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A Note to the Reader

These rough notes report on some calculations and observations I made in connec-
tion with a study of symmetric functions associated to stable Schubert polynomials
and the combinatorics of reduced words. I know that hand-written copies of it did
circulate—for example, it is cited in [1], but I never planned on publishing it.

Recently, Fernando Delgado generously volunteered to convert the handwritten
notes to TEX, so it is now available to the public. Thanks, Fernando!

John Stembridge, 8 January 2005

Let V be the real Euclidean plane (i.e., R2), and let R be a rank 2 root system (not

necessarily crystallographic) of type I2(m). Let r1, r2, . . . , rm denote a system of positive

roots for R, ordered as they appear in V , either in clockwise or counter-clockwise order.

In this arrangement, r1 and rm are the simple roots of the chosen positive system.

Now let k be a field containing R and A an associative k-algebra. We can identify

the symmetric algebra S(V ) with the polynomial ring k[x, y]. In particular, we regard the

roots ri as linear polynomials in k[x, y]. We will say that two elements g(z), h(z) ∈ A⊗k[z]

(z an indeterminate) satisfy the m-th Coxeter-Yang-Baxter Equation (CYBE) if

g(r1)h(r2)g(r3)h(r4) · · ·︸ ︷︷ ︸
m terms

= h(rm)g(rm−1)h(rm−2)g(rm−3) · · ·︸ ︷︷ ︸
m terms

(m-CYBE)

One should associate g with the simple root r1, and h with rm. In this way, if we choose

the opposite ordering of the positive roots, then the roles of g and h are switched as well.

Examples.

(1) A root system of type I2(3) = A2 has positive roots x, y, x+ y, so the 3rd CYBE

(or A2-CYBE) is the usual YBE:

g(x)h(x+ y)g(y) = h(y)g(x+ y)h(x).



(2) The 2nd CYBE is simply g(x)h(y) = h(y)g(x).

(3) A crystallographic root system of type I2(4) (i.e., B2) has positive roots x, y, x+y,

y− x, and the two possible orderings are x, x+ y, y, y− x and its reverse. Hence,

the 4th CYBE is

g(x)h(x+ y)g(y)h(y − x) = h(y − x)g(y)h(x+ y)g(x).

(4) The positive roots for G2 may be ordered x, x + y, 2x + 3y, x + 2y, x + 3y, y.

Hence, the G2-CYBE is

h(x)g(x+ y)h(2x+ 3y)g(x+ 2y)h(x+ 3y)g(y)

= g(y)h(x+ 3y)g(x+ 2y)h(2x+ 3y)g(x+ y)h(x).

This exhausts the crystallographic cases; in all other cases one cannot work in Z.

Remark. If m is odd, every root system of type I2(m) is conjugate by an orthogo-

nal transformation and a dilation. Furthermore (whether m is even or odd), any system

of positive roots is conjugate by a transformation belonging to the group W generated

by the corresponding reflections. Note also that the two orderings r1, r2, . . . , rm and

rm, rm−1, . . . , r1 are conjugate by means of the reflection that interchanges r1 and rm.

From these observations, we conclude that for odd m, the condition that (g(z), h(z)) sat-

isfies the m-th CYBE does indeed depend only on m; not on

(1) the particular realization of the root system in V ,

(2) the particular choice of positive roots,

(3) the choice of clockwise or counter-clockwise ordering of the positive roots.

In particular, (3) implies that (h(z), g(z)) also satisfies the m-th CYBE.

On the other hand, if m ≥ 4 is even, it is no longer true that every root system of type

I2(m) is conjugate by means of a linear transformation. Indeed, aside from an orthogonal

transformation, it may be necessary to independently dilate the “even” roots r2, r4, . . . , rm
and the “odd” roots r1, r3, . . . , rm−1. Thus for even m, the solutions of the m-th CYBE

depend on a hidden parameter that measures the ratio of the dilations, and the space of

solutions for any two realizations of the root system are related by a map of the form

(g(z), h(z)) 7→ (g(cz), h(z)) for some constant c. For example, if (g(z), h(z)) is a solution

of the B2-CYBE as in Example (3), then (h(2z), g(z)) is also a solution of the B2-CYBE,

but (h(z), g(z)) is a solution of a different realization of the 4th CYBE.

Suppose that we have elements h1(z), . . . , hn(z) ∈ A ⊗ k[z], and that M = [mij ] is a

Coxeter matrix of size n. (Thus mij = mji ∈ {2, 3, . . . ,+∞} for i 6= j.) We will say that

h1(z), . . . , hn(z) form a Coxeter-Yang-Baxter System of type M if for all i 6= j such that

mij <∞, we have that hi(z) and hj(z) satisfy the mij-th CYBE.
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Now suppose that (W,S) is a Coxeter system of type M = [mij ], and that S =

{s1, . . . , sn}. For the moment, we will assume that W is finite, although later we will

explain how this assumption can be removed. Let R be a root system for W , and R+ a

choice of positive roots. For each reduced expression s := (si1 , . . . , sil), we define the root

sequence of s to be

ρ := ρ(s) =
(
ei1 , si1(ei2), si1si2(ei3), . . . , si1 · · · sil−1

(eil)
)

where e1, . . . , en are the simple roots corresponding to s1, . . . , sn. It is easy to show that

the root sequence is a linear ordering of the positive roots r such that w−1r ∈ R−, where

w = si1 · · · sil ∈W . In particular, ρ is a sequence of l distinct positive roots.

Although we will not need to make use of it here, the following result gives an interesting

characterization of root sequences:

Theorem 1. Let ρ = (r1, . . . , rl) be a linear ordering of l distinct positive roots. Then

ρ is a root sequence iff

(1) If r, r′ occur in ρ, then so does every root in the positive span of r and r′.

(2) If r′′ is in the positive span of r and r′, and r′′ occurs in ρ, then r precedes r′′ in

ρ, or r′ precedes r′′ in ρ, but not both.

Proof. This is an easy induction—a good exercise. �

Remarks.

(1) A similar result has been given by Kraskiewicz, although it is stated for crystallo-

graphic (i.e. Weyl) groups W , and the conditions are slightly different.

(2) It is easy to see that the reduced expression s is determined by the root sequence

ρ(s). Thus the study of reduced expressions is equivalent to the study of root

sequences. This is essentially the origin of balanced tableaux.

(3) If W is of rank 2, and w = w0, there are two reduced expressions. The two

corresponding root sequences are the clockwise and counter-clockwise orderings of

the positive roots that occur in the CYB equations.

Returning to the study of CYB-systems, let us regard the roots r as linear polynomials

in k[x1, . . . , xn] by identifying x1, . . . , xn with some basis of V . (Or alternatively, we can

simply work in the symmetric algebra S(V ).) Let s = (si1 , . . . , sil) be a reduced expression

for some w ∈ W , and let ρ(s) := (r1, . . . , rl) be the corresponding root sequence. Let us

define the following element of A⊗ k[x1, . . . , xn] = A⊗ S(V ):

h(s) := hi1(r1)hi2(r2) · · ·hil(rl).

Theorem 2. If h1(z), . . . , hn(z) is a CYB system, then for all w ∈W and all reduced

expressions s for w, h(s) depends only on w, not on s.
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Remark. In case w = w0 and W is of type I2(m), the condition that the two reduced

expressions for w0 yield the same element of A⊗ S(V ) is the m-th CYBE.

Proof. Let s′ be a reduced expression that differs from s only in positions p+1, . . . , p+m

where in fact

sip+1
, sip+2

, . . . , sip+m
= si, sj , si, sj , . . .

s′ip+1
, s′ip+2

, . . . , s′ip+m
= sj , si, sj , si, . . .

for some i, j, wherem = mij = order(sisj) inW . It is known that every reduced expression

for W can be obtained from any other by a series of tranformations of this type. Therefore,

it suffices to show that h(s) = h(s′), or more specifically, that

hi(rp+1)hj(rp+2) · · ·︸ ︷︷ ︸
m terms

= hj(r
′
p+1)hi(r

′
p+2) · · ·︸ ︷︷ ︸

m terms

(1)

where ρ′ = (r′1, . . . , r
′
l) is the root sequence of s′. We will be done if we can show that

(rp+1, . . . , rp+m) and (r′p+1, . . . , r
′
p+m) are the two (distinct) root sequences for the longest

element in a root system of type I2(m), since it will then follow that (1) is an instance of

the m-th CYBE.

However, from the definition of root sequence, we find that

(rp+1, . . . , rp+m) = (uei, usiej , usisjei, . . . )

(r′p+1, . . . , r
′
p+m) = (uej , usjei, usjsiej , . . . ),

where u = si1 · · · sip ∈ W , so from this it is clear that these are indeed the two root

sequences for the longest element of the parabolic subgroup 〈usiu−1, usju−1〉 (see the

above remark), relative to the simple system {uei, uej}. �

Now we construct an example of a CYB system of type M , for any Coxeter matrix M .

Let N be the nil Coxeter algebra of type M . Thus N is the associative k-algebra with

generators u1, . . . , un, and defining relations u2i = 0 (1 ≤ i ≤ n) and [ui, uj ]m = [uj , ui]m,

where m = mij and [a, b]m := abab · · · (m factors).

Theorem 3. h1(z), . . . , hN (z) := 1 + zu1, . . . , 1 + zuN is a CYB system of type M .

Proof. For all i 6= j, we need to show that the pair (hi(z), hj(z)) satisfies the mij-th

CYB equation. In other words, we only need to treat the rank two case. Thus suppose

N = 〈u1, u2〉 is the nil Coxeter algebra of type I2(m). Let r1, . . . , rm be the clockwise

ordering of the positive roots of I2(m). We want to prove the identity

(1 + r1u1)(1 + r2u2)(1 + r3u1) · · · = (1 + rmu2)(1 + rm−1u1)(1 + rm−2u2) · · · .

Let al (respectively bl) denote the coefficient of [u1, u2]l (respectively [u2, u1]l) on the left

hand side. Note that the right hand side can be obtained from the left by applying the

automorphisms ϕ : u1 � u2 and f : ri 7→ rm+1−i. (Both are involutions.)
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Thus we seek to prove that f(al) = bl for l = 1, 2, . . . ,m. For each l ≥ 0, define

el(x1, . . . , xm) :=
∑

xi1 · · ·xil ,

where the sum ranges over indices 1 ≤ i1 < i2 < · · · < il ≤ m such that ij = j mod 2.

Note that if m− l is odd, one has

el(x1, . . . , xm) = el(x1, . . . , xm−1). (2)

One can also easily check that when m− l is even, then

el(x1, . . . , xm) = el(xm, . . . , x1), (3)

el(x1, . . . , xm) = x1el−1(x2, . . . , xm) + el(x3, . . . , xm). (4)

Also, note that from the definitions, we have

al = el(r1, . . . , rm), bl = el(r2, . . . , rm).

If m− l is odd, then (2) and (3) imply that

al = el(r1, . . . , rm−1) and f(al) = el(rm, . . . , r2) = el(r2, . . . , rm) = bl,

as desired. Otherwise, if m− l is even, then we have

al = f(al) = el(r1, . . . , rm) and bl = f(bl) = el(r2, . . . , rm−1),

and we instead seek to prove that al = bl. For this, we claim that the action of W on

al − bl ∈ S(V ) is skew-symmetric; i.e., w(al − bl) = sgn(w)(al − bl) for all w ∈ W . Since

all skew-symmetric elements in S(V ) are divisible by the “Weyl denominator” r1 · · · rm, it

follows that al − bl must be, if nonzero, of degree at least m; i.e., l = m. But in the case

l = m, we have am = bm = r1 · · · rm, directly from the definition.

Thus, it remains to prove that al−bl is skew-symmetric (for m−l even), i.e., s1(al−bl) =

−(al− bl) and s2(al− bl) = −(al− bl). First consider the action of s1. From the geometry

of I2(m), we see that s1 acts on r1, . . . , rm via r1 → −r1, r2 → rm, r3 → rm−1, . . . ,

rm → r2. Using (2), (3) and (4), we obtain:

s1(al − bl) = s1[el(r1, . . . , rm)− el(r2, . . . , rm−1)]

= s1[r1el−1(r2, . . . , rm) + el(r3, . . . , rm)− el(r2, . . . , rm−1)]

= −r1el−1(rm, . . . , r2) + el(rm−1, . . . , r2)− el(rm, . . . , r3)

= −r1el−1(r2, . . . , rm) + el(r2, . . . , rm−1)− el(r3, . . . , rm) = −(al − bl).

The fact that s2(al−bl) = −(al−bl) follows similarly, upon interchanging ri ↔ rm+1−i.

(Note that s2 acts by rm → −rm, r1 → rm−1, r2 → rm−2, . . . , rm−1 → r1.) �
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