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0. Introduction

Given a connected graph G, choose a variable for each edge, and consider the generating

function for spanning trees of G, the weight of a spanning tree T being the product of the

variables corresponding to edges not in T .

In 1997 at the Rutgers University Gelfand Seminar, M. Kontsevich proposed the conjec-

ture that for every graph, the number of zeroes of this polynomial over the finite field Fq

is a polynomial function of q. The motivation for the conjecture arose from the evaluation

of certain integrals in quantum field theory.

R. Stanley has written a recent paper on various aspects of this conjecture [St]. He

uses an inclusion-exclusion argument to show that Kontsevich’s conjecture is true for all

graphs if and only if the same is true when we modify the above generating function so

that the weight of tree T is the product of the variables corresponding to edges that do
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appear in T . Stanley has proved this modified conjecture for the complete graph (giving

an explicit formula), and certain “nearly complete” graphs.

In this paper, we describe a simple technique that allows one to explicitly compute the

number of points on certain very special varieties over finite fields Fq, as a function of q.

It is difficult to describe a priori the varieties for which this technique will succeed, but an

obvious necessary condition is that the variety should be defined by the vanishing of integer

polynomials that are linear with respect to most, if not all, of the dependent variables.

We have written a Maple program1 that implements this method, and applied it to the

varieties defined by spanning tree generating functions of graphs. To our surprise, it was

very successful. For example, we used it to verify that Kontsevich’s conjecture is true (or

rather, Stanley’s modification in which the spanning tree variables are used) for all graphs

with at most 11 edges. By combining the program with some additional techniques, we

are able to show that the conjecture is also true for graphs with 12 edges.

There is an interesting special case of the Kontsevich conjecture that can be formulated

in terms of symmetric determinants [St, §3]. More specifically, consider a generic sym-

metric determinant in which certain off-diagonal entries have been specialized to 0. If the

Kontsevich conjecture is true, then the number of points on the corresponding variety over

Fq must be a polynomial function of q. Again, we applied our program to these varieties,

and were able to verify the conjecture in the 6×6 case, as well as all cases with at most 11

off-diagonal variables.

On the other hand, if one drops the condition of symmetry in the above determinant,

then the analogous conjecture fails, and we are able to show that the smallest counter-

example is 7× 7 and has 21 independent variables.

Another negative result occurs if one generalizes from graphs to matroids, as shown by

Stanley. Even if we restrict to the class of regular (or unimodular) matroids, our program

has found that the analogous conjecture fails.

1. A Probabilistic View

Rather than counting points on varieties over finite fields, there are some slight nota-

tional advantages that occur if we translate the problem into probabilistic language.

Given a set of polynomials f1, . . . , fk ∈ Z[x1, . . . , xm], we define Z[f1, . . . , fk](q) to

be the probability that fi(x1, . . . , xm) = 0 for 1 6 i 6 k, where x1, . . . , xm are chosen

uniformly at random from Fq. In other words,

Z[f1, . . . , fk](q) = q−m|Xq|,

where Xq denotes the variety over Fq defined by the vanishing of f1, . . . , fk.

1Available at http://www.math.lsa.umich.edu/~jrs/.
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The main benefit of this notation is that it allows us to focus on the polynomials fi

and disregard the ambient space. The quantity Z[x2 − y2](q) is the same whether we are

interested in the variety {(x, y) ∈ F2
q : x2 = y2} or {(x, y, z) ∈ F3

q : x2 = y2}.
For example, Z[3](q) = 1 if 3 | q; otherwise Z[3](q) = 0.

Proposition 1.1. The quantity Z[f1, . . . , fk](q) is a polynomial function of q−1 if and

only if |Xq| is a polynomial function of q.

Proof. Clearly |Xq| 6 qm, so if |Xq| is a polynomial, it must have degree 6 m. Hence

the corresponding assertion about Z[f1, . . . , fk](q) follows immediately. Conversely, since

qmZ[f1, . . . , fk](q) is integer-valued for all prime powers q, it follows that if it is a Laurent

polynomial in q, then it must also be a polynomial in q. �

A (non-empty) polynomial list [f1, . . . , fk] is said to be primitive if there is no prime

integer that divides all of the coefficients.

Proposition 1.2. If [f1, . . . , fk] is primitive, then Z[f1, . . . , fk](q) = O(q−1).

Proof. Proceed by induction with respect to the number of variables that appear among

f1, . . . , fk, say m. If m = 0, then the fi’s are a collection of scalars with no common

divisor, and hence Z[f1, . . . , fk] = 0. Otherwise, m > 0 and we may choose a variable x

that appears in one or more of the fi’s. Let g1, . . . , gl denote the coefficients of the fi’s as

polynomials in x. Since [f1, . . . , fk] is primitive, the same is true of [g1, . . . , gl].

If we choose a random point in Fm−1
q and evaluate f1, . . . , fk, we obtain a collection

of univariate polynomials in x. These polynomials will be identically 0 with probability

Z[g1, . . . , gl]. Otherwise, to obtain 0’s, x must be a root of one or more polynomials of

degree 6 d, where d denotes the maximum degree of the (unevaluated) fi’s with respect

to x, an event with probability at most d/q. Hence

Z[f1, . . . , fk](q) 6 dq−1 + Z[g1, . . . , gl](q)

and the result follows by induction. �

Now consider the consequences if f1 is linear with respect to some variable x1; i.e.,

f1 = g0 + g1x1, gi ∈ Z[x2, x3, . . . ]. (1.1)

Given a polynomial h = h0 + h1x1 + · · ·+ hkx
k
1 with hi ∈ Z[x2, x3, . . . ], hk 6= 0, define

h̄ = h0g
k
1 − h1g0g

k−1
1 + · · ·+ (−1)khkg

k
0 ∈ Z[x2, x3, . . . ]. (1.2)

This can be viewed as a fraction-free resultant of h and f1.
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Proposition 1.3. Assuming f1 satisfies (1.1), then

Z[f1, . . . , fk] = Z[g0, g1, f2, . . . , fk] + q−1Z[f̄2, . . . , f̄k]− q−1Z[g1, f̄2, . . . , f̄k],

where f̄2, . . . , f̄k are defined as in (1.2).

Proof. Partition the points in Xq according to whether g1 = 0 or g1 6= 0. In the former

case, we have f1 = 0 if and only if g0 = 0, and the probability that a randomly chosen

point in Fm
q lies in this subvariety is Z[g0, g1, f2, . . . , fk](q).

Otherwise, if g1 6= 0, we must have x1 = −g0/g1 in order to satisfy f1 = 0. Since f̄i is

gk1 times the result of substituting x1 = −g0/g1 in fi, it follows (given f1 = 0 and g1 6= 0)

that fi = 0 if and only if f̄i = 0. Ignoring the variable x1, the probability that a randomly

chosen point in Fm−1
q satisfies g1 6= 0 and f̄2 = · · · = f̄k = 0 is

Z[f̄2, . . . , f̄k]− Z[g1, f̄2, . . . , f̄k].

If we restore x1 and add the condition f1 = 0, then the probability drops by a factor of q

since x1 is uniquely determined. �

Remark 1.4. We can simplify the last term in the above recurrence, based on the

observation that h̄ = ±hkg
k
0 mod g1. Indeed,

Z
[
g1, f̄2, . . . , f̄k

]
= Z

[
g1, f̂2g

ε(f2)
0 , . . . , f̂kg

ε(fk)
0

]
,

where ĥ denotes the leading term of h as a polynomial in x1, and ε(h) = 0 or 1 according

to whether h is independent of x1.

2. The Conjecture of Kontsevich

In the present context, graphs are unoriented and may have loops and multiple edges.

It will be helpful to regard the edge set of a graph as the “ground set,” with the vertices

providing incidence data.

Given a graph G, choose a variable xe for each edge e and define

Σ(G) =
∑
T

∏
e∈T

xe,

where T ranges over all spanning trees of G. If G is disconnected, Σ(G) = 0.

For any edge e, we let G−e denote the graph obtained by deleting e, and G/e the graph

obtained by contracting e to a point. By partitioning the spanning trees of G according

to whether they contain e, one can see that

Σ(G) =

{
Σ(G/e) · xe + Σ(G− e) if e is not a loop,

Σ(G− e) otherwise.
(2.1)

With suitable initial conditions, this could serve as the definition of Σ(G).
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Translating the (modified) conjecture of Kontsevich reported in [St], we arrive at

Conjecture 2.1. For all graphs G, Z[Σ(G)](q) is a polynomial function of q−1.

We claim that Z[Σ(G)] is unchanged by the addition or deletion of loops or duplicate

edges. In the case of a loop, this is clear since Σ(G) does not depend on any loop variables.

If e and e′ are edges of G with the same endpoints, then Σ(G) is a function of xe +xe′ and

the remaining variables. Furthermore, as xe and xe′ vary uniformly over F2
q, one sees that

xe +xe′ varies uniformly over Fq, so the claim follows. Hence there is no loss of generality

in restricting our attention to simple graphs (i.e., no loops or multiple edges).

Unless stated otherwise, assume henceforth that G is a simple, connected graph.

Another easy observation to make is that if G has a cut vertex (i.e., a vertex whose

removal disconnects G), then the edges of G can be partitioned into two subgraphs G1

and G2 with the property that Σ(G) = Σ(G1) · Σ(G2), whence

Z[Σ(G)] = Z[Σ(G1)] + Z[Σ(G2)]− Z[Σ(G1)] · Z[Σ(G2)]. (2.2)

Thus to prove Conjecture 2.1, it suffices to consider 2-connected graphs.

Lemma 2.2. For any edge e of G, we have

Z[Σ(G)] = q−1 − q−1Z[Σ(G/e)] + Z[Σ(G/e),Σ(G− e)]. (2.3)

Proof. Proposition 1.3 and (2.1). �

Lemma 2.3. For any a, b, c, d ∈ Z[x1, x2, . . . ], we have

Z[ay + b, cy + d] = Z[a, b, c, d] + q−1Z[ad− bc]− q−1Z[a, c].

Proof. Applying Proposition 1.3 twice, we obtain

Z[ay + b, cy + d] = Z[a, b, cy + d] + q−1Z[ad− bc]− q−1Z[a, ad− bc]

= Z[a, b, c, d] + q−1Z[a, b]− q−1Z[a, b, c] + q−1Z[ad− bc]− q−1Z[a, bc]

= Z[a, b, c, d] + q−1Z[ad− bc]− q−1Z[a, c],

the last equality being a consequence of Z[a, bc] = Z[a, b] + Z[a, c]− Z[a, b, c]. �
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Theorem 2.4. For any (distinct) edges e, e′ of G, we have

Z[Σ(G)] = q−1 + q−2 − q−1Z[Σ(G/e)]− q−1Z[Σ(G/e′)]− q−2Z[Σ(G/e/e′)]

+ q−1Z[∆e,e′(G)] + Z[Σ(G/e/e′),Σ(G/e− e′),Σ(G/e′ − e),Σ(G− e− e′)],

where ∆e,e′(G) = Σ(G/e− e′) · Σ(G/e′ − e)− Σ(G/e/e′) · Σ(G− e− e′).

Proof. Using Lemma 2.3 (with y = xe′) to compute Z[Σ(G/e),Σ(G− e)], we find

Z[Σ(G/e),Σ(G− e)] = Z[Σ(G/e/e′),Σ(G/e− e′),Σ(G/e′ − e),Σ(G− e− e′)]

+ q−1Z[∆e,e′(G)]− q−1Z[Σ(G/e′/e),Σ(G/e′ − e)],

using the fact that deletion and contraction commute (e.g., (G−e)/e′ = G/e′−e). Applying

Lemma 2.2 to G/e′, we can eliminate the appearance of Z[Σ(G/e′/e),Σ(G/e′ − e)] from

the above expression, obtaining

Z[Σ(G/e),Σ(G− e)] = Z[Σ(G/e/e′),Σ(G/e− e′),Σ(G/e′ − e),Σ(G− e− e′)]

+ q−1Z[∆e,e′(G)] + q−2 − q−1Z[Σ(G/e′)]− q−2Z[Σ(G/e/e′)].

Now substitute the result back into (2.3). �

We remark that in the above proof, applying Lemma 2.2 to G/e′ is somewhat sloppy,

since G/e′ need not be a simple graph. However, the validity of Lemma 2.2 depends only

on e not being a loop.

A particularly interesting situation occurs when {e, e′} is a cutset; i.e., G − e − e′ is

disconnected. For simplicity, we may assume that this is a minimal cutset; otherwise

G has a cut vertex and (2.2) applies. In that case, G/e − e′ and G/e′ − e have the

same 2-connected components, and hence Σ(G/e − e′) = Σ(G/e′ − e). It follows that

Z[Σ(G/e)] = Z[Σ(G/e′)] (Lemma 2.2), and since Σ(G− e− e′) = 0,

∆e,e′(G) = Σ(G/e− e′) · Σ(G/e′ − e) = Σ(G/e− e′)2. (2.4)

Furthermore, the last term in Theorem 2.4 reduces to Z[Σ(G/e/e′),Σ(G/e − e′)], and

hence can be eliminated via Lemma 2.2. Combining these simplifications, Theorem 2.4

implies

Z[Σ(G)] = q−2 + (1− 2q−1)Z[Σ(G/e)]

+ (q−1 − q−2)Z[Σ(G/e/e′)] + q−1Z[Σ(G/e− e′)]. (2.5)
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Corollary 2.5. A minimal graph that provides a counterexample to Conjecture 2.1

must have edge connectivity > 3.

It is well-known that the spanning tree generating function of a graph is expressible as

a determinant. Define the Laplacian L(G) to be a matrix whose rows and columns are

indexed by the vertices of G, with the (u, v)-entry being −xuv (if u 6= v and uv = vu is

an edge of G), or 0 (if u and v are non-adjacent), or
∑

xuv′ , summed over all vertices v′

adjacent to u (if u = v). The Matrix-Tree Theorem (e.g., [L, §4]) asserts that

Σ(G) = detLv,v(G) (2.6)

for any vertex v, where Lu,v(G) denotes the result of deleting from L(G) the row indexed

by u and the column indexed by v.

Following Stanley (see Theorem 3.3 of [St]), we observe that for each vertex u adjacent

to v, the variable xuv appears only once in Lv,v(G), in the (u, u)-entry. Thus as xuv

varies uniformly over Fq, the (u, u)-entry also varies uniformly over Fq. It follows that if

L̄v,v(G) is the matrix obtained from Lv,v(G) by redefining the (u, u)-entry to be xu for all

u adjacent to v, then det L̄v,v(G) and detLv,v(G) vanish with the same probability; i.e.,

Z[Σ(G)] = Z[det L̄v,v(G)]. (2.7)

For any vertex u, we let N(u) denote the neighborhood of u; i.e., the set consisting of

u and all vertices adjacent to u.

Theorem 2.6. If u, u′, v, v′ are vertices that form a complete subgraph of G and N(u)

is a subset of both N(v) and N(v′), then

Z[Σ(G)] = Z[Σ(G− u′v′)] + q−1Z[Σ(G− u′u)]− q−1Z[Σ(G− u′u− u′v′)].

Proof. If we set xu′u = 0 in L̄v,v(G), we obtain L̄v,v(G− u′u), so by (2.7)

Z[Σ(G)](q)− q−1Z[Σ(G− u′u)](q)

represents the simultaneous probability that det L̄v,v(G) = 0 and that the (u′, u)-entry of

L̄v,v(G) is invertible in Fq. In that event, there is a uniquely determined multiple of the

row and column indexed by u that can be added to the row and column indexed by v′ so

that the (u′, v′)-entry is zero.

Consider the effect of this operation on the distribution of the entries of the matrix.

Of course the matrix remains symmetric, the determinant is preserved, and only the row

and column indexed by v′ is modified. First consider a typical off-diagonal entry in the
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v′ column; say (w, v′). In order for this entry to be modified, we must have w ∈ N(u),

so in particular (since N(u) ⊆ N(v′)), w must be adjacent to v′, and the (w, v′)-entry is

originally −xwv′ . Since w and v′ are both in N(u), and hence N(v), it follows that the

variable xwv′ does not appear anywhere else in L̄v,v(G), aside from the identical (v′, w)-

entry. Thus any quantities added to this entry (except in the case w = u′) do not change

the fact that it is distributed uniformly over Fq and independent of the other entries.

There is a similar argument for the (v′, v′)-entry, since it is originally a variable that is

independent of all other entries.

Thus when the (u′, u)-entry is restricted to be invertible in Fq, the distributions of

det L̄v,v(G) and det L̄v,v(G− u′v′) are the same, which implies

Z[Σ(G)]− q−1Z[Σ(G− u′u)] = Z[Σ(G− u′v′)]− q−1Z[Σ(G− u′u− u′v′)],

given the observation made at the beginning of the argument. �

Corollary 2.7. A minimal graph that provides a counterexample to Conjecture 2.1

cannot have a triple of vertices u, v, v′ such that N(u) ⊆ N(v), N(v′).

Proof. Given the stated condition, u, v, and v′ must be mutually adjacent. If u is adja-

cent to no other vertices, then the edges uv and uv′ form a (minimal) cutset, whence (2.5)

is applicable. Otherwise, there is another vertex u′ adjacent to u, and hence also adjacent

to v and v′, so Theorem 2.6 is applicable. �

Extending our previous notation, define (for example) Luv,u′v′(G) to be the matrix

obtained from L(G) by deleting the rows indexed by u and v, and the columns indexed by

u′ and v′. Recall that a key step in the derivation of Corollary 2.5 is the fact that if {e, e′}
is a minimal cutset for G, then ∆e,e′(G) is a perfect square (see (2.4)). The following

result shows that this is true in general.

Theorem 2.8. Let e, e′ be distinct edges of G.

(a) If e = uv and e′ = u′v, then

∆e,e′(G) = detLuv,u′v(G)2.

(b) If e = uv and e′ = u′v′ (and u, v, u′, v′ are distinct), then

∆e,e′(G) =
(
detLuv,u′v(G)− (−1)r detLuv,v′v(G)

)2
,

where r denotes the distance between rows u′ and v′ in Lv,v(G).
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Proof. (a) Recall that Σ(G/e) and Σ(G− e) are the linear and constant terms of Σ(G)

with respect to xe. Since the variables xe and xe′ appear only in the rows and columns of

Lv,v(G) indexed by u and u′ (respectively), it follows from (2.6) that

Σ(G/e− e′) = detLuv,uv(Ĝ), Σ(G/e′ − e) = detLu′v,u′v(Ĝ),

Σ(G/e/e′) = detLuu′v,uu′v(Ĝ), Σ(G− e− e′) = detLv,v(Ĝ),

where Ĝ = G−e−e′. However, by the Dodgson determinant identity [D], one knows that

for all i < k and j < l (or vice-versa),

Ai,lAk,j = Ai,jAk,l −Aik,jlA∅,∅,

where AI,J denotes the minor of a square matrix A obtained by deleting the rows indexed

by I and the columns indexed by J . Hence

∆e,e′(G) = detLuv,u′v(Ĝ) detLu′v,uv(Ĝ) = detLuv,u′v(G)2,

since L(G) is symmetric and Luv,u′v(G) is independent of xe and xe′ .

(b) We may assume that u′ and v′ index consecutive rows and columns of Lv,v(G), for if

we interchange the row and column of u′ with an adjacent row and column other than v′,

the parity of r changes, and the determinant of Luv,v′v(G) changes sign. The analysis is

now similar to (a), the only difference being that the variable xe′ appears in four positions

(the rows and columns of u′ and v′), which leads to

Σ(G/e′ − e) = detLu′v,u′v(Ĝ) + detLu′v,v′v(Ĝ) + detLv′v,u′v(Ĝ) + detLv′v,v′v(Ĝ).

Similarly Σ(G/e/e′) can be obtained by deleting the row and column of u from these four

minors. Thus via four applications of the Dodgson identity, we obtain

∆e,e′(G) =
(
detLuv,u′v(Ĝ) + detLuv,v′v(Ĝ)

)
·
(
detLu′v,uv(Ĝ) + detLv′v,uv(Ĝ)

)
=
(
detLuv,u′v(G) + detLuv,v′v(G)

)2
,

again by the symmetry of L(G). Although the determinants of Luv,u′v(G) and Luv,v′v(G)

both depend on xe′ , it is easily shown that their sum does not. �

We remark that Tim Chow [C] has given a combinatorial interpretation of ∆e,e′(G)

based on the above formula. It seems plausible that a combinatorial derivation could be

obtained along the lines of Zeilberger’s proof of the Dodgson identity [Z].
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3. Duality

Let Σ̄(G) denote the generating function for complements of spanning trees; i.e.,

Σ̄(G) :=
∑
T

∏
e∈G−T

xe,

where T ranges over all spanning trees of G. The conjecture that Z[Σ̄(G)](q) should be

a polynomial function of q−1 for all graphs G is essentially the original formulation of

Kontsevich’s conjecture (cf. also §7B).

Given a subset S of the edge set of G, extend the notation of §2 by defining G/S to

be the graph obtained from G by contracting the edges of S to points. A minor of G is

obtained by any sequence of deletions or contractions of edges of G.

The following is a more explicit version of Proposition 2.1 in [St].

Proposition 3.1. We have

1− Z[Σ̄(G)] =
∑
T

∑
S

(−1)|S|q−|S|−|T |
(
1− Z[Σ(G/T − S)]

)
,

where the outer sum ranges over edge subsets T of G without cycles, and the inner sum

ranges over edge subsets S of G/T .

Proof. For edge subsets T of G, define NG,T (q) to be the probability in Fq of the

event that (1) Σ(G) 6= 0 and (2) xe = 0 if and only if e ∈ T . Similarly define N̄G,T (q),

substituting Σ̄(G) in place of Σ(G). Since

Σ̄(G) ·
∏
e∈G

x−1e = Σ(G)|xe→1/xe
,

it follows that NG,∅(q) = N̄G,∅(q).

If we substitute xe = 0 in Σ̄(G) for all e ∈ T , we obtain 0 if there is a cycle in T ;

otherwise, we obtain Σ̄(G/T ). Hence

1− Z[Σ̄(G)] =
∑
T

N̄G,T (q) =
∑

T acyclic

q−|T |N̄G/T,∅(q) =
∑

T acyclic

q−|T |NG/T,∅(q).

However by inclusion-exclusion, we have

NG/T,∅(q) =
∑
S

(−q)−|S|
(
1− Z[Σ(G/T − S)]

)
,

so the claimed identity follows. �
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There is a similar inversion formula expressing Z[Σ(G)] as an alternating sum of terms

of the form Z[Σ̄(H)], where H ranges over minors of G.

Corollary 3.2. If Z[Σ(H)](q) is a polynomial in q−1 for every minor H of G, then

the same is true for Z[Σ̄(H)](q).

If G has n vertices and at most 2n − 3 edges, then a spanning tree has more edges

than its complement in G. In these cases, it may be easier to test whether Z[Σ̄(G)] is a

polynomial, rather than Z[Σ(G)].

Corollary 3.3. If G is a minimal counterexample to Conjecture 2.1, then Z[Σ̄(G)](q)

is not a polynomial in q−1, and is minor-minimal with respect to this property.

4. A Reduction Method

We now turn to the problem of explicitly computing Z[Σ(G)](q), or more generally

Z[f1, . . . , fk](q), regarding q as an indeterminate. Motivated by the reasoning used in

the proof of Theorem 2.4, we define a reduction of the expression Z[f1, . . . , fk] to be an

application of one or more of the following relations:

(R1) If one of the polynomials, say f1, is linear with respect to one of the variables,

say x1, then we can apply the relation of Proposition 1.3.

(R2) If one of the polynomials, say f1, factors nontrivially over Z; i.e., f1 = g1g2, where

gi ∈ Z[x1, x2, . . . ] and gi 6= 0,±1, then we have the relation

Z[f1, . . . , fk] = Z[g1, f2, . . . , fk] + Z[g2, f2, . . . , fk]− Z[g1, g2, f2, . . . , fk].

(R3) If two of the polynomials, say f1, f2, are scalars (i.e., integers), then we have

Z[f1, . . . , fk] = Z[gcd(f1, f2), f3, . . . , fk].

(R4) If f1 = ±f2 or f1 = 0 (say), then Z[f1, . . . , fk] = Z[f2, . . . , fk].

(R5) If fi = ±1 for some i, then Z[f1, . . . , fk] = 0.

More generally, we define reductions of Z[q−1]-linear combinations of expressions of the

form Z[f1, . . . , fk] in the obvious way.

If none of the above relations can be applied, then we say that [f1, . . . , fk] is inert.2 To

abuse notation, we may also say that Z[f1, . . . , fk] is inert. More generally, any Z[q−1]-

linear combination of inert expressions is said to be inert.

It is easy to see that [f1, . . . , fk] is inert if and only if at most one of the fi’s is a prime

integer and the remaining fi’s are distinct (up to a factor of ±1), irreducible, primitive

polynomials of degree at least two with respect to every dependent variable.

2It is unfortunate that the term “irreducible” already has a standard meaning for varieties.
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Of special importance is the empty list [ ], for which we have Z[ ](q) = 1. We say

that [f1, . . . , fk] is completely reducible if Z[f1, . . . , fk] can be reduced to a Z[q−1]-multiple

of Z[ ]. Of course in this case, Proposition 1.1 implies that the number of points on the

corresponding variety over Fq is a polynomial function of q.

Although we have defined the above relations as “reductions,” it requires some work to

show that there are no infinite sequences of reductions. To verify this claim, let us first

define an offspring of the nonzero polynomial f to be either a non-trivial divisor of f (i.e.,

not ±1 or ±f), or the linear or constant term with respect to some variable that appears

in f . The zero polynomial has no offspring, by definition.

Lemma 4.1. There are no infinite sequences g1, g2, . . . in which gk+1 is an offspring

of gk, for all k.

Proof. If we order Z[x1, x2, . . . ] first by total degree, and second by the number of

dependent variables, then an offspring of f might not (strictly) precede f in this ordering

only if f is a constant. However in that case, the only offspring of f are strictly smaller

than f in absolute value. �

Proposition 4.2. Starting from any polynomial list F = [f1, . . . , fk], the reductions

(R1)–(R5) can only be applied a finite number of times.

Proof. Set F1 = F , and given Fi, let Fi+1 be the polynomial list corresponding to one

of the terms appearing on the right hand side of one of the relations (R1)–(R4). (An

application of (R5) is clearly terminal.) If the proposition were false, there would exist

an infinite sequence F1, F2, . . . of this type. Indeed, any infinite rooted tree of bounded

width has an infinite chain.

Observe that every term on the right hand sides of (R1)–(R4) involves the same or a

smaller set of variables, and the two terms of (R1) involving [f̄2, . . . , f̄k] and [g1, f̄2, . . . , f̄k]

(see Proposition 1.3) both have a strictly smaller set of variables. Hence these terms can

be chosen only a finite number of times in any sequence {Fi}i>1. By truncating an initial

segment if necessary, we may assume that {Fi}i>1 is constructed without ever selecting

these particular right hand sides.

If Fi+1 is obtained from Fi via (R1), the remaining possibility is that two of the members

of Fi+1 are offspring of one of the members of Fi, and the remaining terms are identical.

Similarly, if (R2) is applied, one member of Fi is replaced with one or two of its offspring.

The remaining relations all involve deletion of terms or replacements of scalars, so for each

non-constant polynomial f appearing in Fi we can trace a sequence from f back to some fj

in F in which each term is either equal to, or an offspring of, the previous term. But every

offspring-sequence starting at fj must be finite (Lemma 4.1), so there can only be finitely
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many occasions in the sequence {Fi}i>1 in which offspring of non-constant polynomials

are chosen.

Thus by truncation, we may assume that all applications of (R1)–(R4) involve deleting

terms or replacing scalars with divisors. However it is easy to see that no infinite sequence

of reductions can be constructed from these limited operations. �

5. Conducting a Search

We have implemented an algorithm in Maple for reducing any expression Z[f1, . . . , fk]

to a Z[q−1]-linear combination of inert expressions. In theory this is straightforward,

since one needs only to look for opportunities to apply (R1)–(R5), and halt when no such

opportunities exist. However in practice, there are a number of subtle points, one being

the need to guard against expression swell, and another being the fact that while a given

expression may be completely reducible, it may also be difficult to find a sequence of

reductions that achieve this. The latter is the primary objective of the computation.

A. Strategy.

We summarize here the main features of our strategy for finding complete reductions.

1. One should keep the terms fi in a canonical order, and replace fi with −fi in case

the leading coefficient of fi is negative. Using (R3), one may permit at most one scalar

among the fi’s. With these conventions, we increase the likelihood of finding cancellations

such as Z[f ]− Z[−f ] = 0.

2. Whenever using (R1) to eliminate a variable, the new polynomials that are introduced

are replaced with their “square-free” parts. More specifically, if the polynomial g is to

be introduced into an expression Z[g, . . . ], we first compute the canonical square-free

factorization g = cg1g
2
2g

3
3 · · · , where the gi’s are primitive, co-prime, and square-free, and

c is an integer. (This is significantly cheaper than an irreducible factorization of g.) We

then replace g with cg1g2g3 · · · , an operation that is easily shown to be a reduction in the

sense of §4.

3. The main issue of strategy concerns how to choose from among the many opportu-

nities that may exist for applying (R1) and (R2). Since the use of (R1) tends to produce

expressions with fewer variables than the original, this operation is usually preferable

to (R2). However, it can easily lead to expressions large enough to exceed the capacity of

Maple. It is also difficult to determine in advance which variable and which term fi will

yield the smallest results. On the other hand, if we apply (R2) whenever possible, the

total number of terms tends to explode.

To cope with these conflicting tendencies, we use a heuristic that combines randomized,

greedy, and conservative methods. The algorithm first looks for a greedy solution by
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1
2 4 3 1

4 15 22
4 32

Table I. Potential counterexamples to Conjecture 2.1.

attempting a complete reduction of Z[f1, . . . , fk], using (R1) first whenever possible. When

there is a choice of variables to eliminate, one is taken at random. Error traps are set

for detecting if any internally generated expressions are “too large.” If any traps are

triggered, or if the resulting inert expression involves terms other than Z[ ] or Z[p] for p a

prime integer, then the greedy method is designated as having “failed,” and the algorithm

restarts in conservative mode. In this mode, we examine every opportunity to apply (R2),

but apply only one of them; namely, the one that produces the smallest results. If there

is no opportunity to apply (R2), we do the same with (R1). Then the full algorithm is

recursively applied to each of the new expressions (i.e., first greedy mode, and then if it

fails, conservative mode) until an inert expression is reached.

B. Results.

In using this program to investigate the conjecture of Kontsevich, we were amazed at

how effective it is at finding complete reductions. We had expected that it would be

necessary to incorporate Buchberger-style reductions (e.g., f2 → f2 − af1, where a is

chosen to kill the leading term of f2), and perhaps invertible changes of variable, in order

to obtain results for all but the smallest problems.

For example, the complete bipartite graph K3,3 has 81 spanning trees, so Σ(G) is a sum

of 81 square-free monomials of degree 5 in 9 variables. It typically takes about 17 or 18

rounds in greedy mode to obtain a complete reduction that proves

Z[Σ(K3,3)](q) = q−1 + 7q−3 − 13q−4 + 14q−5 − 17q−6 + 9q−7.

Due to the randomized nature of the algorithm, it is possible for the greedy mode to fail

for this graph, thus creating the need for a round of conservative reduction. On the other

hand, for slightly larger graphs, several rounds in conservative mode are often required.

Bearing in mind Corollaries 2.5 and 2.7, we searched for a minimal counterexample

to Conjecture 2.1. We generated all connected graphs with no cut vertex (cf. (2.5)), no

two-edge cutset, no triple of vertices satisfying N(u) ⊆ N(v), N(v′), and at most 13 edges.

The number of such graphs, sorted by edge and vertex counts, is displayed in Table I.

For the graphs with 611 edges, and all but two of the graphs with 12 edges, the program

was able to find a complete reduction of Σ(G). The two exceptional graphs are the cubic
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graphs of girth four on eight vertices: the cube Q, and the “Möbius ladder” L—the graph

obtained by adding edges joining the antipodal points of an eight-vertex circuit.

Since the cube is a planar graph, there is a natural bijection between the edges of

Q and its planar dual, the octahedron O. Furthermore, this identification induces a

bijection between the spanning trees of O and complements of spanning trees in Q (e.g.,

see Lemma 2.3.7 in [O]). In particular, Z[Σ(O)] = Z[Σ̄(Q)]. However, included among the

calculations mentioned above is a complete reduction for Σ(O) (the octahedron has only

six vertices), so it follows from Corollary 3.3 that Z[Σ(Q)] must be a polynomial in q−1.

Although the Möbius ladder is not planar, it is still an advantage that Σ̄(L) has degree

five, whereas Σ(L) has degree seven. We were able to obtain a complete reduction proving

that Z[Σ̄(L)] is a polynomial in q−1, so again it follows from Corollary 3.3 that Z[Σ(L)]

must be a polynomial in q−1.

We conclude from these considerations that Kontsevich’s conjecture is true for all graphs

with at most 12 edges.

While we are skeptical that the following question has an affirmative answer, the un-

reasonable success of the algorithm prompts it.

Question 5.1. Is it true that Σ(G) is completely reducible for every graph G?

We have used the program to verify that this is true for all graphs with at most 11

edges. Note that we cannot use Corollary 2.5 to reduce the search to graphs with edge

connectivity > 3, since the proof of Theorem 2.4 involves the use of Proposition 1.3 in the

“reverse” direction. Similarly, we also cannot make use of Corollary 2.7.

A hint towards an explanation of the effectiveness of the algorithm is provided by

Theorem 2.8. Recall that the quantity ∆e,e′(G) appears when (R1) is applied twice to

Z[Σ(G)] (see Theorem 2.4). Since ∆e,e′(G) is quadratic in each variable, it would be inert

if it were irreducible. However Theorem 2.8 shows that ∆e,e′(G) is a perfect square.

C. Interpolation.

Define the depth of the expression q−dZ[f1, . . . , fk] to be d+1 if [f1, . . . , fk] is primitive,

d if [f1, . . . , fk] is imprimitive but not identically zero, and infinite if [f1, . . . , fk] is zero

(or an empty list). The depth of a Z-linear combination of such expressions is defined to

be the minimum depth of its constituents.

Note that [ ] and [p] for prime integers p are the only imprimitive lists that are inert.

By Proposition 1.2, any expression of depth d is asymptotically g0(q−1) + O(q−d) for

some (explicit) polynomial g0. Thus if our algorithm fails to completely reduce Σ(G),

instead producing an inert expression of depth d, then we will at least be able to determine

an asymptotic series for Z[Σ(G)](q) through terms of order less than q−d.
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Define the embedding degree of the expression q−dZ[f1, . . . , fk] to be m + d, where m

is the number of dependent variables that appear in [f1, . . . , fk]. More generally, define

the embedding degree of a Z-linear combination of such expressions to be the maximum

embedding degree of its constituents.

Proposition 5.2. Assume f1, . . . , fk are homogeneous of positive degree. If g(q) =

Z[f1, . . . , fk](q) is a polynomial function of q−1, then g can be explicitly determined from

a reduction of Z[f1, . . . , fk] of depth d and embedding degree e, together with the values

of g(q) at e− d prime powers q.

Proof. Given the existence of a reduction as described, qeg(q) must be integer-valued

for all prime powers q, so as a polynomial in q−1, g has degree 6 e. Furthermore, since

the reduction has depth d, one can extract from it an explicit polynomial g0 such that

g(q) = g0(q−1) + adq
−d + ad+1q

−(d+1) + · · ·+ aeq
−e,

for certain (unknown) scalars ad, ad+1, . . . , ae. Now since f1, . . . , fk are homogeneous and

nonconstant, it follows that the nonzero points on the corresponding variety can be par-

titioned into F∗q-orbits, each of size q − 1. Hence the polynomial g(q) must evaluate to 1

at q = 1; i.e., g0(1) + ad + · · ·+ ae = 1, leaving a parameter space of dimension e− d. �

Remark 5.3. (a) As pointed out by Stanley (see Proposition 2.2 of [St]), the rational-

ity of zeta functions of varieties over finite fields implies that the coefficients of g(q) are

necessarily integers. Thus if we use the interpolation suggested by the above proposition

when g(q) is not known in advance to be a polynomial, and it happens that the resulting

coefficients are not integers, we obtain proof that g(q) is not a polynomial.

(b) An expression of the form Z[h1, . . . , hl], where h1 (say) is a nonzero integer, eval-

uates to 0 for infinitely many prime powers q. Thus in an application of Proposition 5.2,

we may ignore such terms when computing the depth and embedding degree.

(c) If G has m edges and at least one cycle, then Z[Σ(G)] has a reduction with em-

bedding degree 6 m− 1. This follows by induction from Lemma 2.2, if we include graphs

with loops or duplicate edges as part of the assertion, and take the basis of the induction

to be graphs with at least one loop. In the latter case the result is obvious, since Σ(G)

depends on at most m− 1 variables.

As we mentioned previously, our program produced incomplete reductions for the cube

and the Möbius ladder. For the cube Q, it produced a Z[q−1]-linear combination of Z[ ],

Z[2], and 13 inert expressions of the form Z[f ] for various polynomials f . The depth of

the expression was 5 and the embedding degree 11, so since we do know that Z[Σ(Q)] is
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a polynomial, we were able to determine it by explicitly counting points on the varieties

f = 0 over the fields Fq, q = 2, 3, 4, 5, 7, 8, obtaining

Z[Σ(Q)] = q−1 + 9q−3 + 3q−4 − 86q−5 + 191q−6 − 220q−7 + 133q−8 − 6q−9 − 24q−10.

For redundancy, we also counted points over F9 and checked to see that it agreed with this

result. As a further check of correctness, we also counted points on the variety Σ(Q) = 0

over F2 and F3 and compared it with this formula.

For the Möbius ladder L, our program produced a Z[q−1]-linear combination of Z[ ],

Z[2], Z[3], and 137 inert expressions involving one, two, or three polynomials and scalars,

the depth being 4 and the embedding degree 11. Proceeding as above, we needed one

more evaluation than in the case of the cube, and used the count for F11 as a redundancy

check. In this case, we obtained

Z[Σ(L)] = q−1 + 9q−3 + q−4 − 85q−5 + 203q−6 − 258q−7 + 176q−8 − 14q−9 − 32q−10.

As before, we also counted solutions of Σ(L) = 0 over F2 and F3 and verified that the

counts were consistent with this formula.

6. The Apex Case

As noted by Stanley in [St], the conjecture of Kontsevich is particularly interesting

when the graph G has an apex—a vertex v that is adjacent to every other vertex. In

that case, if we make a change of variables xe → −xe for all edges e not incident to v,

then L̄v,v(G) is a symmetric matrix whose entries are either zero (in certain off-diagonal

positions) or independent indeterminates, aside from the symmetry condition.

Reformulating this slightly, given a simple graph G, let us define M(G) to be the matrix

whose rows and columns are indexed by the vertices of G, with the (u, v)-entry being xuv

(if u 6= v and uv = vu is an edge of G), or xu (if u = v), or 0 (if u and v are non-adjacent).

Considering (2.7), we have

Z[Σ(G∗)] = Z[detM(G)],

where G∗ denotes the graph obtained from G by adjoining a new vertex adjacent to all

vertices of G. Thus the following is a special case of Conjecture 2.1.

Conjecture 6.1. For all graphs G, Z[detM(G)] is a polynomial function of q−1.

Given a subset S of the edge set of G, let M(G)|S denote the matrix obtained from

M(G) by specializing xe = 1 for all e ∈ S.

17



Theorem 6.2. If G is a minimal counterexample to Conjecture 6.1, then

(a) G is connected.

(b) Every vertex of G has degree > 2.

(c) There is no pair of vertices u, v such that N(u) ⊆ N(v).

(d) For all acyclic subgraphs T of G, Z[detM(G)|T ] is not a polynomial in q−1.

Proof. (a) If G is disconnected, then detM(G) = detM(G1) detM(G2) for certain

subgraphs G1 and G2, and hence (cf. (2.2))

Z[detM(G)] = Z[detM(G1)] + Z[detM(G2)]− Z[detM(G1)] · Z[detM(G2)].

(b) If v has degree 1 in G, then it has degree 2 in G∗. Hence the two edges e, e′ incident

to v form a minimal cutset in G∗. (Given that G is connected and has more than two

vertices, all doubleton edge cuts in G∗ are of this form.) Applying (2.5) to G∗, we obtain

that Z[detM(G)] is a Z[q−1]-linear combination of expressions of the form Z[detM(G′)]

for three smaller graphs G′, contradicting the minimality of G.

(c) Suppose N(u) ⊆ N(v′). Adjoining an apex v, the same relationship holds in G∗.

Since u has degree at least two in G, there must be another vertex u′ in G adjacent to u

(and hence also v′). Hence the identity of Theorem 2.6 applies to G∗. Since each of the

constituent graphs of this identity have v as an apex, we contradict the minimality of G.

(d) By inclusion-exclusion, the quantity

P (q) = PG,T (q) :=
∑
S⊆T

(−q)−|S|Z[detM(G− S)](q)

represents the probability that a randomly chosen evaluation of the matrix M(G) in Fq is

singular and has nonzero entries in each of the positions indexed by T . Furthermore, since

G is minimal, the expression Z[detM(G− S)](q) is a polynomial if and only if S 6= ∅, so

P (q) cannot be a polynomial function of q−1.

Now choose a root vertex for each connected component of T , and let D(q) denote

the group of (invertible) diagonal matrices D over Fq such that Dv,v = 1 unless v is an

unrooted vertex of T . Note that D(q) acts on the set of singular evaluations of M(G) over

Fq via M 7→ DMD, and this action preserves the zeroes of the matrix. Furthermore, it is

not hard to show that an evaluation of M(G) with nonzero entries in the positions of T

has a trivial D(q)-stabilizer; thus the singular matrices of this form can be partitioned into

D(q)-orbits each of size (q − 1)|T |, and the matrices with 1’s in the positions indexed by

T serve as orbit representatives. It follows that

P (q) = (1− q−1)|T |Z[detM(G)|T ](q),

whence Z[detM(G)|T ] cannot be a polynomial in q−1. �
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1
1 1

1 2 3 2 1
1 4 9 11 7 6

1 7 26 53 80
1 10 56 200

1 14 121
1 19

1

Table II. Potential counterexamples to Conjecture 6.1.

Remark 6.3. In the proof of (d), it would be natural to try to use the action of the full

group of diagonal matrices. However the orbit structure is much more complicated, and

the characteristic 2 case is exceptional. On the other hand, it can be shown that there is

an analogue of (d) in which we permit T to have a unique cycle, provided that this cycle

has odd length. (This is possible if and only if G is not bipartite.) In this case, one uses

the action of F∗q ×D(q), the first factor acting via scalar multiplication.

We investigated Conjecture 6.1 by first generating all graphs with at most 12 edges that

meet conditions (a)–(c) of Theorem 6.2. The number of such graphs, sorted by edge and

vertex counts, is displayed in Table II. Remember that if there are n vertices and m edges,

this represents an instance of Conjecture 2.1 with m + n edges, so these are substantially

larger problems than those listed in Table I.

We then used the Maple program described in §5 to reduce detM(G)|T for a randomly

chosen spanning tree T (for smaller graphs, we reduced detM(G) itself). For every graph

with 6 11 edges, we obtained a complete reduction, so we conclude that Conjecture 6.1 is

true for all graphs with 6 11 edges. We also checked the 12-edge graphs with 6 7 vertices,

and a few of the graphs with 8 vertices. In every case we obtained a complete reduction.

7. Related Questions

There are a number of natural variations and generalizations of Kontsevich’s conjecture

that turn out to be false.

A. Non-symmetric determinants.

For example (see [St]), consider dropping the symmetry condition in Conjecture 6.1.

Equivalently, suppose we have a bipartite graph G on n + n vertices (i.e., n vertices in

each color class). Define A(G) to be the n× n matrix with rows and columns indexed by

the two colors of vertices, the (u, v)-entry being xuv if uv is an edge of G, and 0 otherwise.
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Question 7.1. Is Z[detA(G)] a polynomial in q−1 for all G?

Kontsevich suggested in a message to Stanley that a negative answer to this question

follows from the non-representability of the Fano plane over fields of characteristic 6= 2. In

fact, taking G to be the point-line incidence graph of the Fano plane (a regular bipartite

graph with 21 edges and 7 + 7 vertices), we used the program in §5 to determine that

1− Z[detA(G)] = (1− q−1)7g(q−1)− q−5(1− q−1)13Z[2],

where

g(q) = 1 + 6q + 20q2 + 35q3 − 7q4 − 97q5 + 120q6 − 74q7 + 16q8 + 9q9 − 6q10 + q11,

thus confirming that Question 7.1 has a negative answer.

We also conducted a search to determine whether the incidence graph of the Fano plane

is the smallest graph G such that Z[detA(G)] is not a polynomial. Considering that there

are 2310376 bipartite graphs with 21 edges and 7 + 7 vertices (up to color-preserving

isomorphism), this search space requires pruning.

Theorem 7.2. If G is a minimal bipartite graph such that Z[detA(G)] is not a poly-

nomial function of q−1, then

(a) G is connected.

(b) Every edge of G participates in a perfect matching.

(c) For all acyclic subgraphs T of G, Z[detA(G)|T ] is not a polynomial in q−1.

(d) There are no vertices u, u′ such that N̄(u) ⊆ N̄(u′), where N̄(u) := N(u)− {u}.
(e) For every edge e = uv, there are at least |N̄(u)| non-adjacent pairs (u′, v′) with

u′ ∈ N̄(v) and v′ ∈ N̄(u).

(f) Every vertex has degree > 3.

(g) Every vertex is non-adjacent to at least two vertices of the opposite color.

Proof. (a) Similar to the proof of Theorem 6.2(a).

(b) If there are no perfect matchings of G that contain the edge e, then detA(G) does

not depend on xe and e can be deleted.

(c) Choose a root vertex for each connected component of T , and follow the proof of

Theorem 6.2(d). The only necessary change is that one should employ the group action

A 7→ D1AD2, where D1, D2 range over diagonal matrices supported on the unrooted

vertices of T belonging to the two color classes.

(d) Suppose N̄(u) ⊆ N̄(u′). Since G is connected, there is some vertex v adjacent to u

(and hence also u′). Since the columns in row u that have variable entries are a subset of
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those in row u′, it follows by reasoning similar to the proof of Theorem 2.6 that detA(G)|T
and detA(G− u′v)|T have the same distribution over Fq, where T = {uv}. Hence

Z[detA(G)|T ] = Z[detA(G− u′v)|T ].

On the other hand, we know that

Z[detA(G− u′v)|T ] = Z[detA(G− u′v)]− q−1Z[detA(G− uv − u′v)]

is a polynomial since G is minimal, so this contradicts (c).

(e) We may assume that u (and similarly v) is adjacent to additional vertices. Otherwise,

we violate (a), or (b), or G consists of the single edge uv. For each vertex v′ ∈ N̄(u) other

than v, there must be at least one vertex in N̄(v) that is not adjacent to v′ (by (d)), so

there are at least |N̄(u)| − 1 non-adjacent pairs in N̄(v)× N̄(u).

Thus if (e) is violated, there must be exactly one member of N̄(v) that is non-adjacent

to each v′, and we have a configuration of entries in A(G) such as the following:

v v′ v′′ v′′′

u x11 x12 x13 x14

u′ x21 x22 x23 0
u′′ x31 0 0 x34.

Here we are supposing that N̄(u) = {v, v′, v′′, v′′′} and N̄(v) = {u, u′, u′′}, so that row u

and column v are zero in A(G) outside of this submatrix. The crucial point is that there

is exactly one zero in each column of the submatrix beyond the first.

Set T = {u′v : u′ ∈ N̄(v)} and consider A(G)|T . In the above example, this amounts to

setting x11 = x21 = x31 = 1. If we now add multiples of column v of A(G)|T to the columns

of N̄(u) so as to kill the nonzero entries of row u, the net effect is that the 0 in column v′

of the submatrix becomes −xuv′ . In the above example, the variables x12, x13, x14 move

to the positions currently occupied by 0’s (and change sign). The new matrix again has

entries that are, aside from 0’s and 1’s, independently and uniformly distributed over Fq.

We conclude that detA(G)|T and detA(G′)|T have the same distribution, where G′ is

obtained from G by adding edges between every pair (u′, v′) ∈ N̄(v)× N̄(u), and deleting

all edges incident to u other than the edge uv.

The new graph G′ has the same number of edges as G, but it has edges u′v : u′ ∈ N̄(v)

that cannot appear in a perfect matching, so Z[detA(G′)] must be a polynomial in q−1,

and the same must be true for all subgraphs of G′. By an inclusion-exclusion argument

similar to the proof of Theorem 6.2(d), it follows that

Z[detA(G)|T ] = Z[detA(G′)|T ] = P (q−1)/(1− q−1)|T |
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for some polynomial P . This is possible only if Z[detA(G)|T ] is itself a polynomial in q−1,

contradicting (c).

(f) If v has degree 2 and u is a vertex of degree k > 2 adjacent to v, then (e) implies

that there can be at most k edges between N̄(v) and N̄(u). However, we have already

accounted for k + 1 such edges.

(g) We know that every vertex must be non-adjacent to at least one vertex of the

opposite color (by (d)), so if (g) is violated, there must be a vertex u that is non-adjacent

to a unique vertex v of the opposite color. Furthermore, again by (d), u must also be the

unique vertex of the opposite color that is non-adjacent to v.

There are at least two other (in fact by (f), three other) vertices u′, u′′ of the same

color as u. Since their neighborhoods must be incomparable, there exist edges u′v′ and

u′′v′′ in G such that (u′, v′′) and (u′′, v′) are non-adjacent pairs. Thus in A(G) we have a

submatrix of the form

v v′ v′′

u 0 x12 x13

u′ x21 x22 0
u′′ x31 0 x33,

and the remaining entries in row u and column v are variables.

Now set T = {u′v, u′′v, u′v′, u′′v′′} and consider A(G)|T ; i.e., x21, x31, x22, x33 = 1.

Subtracting multiples of rows u′ and u′′ from row u to kill the (u, v′)- and (u, v′′)-entries,

we obtain a new matrix whose (u, v)-entry is −x12 − x13, and aside from 0’s and 1’s, the

entries are independently and uniformly distributed over Fq. We conclude that detA(G)|T
and detA(G′)|T have the same distribution, where G′ is obtained by adding uv and deleting

uv′ and uv′′ from G. We now obtain a contradiction by reasoning similar to (e). �

There are no graphs satisfying the conditions of Theorem 7.2 with less than 6 + 6

vertices. For example, with 5 + 5 vertices, (f) and (g) force the graph to be cubic. There

are only two such graphs, their (bipartite) complements being a 10-cycle and the union of

a 4-cycle and a 6-cycle. The latter violates (d), whereas the former violates (e).

Omitting (c), there are 6 graphs on 6 + 6 vertices that meet the conditions of The-

orem 7.2—one each with 18, 19, 20, and 21 edges, and two with 24. For each of these

graphs, we chose a spanning tree T and used the program described in §5 to obtain a

complete reduction of detA(G)|T , thereby proving that there are no examples on 6 + 6

vertices.

For graphs on 7+7 vertices, the minimum possible number of edges is 21, by (f). There

are three graphs with 21 edges that meet all of the above conditions (other than (c)), and

we found that only the incidence graph of the Fano plane has a spanning tree specialization
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that fails to produce a polynomial. It follows that this is the only graph with 6 21 edges

such that Z[detA(G)] is not a polynomial in q−1.

B. Matroids.

Generalizing from graphs to matroids, it is natural to define Σ(M) to be the generating

function for the bases of a matroid M . The original formulation of Kontsevich’s conjecture

in terms of complements of spanning trees is the statement that if M is a co-graphic

matroid, then the number of zeroes of Σ(M) over Fq should be a polynomial in q.

If we consider the matroid Mn of an n-point line, then every pair of points forms a

base, and Σ(Mn) =
∑

i<j xixj . However, as pointed out by Stanley in [St], the number

of zeroes of Σ(M4) over Fq is not a polynomial in q. Indeed, using only two rounds of

reductions, one obtains

Z[Σ(M4)] = q−1 − q−2 + q−1Z[x2 + xy + y2].

One can show that this is not a polynomial by analyzing when x2 + xy + y2 is irreducible

or a perfect square (or neither) over Fq. Or use the methods of §5C.

On the other hand, both Tim Chow and Alexander Barvinok have suggested restricting

to the class of regular (or unimodular) matroids. These are the linear matroids that are

representable over every field, and can roughly be described as the class of matroids for

which one has an analogue of the Matrix-Tree Theorem.

The smallest3 regular matroid that is neither graphic nor co-graphic, labeled R10 in [O],

can be represented over every field by the matrix

L =


−1 1 0 0 1 1 0 0 0 0

1 −1 1 0 0 0 1 0 0 0
0 1 −1 1 0 0 0 1 0 0
0 0 1 −1 0 0 0 0 1 0
1 0 0 1 −1 0 0 0 0 1

 .

In other words, the bases of R10 are the sets of columns of nonzero maximal minors of L,

and since this is a universal representation of R10, these nonzero minors are all ±1. By

the analogue of the Matrix-Tree Theorem (a Binet-Cauchy expansion), one has

Σ(R10) = detLDLt,

where D is a diagonal matrix of indeterminates.

3In terms of the ground set, which in the case of a graph is the number of edges.
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We applied the reduction algorithm to Σ(R10), obtaining

Z[Σ(R10)] = q−1 + q−3 + 15q−4 − 27q−5 + 4q−6 + 8q−7

+ (q−6 − q−7)(7Z[2] + 3Z[3])− q−3Z[f ],

where f is an irreducible, primitive polynomial in 5 variables. This expression has depth 4

and embedding degree 8, so if we accept the hypothesis that Z[Σ(R10)](q) is a polynomial

in q−1, then it can be explicitly determined by evaluating the above expression at four

prime powers q (Proposition 5.2).

We counted the zeroes of f over Fq, q = 2, 3, 4, 5, and found that the unique polynomial

that fit the data did not have integer coefficients. Hence (see Remark 5.3(a)), Z[Σ(R10)]

cannot be a polynomial in q−1. (Alternatively, one can count zeroes of f over F7 and see

that the result does not fit the polynomial.) As a check, we also counted the zeroes of

Σ(R10) over F2 and F3, and confirmed that it agreed with the above formula and data.

Thus even for regular matroids, the analogue of Kontsevich’s conjecture fails.
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