# Coxeter-Yang-Baxter Equations? 

John R. Stembridge

Department of Mathematics
University of Michigan
Ann Arbor, Michigan 48109-1109
February 1993

## A Note to the Reader

These rough notes report on some calculations and observations I made in connection with a study of symmetric functions associated to stable Schubert polynomials and the combinatorics of reduced words. I know that hand-written copies of it did circulate-for example, it is cited in [1], but I never planned on publishing it.

Recently, Fernando Delgado generously volunteered to convert the handwritten notes to $T_{E} X$, so it is now available to the public. Thanks, Fernando!

John Stembridge, 8 January 2005
Let $V$ be the real Euclidean plane (i.e., $\mathbb{R}^{2}$ ), and let $R$ be a rank 2 root system (not necessarily crystallographic) of type $I_{2}(m)$. Let $r_{1}, r_{2}, \ldots, r_{m}$ denote a system of positive roots for $R$, ordered as they appear in $V$, either in clockwise or counter-clockwise order. In this arrangement, $r_{1}$ and $r_{m}$ are the simple roots of the chosen positive system.

Now let $\mathbf{k}$ be a field containing $\mathbb{R}$ and $A$ an associative $\mathbf{k}$-algebra. We can identify the symmetric algebra $S(V)$ with the polynomial ring $\mathbf{k}[x, y]$. In particular, we regard the roots $r_{i}$ as linear polynomials in $\mathbf{k}[x, y]$. We will say that two elements $g(z), h(z) \in A \otimes \mathbf{k}[z]$ ( $z$ an indeterminate) satisfy the $m$-th Coxeter-Yang-Baxter Equation (CYBE) if

$$
\underbrace{g\left(r_{1}\right) h\left(r_{2}\right) g\left(r_{3}\right) h\left(r_{4}\right) \cdots}_{m \text { terms }}=\underbrace{h\left(r_{m}\right) g\left(r_{m-1}\right) h\left(r_{m-2}\right) g\left(r_{m-3}\right) \cdots}_{m \text { terms }} \quad(m-\mathrm{CYBE})
$$

One should associate $g$ with the simple root $r_{1}$, and $h$ with $r_{m}$. In this way, if we choose the opposite ordering of the positive roots, then the roles of $g$ and $h$ are switched as well.

## Examples.

(1) A root system of type $I_{2}(3)=A_{2}$ has positive roots $x, y, x+y$, so the 3 rd CYBE (or $A_{2}$-CYBE) is the usual YBE:

$$
g(x) h(x+y) g(y)=h(y) g(x+y) h(x)
$$

(2) The 2nd CYBE is simply $g(x) h(y)=h(y) g(x)$.
(3) A crystallographic root system of type $I_{2}(4)$ (i.e., $B_{2}$ ) has positive roots $x, y, x+y$, $y-x$, and the two possible orderings are $x, x+y, y, y-x$ and its reverse. Hence, the 4 th CYBE is

$$
g(x) h(x+y) g(y) h(y-x)=h(y-x) g(y) h(x+y) g(x) .
$$

(4) The positive roots for $G_{2}$ may be ordered $x, x+y, 2 x+3 y, x+2 y, x+3 y, y$. Hence, the $G_{2}$-CYBE is

$$
\begin{aligned}
h(x) g(x+y) h(2 x+3 y) & g(x+2 y) h(x+3 y) g(y) \\
& =g(y) h(x+3 y) g(x+2 y) h(2 x+3 y) g(x+y) h(x)
\end{aligned}
$$

This exhausts the crystallographic cases; in all other cases one cannot work in $\mathbb{Z}$.
REMARK. If $m$ is odd, every root system of type $I_{2}(m)$ is conjugate by an orthogonal transformation and a dilation. Furthermore (whether $m$ is even or odd), any system of positive roots is conjugate by a transformation belonging to the group $W$ generated by the corresponding reflections. Note also that the two orderings $r_{1}, r_{2}, \ldots, r_{m}$ and $r_{m}, r_{m-1}, \ldots, r_{1}$ are conjugate by means of the reflection that interchanges $r_{1}$ and $r_{m}$. From these observations, we conclude that for odd $m$, the condition that $(g(z), h(z))$ satisfies the $m$-th CYBE does indeed depend only on $m$; not on
(1) the particular realization of the root system in $V$,
(2) the particular choice of positive roots,
(3) the choice of clockwise or counter-clockwise ordering of the positive roots.

In particular, (3) implies that $(h(z), g(z))$ also satisfies the $m$-th CYBE.
On the other hand, if $m \geq 4$ is even, it is no longer true that every root system of type $I_{2}(m)$ is conjugate by means of a linear transformation. Indeed, aside from an orthogonal transformation, it may be necessary to independently dilate the "even" roots $r_{2}, r_{4}, \ldots, r_{m}$ and the "odd" roots $r_{1}, r_{3}, \ldots, r_{m-1}$. Thus for even $m$, the solutions of the $m$-th CYBE depend on a hidden parameter that measures the ratio of the dilations, and the space of solutions for any two realizations of the root system are related by a map of the form $(g(z), h(z)) \mapsto(g(c z), h(z))$ for some constant $c$. For example, if $(g(z), h(z))$ is a solution of the $B_{2}$-CYBE as in Example (3), then $(h(2 z), g(z))$ is also a solution of the $B_{2}$-CYBE, but $(h(z), g(z))$ is a solution of a different realization of the 4th CYBE.

Suppose that we have elements $h_{1}(z), \ldots, h_{n}(z) \in A \otimes \mathbf{k}[z]$, and that $M=\left[m_{i j}\right]$ is a Coxeter matrix of size $n$. (Thus $m_{i j}=m_{j i} \in\{2,3, \ldots,+\infty\}$ for $i \neq j$.) We will say that $h_{1}(z), \ldots, h_{n}(z)$ form a Coxeter-Yang-Baxter System of type $M$ if for all $i \neq j$ such that $m_{i j}<\infty$, we have that $h_{i}(z)$ and $h_{j}(z)$ satisfy the $m_{i j}$-th CYBE.

Now suppose that $(W, S)$ is a Coxeter system of type $M=\left[m_{i j}\right]$, and that $S=$ $\left\{s_{1}, \ldots, s_{n}\right\}$. For the moment, we will assume that $W$ is finite, although later we will explain how this assumption can be removed. Let $R$ be a root system for $W$, and $R^{+}$a choice of positive roots. For each reduced expression $\mathbf{s}:=\left(s_{i_{1}}, \ldots, s_{i_{l}}\right)$, we define the root sequence of $\mathbf{s}$ to be

$$
\rho:=\rho(\mathbf{s})=\left(e_{i_{1}}, s_{i_{1}}\left(e_{i_{2}}\right), s_{i_{1}} s_{i_{2}}\left(e_{i_{3}}\right), \ldots, s_{i_{1}} \cdots s_{i_{l-1}}\left(e_{i_{l}}\right)\right)
$$

where $e_{1}, \ldots, e_{n}$ are the simple roots corresponding to $s_{1}, \ldots, s_{n}$. It is easy to show that the root sequence is a linear ordering of the positive roots $r$ such that $w^{-1} r \in R^{-}$, where $w=s_{i_{1}} \cdots s_{i_{l}} \in W$. In particular, $\rho$ is a sequence of $l$ distinct positive roots.

Although we will not need to make use of it here, the following result gives an interesting characterization of root sequences:

Theorem 1. Let $\rho=\left(r_{1}, \ldots, r_{l}\right)$ be a linear ordering of $l$ distinct positive roots. Then $\rho$ is a root sequence iff
(1) If $r, r^{\prime}$ occur in $\rho$, then so does every root in the positive span of $r$ and $r^{\prime}$.
(2) If $r^{\prime \prime}$ is in the positive span of $r$ and $r^{\prime}$, and $r^{\prime \prime}$ occurs in $\rho$, then $r$ precedes $r^{\prime \prime}$ in $\rho$, or $r^{\prime}$ precedes $r^{\prime \prime}$ in $\rho$, but not both.

Proof. This is an easy induction-a good exercise.

## Remarks.

(1) A similar result has been given by Kraskiewicz, although it is stated for crystallographic (i.e. Weyl) groups $W$, and the conditions are slightly different.
(2) It is easy to see that the reduced expression $\mathbf{s}$ is determined by the root sequence $\rho(\mathbf{s})$. Thus the study of reduced expressions is equivalent to the study of root sequences. This is essentially the origin of balanced tableaux.
(3) If $W$ is of rank 2 , and $w=w_{0}$, there are two reduced expressions. The two corresponding root sequences are the clockwise and counter-clockwise orderings of the positive roots that occur in the CYB equations.

Returning to the study of CYB-systems, let us regard the roots $r$ as linear polynomials in $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ by identifying $x_{1}, \ldots, x_{n}$ with some basis of $V$. (Or alternatively, we can simply work in the symmetric algebra $S(V)$.) Let $\mathbf{s}=\left(s_{i_{1}}, \ldots, s_{i_{l}}\right)$ be a reduced expression for some $w \in W$, and let $\rho(\mathbf{s}):=\left(r_{1}, \ldots, r_{l}\right)$ be the corresponding root sequence. Let us define the following element of $A \otimes \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]=A \otimes S(V)$ :

$$
h(\mathbf{s}):=h_{i_{1}}\left(r_{1}\right) h_{i_{2}}\left(r_{2}\right) \cdots h_{i_{l}}\left(r_{l}\right) .
$$

Theorem 2. If $h_{1}(z), \ldots, h_{n}(z)$ is a CYB system, then for all $w \in W$ and all reduced expressions $\mathbf{s}$ for $w, h(\mathbf{s})$ depends only on $w$, not on $\mathbf{s}$.

REmark. In case $w=w_{0}$ and $W$ is of type $I_{2}(m)$, the condition that the two reduced expressions for $w_{0}$ yield the same element of $A \otimes S(V)$ is the $m$-th CYBE.

Proof. Let $\mathbf{s}^{\prime}$ be a reduced expression that differs from $\mathbf{s}$ only in positions $p+1, \ldots, p+m$ where in fact

$$
\begin{aligned}
s_{i_{p+1}}, s_{i_{p+2}}, \ldots, s_{i_{p+m}} & =s_{i}, s_{j}, s_{i}, s_{j}, \ldots \\
s_{i_{p+1}}^{\prime}, s_{i_{p+2}}^{\prime}, \ldots, s_{i_{p+m}}^{\prime} & =s_{j}, s_{i}, s_{j}, s_{i}, \ldots
\end{aligned}
$$

for some $i, j$, where $m=m_{i j}=\operatorname{order}\left(s_{i} s_{j}\right)$ in $W$. It is known that every reduced expression for $W$ can be obtained from any other by a series of tranformations of this type. Therefore, it suffices to show that $h(\mathbf{s})=h\left(\mathbf{s}^{\prime}\right)$, or more specifically, that

$$
\begin{equation*}
\underbrace{h_{i}\left(r_{p+1}\right) h_{j}\left(r_{p+2}\right) \cdots}_{m \text { terms }}=\underbrace{h_{j}\left(r_{p+1}^{\prime}\right) h_{i}\left(r_{p+2}^{\prime}\right) \cdots}_{m \text { terms }} \tag{1}
\end{equation*}
$$

where $\rho^{\prime}=\left(r_{1}^{\prime}, \ldots, r_{l}^{\prime}\right)$ is the root sequence of $\mathbf{s}^{\prime}$. We will be done if we can show that $\left(r_{p+1}, \ldots, r_{p+m}\right)$ and $\left(r_{p+1}^{\prime}, \ldots, r_{p+m}^{\prime}\right)$ are the two (distinct) root sequences for the longest element in a root system of type $I_{2}(m)$, since it will then follow that (1) is an instance of the $m$-th CYBE.

However, from the definition of root sequence, we find that

$$
\begin{aligned}
& \left(r_{p+1}, \ldots, r_{p+m}\right)=\left(u e_{i}, u s_{i} e_{j}, u s_{i} s_{j} e_{i}, \ldots\right) \\
& \left(r_{p+1}^{\prime}, \ldots, r_{p+m}^{\prime}\right)=\left(u e_{j}, u s_{j} e_{i}, u s_{j} s_{i} e_{j}, \ldots\right)
\end{aligned}
$$

where $u=s_{i_{1}} \cdots s_{i_{p}} \in W$, so from this it is clear that these are indeed the two root sequences for the longest element of the parabolic subgroup $\left\langle u s_{i} u^{-1}, u s_{j} u^{-1}\right\rangle$ (see the above remark), relative to the simple system $\left\{u e_{i}, u e_{j}\right\}$.

Now we construct an example of a CYB system of type $M$, for any Coxeter matrix $M$. Let $N$ be the nil Coxeter algebra of type $M$. Thus $N$ is the associative k-algebra with generators $u_{1}, \ldots, u_{n}$, and defining relations $u_{i}^{2}=0(1 \leq i \leq n)$ and $\left[u_{i}, u_{j}\right]_{m}=\left[u_{j}, u_{i}\right]_{m}$, where $m=m_{i j}$ and $[a, b]_{m}:=a b a b \cdots$ ( $m$ factors).

Theorem 3. $h_{1}(z), \ldots, h_{N}(z):=1+z u_{1}, \ldots, 1+z u_{N}$ is a CYB system of type $M$.
Proof. For all $i \neq j$, we need to show that the pair $\left(h_{i}(z), h_{j}(z)\right)$ satisfies the $m_{i j}$-th CYB equation. In other words, we only need to treat the rank two case. Thus suppose $N=\left\langle u_{1}, u_{2}\right\rangle$ is the nil Coxeter algebra of type $I_{2}(m)$. Let $r_{1}, \ldots, r_{m}$ be the clockwise ordering of the positive roots of $I_{2}(m)$. We want to prove the identity

$$
\left(1+r_{1} u_{1}\right)\left(1+r_{2} u_{2}\right)\left(1+r_{3} u_{1}\right) \cdots=\left(1+r_{m} u_{2}\right)\left(1+r_{m-1} u_{1}\right)\left(1+r_{m-2} u_{2}\right) \cdots
$$

Let $a_{l}$ (respectively $b_{l}$ ) denote the coefficient of $\left[u_{1}, u_{2}\right]_{l}$ (respectively $\left[u_{2}, u_{1}\right]_{l}$ ) on the left hand side. Note that the right hand side can be obtained from the left by applying the automorphisms $\varphi: u_{1} \rightleftarrows u_{2}$ and $f: r_{i} \mapsto r_{m+1-i}$. (Both are involutions.)

Thus we seek to prove that $f\left(a_{l}\right)=b_{l}$ for $l=1,2, \ldots, m$. For each $l \geq 0$, define

$$
e_{l}\left(x_{1}, \ldots, x_{m}\right):=\sum x_{i_{1}} \cdots x_{i_{l}}
$$

where the sum ranges over indices $1 \leq i_{1}<i_{2}<\cdots<i_{l} \leq m$ such that $i_{j}=j \bmod 2$.
Note that if $m-l$ is odd, one has

$$
\begin{equation*}
e_{l}\left(x_{1}, \ldots, x_{m}\right)=e_{l}\left(x_{1}, \ldots, x_{m-1}\right) \tag{2}
\end{equation*}
$$

One can also easily check that when $m-l$ is even, then

$$
\begin{gather*}
e_{l}\left(x_{1}, \ldots, x_{m}\right)=e_{l}\left(x_{m}, \ldots, x_{1}\right)  \tag{3}\\
e_{l}\left(x_{1}, \ldots, x_{m}\right)=x_{1} e_{l-1}\left(x_{2}, \ldots, x_{m}\right)+e_{l}\left(x_{3}, \ldots, x_{m}\right) \tag{4}
\end{gather*}
$$

Also, note that from the definitions, we have

$$
a_{l}=e_{l}\left(r_{1}, \ldots, r_{m}\right), \quad b_{l}=e_{l}\left(r_{2}, \ldots, r_{m}\right)
$$

If $m-l$ is odd, then (2) and (3) imply that

$$
a_{l}=e_{l}\left(r_{1}, \ldots, r_{m-1}\right) \text { and } f\left(a_{l}\right)=e_{l}\left(r_{m}, \ldots, r_{2}\right)=e_{l}\left(r_{2}, \ldots, r_{m}\right)=b_{l}
$$

as desired. Otherwise, if $m-l$ is even, then we have

$$
a_{l}=f\left(a_{l}\right)=e_{l}\left(r_{1}, \ldots, r_{m}\right) \text { and } b_{l}=f\left(b_{l}\right)=e_{l}\left(r_{2}, \ldots, r_{m-1}\right)
$$

and we instead seek to prove that $a_{l}=b_{l}$. For this, we claim that the action of $W$ on $a_{l}-b_{l} \in S(V)$ is skew-symmetric; i.e., $w\left(a_{l}-b_{l}\right)=\operatorname{sgn}(w)\left(a_{l}-b_{l}\right)$ for all $w \in W$. Since all skew-symmetric elements in $S(V)$ are divisible by the "Weyl denominator" $r_{1} \cdots r_{m}$, it follows that $a_{l}-b_{l}$ must be, if nonzero, of degree at least $m$; i.e., $l=m$. But in the case $l=m$, we have $a_{m}=b_{m}=r_{1} \cdots r_{m}$, directly from the definition.

Thus, it remains to prove that $a_{l}-b_{l}$ is skew-symmetric (for $m-l$ even), i.e., $s_{1}\left(a_{l}-b_{l}\right)=$ $-\left(a_{l}-b_{l}\right)$ and $s_{2}\left(a_{l}-b_{l}\right)=-\left(a_{l}-b_{l}\right)$. First consider the action of $s_{1}$. From the geometry of $I_{2}(m)$, we see that $s_{1}$ acts on $r_{1}, \ldots, r_{m}$ via $r_{1} \rightarrow-r_{1}, r_{2} \rightarrow r_{m}, r_{3} \rightarrow r_{m-1}, \ldots$, $r_{m} \rightarrow r_{2}$. Using (2), (3) and (4), we obtain:

$$
\begin{aligned}
s_{1}\left(a_{l}-b_{l}\right) & =s_{1}\left[e_{l}\left(r_{1}, \ldots, r_{m}\right)-e_{l}\left(r_{2}, \ldots, r_{m-1}\right)\right] \\
& =s_{1}\left[r_{1} e_{l-1}\left(r_{2}, \ldots, r_{m}\right)+e_{l}\left(r_{3}, \ldots, r_{m}\right)-e_{l}\left(r_{2}, \ldots, r_{m-1}\right)\right] \\
& =-r_{1} e_{l-1}\left(r_{m}, \ldots, r_{2}\right)+e_{l}\left(r_{m-1}, \ldots, r_{2}\right)-e_{l}\left(r_{m}, \ldots, r_{3}\right) \\
& =-r_{1} e_{l-1}\left(r_{2}, \ldots, r_{m}\right)+e_{l}\left(r_{2}, \ldots, r_{m-1}\right)-e_{l}\left(r_{3}, \ldots, r_{m}\right)=-\left(a_{l}-b_{l}\right)
\end{aligned}
$$

The fact that $s_{2}\left(a_{l}-b_{l}\right)=-\left(a_{l}-b_{l}\right)$ follows similarly, upon interchanging $r_{i} \leftrightarrow r_{m+1-i}$. (Note that $s_{2}$ acts by $r_{m} \rightarrow-r_{m}, r_{1} \rightarrow r_{m-1}, r_{2} \rightarrow r_{m-2}, \ldots, r_{m-1} \rightarrow r_{1}$.)

## References

[1] S. Billey, Kostant polynomials and the cohomology ring for $G / B$, Duke Math. J. 96 (1999), 205-224.

