel to this paper [St2], we will provide an application and extension of this

theory to the combinatorics of reduced expressions for reflections in finite Weyl groups.

1. Preliminaries

We begin by choosing a Cartan matrix A = [aij ]1⩽i,j⩽n for a symmetrizable Kac-Moody

Lie algebra [K]. Thus A is an integer matrix satisfying

(1) aij ⩽ 0 for i 6= j; aii = 2,

(2) aij = 0 if and only if aji = 0,

and (by virtue of being symmetrizable), there exists a symmetric bilinear form 〈 , 〉 on Rn

and a basis α1, . . . , αn of Rn such that

(3) 〈αi, αi〉 > 0 and aij = 〈αi, α
∨
j 〉 (1 ⩽ i, j ⩽ n),

where α∨ := 2α/〈α, α〉.
It may happen that the bilinear form is degenerate, in which case we may embed Rn

in some larger space RN with the bilinear form extended in some non-degenerate way.

The basis vectors αi form the simple roots of a (crystallographic) root system Φ ⊂ Rn,

and the corresponding simple reflections; viz.,

si : λ 7→ λ− 〈λ, α∨
i 〉αi,

generate a Coxeter group W (the Weyl group) satisfying the relations s2i = (sisj)
mij = 1,

where (for i 6= j) mij = 2, 3, 4, 6 or ∞, according to whether aijaji = 0, 1, 2, 3 or ⩾ 4.
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The Cartan matrix is represented faithfully by the Dynkin diagram, a graph with vertex

set [n] := {1, . . . , n}, edges between pairs of vertices i, j with aij < 0, and various decora-

tions on the edges to record the values of aij and aji. The main conventions that concern

us here are that a simple bond is used when aij = aji = −1, and an oriented double bond

directed from i to j is used when aij = −2 and aji = −1. If every edge is a simple bond,

then A, Φ, and W are said to be simply-laced; otherwise, they are multiply-laced.

Suppose that nodes i and j are adjacent in the Dynkin diagram. We say that i, αi,

and si are short relative to j, αj , and sj if aij = −1. If Φ is finite, this is equivalent to

having 〈αi, αi〉 ⩽ 〈αj , αj〉; in particular, either i is short relative to j, or vice-versa. If Φ

is simply-laced, then i is short relative to j, and vice-versa.

Recall that every root α ∈ Φ is either positive or negative, according to whether the

coordinates of α with respect to the simple roots αi are nonnegative or nonpositive. We

let Φ+ and Φ− denote the sets of positive and negative roots.

The co-root system Φ∨ := {α∨ : α ∈ Φ} is also crystallographic, with simple roots

α∨
1 , . . . , α

∨
n , Cartan matrix [aji] (the transpose of A), and the same Weyl group.

The weight lattice may be defined as

Λ = {λ ∈ RN : 〈λ, α∨
i 〉 ∈ Z, 1 ⩽ i ⩽ n}.

The members of Λ are called (integral) weights, and if 〈λ, α∨
i 〉 ⩾ 0 for all i, then λ is said

to be dominant. To be careful, we should note that if N > n, then Λ fails to be discrete

in RN and hence is not strictly a lattice. To remedy this, one should view Λ as a lattice

in RN/Z, where Z = {δ ∈ RN : 〈δ, α∨
i 〉 = 0, 1 ⩽ i ⩽ n}.

There is a commonly used partial ordering of Λ defined by

λ > µ if λ− µ ∈ Nα1 + · · ·+Nαn,

where N denotes the nonnegative integers. We call this the standard ordering of Λ. Here

we will be concerned primarily with the restriction of the standard ordering to the root

system Φ, and the analogous ordering of Φ∨.

2. Word Characterizations

Let λ ∈ Λ be an integral weight. Following Peterson, we define w ∈W to be λ-minuscule

if there is a reduced expression w = si1 · · · sil such that

〈sik+1
sik+2

· · · silλ , α∨
ik
〉 = 1 (1 ⩽ k ⩽ l), (2.1)

or equivalently,

siksik+1
· · · silλ = λ− αik − αik+1

− · · · − αil (1 ⩽ k ⩽ l).
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We say that w is minuscule if it is λ-minuscule for some λ; similarly, w is dominant

minuscule if it is λ-minuscule for some dominant λ.

In [St1], we defined w ∈W to be fully commutative if for every pair of non-commuting

generators si and sj , there is no reduced expression for w containing a subword of length

m of the form sisjsisj · · · , where m denotes the order of sisj in W .

Proposition 2.1. If w is λ-minuscule, then every reduced expression for w satis-

fies (2.1). Furthermore, w is fully commutative, and there is no reduced expression for w

containing the subword sjsisj , unless 〈αi, α
∨
j 〉 = −2 and sisj has order ⩾ 4.

Proof. Let w = si1 · · · sil be a reduced expression satisfying (2.1), and suppose that it

contains a subword of length m of the form · · · sisjsisj , where m denotes the order of sisj .

Setting µ = sik+1
· · · silλ (where k denotes the last position occupied by the subword), it

follows that 〈µ, α∨
j 〉 = 1, sjµ = µ− αj , and 〈µ− αj , α

∨
i 〉 = 1.

If m = 2 (i.e., si and sj commute), then 〈αj , αi〉 = 0, so 〈µ, α∨
i 〉 = 1 and siµ = µ− αi.

It follows that if we replace the subword sisj with sjsi, then the new reduced expression

so obtained also satisfies (2.1).

If m ⩾ 3, then we also have 〈µ− αi − αj , α
∨
j 〉 = 〈sisjµ, α∨

j 〉 = 1. Hence

〈αi + αj , α
∨
j 〉 = 〈µ, α∨

j 〉 − 〈µ− αi − αj , α
∨
j 〉 = 0,

and therefore 〈αi, α
∨
j 〉 = −2. This eliminates m = 3, since in that case, αi and αj generate

a root system of type A2, whence 〈αi, α
∨
j 〉 = −1. However if m ⩾ 4, then sisjsi also occurs

as a subword, so the same reasoning implies 〈αj , α
∨
i 〉 = −2. Thus αi and αj generate an

(infinite) affine root system of type A
(1)
1 and sisj does not have finite order, a contradiction.

The above argument shows that there are no opportunities to apply braid moves (i.e.,

replacing · · · sisjsisj with · · · sjsisjsi) except when m = 2 and the two generators com-

mute. However, one knows that any reduced expression can be obtained from any other

by a sequence of braid moves (e.g., [B, §IV.1.5]), and we have seen that (2.1) is preserved

by commutation relations, so (2.1) holds for every reduced expression. □

Remark 2.2. (a) The above result shows that sisjsisj cannot occur in a reduced

expression for a minuscule element unless sisj has infinite order.

(b) The fact that dominant minuscule elements are fully commutative has been noted

previously by Proctor in the simply-laced case [P1]. Indeed, Proctor shows that if w is

dominant minuscule, then the subinterval of the weak ordering of W from 1 to w is a

distributive lattice. On the other hand, from [St1], one knows that in any Coxeter group,

the weak ordering from 1 to w is a distributive lattice if and only if w is fully commutative.
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Proposition 2.3. If w = si1 · · · sil ∈W is a reduced expression, then w is minuscule if

and only if between every pair of occurrences of a generator si (with no other occurrences

of si in between), there are exactly

(i) two terms that do not commute with si, and both are short relative to si, or

(ii) one term that does not commute with si, say sj , and 〈αj , α
∨
i 〉 = −2.

Proof. Define γk = αik + · · ·+ αil , so that w is λ-minuscule if and only if

〈λ− γk+1, α
∨
ik
〉 = 1 (1 ⩽ k ⩽ l). (2.2)

Given that w is λ-minuscule, it follows that if si occurs in positions p and q of the reduced

expression (where p < q), then 〈λ− γp+1, α
∨
i 〉 = 〈λ− γq+1, α

∨
i 〉 = 1, so we have

0 = 〈γp+1 − γq+1, α
∨
i 〉 = 〈αip+1

, α∨
i 〉+ · · ·+ 〈αiq−1

, α∨
i 〉+ 2.

Since aji = 〈αj , α
∨
i 〉 ⩽ 0 for j 6= i, it follows that either two −1’s or one −2 appear in this

sum of Cartan integers, as claimed.

Conversely, for each generator sj appearing in the reduced expression, choose a position

p = p(j) such that ip = j. Since 〈 , 〉 is non-degenerate on RN , there is an integral weight

λ such that

〈λ, α∨
j 〉 = 1 + 〈γp(j)+1, α

∨
j 〉 (2.3)

for all such j. Conditions (i) and (ii) imply that 〈γp(i)+1, α
∨
i 〉 = 〈γq+1, α

∨
i 〉 for all indices

q such that iq = i, so (2.2) is satisfied and w is λ-minuscule. □

Remark 2.4. One can see from the above argument that if w is λ-minuscule, then λ

is essentially unique. More precisely, the values 〈λ, α∨
i 〉 are uniquely determined for all i

such that si appears in a reduced expression for w.

Proposition 2.5. If w = si1 · · · sil ∈ W is a reduced expression, then w is dominant

minuscule if and only if the conditions of Proposition 2.3 are satisfied, and the last occur-

rence of each generator si is followed by at most one generator that does not commute

with si, and this generator is short relative to si.

Proof. Continue the notation from the proof of Proposition 2.3. If w is λ-minuscule and

λ is dominant, then (2.2) implies

1 + 〈αip+1
, α∨

i 〉+ · · ·+ 〈αil , α
∨
i 〉 = 1 + 〈γp+1, α

∨
i 〉 = 〈λ, α∨

i 〉 ⩾ 0

for any p such that ip = i. In particular, if p is the index of the last occurrence of i, then

the Cartan integers appearing in the above sum are ⩽ 0, so at most one of them is −1,
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and the remainder are 0. Conversely, if the stated conditions are satisfied, then the same

calculation shows that 〈γp+1, α
∨
i 〉 ⩾ −1 if p is the position of the last occurrence of si. It

follows that there is a dominant weight λ satisfying (2.3). □

The simply-laced case of the following is analogous to Lemma 6.8 of [P1].

Corollary 2.6. If w is dominant minuscule, then the subdiagram corresponding to

the simple reflections that appear in a reduced expression for w must be acyclic.

Proof. Choose a reduced expression for w, and assume towards a contradiction that some

subset of the generators that appear in it indexes a circuit in the Dynkin diagram. Among

the last occurrences of each generator in this subset, the leftmost one, say si, is followed

by at least two generators that do not commute with si. In that case, Proposition 2.5

implies that w cannot be dominant minuscule. □

Remark 2.7. (a) Suppose that w is dominant minuscule, and for simplicity, assume

that every generator appears in a reduced expression for w. (If not, we may pass to a

suitable parabolic subgroup and root subsystem.) If si and sj are a pair of noncommuting

generators, then the last occurrence of sj must be followed by si or vice-versa, whence

Proposition 2.5 implies that si must be short relative to sj , or vice-versa. Thus for the

study of dominant minuscule elements, we may restrict our attention to Cartan matrices

satisfying aij = −1 or aji = −1 whenever aij < 0.

(b) If a reduced expression for a dominant minuscule element is cut into two subwords,

it is clear from the definition that both subwords are minuscule, and the right subword

must be dominant. On the other hand, even with an acyclic diagram, there may exist

minuscule elements that cannot be obtained as initial segments of dominant minuscule

reduced expressions. For example, in D4 (with node 3 having degree 3), the minuscule

element w = s3s1s2s4 has no dominant completion.

3. Heaps of Minuscule Elements

Since a minuscule element w ∈ W is fully commutative, there is a partial ordering

naturally associated with w whose elements are labeled by nodes of the Dynkin diagram,

the so-called heap [St1]. More precisely, the heap of a (not necessarily reduced) W -

expression si1 · · · sil is the triple P = ([ l ],≼, i), where ≼ is the partial ordering of [ l ]

obtained by taking the transitive closure of the relations

p ≺ q whenever p < q and either sipsiq 6= siqsip or ip = iq,

and i = (i1, . . . , il) is the labeling that records the fact that vertex p has label ip.
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Any word that can be obtained from si1 · · · sil by transposing commuting generators

has a heap that is isomorphic to P as a labeled poset. Conversely, the label sequence of

any linear extension of P to a total order corresponds to a word in the same commuting

equivalence class (Proposition 2.2 of [St1]).

Now suppose that si1 · · · sil is a reduced expression for some fully commutative ele-

ment w. Since any other reduced expression for w can be obtained via a sequence of

commutation relations, it follows that the heaps of all reduced expressions for a fully

commutative element are isomorphic. Thus we may refer to “the heap of w” without am-

biguity. Note also that in this situation, the linear extensions of the heap are in one-to-one

correspondence with the reduced expressions for w.

The labeled posets in Figures 1, 2, and 4–6 are examples of heaps of fully commutative

elements. In some of these examples, certain covering relations are displayed as oriented

double bonds as a reminder of the corresponding entries of the Cartan matrix.

Now consider an arbitrary poset P whose vertices are labeled by nodes of the Dynkin

diagram of A. The following is a list of properties that P may or may not possess.

(H1) All covering pairs in P have labels that are equal or adjacent in the Dynkin diagram,

and incomparable pairs have distinct, non-adjacent labels.

(H2) Every open subinterval of P between two elements labeled i (with no other elements

labeled i in between), has either (i) exactly two elements whose labels are adjacent

to i, and both labels are short relative to i, or (ii) exactly one element, and the

label of this element, say j, satisfies aji = −2.
(H3) An element that is maximal in P among all elements labeled i is covered by at

most one element, and this element is maximal among all elements of some label

that is short relative to i.

(H4) The labels that occur in P index an acyclic subset of the Dynkin diagram.

Proposition 3.1. A labeled poset P is isomorphic to the heap of a ...

(a) W-expression (not necessarily reduced) if and only if (H1) holds.

(b) minuscule element of W if and only if (H1) and (H2) hold.

(c) dominant minuscule element of W if and only if (H1)–(H4) hold.

Proof. (a) The fact that heaps of W-expressions satisfy (H1) is clear from the definition.

For the converse, proceed by induction on l, the number of elements in P . Assuming

l > 1, we may choose a maximal element q of P . Since P − {q} satisfies (H1), it follows

by induction that P − {q} is isomorphic to the heap of some W-expression. Consider the

heap Q obtained by appending si to this expression, where i denotes the label of q in P .

Since (H1) implies that elements with the same label are totally ordered, it follows that
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the (labeled) isomorphism between P − {q} and Q− {l} is unique; the chains of P − {q}
and Q− {l} labeled j must correspond, for each j.

Each element covered by l in Q must have a label adjacent (or equal) to i, and hence

corresponds to an element below q in P , by (H1). Furthermore, each element incomparable

to l in Q must correspond to an element p that is incomparable to q in P . Otherwise,

there would exist a maximal chain p ≺ · · · ≺ q′ ≺ q in P . In particular, since q′ ≺ q is a

covering relation, (H1) implies that the label of q′ must be adjacent (or equal) to i. Since

P − {q} ∼= Q − {l}, it follows that the corresponding elements also form a chain in Q, a

contradiction. Thus the isomorphism can be extended to P and Q.

(b) First suppose that P is the heap of some minuscule w ∈ W , and consider a subin-

terval of P between two elements labeled i. By choosing a suitable linear extension of P ,

one may obtain a reduced expression for w in which the terms corresponding to the subin-

terval appear as a subword. Applying Proposition 2.3, we obtain that the subinterval

must satisfy (H2). In particular, the (open) subinterval has only one element when sub-

case (ii) applies, since a 3-element chain is the only (finite, bounded) poset that has only

one element that covers or is covered by one or both endpoints.

Conversely, assume (H1) and (H2). From (a), it follows that P is the heap of some W-

expression, say si1 · · · sil . Furthermore, (H2) implies that there can be no linear extension

of P in which (i) two elements labeled i appear consecutively, or (ii) three elements labeled

i, j, i appear consecutively, unless aji = −2, or (iii) four elements labeled i, j, i, j, unless

aij = aji = −2. Since aij = −2 can occur only if sisj has order ⩾ 4, and aij = aji = −2
only if sisj does not have finite order, Proposition 3.3 of [St1] implies that P is the heap

of a fully commutative element w; in particular, the expression is reduced. Applying

Proposition 2.3, it follows that w is minuscule.

(c) If P is the heap of some dominant minuscule element, then (b) implies (H1)–(H2),

Proposition 2.5 implies (H3), and Corollary 2.6 implies (H4). Conversely, if P satisfies

(H1)–(H4), then from (b) we know that P is (isomorphic to) the heap of a reduced ex-

pression for some minuscule w ∈ W ; say, w = si1 · · · sil . Assume towards a contradiction

that w fails to be dominant. By Proposition 2.5 and (H3), the last occurrence of some

generator si must be followed by at least two generators that do not commute with si. If

the first two of these are in positions p and p′ (p < p′), and the last si is in position q,

then (H3) implies that p must be the unique element that covers q (whence q ≺ p ≺ p′),

and p and p′ must have different labels. Since q is the last element labeled i, it follows

that a maximal chain in P from p to p′ traces a path in the diagram that is disjoint from

i but whose (distinct) endpoints are adjacent to i, contradicting (H4). □
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Figure 1: Subintervals of type D5 and C4.

Remark 3.2. If P is a dominant minuscule heap, then the same is true of any order

filter of P . (A subset F of P is an order filter if p ∈ F and p ≺ q implies q ∈ F .)

This follows easily from (H1)–(H4), or simply the fact that dominant minuscule reduced

expressions are closed under deletion of initial segments (cf. Remark 2.7(b)).

In the minuscule case, an acyclic diagram tightly constrains the possibilities for subin-

tervals bounded by elements of the same label (cf. Proposition 7.2 of [P1]).

Proposition 3.3. In the heap of a minuscule element satisfying (H4), every closed

subinterval between two elements labeled i (with no other element labeled i in between)

is isomorphic as a labeled poset to the heap of sk · · · s3s1s2s3 · · · sk in Dk (k ⩾ 3), or

sk · · · s2s1s2 · · · sk in Ck (k ⩾ 2).

The two subinterval types are illustrated in Figure 1.

It is important to note that we are making no claims about the entries of the Car-

tan matrix corresponding to the labels that appear in these subintervals beyond what

can be inferred about certain entries being zero or nonzero. For example, in the (domi-

nant) minuscule heaps of Figure 5, there are subintervals of type D3 whose labels index

subdiagrams of type B3.

Proof. Consider a subinterval whose endpoints are labeled i.

Case 1: If the upper endpoint covers two or more elements then there must be exactly

two such elements, and there can be no other elements in the subinterval whose labels are

adjacent to i, by (H2). Since the two elements are incomparable, they must have distinct,

non-adjacent labels, by (H1). Furthermore, since there must be maximal chains from

these elements to the lower endpoint, these must be the only elements in the subinterval;

otherwise, the elements covering the lower endpoint would exceed the limit of two elements

in the interval with labels adjacent to i. It follows that the subinterval is of type D3.
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Figure 2: A fully commutative heap in D5.

Case 2: If the upper endpoint covers only one element, labeled j, then the lower end-

point can only be covered by one element, also of label j. Otherwise, there would be a

maximal chain from the lower endpoint to the upper endpoint whose labels trace a circuit

in the Dynkin diagram, contradicting (H4). If the elements labeled j are in fact the same,

then we obtain a subinterval of type C2. Otherwise, (H2) implies that they must be the

only two elements labeled j in the subinterval. By induction, the subinterval between

these two elements is of type Dk or Ck, so the full subinterval is of type Dk+1 or Ck+1. □

Corollary 3.4. The heap of any minuscule element satisfying (H4) is ranked.

Proof. Let q be a maximal element of a minuscule heap P satisfying (H4). By induction,

there is a rank function for P − {q}. Allowing shifts of the rank function on connected

components of P − {q}, we can extend the rank function to all of P unless there are

two elements p and p′ covered by q that are in the same connected component and have

unequal rank. By following a path in the Hasse diagram of P −{q} from p to p′, we trace

a path in the Dynkin diagram between two distinct nodes that are adjacent to the label

i of q. Given (H4), this is possible only if the path passes through a vertex of P − {q}
labeled i. Hence there are at least two vertices in P labeled i, so by Proposition 3.3, the

top two must form a subinterval of type D3, with q at the top and p, p′ the two unrelated

elements in the middle. However, since p and p′ both cover a fourth element, they must

have the same rank in P − {q}. □
Remark 3.5. The heaps of fully commutative elements, even those satisfying (H4),

need not be ranked. An example involving D5 is illustrated in Figure 2. Similarly, it is

easy to give examples of minuscule heaps that are not ranked (but violate (H4)).

4. The Classification of Dominant Minuscule Heaps

Let P be the heap of dominant minuscule element w ∈ W . By passing to a suitable

parabolic subgroup and root subsystem, we may assume that every available generator

appears in a reduced expression for w. Recall that this forces the Dynkin diagram to be

acyclic (Corollary 2.6).
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Figure 3: Decomposition of a reducible dominant minuscule heap.

If the Dynkin diagram is disconnected, then P is the disjoint union of the heaps of

certain dominant minuscule elements belonging to the parabolic subgroups corresponding

to the connected components. Conversely, the union of dominant minuscule heaps whose

label sets are supported on distinct connected components is itself the heap of a dominant

minuscule element. Thus we now restrict our attention to connected Dynkin diagrams.

Let T denote the set of vertices of P consisting of the top elements of each label.

Property (H3) shows that every member of T is covered in P by at most one element,

and this element is also a member of T . Thus T is an order filter of P and has the order

structure of a forest of rooted trees. Given the hypothesis that the diagram is connected,

it follows that T is in fact a single rooted tree and has a maximum element. Following

Proctor, we refer to T as the top tree of P . However, it should be noted that in multiply-

laced cases (unlike the simply-laced cases in [P2]), the top tree is not necessarily a maximal

tree-filter of P . (Compare the two posets in Figure 1.)

We say that P is irreducible if the label of every vertex that is not minimal in T occurs

at least twice in P . In the simply-laced case, this is equivalent to being “slant-irreducible”

as defined in [P2].

Suppose that P is not irreducible. Thus there is some label i that is assigned only once

in P , say to p, and there is some q ∈ T covered by p. Let j denote the label of q, let Q be

the labeled subposet of P consisting of all q′ ≼ q, and let J denote the set of labels that

occur in the portion of T that is ≼ q. (See Figure 3.) Every q′ ∈ Q has a maximal chain

from q′ to q; this chain cannot pass through p, the unique vertex labeled i, so the labels

along the path must stay within J . Thus Q consists of all members of P whose labels are

in J . There also cannot be any covering relations between members of Q and P −Q other

than q ≺ p; otherwise, there would be a path in the diagram between i and j in addition

12



to the edge between i and j. Furthermore, it follows easily from Proposition 3.1 that Q

and P −Q are heaps of dominant minuscule elements of W .

Conversely, suppose that P and Q heaps of dominant minuscule elements whose labels

are supported on two disjoint (but connected) Dynkin diagrams, and that p is a vertex in

the top tree of P whose label i occurs only once in P . Let q be the maximum element of

Q and j the label of q. Again via Proposition 3.1, it easily follows that the labeled poset

obtained from P ∪Q by adding the covering relation q ≺ p is a dominant minuscule heap

relative to any Dynkin diagram obtained by taking the union of the two original diagrams

and adding an edge between i and j, with i short relative to j. We call this new labeled

poset the sum of P and Q at p. In the simply-laced case, this is equivalent to the “slant

sum” defined in [P2].

The preceding remarks reduce the classification of dominant minuscule heaps to the

irreducible case; all other connected heaps can be built from sums of irreducible heaps.

Lemma 4.1. Let P be an irreducible dominant minuscule heap with top tree T . If

q ∈ T covers two members of P , then every p ≺ q in T covers an element not in T .

Proof. Let i denote the label of q. Since p ≺ q, there is some q′ ∈ T covered by q with

p ≼ q′ ≺ q. Since q is not minimal in T and P is irreducible, there must be another vertex

labeled i in P . Given that q covers two elements, both must occur in some subinterval of

P between two elements labeled i, whence (Proposition 3.3) this must be a subinterval of

type D3, and the (open) subinterval has exactly two elements, including q′. In particular,

q′ covers the lower endpoint of this subinterval, and this lower endpoint is not a member

of T , being the second highest element labeled i. If p = q′, we are done. Otherwise, q′

is not minimal in T so it covers a second element (a member of T ). We therefore replace

q ← q′ and proceed by induction on the length of a maximal chain from p to q. □

In the Weyl group of Bn (with the Cartan matrix arranged so that ai,i+1 = ai+1,i = −1
except a21 = −2), define Mn to be the heap of w = s1(s2s1)(s3s2s1) · · · (sn · · · s2s1). For

example, M4 is illustrated in Figure 4. It is not hard to show that w is a dominant

minuscule element; for example, one can easily see that Mn satisfies (H1)–(H4).

Theorem 4.2. If P is the heap of a dominant minuscule w ∈ W that is irreducible,

then either Φ is simply-laced, or the Dynkin diagram of Φ has the form

1 2 nk k+1

for some k (1 ⩽ k < n), the maximum element of P is labeled 1, and

(i) k = 1 (i.e., Φ ∼= Bn) and P is isomorphic to an order filter of Mn, or

(ii) k > 1 and w = (sn−1 · · · sk+1)(sn · · · sk+2)(s1 · · · sksk+1sk · · · s1).

13
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Figure 5: Dominant minuscule heaps.

Examples of dominant minuscule heaps of types (i) and (ii) are illustrated in Figure 5.

The simply-laced dominant minuscule heaps have been classified by Proctor in [P2].

Combined with the above result, this classifies all dominant minuscule heaps.

Proof. Assuming Φ is not simply-laced, there must be at least one covering pair p ≺ q

in T whose respective labels j and i are connected by a non-simple edge of the Dynkin

diagram. Since (H3) requires aij = −1, it must be the case that aji ⩽ −2. Since P

is irreducible and q is not minimal in T , there must be another element labeled i in P .

Hence p occurs in some subinterval of P between two elements labeled i, whence aji = −2
by (H2). Thus every edge of the Dynkin diagram is of type A2 or B2, and the B2-edges

are oriented in T so that the short end is higher.

A second consequence of (H2) is that in the above situation, p covers an element labeled

i not in T . Therefore if p is not minimal in T , it covers at least two elements in P , and by

Lemma 4.1, every element below p in T must cover an element not in T . It follows that

the portion of T below p must be a chain. Otherwise some p′ ≼ p in T would cover at least

14



three elements: two members of T and an element not in T . As a non-minimal member

of T , there must be a second element of P with the same label i′ as p′, and hence there is

a subinterval of P with endpoints labeled i′ that contains three elements whose labels are

adjacent to i′, contradicting (H2). Similarly, no p′ ≼ p may cover a member of T whose

label is not short relative to i′; otherwise, we would again contradict (H2). Thus, all of

the covering relations below p in T must correspond to simple edges of the diagram.

Next, we claim that every q′ ≽ q must cover only one element of P . Otherwise,

Lemma 4.1 implies that q must cover a second element in addition to p. However since

aji = −2, this contradicts the fact that the subinterval between q and the second highest

element labeled i must contain only p, by (H2). Thus the entire top tree must be a chain.

Since we have seen that every edge of T below a B2-edge must be simple, it follows

that there is exactly one B2-edge. Hence the Dynkin diagram has the claimed form, and

(with the labels arranged to match the above figure), the label of the top element of P

must be 1.

If the B2-edge is at the top of the tree (i.e., the case k = 1), then we claim that P

must be an order filter of Mn. To verify this claim, one needs only to check that any heap

obtained by adding a minimal element to an order filter of Mn is either an order filter of

Mn or violates (H1)–(H4).

In the case k > 1, irreducibility forces each of the labels 1, . . . , n − 1 to occur at least

twice in P . Since ak+1,k = −2, the second highest vertex labeled k must be covered by

the top vertex labeled k + 1, and no other vertex can appear in the subinterval between

the top two vertices labeled k (by (H2)). In particular, the top pair of vertices labeled

k − 1 has two vertices labeled k in between, so the second k must cover the second k − 1.

Similarly, the second highest i must cover the second highest i− 1 for 1 < i ⩽ k, and the

highest j + 1 and second highest j − 1 must cover the second highest j for k < j < n.

These relations account for the heap of the element w described in (ii). To see that

there are no further possibilities, observe that one cannot add a third element of any label

< n (or a second element labeled n) to P without violating (H1)–(H4). □

Each of the dominant minuscule heaps described in the above theorem can be converted

to simply-laced (dominant minuscule) heaps by a suitable relabeling. See Figure 6. In each

case, the new Dynkin diagram is Y-shaped, with two branches of length k; in particular,

the Bn-heaps are converted to Dn+1-heaps. This shows that the underlying unlabeled

posets are “d-complete” (although reducible) in the sense of Proctor [P1–2].

Corollary 4.3. Every dominant minuscule heap is isomorphic (as an unlabeled poset)

to a simply-laced dominant minuscule heap; i.e., dominant minuscule heaps are d-complete.
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Figure 6: Simply-laced relabelings.

5. Heaps and Inversion Sets

We define an inversion of w ∈ W to be a root γ ∈ Φ+ such that wγ ∈ Φ−; this

generalizes in a natural way the standard notion of inversion in a permutation. We let

Φ(w) := {γ ∈ Φ+ : wγ ∈ Φ−},

Φ∨(w) := {γ∨ ∈ (Φ∨)+ : wγ∨ ∈ (Φ∨)−},

denote the set of inversions of w, along with the co-root analogue. The latter turns out to

be more natural in some cases (e.g., Theorem 5.5).

It is well-known (e.g., Exercise 5.6.1 in [H]) that Φ(w) can be determined explicitly

from any reduced expression w = si1 · · · sil ; viz., Φ(w) = {γ1, . . . , γl}, where

γl = αil , γl−1 = silαil−1
, . . . , γ1 = sil · · · si2αi1 .

We call γ = (γ1, . . . , γl) the root sequence of si1 · · · sil . Similarly, γ∨ = (γ∨
1 , . . . , γ

∨
l ) is the

co-root sequence.

Proposition 5.1. w ∈W is λ-minuscule if and only if 〈λ, γ∨〉 = 1 for all γ ∈ Φ(w).

Proof. Choose a reduced expression w = si1 · · · sil . Since W acts as a group of isometries

relative to 〈 , 〉, it follows immediately from (2.1) that w is λ-minuscule if and only if

〈λ, γ∨
k 〉 = 1 (1 ⩽ k ⩽ l), where γk = sil · · · sik+1

αik . □

Given a reduced expression w = si1 · · · sil with root sequence γ = (γ1, . . . , γl), we define

the heap ordering of γ to be the partial order generated by taking the transitive closure

of the relations

γp ≺ γq whenever 〈γp, γq〉 6= 0.

The heap ordering of the co-root sequence γ∨ is defined similarly.
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If si and sj are a pair of generators that occur in positions k − 1 and k of the reduced

expression, then γk = x−1αj and γk−1 = x−1sjαi, where x = sik+1
· · · sil . Hence

〈γk−1, γ
∨
k 〉 = 〈sjαi, α

∨
j 〉 = −〈αi, α

∨
j 〉. (5.1)

In particular, si and sj commute if and only if γk−1 and γk are orthogonal. Furthermore,

if si and sj do commute, then we have sjαi = αi and γk−1 = x−1αi, so transposing two

commuting generators corresponds to transposing two adjacent orthogonal roots in γ and

hence creates a new root sequence with the same heap ordering.

If w is fully commutative, then any reduced expression for w can be obtained by a

sequence of such operations, so all root sequences yield the same partial ordering of Φ(w).

The following result justifies the terminology.

Proposition 5.2. If P is the heap of a reduced word and γ is the corresponding root

sequence, then p ≺ q in P if and only if γp ≺ γq in the heap ordering of γ.

Proof. If γp ≺ γq is a covering relation, then 〈γp, γq〉 6= 0, so γp precedes γq in every

root sequence belonging to the commuting equivalence class of γ, so p precedes q in

every linear extension of P , so p ≺ q. Conversely, if p ≺ q is a covering relation of P ,

then the corresponding terms of the reduced expression cannot commute, and there is a

reduced expression for w in which γp and γq appear consecutively in the corresponding

root sequence. Hence (5.1) implies 〈γp, γq〉 6= 0 and γp ≺ γq. □

The following result generalizes Theorem 2.4 of [FS] from the simply-laced case to any

(symmetrizable Kac-Moody) Weyl group.

Theorem 5.3. Given w ∈W , the following are equivalent:

(a) There is no reduced expression for w containing a subword of the form sisjsi,

where sj is short relative to si. (In particular, w is fully commutative.)

(b) There is no triple of co-roots α∨, β∨, α∨ + β∨ ∈ Φ∨(w).

(c) The heap ordering of some (equivalently, every) co-root sequence for w is consistent

with the dual of the standard ordering of Φ∨ (i.e., α∨ ≺ β∨ implies α∨ > β∨).

Proof. We argue that the negations of these conditions are equivalent.

¬(a) ⇒ ¬(b). If (a) fails, then w has a reduced expression that contains sisjsi, where

〈αj , α
∨
i 〉 = −1. In the corresponding co-root sequence there must be terms of the form

x−1α∨
i , x

−1siα
∨
j = x−1(α∨

j + kα∨
i ), and

x−1sisjα
∨
i = x−1si(α

∨
j + α∨

i ) = x−1(α∨
j + (k − 1)α∨

i )
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for some x ∈ W , where k = −〈αi, α
∨
j 〉 ⩾ 1. It follows that α∨, β∨, α∨ + β∨ ∈ Φ∨(w),

where α∨ = x−1α∨
i and β∨ = x−1(α∨

j + (k − 1)α∨
i ).

¬(b) ⇒ ¬(c). Suppose α∨, β∨, α∨ + β∨ ∈ Φ∨(w). These terms must appear in every

co-root sequence for w in the order α∨, α∨ +β∨, β∨ or the reverse. Otherwise, by suitable

truncation, there would exist x ∈ W such that x(α∨ + β∨) is negative while xα∨ and

xβ∨ are both positive, or vice-versa. If both orderings occurred among the set of co-root

sequences for w within a given commuting equivalence class, then the three co-roots would

have to be pairwise incomparable in the heap ordering, and thus pairwise orthogonal.

However, this contradicts the fact that they are linearly dependent. Therefore, within a

given commuting equivalence class, α∨ always precedes α∨ + β∨ or β∨ always precedes

α∨ + β∨, whence α∨ ≺ α∨ + β∨ or β∨ ≺ α∨ + β∨, contradicting (c).

¬(c)⇒ ¬(a). If the heap ordering of some co-root sequence fails to be consistent with

the dual of the standard ordering, then there must be a covering pair α∨ ≺ β∨ in the heap

such that α∨ 6> β∨. If there is more than one such pair available, choose one so that β∨

is maximal among all such pairs, relative to the heap ordering.

By choosing a suitable reduced expression w = si1 · · · sil in the same equivalence class,

we may obtain a co-root sequence in which α∨ and β∨ appear in positions p − 1 and p,

for some p. Setting i = ip−1 and j = ip, it follows that β
∨ = x−1α∨

j and α∨ = x−1sjα
∨
i =

x−1(α∨
i + kα∨

j ), where x = sip+1
· · · sil and k = −〈αj , α

∨
i 〉 ⩾ 1. Since α∨ 6> β∨ and

α∨ − β∨ = x−1α∨
i + (k − 1)x−1α∨

j ,

it cannot be the case that x−1α∨
i and x−1α∨

j are both positive. However β∨ = x−1α∨
j ,

so x−1α∨
i must be negative. Thus x has a reduced expression that begins with si (e.g.,

see [H, §5.4]), so we may assume ip+1 = i and the term immediately following β∨ in the

co-root sequence is γ∨ = x−1siα
∨
i = −x−1α∨

i .

If k = 1, we are done. Otherwise, k > 1 and

β∨ − γ∨ = x−1α∨
i + x−1α∨

j =
k − 2

k − 1
x−1α∨

i +
1

k − 1
(α∨ − β∨)

is in the positive linear span of x−1α∨
i and α∨−β∨. Since the former is a negative co-root,

and the latter is not a sum of positive co-roots, it follows that β∨ 6> γ∨, contradicting our

choice of β∨. □

Remark 5.4. (a) Either of Propositions 2.1 or 2.3 show that minuscule elements satisfy

the equivalent conditions of the above result. But there are non-minuscule elements that

also satisfy the conditions (e.g., w = s3s1s2s4s3 in D4).
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(b) Fan proves the equivalence of parts (a) and (b) for simply-laced finite Weyl groups

and briefly discusses (in a dual form) the multiply-laced case in [F].

Given that Theorem 5.3 provides circumstances where the heap ordering and the dual

of the standard ordering of Φ∨(w) are related, it is natural to investigate circumstances

where the two orderings coincide.

Theorem 5.5. If w is dominant minuscule, then the heap of w is dual-isomorphic to

the standard ordering of Φ∨(w). In fact, (Φ∨(w),≺) = (Φ∨(w), >).

Proof. Assume that w is minuscule relative to the dominant weight λ. By Theorem 5.3,

we know that α∨ ≺ β∨ in Φ∨(w) implies α∨ > β∨, so it suffices to prove the converse.

Given that α∨ > β∨, we have α∨ = β∨ +
∑

i∈J ciα
∨
i , where J ⊆ [n] and the ci’s are

positive integers. By Proposition 5.1, it follows that

∑
i∈J

ci〈λ, α∨
i 〉 = 〈λ , α∨ − β∨〉 = 0.

However λ is dominant, so 〈λ, α∨
i 〉 = 0 for all i ∈ J ; in particular, wα∨

i must be positive

for all i ∈ J (again by Proposition 5.1).

If α∨ ⊀ β∨, then there would exist a co-root sequence in which β∨ precedes α∨. Hence

by truncation, there would exist some x ∈ W with an inversion set Φ∨(x) ⊂ Φ∨(w) that

contains α∨ but not β∨. However if xα∨ is negative and xβ∨ is positive, then xα∨
i must

be negative for some i ∈ J , contradicting the fact that Φ∨(x) ⊂ Φ∨(w). □

Remark 5.6. (a) The above argument shows that if α∨ > β∨, α∨ ∈ Φ∨(w) and

〈λ, β∨〉 = 1, then β∨ ∈ Φ∨(w). In other words, if w is (dominant) λ-minuscule, then

Φ∨(w) is an order ideal of Φ∨
λ := {α∨ ∈ Φ∨ : 〈λ, α∨〉 = 1}, relative to <. In particular,

since Φ∨
λ (and therefore Φ∨(w)) is an order-convex subset of (Φ∨, >), it follows that every

dominant minuscule heap is isomorphic to a convex subposet of (Φ∨, >).

(b) If w is minuscule but not dominant, then the heap ordering and dual-standard

ordering of Φ∨(w) need not coincide. For example, in the affine root system of type A
(1)
3

(with the nodes numbered so that 1, 2, 3, 4 form a circuit), the element w = s3s1s2s4s1 is

easily seen to be minuscule, and the corresponding root sequence is

γ = (γ1, . . . , γ5) = (2α1 + α2 + α3 + α4, α1 + α2 + α4, α1 + α2, α1 + α4, α1).

However, the relation γ1 > γ2 has no counterpart in the heap ordering. See Figure 7,

where the posets are displayed using label i for the vertex γi.
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Figure 7: (Φ∨(w),≺) and (Φ∨(w), <) for a non-dominant minuscule w.

It is plausible that if the Dynkin diagram is acyclic, then every element satisfying the

conditions of Theorem 5.3 has an inversion set whose heap ordering and standard ordering

are dual. For example, although we omit the proof, we claim that this is true at least

when W is finite. It is also plausible that the standard ordering is the “wrong” ordering

for this purpose.

Question 5.7. Is there a partial ordering ◁ of Φ∨ so that for every w ∈W satisfying

the conditions of Theorem 5.3, (Φ∨(w),◁) is the heap ordering of Φ∨(w)?

In case the Cartan matrix satisfies (cf. Remark 2.7(a))

aij < 0 ⇒ aij = −1 or aji = −1, (5.2)

computer searches suggest that a candidate for ◁ is the partial order obtained by taking

the transitive closure of the relations

α∨ ◁ β∨ whenever α∨ − β∨ ∈ (Φ∨)+.

In the finite case, this coincides with the dual of the standard ordering. It also eliminates

the extraneous relation in the example discussed in Remark 5.6(b).

The necessity of (5.2) can be seen as follows. The element w = sisj satisfies the

conditions of Theorem 5.3, and has the co-root sequence (sjα
∨
i , α

∨
j ), so sjα

∨
i ≺ α∨

j in the

heap (assuming aij < 0). However if aij , aji ⩽ −2, it is not hard to show that there is no

pair of positive co-roots whose sum is sjα
∨
i .

The following result shows that this ordering is at least consistent with the heap.

Proposition 5.8. Assume that the Cartan matrix satisfies (5.2) and that w satisfies

the conditions of Theorem 5.3.

(a) If α∨ ≺ β∨ is a covering relation in the heap of Φ∨(w), then α∨ − β∨ ∈ (Φ∨)+.

(b) If α∨, β∨ ∈ Φ∨(w) and α∨ − β∨ ∈ (Φ∨)+, then α∨ ≺ β∨ in the heap.

Proof. (a) If α∨ ≺ β∨ is a covering relation, then there is a co-root sequence in which α∨

and β∨ occur consecutively, and hence (5.1) and (5.2) imply 〈α, β∨〉 = 1 or 〈β, α∨〉 = 1.
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Thus the reflection of α∨ through the hyperplane perpendicular to β is α∨ − β∨, or vice-

versa. Either way, α∨ − β∨ is a co-root, necessarily positive by Theorem 5.3(c).

(b) If α∨ and β∨ are unrelated in the heap ordering, then they must be orthogonal and

occur consecutively in some co-root sequence for w. It follows that there is an orthogonal

pair of simple roots αi, αj such that α∨ = x−1α∨
i and β∨ = x−1α∨

j for some x ∈ W

(cf. (5.1)). However since α∨
i −α∨

j cannot be a co-root (it is neither positive nor negative),

this contradicts the fact that α∨−β∨ is a co-root. Hence α∨ and β∨ must be related in the

heap, and since α∨−β∨ is positive, the relation must be α∨ ≺ β∨, by Theorem 5.3(c). □

References

[B] N. Bourbaki, “Groupes et Algèbres de Lie, Chp. IV–VI,” Masson, Paris, 1981.

[F] C. K. Fan, “A Hecke Algebra Quotient and Properties of Commutative Elements
of a Weyl Group,” Ph. D. thesis, MIT, 1995.

[FS] C. K. Fan and J. R. Stembridge, Nilpotent orbits and commutative elements, J.
Algebra 196 (1997), 490–498.

[H] J. E. Humphreys, “Reflection Groups and Coxeter Groups,” Cambridge Univ.
Press, Cambridge, 1990.

[K] V. G. Kac, “Infinite Dimensional Lie Algebras,” Cambridge Univ. Press, Cam-
bridge, 1990.

[P1] R. A. Proctor, Minuscule elements of Weyl groups, the numbers game, and d-
complete posets, J. Algebra 213 (1999), 272–303.

[P2] R. A. Proctor, Dynkin diagram classification of λ-minuscule Bruhat lattices and
of d-complete posets, J. Algebraic Combin. 9 (1999), 61–94.

[P3] R. A. Proctor, Generalized Young diagrams with well-defined jeu de taquin emp-
tying procedures, preprint.

[St1] J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Alge-
braic Combin. 5 (1996), 353–385.

[St2] J. R. Stembridge, Quasi-minuscule quotients and reduced words for reflections,
preprint.

21


