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A Note to the Reader

These rough notes report on some calculations and observations I made in connec-
tion with a study of symmetric functions associated to stable Schubert polynomials
and the combinatorics of reduced words. I know that hand-written copies of it did
circulate—for example, it is cited in [1], but I never planned on publishing it.

Recently, Fernando Delgado generously volunteered to convert the handwritten
notes to TgX, so it is now available to the public. Thanks, Fernando!

John Stembridge, 8 January 2005

Let V be the real Euclidean plane (i.e., R?), and let R be a rank 2 root system (not
necessarily crystallographic) of type Is(m). Let r1,79,..., 7, denote a system of positive
roots for R, ordered as they appear in V', either in clockwise or counter-clockwise order.
In this arrangement, r; and r,, are the simple roots of the chosen positive system.

Now let k be a field containing R and A an associative k-algebra. We can identify
the symmetric algebra S(V') with the polynomial ring k[z, y]. In particular, we regard the
roots r; as linear polynomials in k[z, y]. We will say that two elements g(z), h(z) € ARKk][z]
(z an indeterminate) satisfy the m-th Cozxeter-Yang-Baxter Equation (CYBE) if

g(ri)h(r2)g(ra)h(ra) -« = h(rm)g(rm—1)h(rm—2)g(rm—s) - - (m-CYBE)

m terms m terms

One should associate g with the simple root r1, and h with r,,. In this way, if we choose
the opposite ordering of the positive roots, then the roles of g and h are switched as well.

EXAMPLES.
(1) A root system of type I3(3) = Ay has positive roots z, y,  + y, so the 3rd CYBE
(or A>-CYBE) is the usual YBE:

g(@)h(z +y)g(y) = h(y)g(z + y)h(z).



(2) The 2nd CYBE is simply g(z)h(y) = h(y)g(x).

(3) A crystallographic root system of type I5(4) (i.e., B2) has positive roots z, y, z+y,
y — x, and the two possible orderings are z, z + ¥y, y, y — « and its reverse. Hence,
the 4th CYBE is

g(@)h(z +y)g(y)h(y — x) = h(y — z)g(y)h(z + y)g(z).

(4) The positive roots for Go may be ordered z, x + y, 2z + 3y, = + 2y, = + 3y, y.
Hence, the G2>-CYBE is

h(z)g(x + y)h(2x + 3y)g(x + 2y)h(x + 3y)g(y)
= g(y)h(z + 3y)g(z + 2y)h(2z + 3y)g(x + y)h(z).

This exhausts the crystallographic cases; in all other cases one cannot work in Z.

REMARK. If m is odd, every root system of type Is(m) is conjugate by an orthogo-
nal transformation and a dilation. Furthermore (whether m is even or odd), any system
of positive roots is conjugate by a transformation belonging to the group W generated
by the corresponding reflections. Note also that the two orderings ri,7rs,...,7, and
TmsTm—1,--.,71 are conjugate by means of the reflection that interchanges r; and 7,,.
From these observations, we conclude that for odd m, the condition that (g(z), h(z)) sat-
isfies the m-th CYBE does indeed depend only on m; not on

(1) the particular realization of the root system in V,
(2) the particular choice of positive roots,
(3) the choice of clockwise or counter-clockwise ordering of the positive roots.

In particular, (3) implies that (h(z), g(z)) also satisfies the m-th CYBE.

On the other hand, if m > 4 is even, it is no longer true that every root system of type
I5(m) is conjugate by means of a linear transformation. Indeed, aside from an orthogonal
transformation, it may be necessary to independently dilate the “even” roots ro,74,...,7m
and the “odd” roots r1,73,...,7m—1. Thus for even m, the solutions of the m-th CYBE
depend on a hidden parameter that measures the ratio of the dilations, and the space of
solutions for any two realizations of the root system are related by a map of the form
(9(2),h(2)) = (g(cz),h(z)) for some constant ¢. For example, if (g(2),h(z)) is a solution
of the Bo-CYBE as in Example (3), then (h(2z), g(z2)) is also a solution of the Bo-CYBE,
but (h(z),g(z)) is a solution of a different realization of the 4th CYBE.

Suppose that we have elements hq(z),...,h,(2) € A ® k[2], and that M = [m;;] is a
Coxeter matrix of size n. (Thus m;; = mj; € {2,3,..., 400} for ¢ # j.) We will say that
hi(z),...,hn(z) form a Cozxeter-Yang-Baxter System of type M if for all i # j such that
m;; < 0o, we have that h;(z) and h;(z) satisfy the m;;-th CYBE.
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Now suppose that (W, S) is a Coxeter system of type M = [my;], and that S =
{81,...,8,}. For the moment, we will assume that W is finite, although later we will
explain how this assumption can be removed. Let R be a root system for W, and R a
choice of positive roots. For each reduced expression s := (s;,,. .., s;,), we define the root
sequence of s to be

p = p(S) = (eiusil (6i2)7 SiqSiy (6i3)7 ceeySig Sy (eil))

where ey, ..., e, are the simple roots corresponding to s1,...,s,. It is easy to show that
the root sequence is a linear ordering of the positive roots  such that w='r € R, where
w=s; -8, € W. In particular, p is a sequence of [ distinct positive roots.

Although we will not need to make use of it here, the following result gives an interesting
characterization of root sequences:

THEOREM 1. Let p = (r1,...,7;) be a linear ordering of | distinct positive roots. Then
p is a root sequence iff

r, v’ occur in p, then so does every root in the positive span of r and r’.
1) Ifr, v i th d t in th iti f dr’
r" is in the positive span of r and r’, and r"" occurs in p, then r precedes "’ in
9) If " is in the positi fr and ', and 1" in p, th des " i
p, or v’ precedes r" in p, but not both.

Proof. This is an easy induction—a good exercise. [

REMARKS.

(1) A similar result has been given by Kraskiewicz, although it is stated for crystallo-
graphic (i.e. Weyl) groups W, and the conditions are slightly different.

(2) It is easy to see that the reduced expression s is determined by the root sequence
p(s). Thus the study of reduced expressions is equivalent to the study of root
sequences. This is essentially the origin of balanced tableaux.

(3) If W is of rank 2, and w = wyp, there are two reduced expressions. The two
corresponding root sequences are the clockwise and counter-clockwise orderings of
the positive roots that occur in the CYB equations.

Returning to the study of CYB-systems, let us regard the roots r as linear polynomials
in k[z1,...,x,] by identifying 1, ..., z, with some basis of V. (Or alternatively, we can
simply work in the symmetric algebra S(V').) Let s = (s;,, ..., ;) be a reduced expression
for some w € W, and let p(s) := (r1,...,7) be the corresponding root sequence. Let us
define the following element of A ® k[z1,...,2,] = A® S(V):

h(s) == hi, (r1)hiy (r2) - - - by, (11).

THEOREM 2. If hy(2),...,hn(2) is a CYB system, then for all w € W and all reduced
expressions s for w, h(s) depends only on w, not on s.



REMARK. In case w = wg and W is of type I2(m), the condition that the two reduced
expressions for wy yield the same element of A ® S(V) is the m-th CYBE.

Proof. Let s’ be a reduced expression that differs from s only in positions p+1,...,p+m
where in fact

sip+133ip+27~~->sip+m = 8i,85,84i,85,--

/ / /

Sipt17 Siprar 1 Sipim

= 85,8i,85,84y.-

for some 4, j, where m = m;; = order(s;s;) in W. It is known that every reduced expression
for W can be obtained from any other by a series of tranformations of this type. Therefore,
it suffices to show that h(s) = h(s’), or more specifically, that

hi(rpy1)hy(rpy2) - = hj(rp ) hi(rpys) - (1)

m terms m terms
where p' = (r{,...,r]) is the root sequence of s’. We will be done if we can show that
(Tpt1s -+ s Tprm) and (7)1, .., 74 ) are the two (distinct) root sequences for the longest

element in a root system of type Iy(m), since it will then follow that (1) is an instance of
the m-th CYBE.
However, from the definition of root sequence, we find that

(Ppt1s s Tppm) = (u€i, us;ej, us;sje,, ... )
(Thi1s - o> Tpm) = (uej, usje;, usjsie;, ... ),

where u = s;,---s;, € W, so from this it is clear that these are indeed the two root

P
sequences for the longest element of the parabolic subgroup (usiu_l,usju_1> (see the

above remark), relative to the simple system {ue;,ue;}. O

Now we construct an example of a CYB system of type M, for any Coxeter matrix M.
Let N be the nil Coxeter algebra of type M. Thus IV is the associative k-algebra with
generators w1, . .., Uy, and defining relations u? = 0 (1 <i < n) and [u;, uj]m = [uj, Ui]m,
where m = m;; and [a, b, :== abab--- (m factors).

THEOREM 3. hi(z),...,hn(2) ;=14 zuy,...,1 4+ zuy is a CYB system of type M.

Proof. For all i # j, we need to show that the pair (h;(z), h;(z)) satisfies the m,;-th
CYB equation. In other words, we only need to treat the rank two case. Thus suppose

N = (uj,us) is the nil Coxeter algebra of type I(m). Let r1,...,7, be the clockwise
ordering of the positive roots of I5(m). We want to prove the identity

(T4 ryug) (1 + roug) (L +r3ug) -+ = (1 4+ rppu2) (1 4+ rop—qur ) (1 + rpp—oug) - -+ .

Let a; (respectively b;) denote the coefficient of [uy,us]; (respectively [ug,u1];) on the left
hand side. Note that the right hand side can be obtained from the left by applying the
automorphisms ¢ : u; = ug and f : r; — rpae1—s. (Both are involutions.)



Thus we seek to prove that f(a;) =b; for l =1,2,...,m. For each [ > 0, define

el(xla"'7$m) = inl'”xim

where the sum ranges over indices 1 < i; < iy < --- <4 < m such that i; = j mod 2.
Note that if m — [ is odd, one has

el(x1,. . xm) =e(T1, ..., Tm—1)- (2)

One can also easily check that when m — [ is even, then
el(z1,. .. xm) =e(Tm,...,T1), (3)
e, m) = x161-1(X2y .oy ) F (T3, oy ). (4)

Also, note that from the definitions, we have
ar=e(r1,...,mm), bi=-e(ra,...,rm).
If m — [ is odd, then (2) and (3) imply that
ar=ey(r1,...,rm—1) and f(a;) = e;(rm,...,r2) =ei(ra,...,rm) = by,

as desired. Otherwise, if m — [ is even, then we have

ar = fla;) =ey(r1,...,mm) and by = f(b) = ei(ra, ..., Tm-1),

and we instead seek to prove that a; = b;. For this, we claim that the action of W on
a; — by € S(V) is skew-symmetric; i.e., w(a; — b)) = sgn(w)(a; — b;) for all w € W. Since
all skew-symmetric elements in S(V') are divisible by the “Weyl denominator” ry - - - 7y, it
follows that a; — b; must be, if nonzero, of degree at least m; i.e., [ = m. But in the case
Il =m, we have a,,, = b, =111, directly from the definition.

Thus, it remains to prove that a;—b; is skew-symmetric (for m—1 even), i.e., s1(a;—b;) =
—(a; —b;) and sa(a; — b)) = —(a; — b;). First consider the action of s;. From the geometry
of Ir(m), we see that s; acts on 71,...,7y, via 11 = =11, Ta = Ty T3 = Ty ..,
Tm — T2. Using (2), (3) and (4), we obtain:

si(a; = b)) = silei(riy .o yrm) —ei(ra, ..oy rm—1)]
=si[re—1(re,...,rm) +e(rs, ... rm) —ei(ra, ooy, ri—1)]
=—rie;—1(rm,-..,7r2) +e(rm-1,--.,72) — €(Fm,...,73)
=—rie—1(ro,...,rm) +e(ra, ... rm—1) —ei(rs,...,rm) = —(a; — by).
The fact that so(a;—b;) = —(a; —b;) follows similarly, upon interchanging r; <> r.,41—;-
(Note that ss acts by 7 — —Tm, 71 = Pi—1, 2 = Fm—2, -, 'm—1 —> T1.) O
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