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0. Introduction

A Coxeter group element w is said to be fully commutative if any reduced word for w

can be obtained from any other via the interchange of commuting generators. (More

explicit definitions will be given in Section 1 below.)

For example, in the symmetric group of degree n, the fully commutative elements are

the permutations with no decreasing subsequence of length 3, and they index a basis for

the Temperley-Lieb algebra. The number of such permutations is the nth Catalan number.

In [St1], we classified the irreducible Coxeter groups with finitely many fully commu-

tative elements. The result is seven infinite families of such groups; namely, An, Bn,

Dn, En, Fn, Hn and I2(m). An equivalent classification was obtained independently by

Graham [G], and in the simply-laced case by Fan [F1]. In this paper, we consider the

problem of enumerating the fully commutative elements of these groups. The main result

(Theorem 2.6) is that for six of the seven infinite families (we omit the trivial dihedral

family I2(m)), the generating function for the number of fully commutative elements can

be expressed in terms of three simpler generating functions for certain formal languages

over an alphabet with at most four letters. The languages in question vary from family to

family, but have a uniform description. The resulting generating function one obtains for

each family is algebraic, although in some cases quite complicated. (See (3.7) and (3.11).)

In a general Coxeter group, the fully commutative elements index a basis for a natural

quotient of the corresponding Iwahori-Hecke algebra [G]. (See also [F1] for the simply-

laced case.) For An, this quotient is the Temperley-Lieb algebra. Recently, Fan [F2] has

shown that for types A, B, D, E and (in a sketched proof) F , this quotient is generically

semisimple, and gives recurrences for the dimensions of the irreducible representations.

(For type H, the question of semisimplicity remains open.) This provides another possible

approach to computing the number of fully commutative elements in these cases; namely,

as the sum of the squares of the dimensions of these representations. Interestingly, Fan also

shows that the sum of these dimensions is the number of fully commutative involutions.

With the above motivation in mind, in Section 4 we consider the problem of enumer-

ating fully commutative involutions. In this case, we show (Theorem 4.3) that for the six

nontrivial families, the generating function can be expressed in terms of the generating

functions for the palindromic members of the formal languages that occur in the unre-

stricted case. Again, each generating function is algebraic, and in some cases, the explicit

form is quite complicated. (See (4.8) and (4.10).)

In Section 5, we provide asymptotic formulas for both the number of fully commutative

elements and the number of fully commutative involutions in each family. In an appendix,

we provide tables of these numbers up through rank 12.
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1. Full Commutativity

Throughout this paper, W shall denote a Coxeter group with (finite) generating set S,

Coxeter graph Γ, and Coxeter matrix M = [m(s, t)]s,t∈S . A standard reference is [H].

1.1 Words.

For any alphabet A, we use A∗ to denote the free monoid consisting of all finite-length

words a = (a1, . . . , al) such that ai ∈ A. The multiplication in A∗ is concatenation, and on

occasion will be denoted ‘ · ’. Thus (a, b)(b, a) = (a, b) · (b, a) = (a, b, b, a). A subsequence

of a obtained by selecting terms from a set of consecutive positions is said to be a subword

or factor of a.

For each w ∈ W , we define R(w) ⊂ S∗ to be the set of reduced expressions for w; i.e.,

the set of minimum-length words s = (s1, . . . , sl) ∈ S∗ such that w = s1 · · · sl.
For each integer m ≥ 0 and s, t ∈ S, we define

〈s, t〉m = (s, t, s, t, . . . )︸ ︷︷ ︸
m

,

and let ≈ denote the congruence on S∗ generated by the so-called braid relations; namely,

〈s, t〉m(s,t) ≈ 〈t, s〉m(s,t)

for all s, t ∈ S such that m(s, t) < ∞.

It is well-known that for each w ∈ W , R(w) consists of a single equivalence class relative

to ≈. That is, any reduced word for w can be obtained from any other by means of a

sequence of braid relations [B, §IV.1.5].

1.2 Commutativity classes.

Let ∼ denote the congruence on S∗ generated by the interchange of commuting gener-

ators; i.e., (s, t) ∼ (t, s) for all s, t ∈ S such that m(s, t) = 2. The equivalence classes of

this congruence will be referred to as commutativity classes.

Given s = (s1, . . . , sl) ∈ S∗, the heap of s is the partial order of {1, 2, . . . , l} obtained

from the transitive closure of the relations i ≺ j for all i < j such that si = sj or

m(si, sj) ≥ 3. It is easy to see that the isomorphism class of the heap is an invariant of

the commutativity class of s. In fact, although it is not needed here, it can be shown that

s ∼ t = (t1, . . . , tl) if and only if there is an isomorphism i 7→ i′ of the corresponding heap

orderings with si = ti′ . (For example, see Proposition 1.2 of [St1].)

In [St1], we defined w ∈ W to be fully commutative if R(w) consists of a single commu-

tativity class; i.e., any reduced word for w can be obtained from any other solely by use of

the braid relations that correspond to commuting generators. It is not hard to show that
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Figure 1: The irreducible FC-finite Coxeter groups.

this is equivalent to the property that for all s, t ∈ S such that m(s, t) ≥ 3, no member of

R(w) has 〈s, t〉m as a subword, where m = m(s, t).

It will be convenient to let WFC denote the set of fully commutative members of W .

As mentioned in the introduction, the irreducible FC-finite Coxeter groups (i.e., Coxeter

groups with finitely many fully commutative elements) occur in seven infinite families

denoted An, Bn, Dn, En, Fn, Hn and I2(m). The Coxeter graphs of these groups are

displayed in Figure 1. It is interesting to note that there are no “exceptional” groups.

For the dihedral groups, the situation is quite simple. Only the longest element of I2(m)

fails to be fully commutative, leaving a total of 2m− 1 such elements.

Henceforth, we will be concerned only with the groups in the remaining six families.

1.3 Restriction.

For any word s ∈ S∗ and any J ⊂ S, let us define s|J to be the restriction of s to J ;

i.e., the subsequence formed by the terms of s that belong to J . Since the interchange of

adjacent commuting generators in s has either the same effect or no effect in s|J , it follows
that for any commutativity class C, the restriction of C to J is well-defined.
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Figure 2: A simple branch.

A family F of subsets of S is complete if for all s ∈ S there exists J ∈ F such that

s ∈ J , and for all s, t ∈ S such that m(s, t) ≥ 3 there exists J ∈ F such that s, t ∈ J .

Proposition 1.1. If F is a complete family of subsets of S, then for all s, s′ ∈ S∗, we

have s ∼ s′ if and only if s|J ∼ s′|J for all J ∈ F .

Proof. The necessity of the stated conditions is clear. For sufficiency, suppose that s is

the first term of s. Since s ∈ J for some J ∈ F , there must also be at least one occurrence

of s in s′. We claim that any term t that precedes the first s in s′ must commute with s.

If not, then we would have s|{s,t} 6∼ s′|{s,t}, contradicting the fact that s|J ∼ s′|J for some

J containing {s, t}. Thus we can replace s′ with some s′′ ∼ s′ whose first term is s. If

we delete the initial s from s and s′′, we obtain words that satisfy the same restriction

conditions as s and s′. Hence s ∼ s′′ follows by induction with respect to length. □

2. The Generic Case

Choose a distinguished generator s1 ∈ S, and let W = W1,W2,W3, . . . denote the

infinite sequence of Coxeter groups in which Wi is obtained from Wi−1 by adding a new

generator si such that m(si, si−1) = 3 and si commutes with all other generators of Wi−1.

In the language of [St1], {s2, . . . , sn} is said to form a simple branch in the graph of Wn.

For n ≥ 1, let Sn = S ∪ {s2, . . . , sn} denote the generating set for Wn, and let Γn denote

the corresponding Coxeter graph. (See Figure 2.) It will be convenient also to let S0 and

Γ0 denote the corresponding data for the Coxeter group W0 obtained when s1 is deleted

from S. Thus Sn = S0 ∪ {s1, . . . , sn} for all n ≥ 0.

2.1 Spines, branches, and centers.

For any w ∈ WFC
n , we define the spine of w, denoted σ(w), to be the pair (l, A), where l

denotes the number of occurrences of s1 in some (equivalently, every) reduced word for w,

and A is the subset of {1, . . . , l − 1} defined by the property that k ∈ A iff there is no

occurrence of s2 between the kth and (k + 1)th occurrences of s1 in some (equivalently,

every) reduced word for w. We refer to l as the length of the spine.

Continuing the hypothesis that w is fully commutative, for J ⊆ Sn we let w|J denote

the commutativity class of s|J for any reduced word s ∈ R(w). (It follows from the
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Figure 3: An F7-heap. Figure 4: Center and branch.

discussion in Section 1.3 that this commutativity class is well-defined.) In particular, for

each w ∈ WFC
n , we associate the pair

(w|Sn−S0
, w|S1

).

We refer to w|Sn−S0
and w|S1

as the branch and central portions of w, respectively.

For example, consider the Coxeter group F7. We label its generators {u, t, s1, . . . , s5}
in the order they appear in Figure 1, so that {s2, . . . , s5} is a simple branch. The heap of

a typical fully commutative member of F7 is displayed in Figure 3. Its spine is (5, {1, 4}),
and the heaps of its central and branch portions are displayed in Figure 4.

Define Bn (the “branch set”) to be the set of all commutativity classes B over the

alphabet Sn − S0 = {s1, . . . , sn} such that

(B1) If (si, si) is a subword of some member of B, then i = 1.

(B2) If (si, sj , si) is a subword of some member of B, then i = 1.

Furthermore, given a spine σ = (l, A), we define Bn(σ) to be the set of commutativity

classes B ∈ Bn such that there are l occurrences of s1 in every member of B, and

(B3) The kth and (k+1)th occurrences of s1 occur consecutively in some member of B

if and only if k ∈ A.
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We claim (see the lemma below) that Bn(σ) contains the branch portions of every fully

commutative w ∈ Wn with spine σ. Note also that Bn depends only on n, not W .

Similarly, let us define C = CW (the “central set”) to be the set of commutativity classes

C over the alphabet S1 = S such that

(C1) For all s ∈ S1, no member of C has (s, s) as a subword.

(C2) If 〈s, t〉m is a subword of some member of C, where m = m(s, t) ≥ 3, then s1

occurs at least twice in this subword. (In particular, s1 = s or s1 = t.)

In addition, we say that C ∈ CW is compatible with the spine σ = (l, A) if every member

of C has l occurrences of s1, and

(C3) If 〈s, t〉m is a subword of some member of C, where m = m(s, t) ≥ 3, then this

subword includes the kth and (k + 1)th occurrences of s1 for some k 6∈ A.

Let C(σ) = CW (σ) denote the set of σ-compatible members of C. We claim (again, see the

lemma below) that C(σ) contains the central portions of every w ∈ WFC
n with spine σ.

Note also that C(σ) depends only on W = W1 (more precisely, on the Coxeter graph Γ),

not the length of the branch attached to it.

Lemma 2.1. The mapping w 7→ (w|Sn−S0 , w|S1) defines a bijection

WFC
n −→

⋃
σ

Bn(σ)× CW (σ).

Proof. For all non-commuting pairs s, t ∈ Sn, we have {s, t} ⊆ S1 or {s, t} ⊆ Sn − S0,

so by Proposition 1.1, the commutativity class of any w ∈ WFC
n (and hence w itself) is

uniquely determined by w|Sn−S0
and w|S1

. Thus the map is injective.

Now choose an arbitrary fully commutative w ∈ Wn with spine σ = (l, A), and set

B = w|Sn−S0 , C = w|S1 . The defining properties of the spine immediately imply the

validity of (B3). Since consecutive occurrences of any s ∈ Sn do not arise in any s ∈ R(w),

it follows that for all k ≥ 1, the kth and (k+1)th occurrences of s in s must be separated

by some t ∈ Sn such that m(s, t) ≥ 3. For s = s2, s3, . . . , sn, the only possibilities for t

are in Sn −S0; hence (B1) holds. For s ∈ S0, the only possibilities for t are in S1, so (C1)

could fail only if s = s1 and for some k, the only elements separating the kth and (k+1)th

occurrences of s1 in s that do not commute with s1 are one or more occurrences of s2. In

that case, we could choose a reduced word for w so that the subword running from the kth

to the (k+1)th occurrences of s1 forms a reduced word for a fully commutative element of

the parabolic subgroup isomorphic to An generated by {s1, . . . , sn}. However, it is easy to

show (e.g., Lemma 4.2 of [St1]) that every reduced word for a fully commutative member

of An has at most one occurrence of each “end node” generator. Thus (C1) holds.
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Concerning (B2), (C2) and (C3), suppose that (si, sj , si) occurs as a subword of some

member of the commutativity class B. If i > 1, then every s ∈ Sn that does not commute

with si belongs to Sn−S0. Hence, some reduced word for w must also contain the subword

(si, sj , si), contradicting the fact that w is fully commutative. Thus (B2) holds. Similarly,

if we suppose that 〈s, t〉m occurs as a subword of some member of C, wherem = m(s, t) ≥ 3

and s, t ∈ S1, then again we contradict the hypothesis that w is fully commutative unless

s = s1 or t = s1, since s1 is the only member of S1 that may not commute with some

member of Sn − S1. In either case, since 〈s, t〉m cannot be a subword of any s ∈ R(w),

it follows that s1 occurs at least twice in 〈s, t〉m (proving (C2)), and between two such

occurrences of s1, say the kth and (k + 1)th, there must be an occurrence of s2 in s. By

definition, this means k 6∈ A, so (C3) holds. Thus B ∈ Bn(σ) and C ∈ CW (σ).

Finally, it remains to be shown that the map is surjective. For this, let σ = (l, A) be a

spine, and choose commutativity classes B ∈ Bn(σ) and C ∈ CW (σ). Select representatives

sB ∈ (Sn − S0)
∗ and sC ∈ S∗

1 for B and C. Since S1 ∩ (Sn − S0) = {s1} is a singleton,

and this singleton appears the same number of times in sB and sC (namely, l times), it

follows that there is a word s ∈ S∗
n whose restrictions to Sn − S0 and S1 are sB and sC ,

respectively. We claim that s is a reduced word for some w ∈ WFC
n , and hence w 7→ (B,C).

To prove the claim, first consider the possibility that for some s ∈ Sn, (s, s) occurs as

a subword of some member of the commutativity class of s. In that case, depending on

whether s ∈ S1, the same would be true of either B or C, contradicting (B1) or (C1).

Next consider the possibility that 〈s, t〉m occurs as a subword of some word s′ in the

commutativity class of s, where m = m(s, t) ≥ 3. We must have either s, t ∈ Sn − S0 or

s, t ∈ S1, and hence the same subword appears in some member of B or C, respectively.

In the former case, (B2) requires that s = s1 and m = 3. However the restriction of s′

to S1 would then have consecutive occurrences of s1, contradicting (C1). In the latter

case, (C2) and (C3) require that s1 = s or s1 = t, and that the subword 〈s, t〉m includes

the kth and (k + 1)th occurrences of s1 in s′ for some k 6∈ A. It follows that s2 does not

occur between these two instances of s1 in s′, and thus they appear consecutively in the

restriction of s′ to Sn − S0, contradicting (B3). Hence the claim follows. □

The above lemma splits the enumeration of the fully commutative parts of the Coxeter

groups W0,W1,W2, . . . into two subproblems. The first subproblem, which is universal

for all Coxeter groups, is to determine the number of branch commutativity classes with

spine σ; i.e., the cardinality of Bn(σ) for all integers n ≥ 0 and all σ. The second subprob-

lem, which needs only to be done once for each series Wn, is to determine the number of

central commutativity classes with spine σ; i.e., the cardinality of CW (σ).

8
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2.2 Spinal analysis.

The possible spines that arise in the FC-finite Coxeter groups are severely limited. To

make this claim more precise, suppose that W = W1,W2, . . . is one of the six nontrivial

families of FC-finite Coxeter groups (i.e., A, B, D, E, F , or H). The Coxeter graph of W

can then be chosen from one of the six in Figure 5. For convenience, we have used s as

the label for the distinguished generator previously denoted s1.

Lemma 2.2. If C ∈ CW is compatible with the spine σ = (l, A) and W is one of the

Coxeter groups in Figure 5, then A ⊆ {1, l − 1}.

Proof. Let s ∈ S∗ be a representative of C, and towards a contradiction, let us suppose

that A includes some k such that 1 < k < l − 1. Note that it follows that the kth and

(k + 1)th occurrences of s in s are neither the first nor the last such occurrences.

For the H-graph, property (C1) implies that the occurrences of s and t alternate in s.

Hence, the kth and (k + 1)th occurrences of s appear in the middle of a subword of the

form (s, t, s, t, s, t, s). In particular, these two occurrences of s participate in a subword of

s of the form (t, s, t, s, t), contradicting (C3).

For the F -graph, property (C1) implies that any two occurrences of s must be separated

by at least one t. On the other hand, the subword between two occurrences of s must be

a reduced word for some fully commutative member of the subgroup generated by {t, u}
(property (C2)), so the occurrences of s and t must alternate, and in the restriction of

s to {s, t}, the kth and (k + 1)th occurrences of s appear in the middle of a subword of

the form (s, t, s, t, s, t, s). By (C3), these two occurrences of s cannot participate in an

occurrence of (t, s, t, s) or (s, t, s, t) in s. Hence, the two occurrences of t surrounding the

kth (respectively, (k + 1)th) occurrence of s must be separated by an occurrence of u.

However in that case, (u, t, u) is a subword of some member of the commutativity class

of s, contradicting (C2).

For the E-graph, at least one of t and t′ must appear between any two occurrences

of s (otherwise (C1) is violated), and both t and t′ must appear between the kth and

(k + 1)th occurrences of s, by (C3). On the other hand, property (C3) also implies that
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the subword (strictly) between the (k − 1)th and (k + 2)th occurrences of s in s must be

a reduced word for some fully commutative member of W , a Coxeter group isomorphic

to A4. In particular, this implies that t′ can appear at most once, and t at most twice, in

this subword. Since we have already accounted for at least four occurrences of t and t′,

we have a contradiction.

This completes the proof, since the remaining three graphs are subgraphs of the pre-

ceding ones. □

2.3 Branch enumeration.

The previous lemma shows that for the FC-finite Coxeter groups, we need to solve the

branch enumeration problem (i.e., determine the cardinality of Bn(σ)) only for the spines

σ = (l, A) such that A ⊆ {1, l − 1}. For this, we first introduce the notation

Bn,l :=

(
2n− 1

n+ l − 1

)
−
(

2n− 1

n+ l + 1

)
=

2l + 1

n+ l + 1

(
2n

n+ l

)

for the number of (n+ l, n− l)-ballot sequences. That is, Bn,l is the number of orderings of

votes for two candidates so that the winning candidate never trails the losing candidate,

with the final tally being n + l votes to n − l votes. (For example, see [C, §1.8].) This

quantity is also the number of standard Young tableaux of shape (n+ l, n− l).

Let χ(P ) = 1 if P is true, and 0 otherwise.

Lemma 2.3. For integers n, l ≥ 0, we have

|Bn(l,∅)| = Bn,l,

|Bn(l, {1})| = |Bn(l, {l − 1})| = Bn,l−2 +Bn,l−1 −
(

n
l−2

)
(l ≥ 2),

|Bn(l, {1, l − 1})| = Bn+1,l−3 − 2
(
n+1
l−3

)
+ χ(l ≤ n+ 4) (l ≥ 3).

Proof. For i = 0, 1, 2, let B
(i)
n,l denote the cardinality of Bn(σ) for σ = (l,∅), (l, {1}) and

(l, {1, l − 1}), respectively. In the case σ = (l,∅), the defining properties (B1) and (B3)

for membership of B in Bn(σ) can be replaced with

(B1′) For 1 ≤ i ≤ n, no member of B has (si, si) as a subword.

It follows that for 1 ≤ k < l, the kth and (k + 1)th occurrence of s1 in any member of B

must be separated by exactly one s2, and the total number of occurrences of s2 must be

l−1, l, or l+1, according to whether the first and last occurrences of s1 are preceded (resp.,

followed) by an s2. Furthermore, the restriction of B to {s2, . . . , sn} is a commutativity

class with no subwords of the form (si, si) or (si, sj , si) except possibly (s2, s3, s2). By

10



shifting indices (i+ 1 → i), we thus obtain any one of the members of Bn−1(l
′,∅), where

l′ denotes the number of occurrences of s2. Accounting for the four possible ways that s1

and s2 can be interlaced (or two, if l = 0), we obtain the recurrence

B
(0)
n,l =

{
B

(0)
n−1,l−1 + 2B

(0)
n−1,l +B

(0)
n−1,l+1 if l ≥ 1,

B
(0)
n−1,0 +B

(0)
n−1,1 if l = 0.

On the other hand, it is easy to show that Bn,l satisfies the same recurrence and initial

conditions, so B
(0)
n,l = Bn,l. (In fact, one can obtain a bijection with ballot sequences by

noting that the terms of the recurrence correspond to specifying the last two votes.)

By word reversal, the cases corresponding to σ = (l, {1}) and σ = (l, {l−1}) are clearly
equivalent, so we restrict our attention to the former. Properties (B1) and (B3) imply

that the restriction of any B in Bn(σ) to {s1, s2} must then take the form

(∗, s1, s1, s2, s1, s2, s1, . . . , s2, s1, ∗),

where each ‘∗’ represents an optional occurrence of s2. We declare the left side of B to be

open if the above restriction has the form (s2, s1, s1, s2, . . . ), and there is no s3 separating

the first two occurrences of s2. Otherwise, the left side is closed.

Case I. The left side is open. In this case, if we restrict B to {s2, . . . , sn} (and shift

indices), we obtain any one of the members of Bn−1(l
′, {1}), where l′ = l or l−1, according

to whether there is an occurrence of s2 following the last s1. (If l = 2, then there is no

choice: l′ = l = 2 is the only possibility.)

Case II. The left side is closed. In this case, if we delete the first occurrence of s1

from B, we obtain any one of the commutativity classes in Bn(l − 1,∅).

The above analysis yields the recurrence

B
(1)
n,l =

{
B

(1)
n−1,l−1 +B

(1)
n−1,l +B

(0)
n,l−1 if l ≥ 3,

B
(1)
n−1,2 +B

(0)
n,1 if l = 2.

It is easy to verify that the claimed formula for B
(1)
n,l satisfies the same recurrence and the

proper initial conditions.

For σ = (l, {1, l − 1}), the restriction of any B in Bn(σ) to {s1, s2} takes the form

(∗, s1, s1, s2, s1, s2, s1, . . . , s2, s1, s1, ∗),

where again each ‘∗’ represents an optional occurrence of s2. In the special case l = 3,

this becomes (∗, s1, s1, s1, ∗); by deleting one of the occurrences of s1, we obtain any one

of the commutativity classes in Bn(2, {1}).
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Assuming l ≥ 4, we now have not only the possibility that the left side of B is open (as

in the case σ = (l, {1})), but the right side may be open as well, mutatis mutandis.

Case I. The left and right sides of B are both open. In this case, if we restrict B to

{s2, . . . , sn} (and shift indices), we obtain any one of the members of Bn−1(l−1, {1, l−2}).
Case II. Exactly one of the left or right sides of B is open. Assuming it is the left

side that is open, if we restrict B to {s2, . . . , sn} (and shift indices), we obtain any one of

the members of Bn−1(l
′, {1}), where l′ = l − 1 or l − 2, according to whether there is an

occurrence of s2 following the last s1.

Case III. The left and right sides of B are both closed. In this case, if we delete the

first and last s1 from B, we obtain any one of the members of Bn(l − 2,∅).

The above analysis yields B
(2)
n,3 = B

(1)
n,2 and the recurrence

B
(2)
n,l = B

(2)
n−1,l−1 + 2

(
B

(1)
n−1,l−1 +B

(1)
n−1,l−2

)
+B

(0)
n,l−2

for l ≥ 4. Once again, it is routine to verify that the claimed formula for B
(2)
n,l satisfies the

same recurrence and initial conditions. □

Remark 2.4. The union of Bn(l,∅) for all l ≥ 0 is the set of commutativity classes

corresponding to the fully commutative members of the Coxeter group Bn whose reduced

words do not contain the subword (s1, s2, s1). In the language of [St2], these are the “fully

commutative top elements” of Bn; in the language of [F1], these are the “commutative

elements” of the Weyl group Cn.

Let R(x) denote the generating series for the Catalan numbers. That is,

R(x) =
1−

√
1− 4x

2x
=

∑
n≥0

Bn,0x
n =

∑
n≥0

1

n+ 1

(
2n

n

)
xn.

Note that xR(x)2 = R(x) − 1. The following is a standard application of the Lagrange

inversion formula (cf. Exercise 1.2.1 of [GJ]). We include below a combinatorial proof.

Lemma 2.5. We have
∑

n≥0 Bn,lx
n = xlR(x)2l+1 = R(x)(R(x)− 1)l.

Proof. A ballot sequence in which A defeats B by 2l votes can be factored uniquely

into 2l + 1 parts by cutting the sequence after the last moment when candidate B trails

by i votes, i = 0, 1, . . . , 2l − 1. The first part consists of a ballot sequence for a tie vote,

and all remaining parts begin with a vote for A, followed by a ballot sequence for a tie.

After deleting the 2l votes for A at the beginnings of these parts, we obtain an ordered

(2l + 1)-tuple of ballot sequences for ties, for which the generating series is R(x)2l+1. □
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2.4 The generic generating function.

To enumerate the fully commutative elements of the family W = W1,W2, . . . , all that

remains is the “central” enumeration problem; i.e., determining the cardinalities of CW (σ)

for all spines σ of the form described in Lemma 2.2. Setting aside the details of this

problem until Section 3, let us define

cl,0 = |CW (l,∅)| , cl,1 = |CW (l, {1})| = |CW (l, {l − 1})| , cl,2 = |CW (l, {1, l − 1})| ,

and let Ci(x) (i = 0, 1, 2) denote the generating series defined by

C0(x) =
∑
l≥0

cl,0x
l, C1(x) = c2,1 + 2

∑
l≥3

cl,1x
l−2, C2(x) =

∑
l≥3

cl,2x
l−4.

Although these quantities depend on W , we prefer to leave this dependence implicit.

Theorem 2.6. If W is one of the six Coxeter groups displayed in Figure 5, we have∑
n≥0

∣∣WFC
n

∣∣xn = R(x)C0

(
R(x)− 1

)
+R(x)2C1

(
R(x)− 1

)
+R(x)3C2

(
R(x)− 1

)
− 1

1− x
C1

(
x

1− x

)
− 2

(1− x)2
C2

(
x

1− x

)
+

1

1− x
C2(x).

Proof. Successive applications of Lemmas 2.1, 2.2, and 2.3 yield∣∣WFC
n

∣∣ = ∑
σ

|Bn(σ)| · |CW (σ)| =
∑
l≥0

cl,0B
(0)
n,l + c2,1B

(1)
n,2 + 2

∑
l≥3

cl,1B
(1)
n,l +

∑
l≥3

cl,2B
(2)
n,l

=
∑
l≥0

cl,0Bn,l + c2,1
(
Bn,0 +Bn,1 − 1

)
+ 2

∑
l≥3

cl,1

(
Bn,l−2 +Bn,l−1 −

(
n

l−2

))
+
∑
l≥3

cl,2

(
Bn+1,l−3 − 2

(
n+1
l−3

)
+ χ(l ≤ n+ 4)

)
. (2.1)

Using Lemma 2.5 to simplify the corresponding generating function,1 we obtain∑
n≥0

∣∣WFC
n

∣∣xn =
∑
l≥0

cl,0R(x)(R(x)− 1)l + c2,1

(
R(x) +R(x)(R(x)− 1)− 1

1− x

)

+ 2
∑
l≥3

cl,1

(
R(x)(R(x)− 1)l−2 +R(x)(R(x)− 1)l−1 − xl−2

(1− x)l−1

)

+
∑
l≥3

cl,2

(
x−1R(x)(R(x)− 1)l−3 − 2

xl−4

(1− x)l−2
+

xl−4

1− x

)
.

1It should be noted that when n = −1, the coefficient of cl,2 in (2.1) is zero. Thus the range of

summation for this portion of the generating function can be extended to n ≥ −1.
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Bearing in mind that R(x)2 = x−1(R(x)− 1), it is routine to verify that this agrees with

the claimed expression. □

Remark 2.7. As we shall see in the next section, for each series Wn the generating

functions Ci(x) are rational, so the above result implies that the generating series for∣∣WFC
n

∣∣ belongs to the algebraic function field Q(R(x)) = Q(
√
1− 4x).

3. Enumerating the Central Parts

In this section, we determine the cardinalities of the central sets C(σ) = CW (σ) for each

of the six Coxeter groups W displayed in Figure 5. (The reader may wish to review the

labeling of the generators in these cases, and recall that the distinguished generator s1

has been given the alias s.) We subsequently apply Theorem 2.6, obtaining the generating

function for the number of fully commutative elements in Wn.

3.1 The A-series.

In this case, s is a singleton generator, so there is only one commutativity class of each

length. It follows easily from the defining properties that the only central commutativity

classes are those of (s) and ( ) (the empty word). These are compatible only with the

spines σ = (1,∅) and (0,∅), respectively. Thus we have

C0(x) = 1 + x, C1(x) = C2(x) = 0,

and Theorem 2.6 implies∑
n≥0

∣∣AFC
n

∣∣xn = R(x)2 = x−1(R(x)− 1).

Extracting the coefficient of xn, we obtain

∣∣AFC
n

∣∣ = 1

n+ 2

(
2n+ 2

n+ 1

)
, (3.1)

a result first proved in [BJS, §2].

3.2 The B-series.

In this case, we have S = {s, t}, and the defining properties imply that the central

commutativity classes are singletons in which the occurrences of s and t alternate. It

follows that cl,0 is simply the number of alternating {s, t}-words in which s occurs l times;

namely, 4 (if l > 0) or 2 (if l = 0). Also, the only alternating {s, t}-word that is compatible

with a spine (l, A) with A 6= ∅ is (s, t, s), which is compatible with (2, {1}). Thus we have

C0(x) = 2 +
4x

1− x
, C1(x) = 1, C2(x) = 0.

14



After some simplifications, Theorem 2.6 yields

∑
n≥0

∣∣BFC
n+1

∣∣xn = x−1
(
(1− 4x)−1/2 − 1

)
+ x−1(R(x)− 1)− 1

1− x
.

Extracting the coefficient of xn−1, we obtain

∣∣BFC
n

∣∣ = n+ 2

n+ 1

(
2n

n

)
− 1, (3.2)

a result first proved in [St2, §5].

3.3 The D-series.

In this case, a set of representatives for the central commutativity classes consist of the

subwords of (s, t, s, t′, s, t, s, t′, . . . ), together with (t, t′), (s, t, t′), (t, t′, s), and (s, t, t′, s).

Of these, only (s, t, t′, s) is compatible with a spine (l, A) with A 6= ∅; the remainder are

compatible only with (l,∅) for some l. Among the subwords of (s, t, s, t′, s, t, s, t′, . . . ), the

number with l occurrences of s is 8 (if l ≥ 2), 7 (if l = 1), or 3 (if l = 0). Thus we have

C0(x) = (1 + 2x+ x2) +
(
3 + 7x+

8x2

1− x

)
, C1(x) = 1, C2(x) = 0,

and after some simplifications, Theorem 2.6 implies

∑
n≥0

∣∣DFC
n+2

∣∣xn =
1

2x2

(
(1− 4x)−1/2 − 1− 2x

)
+ x−2(R(x)− 1− x)− 1

1− x
.

Extracting the coefficient of xn−2, we obtain

∣∣DFC
n

∣∣ = n+ 3

2n+ 2

(
2n

n

)
− 1, (3.3)

a result obtained previously in [F1] and [St2, §10].

3.4 The H-series.

As in the B-series, the central commutativity classes are the singletons formed by each

of the alternating {s, t}-words. In particular, the value of C0(x) is identical to its B-series

version. The words that are compatible with spines of the form (l, {1}) are those that

begin with s (and have at least two occurrences of s), and (t, s, t, s); thus c2,1 = 3 and

cl,1 = 2 for l ≥ 3. The words compatible with spines of the form {1, l − 1} are those
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that both begin and end with s and have at least four occurrences of s; i.e., c3,2 = 0 and

cl,2 = 1 for l ≥ 4. Thus we have

C0(x) = 2 +
4x

1− x
, C1(x) = 3 +

4x

1− x
, C2(x) =

1

1− x
.

After some simplifications, Theorem 2.6 yields∑
n≥0

∣∣HFC
n+1

∣∣xn = x−2
(
(1− 4x)−1/2 − 1− 2x

)
− 8

1− 2x
+

4− 3x

(1− x)2
.

Extracting the coefficient of xn−1, we obtain

∣∣HFC
n

∣∣ = (
2n+ 2

n+ 1

)
− 2n+2 + n+ 3. (3.4)

3.5 The F -series.

In this case, we can select a canonical representative s ∈ S∗ from each central commu-

tativity class by insisting that whenever s and u are adjacent in s, u precedes s. Any such

word has a unique factorization s = s0s1 · · · sl with s0 ∈ {t, u}∗ and s1, . . . , sl each being

words consisting of an initial s followed by a {t, u}-word. In fact, given our conventions,

we must have s0 ∈ {( ), (t), (u), (t, u), (u, t)} and si ∈ {(s), (s, t), (s, t, u)} for 1 ≤ i ≤ l,

with si = (s) allowed only if i = l. We also cannot have (s, t, u) preceded by (u), (t, u),

or (s, t, u); otherwise, some member of the commutativity class of s contains the forbid-

den subword (u, t, u). Conversely, any word meeting these specifications is the canonical

representative of some central commutativity class. The language formed by these words

therefore consists of

{( ), (t), (u, t), (u, s, t), (t, u, s, t)} · {(s, t, u, s, t), (s, t)}∗ · {( ), (s, t, u)} · {( ), (s)}, (3.5)

together with the exceptional cases {(u), (t, u), (u, s), (t, u, s)}. Hence

C0(x) = (2 + 2x) +
(3 + 2x)(1 + x)2

1− x− x2
=

(1 + x)(5 + 3x)

1− x− x2
.

Turning now to C1(x), note that the central commutativity classes that are compatible

with a spine of the form (l, {1}) are those for which the first two occurrences of s do not

participate in an occurrence of the subwords (s, t, s, t), or (t, s, t, s). If s occurs three or

more times, this requires ( ) to be the first factor in (3.5), followed by an occurrence of

(s, t, u, s, t). Hence, the canonical representatives compatible with (l, {1}) consist of

(s, t, u, s, t) · {(s, t, u, s, t), (s, t)}∗ · {( ), (s, t, u)} · {( ), (s)} (3.6)
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and four additional cases with l = 2: {(s, t, s), (u, s, t, s), (s, t, s, u), (t, u, s, t, s)}. It follows
that c2,1 = 5, and therefore

C1(x) = c2,1 + 2
∑
l≥3

cl,1x
l−2 = 3 + 2

(1 + x)2

1− x− x2
= 1 +

4 + 2x

1− x− x2
.

To determine C2(x), note first that (s, t, u, s, t, s) is the unique canonical representative

compatible with the spine (3, {1, 2}). For the spines (l, {1, l−1}) with l ≥ 4, compatibility

requires (s) to be the last factor in (3.6), and it must be preceded by (s, t, u, s, t). Hence

C2(x) =
∑
l≥3

cl,2x
l−4 = x−1 +

x

1− x− x2
.

After simplifying the generating function provided by Theorem 2.6, we obtain∑
n≥0

∣∣FFC
n+2

∣∣xn =
10− 5(1 + x)(R(x)− 1)

1− 4x− x2
+ x−1(R(x)− 1)

− 6− 4x

1− 3x+ x2
+

1 + x

1− x− x2
− 1

1− x
. (3.7)

While it is unlikely that there is a simple closed formula for
∣∣FFC

n

∣∣, it is interesting to note

that the Fibonacci numbers fn satisfy

∑
n≥0

fnx
n =

1

1− x− x2
,

∑
n≥0

f2nx
n =

1− x

1− 3x+ x2
,

∑
n≥0

f3nx
n =

1− x

1− 4x− x2
,

so when the coefficient of xn−2 is extracted in (3.7), we obtain

∣∣FFC
n

∣∣ = 5f3n−4 − 5

n−1∑
k=2

f3k−5

n− k + 1

(
2n− 2k

n− k

)
+

1

n

(
2n− 2

n− 1

)
− 2f2n−2 − 2f2n−4 + fn−1 − 1.

3.6 The E-series.

We claim that there is a unique member of each central commutativity class (in fact,

any commutativity class in S∗) with the property that (s, u), (t′, u), and (t′, t) do not occur

as subwords. To see this, note first that the set of left members of these pairs is disjoint

from the set of right members. Secondly, these pairs are precisely the set of commuting

generators of W . Hence, for any pair of words that differ by the interchange of two

adjacent commuting generators, one member of the pair can be viewed as a “reduction”
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of the other, in the sense that the set of positions where u and t occur are farther to

the left. Furthermore, since the set of instances of the forbidden pairs in any given word

are pairwise disjoint, it follows by induction that any sequence of reductions eventually

terminates with the same word, proving the claim.

Let L denote the formal language over the alphabet S formed by the canonical represen-

tatives (in the sense defined above) of the central commutativity classes. Given any formal

language K over S, we will write K(x) for the generating function obtained by assigning

the weight xl to each s ∈ K for which s occurs l times. Note that by this convention, we

have C0(x) = L(x).

Any word s ∈ S∗ has a unique factorization s = s0s1 · · · sl with s0 ∈ {t, t′, u}∗ and

s1, . . . , sl each being words consisting of an initial s followed by a {t, t′, u}-word. For

membership in L, every subword of s not containing s must be a member of

E := {( ), (t), (u), (t, u), (u, t), (t′), (t, t′), (u, t′), (t, u, t′), (u, t, t′)},

the set of canonical representative for the fully commutative members of the subgroup

generated by {t, t′, u}. When s is prepended to these words, only six remain canonical:

a1 = (s), a2 = (s, t), a3 = (s, t, u), a4 = (s, t′), a5 = (s, t, t′), a6 = (s, t, u, t′).

Thus we have L ⊂ E · {a1, . . . ,a6}∗.
For each e ∈ E, let Le denote the set of s ∈ L for which the initial factor s0 is e. If

s0 = ( ), then either s = ( ), s = (s), or deletion of the initial s in s yields a member

of Le for some e ∈ {(t), (t, u), (t′), (t, t′), (t, u, t′)}, and conversely. In terms of generating

functions, we have

L( )(x) = 1 + x+ x
(
L(t)(x) + L(t,u)(x) + L(t′)(x) + L(t,t′)(x) + L(t,u,t′)(x)

)
.

Similarly, deletion of s from the second position defines a bijection from L(u)−{(u), (u, s)}
to L(u,t) ∪ L(u,t′) ∪ L(u,t,t′), so we have

L(u)(x) = 1 + x+ x
(
L(u,t)(x) + L(u,t′)(x) + L(u,t,t′)(x)

)
.

Combining these two decompositions, we obtain

L(x) =
∑
e∈E

Le(x) = L( )(x) + x−1(L( )(x)− 1− x) + L(u)(x) + x−1(L(u)(x)− 1− x)

= x−1(1 + x)(L( )(x) + L(u)(x)− 2). (3.8)
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Now consider the language K = L ∩ {a2, . . . ,a6}∗, and the refinements Ki (2 ≤ i ≤ 6)

consisting of those nonvoid members of K whose initial factor is ai. Since the result of

appending a1 = (s) to any s ∈ L remains in L if and only if s does not already end in s,

it follows that L( ) = K{( ),a1}. Similarly, we have

(s, t) · L(u) = K3{( ),a1},

so (3.8) can be rewritten in the form

L(x) = x−1(1 + x)2K(x) + x−2(1 + x)2K3(x)− 2x−1(1 + x). (3.9)

For 2 ≤ i ≤ 6, the commutativity classes of

a2a3, a3a4a3, aiai, aia5 (i 6= 3), a5ai, aia6, a6ai (i 6= 2),

each have representatives in which one or more of the subwords (t, s, t), (t′, s, t′), (u, t, u)

and (t, u, t) appear, and hence cannot be central. Conversely, as a subset of {a2, . . . ,a6}∗,
membership in K is characterized by avoidance of the subwords listed above. It follows

that K5 = {a5}, K6 = {a6} ∪ a6K2, and

K2 = {a2} ∪ a2K4,

K3 = {a3,a3a5,a3a4} ∪ {a3,a3a4}K2,

K4 = {a4} ∪ a4K2 ∪ a4K3.

Solving this recursive description of the languages Ki (essentially a computation in the

ring of formal power series in noncommuting variables a2, . . . ,a6), we obtain

K2 = {a2,a2a4a3a5} ∪ {a2a4,a2a4a3,a2a4a3a4}K+
2 ,

K3 = {a3a5} ∪ {a3,a3a4}K+
2 ,

K4 = {a4a3a5} ∪ {a4,a4a3,a4a3a4}K+
2 ,

K6 = a6K
+
2 ,

where K+
2 = {( )} ∪K2 = {a2a4,a2a4a3,a2a4a3a4}∗ · {( ),a2,a2a4a3a5}. Thus

K3(x) = x2 + (x+ x2)(1 + x+ x4)(1− x2 − x3 − x4)−1 =
x(1 + 2x− x2)

1− x− x3
,

K(x) = 1 +

6∑
i=2

Ki(x) =
1 + 5x+ 6x2 + 3x3

1− x2 − x3 − x4
,

19



and hence (3.9) implies

C0(x) =
(1 + x)(10 + 7x+ 4x2)

1− x− x3
.

The central commutativity classes compatible with spines of the form (l, {1}) are those

for which the first two occurrences of s do not participate in an occurrence of the subwords

(s, t, s) or (s, t′, s). These correspond to the members of L for which the first occurrence

of one of the factors ai is either a5 or a6, followed by at least one more occurrence of

a1, . . . ,a6. If a5 is the first factor, the possibilities are limited to {( ), (u), (t, u)}a5a1,
since a5 can be followed only by a1. If the first factor is a6, then the choices consist of

the members of K6{( ),a1} other than a6, since no nonvoid member of E can precede a6.

Hence, the language of canonical representatives compatible with the spines (l, {1}) is

{( ), (u), (t, u)}a5a1 ∪K6{( ),a1} − {a6}.

In particular, (s, t, t′, s), (u, s, t, t′, s), (t, u, s, t, t′, s), (s, t, u, t′, s), and (s, t, u, t′, s, t) are the

members compatible with the spine (2, {1}), so c2,1 = 5. Hence, using the decomposition

of K6 determined above, we obtain

C1(x) = −5 + 2x−2
(
−x+ 3x2 + (1 + x)K6(x)

)
= −1 +

6− 2x+ 2x2

1− x− x3
.

The canonical representatives of the central commutativity classes compatible with

spines of the form (l, {1, l− 1}) must have a factorization in which there are at least three

occurrences of the words ai, the first and penultimate of these being a5 or a6. Since a6

cannot be preceded by any of the factors ai, a5 must be the penultimate factor. Since

a5 can be followed only by a1, the first factor must therefore be a6, there is no non-void

member of E preceding a6, and the last factor must be a1. From the above decompositions

of K6 and K+
2 , it follows that the language formed by the members of L that start with

a6 and terminate with a5a1 is

a6 · {a2a4,a2a4a3,a2a4a3a4}∗ · a2a4a3a5a1, (3.10)

and therefore

C2(x) =
x2

1− x2 − x3 − x4
=

x2

(1 + x)(1− x− x3)
.

Combining our expressions for Ci(x) (i = 0, 1, 2), the generating function provided by

Theorem 2.6 can be simplified to the form∑
n≥0

∣∣EFC
n+3

∣∣xn =
16− 52x+ 45x2 − x−1(R(x)− 1)

1− 7x+ 14x2 − 9x3

− 6− 14x+ 12x2

1− 4x+ 5x2 − 3x3
+

1− x3 − x4

(1− x2)(1− x− x3)
. (3.11)
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4. Fully Commutative Involutions

We will say that a commutativity class C is palindromic if it includes the reverse of

some (equivalently, all) of its members. A fully commutative w ∈ W is an involution if

and only if R(w) is palindromic.

In the following, we will adopt the convention that if X is a set of commutativity classes,

then X̄ denotes the set of palindromic members of X. Similarly, W̄ and W̄FC shall denote

the set of involutions in W and WFC, respectively.

4.1 The generic generating function.

Consider the enumeration of fully commutative involutions in a series of Coxeter groups

W = W1,W2, . . . of the type considered in Section 2. It is clear that w ∈ WFC
n is an invo-

lution if and only if its branch and central portions are palindromic. Thus by Lemma 2.1,

determining the cardinality of W̄FC
n can be split into two subproblems: enumerating B̄n(σ)

(the palindromic branch classes) and C̄W (σ) (the palindromic central classes).

For integers n, l ≥ 0, we define B̄n,l =
(
n
k

)
, where k = dn+l

2 e.

Lemma 4.1. We have∣∣B̄n(l,∅)
∣∣ = B̄n,l,∣∣B̄n(l, {1})
∣∣ = B̄n+1,0 − 1 (if l = 2; or 0, if l > 2),∣∣B̄n(l, {1, l − 1})
∣∣ = B̄n+1,l−3 − χ(l ≤ n+ 4) (if l ≥ 3).

Proof. Following the proof of Lemma 2.3, for i = 0, 1, 2, let B̄
(i)
n,l denote the cardinality

of B̄n(σ) for σ = (l,∅), (l, {1}) and (l, {1, l−1}), respectively. Recall that the occurrences
of s1 and s2 must be interlaced in any representative of B ∈ Bn(l,∅), and that when we

restrict B to {s2, . . . , sn} (and shift indices), we obtain a member of Bn−1(l
′,∅), where l′

denotes the number of occurrences of s2. To be palindromic, it is therefore necessary and

sufficient that the {s2, . . . , sn}-restriction of B is palindromic, and that l′ = l+ 1 or l− 1

(or 0, if l = 0). This yields the recurrence

B̄
(0)
n,l =

{
B̄

(0)
n−1,l+1 + B̄

(0)
n−1,l−1 if l ≥ 1,

B̄
(0)
n−1,1 + B̄

(0)
n−1,0 if l = 0.

It is easy to verify that B̄n,l satisfies the same recurrence and initial conditions.

For spines of the form σ = (l, {1}), it is clear that there can be no palindromic classes

unless l = 2, since for l > 2, there must be an occurrence of s2 between the last two

occurrences of s1, but not for the first two. Assuming l = 2, the bijection provided in the

proof of Lemma 2.3 preserves palindromicity, and thus proves the recurrence

B̄
(1)
n,2 = B̄

(1)
n−1,2 + B̄

(0)
n,1.
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It is routine to check that the claimed formula for B̄
(1)
n,2 satisfies the same recurrence and

initial conditions.

For σ = (l, {1, l − 1}), the left and right sides of any palindromic B ∈ Bn(σ) must be

both open or both closed, in the sense defined in the proof of Lemma 2.3. Furthermore, a

branch class with this property is palindromic if and only if its restriction to {s2, . . . , sn}
is palindromic, so the bijection provided in Lemma 2.3 for this case yields

B̄
(2)
n,l = B̄

(2)
n−1,l−1 + B̄

(0)
n,l−2 (l ≥ 4)

and B̄
(2)
n,3 = B̄

(1)
n,2. Once again, it is routine to check that the claimed formula for B̄

(2)
n,l

satisfies the same recurrence and initial conditions. □

Lemma 4.2. We have
∑

n≥0 B̄n,lx
n =

1 + xR(x2)√
1− 4x2

xlR(x2)l.

Proof. We have
∑

n≥0 B̄n,lx
n = Fl,0(x) + Fl,1(x), where Fl,j(x) =

∑
n+l=j mod 2 B̄n,lx

n.

We can interpret Fl,j(x) as the generating function for sequences of votes in an election

in which A defeats B by l + j votes. Such sequences can be uniquely factored by cutting

the sequence after the last moment when B trails A by i votes, i = 0, 1, . . . , l+ j − 1. The

first factor consists of an arbitrary sequence for a tie vote, which has generating function

1/
√
1− 4x2, and the remaining l + j factors each consist of a vote for A, followed by a

“ballot sequence” for a tie vote (cf. Section 2.3), which has generating function xR(x2). □

Turning now to the palindromic central commutativity classes, let us define

c̄l,0 =
∣∣C̄W (l,∅)

∣∣ , c̄2,1 =
∣∣C̄W (2, {1})

∣∣ , c̄l,2 =
∣∣C̄W (l, {1, l − 1})

∣∣ ,
and associated generating functions

C̄0(x) =
∑
l≥0

c̄l,0x
l, C̄12(x) = c̄2,1x

−1 +
∑
l≥3

c̄l,2x
l−4.

Theorem 4.3. If W is one of the Coxeter groups displayed in Figure 5, then∑
n≥0

∣∣W̄FC
n

∣∣xn =
1 + xR(x2)√

1− 4x2

(
C̄0(xR(x2)) +R(x2)C̄12(xR(x2))

)
− 1

1− x
C̄12(x).

Proof. As noted previously, w ∈ WFC is an involution if and only if the central and

branch portions of w are palindromic. Successive applications of Lemmas 2.1, 2.2, and 4.1

therefore yield∣∣W̄FC
n

∣∣ = ∑
σ

∣∣B̄n(σ)
∣∣ · ∣∣C̄W (σ)

∣∣ = ∑
l≥0

c̄l,0B̄
(0)
n,l + c̄2,1B̄

(1)
n,2 +

∑
l≥3

c̄l,2B̄
(2)
n,l

=
∑
l≥0

c̄l,0B̄n,l + c̄2,1(B̄n+1,0 − 1) +
∑
l≥3

c̄l,2
(
B̄n+1,l−3 − χ(l ≤ n+ 4)

)
. (4.1)
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The corresponding generating function thus takes the form∑
n≥0

∣∣W̄FC
n

∣∣xn =
1 + xR(x2)√

1− 4x2

∑
l≥0

c̄l,0x
lR(x2)l + c̄2,1x

−1

(
1 + xR(x2)√

1− 4x2
− 1

1− x

)

+
∑
l≥3

c̄l,2

(
1 + xR(x2)√

1− 4x2
xl−4R(x2)l−3 − xl−4

1− x

)
,

using Lemma 4.2. □

As we shall see below, both C̄0(x) and C̄12(x) are rational, so the generating series for∣∣W̄FC
n

∣∣ belongs to the algebraic function field Q(x,R(x2)) = Q(x,
√
1− 4x2).

4.2 The A-series.

In this case, we have C̄0(x) = 1 + x and C̄12(x) = 0, since there are only two central

commutativity classes (namely, those of ( ) and (s)), and both are palindromic. Hence

∑
n≥0

∣∣ĀFC
n

∣∣xn =
(1 + xR(x2))2√

1− 4x2
= x−1

(
1 + xR(x2)√

1− 4x2
− 1

)
.

Either by extracting the coefficient of xn, or more directly from (4.1), we obtain

∣∣ĀFC
n

∣∣ = B̄n+1,0 =

(
n+ 1

d(n+ 1)/2e

)
. (4.2)

4.3 The B-series.

In this case, the central commutativity classes are singletons in which the occurrences

of s and t alternate. For each l ≥ 0, there are two such words that are palindromic and

have l occurrences of s. Among these, (s, t, s) is the only one that is compatible with a

spine (l, A) with A 6= ∅. Hence C̄0(x) = 2/(1−x), C̄12(x) = x−1, and Theorem 4.3 implies

∑
n≥0

∣∣B̄FC
n+1

∣∣xn = x−1

(
1 + xR(x2)√

1− 4x2
− 1

)
+

2

1− 2x
− 1

1− x
.

Extracting the coefficient of xn−1, we obtain

∣∣B̄FC
n

∣∣ = 2n +

(
n

dn/2e

)
− 1. (4.3)

4.4 The D-series.

In this case, the palindromic central classes are represented by the odd-length subwords

of (s, t, s, t′, s, t, s, t′, . . . ) whose middle term is t or t′, together with ( ), (s), (t, t′), and
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(s, t, t′, s). In particular, leaving aside (s, t, t′, s), there are exactly four such words with l

occurrences of s for each even l ≥ 0, so we have

C̄0(x) = x+ x2 +
4

1− x2
.

Also C̄12(x) = x−1, since (s, t, t′, s) is the only representative compatible with a spine of

the form (l, A) with A 6= ∅. After simplifying the expression in Theorem 4.3, we obtain

∑
n≥0

∣∣D̄FC
n+2

∣∣xn =
1 + 3x

2x3

(
1√

1− 4x2
− 1

)
+

2

1− 2x
− x−1

1− x
.

Extracting the coefficient of xn−2 yields

∣∣D̄FC
n

∣∣ = {
2n−1 + 3

2

(
n

n/2

)
− 1 if n is even,

2n−1 + 1
2

(
n+1

(n+1)/2

)
− 1 if n is odd.

(4.4)

4.5 The H-series.

The palindromic central classes in this case are the same as those for the B-series; the

only difference is that those corresponding to 〈s, t〉7, 〈s, t〉9, . . . are now compatible with

spines of the form (l, {1, l − 1}) for l ≥ 4. Thus we have

C̄0(x) =
2

1− x
, C̄12(x) =

x−1

1− x
.

The generating function provided by Theorem 4.3 is therefore

∑
n≥0

∣∣H̄FC
n+1

∣∣xn =
4

1− 2x
− 2− x

(1− x)2
,

and hence ∣∣H̄FC
n

∣∣ = 2n+1 − (n+ 1). (4.5)

4.6 The F -series.

Recall that in Section 3.5, we selected a set of canonical representatives for the central

commutativity classes by forbidding the subword (s, u). If s is one such representative,

let s∗ denote the canonical representative obtained by reversing s and then reversing each

offending (s, u)-subword.
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If s is the canonical representative of a palindromic class (i.e., s = s∗), then either

s ∈ {( ), (u)}, or else s has a unique factorization fitting one of the forms

a (s)a∗, a (u, s)a∗, a (t)a∗,

where a is itself a canonical representative for some central commutativity class. Con-

versely, any canonical representative ending in (s) can be uniquely factored into one of

the two forms a · (s) or a · (u, s), and the corresponding word obtained by appending a∗

remains central. Similarly, any canonical representative ending with (t) but not (u, t) or

(u, s, t), when factored into the form a · (t), remains central when a∗ is appended.

Now from (3.5), the language of canonical representatives ending in (s) consists of the

exceptional set {(u, s), (t, u, s)}, together with

{( ), (t), (u, t), (u, s, t), (t, u, s, t)} · {(s, t, u, s, t), (s, t)}∗ · {(s), (s, t, u, s)}, (4.6)

and the language of representatives ending with (t) but not (u, t) or (u, s, t) is

{(t)} ∪ {( ), (t), (u, t), (u, s, t), (t, u, s, t)} · {(s, t, u, s, t), (s, t)}∗ · (s, t). (4.7)

Including the exceptional cases ( ) and (s), this yields

C̄0(x) = 3 + 2x+
(3 + 2x2)(x+ x3)

1− x2 − x4
+

x2(3 + 2x2)

1− x2 − x4
= 1 +

2 + 5x+ x2 + 3x3

1− x2 − x4
.

The unique palindromic classes compatible with the spines (2, {1}) and (3, {1, 2}) are

represented by (s, t, s) and (s, t, u, s, t, s). For the spines σ = (l, {1, l − 1}) with l ≥ 4,

recall from Section 3.5 that a canonical representative compatible with σ must begin with

(s, t, u, s, t) and end with (t, u, s, t, s). Selecting the portions of (4.6) and (4.7) that begin

with (s, t, u, s, t) yields the languages

(s, t, u, s, t) · {(s, t, u, s, t), (s, t)}∗ · {(s), (s, t, u, s)},

(s, t, u, s, t) · {(s, t, u, s, t), (s, t)}∗ · (s, t),

so we have

C̄12(x) = 2x−1 +
x+ x2 + x3

1− x2 − x4
.

Simplification of the generating series provided by Theorem 4.3 yields

∑
n≥0

∣∣F̄FC
n+2

∣∣xn =
4 + 10x+ 2x2 + x2(1 + 5x+ 3x2 − 5x3)Q(x)

1− 4x2 − x4

+(1 + 3x)Q(x)− 3 + 4x+ 2x2 + 3x3

1− x2 − x4
+

1

1− x
, (4.8)

where Q(x) = ((1− 4x2)−1/2 − 1)/2x2.
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The coefficients can be expressed in terms of the Fibonacci numbers as follows:

∣∣F̄FC
2n

∣∣ = f3n + f3n−2 +
1

2

n−1∑
k=1

(f3k−2 + f3k−4)

(
2n− 2k

n− k

)
+

1

2

(
2n

n

)
− fn+2 + 1,

∣∣F̄FC
2n+1

∣∣ = 5f3n−1 +
5

2

n−1∑
k=1

f3k−3

(
2n− 2k

n− k

)
+

3

2

(
2n

n

)
− fn+2 − fn + 1.

4.7 The E-series.

In Section 3.6, we selected a canonical representative s for each central commutativity

class. As in the previous section, we let s∗ denote the canonical representative for the

commutativity class of the reverse of s.

If s ∈ S∗ is a representative of any palindromic commutativity class, then the set of

generators appearing an odd number of times in s must commute pairwise. Indeed, the

“middle” occurrence of one generator would otherwise precede the “middle” occurrence

of some other generator in every member of the commutativity class. Aside from the

exceptional cases ( ), (u), and (s) (which cannot be followed and preceded by the same

member of S and remain central), it follows that every central palindromic class has a

unique representative fitting one of the forms

a∗(t)a, a∗(t′)a, a∗(t, t′)a, a∗(u, t′)a, a∗(u, s)a, (4.9)

where a is the canonical representative of some central commutativity class. However,

we cannot assert that the above representatives are themselves canonical; for example,

if a = (s, t), then a∗(u, t′)a is a representative of a central palindromic class, but the

canonical representative of this class is (t, u, s, t′, s, t).

For the representatives whose middle factor is (t), (t′), (t, t′), or (u, t′), observe that

s must be the first term of a, assuming that a is nonvoid. Furthermore, if we prepend

an initial s (or s, t, in the case of (u, t′)), the resulting words (s, t)a, (s, t′)a, (s, t, t′)a,

and (s, t, u, t′)a are (in the notation of Section 3.6) members of the formal languages

K2{(), (s)}, K4{(), (s)}, K5{(), (s)}, and K6{(), (s)}, respectively. Conversely, any mem-

ber of these languages arises in this fashion.

For a representative whose middle factor is (u, s), if we prepend (s, t, t′) to (u, s)a,

we obtain a member of a central commutativity class whose canonical representative is

(s, t, u, t′, s)a, and hence a member of K6{(), (s)}. Conversely, any member of K6{(), (s)}
other than a6 = (s, t, u, t′) arises this way.
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Collecting the contributions of the five types of palindromic central classes, along with

the exceptional cases {( ), (u), (s)}, we obtain

C̄0(x) = 2 + x+ x−2(1 + x2)(K2(x
2) +K4(x

2) +K5(x
2) +K6(x

2))

+ x−3((1 + x2)K6(x
2)− x2) =

6 + 3x+ 2x2 − x3 + 3x4 + x5

1− x2 − x6
.

For the spine σ = (2, {1}), there is a unique σ-compatible central class that is palin-

dromic; namely, the class of (s, t, t′, s). For the spines σ of the form (l, {1, l − 1}), recall
from (3.10) that the canonical representatives of the σ-compatible classes all begin with

a6a2a4 and end with a3a5a1. It follows that for a palindromic central class represented

by a word of the form (4.9) to be compatible with σ, it is necessary and sufficient that a

end with a3a5a1. Using the decompositions obtained in Section 3.6, we find that

{a2a4,a2a4a3,a2a4a3a4}∗ · a2a4a3a5,

{a4a3a5} ∪ {a4,a4a3,a4a3a4} · {a2a4,a2a4a3,a2a4a3a4}∗ · a2a4a3a5,

a6 · {a2a4,a2a4a3,a2a4a3a4}∗ · a2a4a3a5

are the respective portions of K2, K4, and K6 that end with a3a5; there are no such words

in K5. It follows that

C̄12(x) = x−1 + x−4

(
x6 +

x8 + 2x10 + x12 + x14

1− x4 − x6 − x8
+

x9

1− x4 − x6 − x8

)
= x−1 +

x2 + x4 + x5 + x6

(1 + x2)(1− x2 − x6)
.

The generating function provided by Theorem 4.3 can be simplified to the form

∑
n≥0

∣∣ĒFC
n+3

∣∣xn =
(2− 3x2)(3 + 5x− 6x2 − 9x3) +Q(x)(1 + x− 4x2 − 3x3 + 2x4)

1− 7x2 + 14x4 − 9x6

− 1 + x2 + x5 − x8

(1− x)(1 + x2)(1− x2 − x6)
, (4.10)

where Q(x) = ((1− 4x2)−1/2 − 1)/2x2.
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5. Asymptotics

Given the lack of simple expressions for the number of fully commutative members of

En and Fn, it is natural to consider asymptotic formulas.

Theorem 5.1. We have

(a)
∣∣EFC

n

∣∣ ∼ 1
31 (25−9β−4β2)(β2+2)n, where β

.
= 1.466 is the real root of x3 = x2+1.

(b)
∣∣FFC

n

∣∣ ∼ (7γ − 11)γ3n, where γ
.
= 1.618 is the largest root of x2 = x+ 1.

Proof. Consider the generating function G(x) =
∑

n≥0

∣∣WFC
n

∣∣xn of Theorem 2.6.

In the case of Fn, we see from (3.7) that the singularities of G(x) consist of a branch cut

at x = 1/4, together with simple poles at x = 1 and the zeroes of 1− x− x2, 1− 3x+ x2,

and 1 − 4x − x2. The latter are (respectively) {1/γ,−γ}, {1/γ2, γ2}, and {1/γ3,−γ3},
where γ = (1 +

√
5)/2 denotes the golden ratio. The smallest of these (in absolute value)

is 1/γ3 .
= 0.236, a zero of 1 − 4x − x2. In particular, since 1/γ3 < 1/4, the asymptotic

behavior of
∣∣FFC

n

∣∣ is governed by the local behavior of G(x) at x = 1/γ3. More specifically,

since there is a simple pole at x = 1/γ3, it follows that
∣∣FFC

n

∣∣ ∼ c γ3n, where

c = lim
x→1/γ3

(1− γ3x)x2G(x) = γ−3 10− 5(1 + 1/γ3)/γ

4 + 2/γ3
= 7γ − 11,

using (3.7), together with the relations γ2 = γ + 1 and R(1/γ3)− 1 = 1/γ.

In the case of En, we see from (3.11) that the singularities of G(x) consist of a branch

cut at x = 1/4, together with simple poles at x = ±1 and the zeroes of 1 − x − x3,

1 − 4x + 5x2 − 3x3, and 1 − 7x + 14x2 − 9x3. These polynomials are related by the fact

that if α is any zero of 1− x− x3, then 1− 4x+ 5x2 − 3x3 is the minimal polynomial of

α/(1+α), and 1−7x+14x2−9x3 is the minimal polynomial of α/(1+α)2. (The fact that

such a simple relationship exists is not coincidental; see Remark 5.3 below.) The smallest

of the nine zeroes of these polynomials (in absolute value) is δ = α/(1 + α)2
.
= 0.241,

where α
.
= 0.682 is the real zero of 1− x− x3. Equivalently, we have 1/δ = β2 + 2, where

β = 1/α is the real root of x3 = x2 + 1. Since δ < 1/4, the asymptotic behavior of
∣∣EFC

n

∣∣
is once again governed by the local behavior of G(x) near a simple pole. In this case, we

obtain
∣∣EFC

n

∣∣ ∼ c δ−n = c (β2 + 2)n, where

c = lim
x→δ

(1− δ−1x)x3G(x) = δ2
16− 52δ + 45δ2 − α/δ

7− 28δ + 27δ2
=

1

31
(25− 9β − 4β2),

using (3.11) and the fact that R(δ)− 1 = α. □

28



Remark 5.2. For the sake of completeness, it is natural also to consider the asymptotic

number of fully commutative elements in An, Bn, Dn, and Hn. Given the explicit formulas

(3.1), (3.2), (3.3), and (3.4), it is easily established that∣∣AFC
n

∣∣ ∼ 4√
π
n−3/24n,

∣∣BFC
n

∣∣ ∼ 1√
π
n−1/24n,∣∣DFC

n

∣∣ ∼ 1
2
√
π
n−1/24n,

∣∣HFC
n

∣∣ ∼ 4√
π
n−1/24n,

using Stirling’s formula. In each of these cases, the dominant singularity in the corre-

sponding generating function is the branch cut at x = 1/4.

Remark 5.3. If α is a pole of f(x), then α/(1 + α) is a pole of f(x/(1 − x)) and

α/(1+α)2 is a pole (of some branch) of f(R(x)−1). On the other hand, from Theorem 2.6,

we see that aside from the branch cut at x = 1/4 and a pole at x = 1, the singularities

of G(x) =
∑

n≥0

∣∣WFC
n

∣∣xn are limited to those of C2(x), Ci(x/(1 − x)) (i = 1, 2), and

Ci(R(x) − 1) (i = 0, 1, 2). Thus, unless there is unexpected cancellation, for each pole α

of C2(x), there will be a triple of poles at α/(1 + α)i (i = 0, 1, 2) in G(x).

Now consider the asymptotic enumeration of fully commutative involutions. Again,

given the explicit formulas (4.2), (4.3), (4.4), and (4.5), it is routine to show that∣∣ĀFC
n

∣∣ ∼ √
8
π n−1/22n,

∣∣B̄FC
n

∣∣ ∼ 2n,
∣∣D̄FC

n

∣∣ ∼ 2n−1,
∣∣H̄FC

n

∣∣ ∼ 2n+1.

In the following, β and γ retain their meanings from Theorem 5.1.

Theorem 5.4. We have

(a)
∣∣ĒFC

2n

∣∣ ∼ 1
31 (20− β + 3β2)(β2 + 2)n.

(b)
∣∣ĒFC

2n+1

∣∣ ∼ 3
31 (9− 2β + 6β2)(β2 + 2)n.

(c)
∣∣F̄FC

2n

∣∣ ∼ γ3n+1.

(d)
∣∣F̄FC

2n+1

∣∣ ∼ (2 + γ)γ3n.

Proof. Consider the generating series Ḡ(x) =
∑

n≥0

∣∣W̄FC
n

∣∣xn of Theorem 4.3.

In the case of Fn, we see from (4.8) that the singularities of Ḡ(x) consist of branch cuts

at x = ±1/2, together with simple poles at x = 1 and ±γ−1/2,±(−γ)1/2 (the zeroes of

1 − x2 − x4), and ±γ−3/2,±(−γ)3/2 (the zeroes of 1 − 4x2 − x4). In absolute value, the

smallest of these occur at x = ±γ−3/2. Since γ−3/2 < 1/2, it follows that the asymptotic

behavior of
∣∣F̄FC

n

∣∣ is determined by the local behavior of Ḡ(x) at x = ±γ−3/2. More

specifically, we have
∣∣F̄FC

2n

∣∣ ∼ c+γ
3n and

∣∣F̄FC
2n+1

∣∣ ∼ c−γ
3n+3/2, where

c± = lim
x→γ−3/2

x2(1− γ3/2x)(Ḡ(x)± Ḡ(−x)).
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Using (4.8) and the fact that Q(γ−3/2) = γ4, we obtain

c+ = lim
x→γ−3/2

x2(1− γ3/2x)
8 + 4x2 + x2(2 + 6x2)Q(x)

1− 4x2 − x4
=

8 + 4/γ3 + (2 + 6/γ3)γ

8 + 4/γ3
= γ,

and a similar calculation (details omitted) yields c− = (2 + γ)γ−3/2.

In the case of En, we see from (4.10) that the singularities of Ḡ(x) consist of branch

cuts at x = ±1/2, together with simple poles at x = 1,±
√
−1 and the square roots of

the zeroes of 1 − x − x3 and 1 − 7x + 14x2 − 9x3. Continuing the notation from the

proof of Theorem 5.1, the poles occurring closest to the origin are at x = ±δ1/2, where

δ = 1/(β2 +2). Thus we have
∣∣ĒFC

2n

∣∣ ∼ c+(β
2 +2)n and

∣∣ĒFC
2n+1

∣∣ ∼ c−(β
2 +2)n+1/2, where

c± = lim
x→δ1/2

x3(1− δ−1/2x)(Ḡ(x)∓ Ḡ(−x)).

Using (4.10) and the fact that Q(δ1/2) = 1/δ(β − 1), we obtain

c+ = lim
x→δ1/2

x3(1− δ−1/2x)
(2− 3x2)(10x− 18x3) +Q(x)(2x− 6x3)

1− 7x2 + 14x4 − 9x6

=
(2− 3δ)(10δ − 18δ2) + (2− 6δ)/(β − 1)

14− 56δ + 54δ2
=

1
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(20− β + 3β2),

and a similar calculation can be used to determine c−; we omit the details. □
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Appendix

n An Bn Dn En Fn Hn

1 2 (2) (2)

2 5 7 (4) (5) 9

3 14 24 (14) (10) (24) 44

4 42 83 48 (42) 106 195

5 132 293 167 (167) 464 804

6 429 1055 593 662 2003 3185

7 1430 3860 2144 2670 8560 12368

8 4862 14299 7864 10846 36333 47607

9 16796 53481 29171 44199 153584 182720

10 58786 201551 109173 180438 647775 701349

11 208012 764217 411501 737762 2729365 2695978

12 742900 2912167 1560089 3021000 11496788 10384231

Table 1: The number of fully commutative elements.2

n An Bn Dn En Fn Hn

1 2 (2) (2)

2 3 5 (4) (3) 5

3 6 10 (6) (6) (10) 12

4 10 21 16 (10) 18 27

5 20 41 25 (25) 48 58

6 35 83 61 42 89 121

7 70 162 98 106 220 248

8 126 325 232 178 405 503

9 252 637 381 443 968 1014

10 462 1275 889 756 1785 2037

11 924 2509 1485 1858 4195 4084

12 1716 5019 3433 3194 7758 8179

Table 2: The number of fully commutative involutions.

2The parenthetical entries correspond to cases in which the group in question is either reducible or

isomorphic to a group listed elsewhere.
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