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4. The Möbius Function

0. Introduction

Throughout this paper, Φ ⊂ Rn shall denote a (reduced) crystallographic root system

with positive roots Φ+, simple roots α1, . . . , αn, inner product 〈 , 〉, and Weyl group W .

(Standard references are [B1] and [H].) For each α ∈ Φ, α∨ = 2α/〈α, α〉 denotes the

co-root corresponding to α. We let

Λ = {λ ∈ Rn : 〈λ, α∨〉 ∈ Z for all α ∈ Φ}

denote the weight lattice, and ω1, . . . , ωn the fundamental weights (i.e., 〈ωi, α
∨
j 〉 = δij).

The set of dominant weights (i.e., the nonnegative integral span of the fundamental

weights) is denoted Λ+.

There is a standard partial ordering < of Λ in which µ ≤ λ if and only if λ−µ ∈ NΦ+;

i.e., λ − µ is a nonnegative integral sum of positive roots. The structure of this partial

order is trivial—up to isomorphism, it is the disjoint union of f copies of Zn (with the

usual product order), where f denotes the index of connection (the index of the root lattice

ZΦ in Λ). However, a much more subtle partial order is the subposet (Λ+, <) formed by

the set of dominant weights. It is this poset that is our object of study.
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The poset (Λ+, <) is of fundamental importance for the representation theory of Lie

groups and algebras. To give just one illustration of this, consider a (complex) semisimple

Lie algebra g with Cartan subalgebra h and root system Φ ⊂ h∗. Every finite-dimensional

g-module V has a weight-space decomposition V =
⊕

µ∈Λ Vµ, where Vµ = {v ∈ V : hv =

µ(h)v for all h ∈ h}, and it is well-known that the set of dominant weights µ that occur

with positive multiplicity (i.e., dimVµ > 0) form an order ideal of (Λ+, <). In particular,

if V λ is the irreducible g-module of highest weight λ, then (assuming µ is dominant)

dim(V λ
µ ) > 0 if and only if µ ≤ λ.

In fact, our original motivation for studying the partial order of dominant weights arose

while developing software for Lie-theoretic computations [St].1 For example, to compute

dominant weight multiplicities for V λ via Freudenthal’s algorithm, it can be useful to

generate in advance all dominant weights µ ≤ λ. This led us to the problem of describing

explicitly the covering relation of (Λ+, <).

For the root systems of type A, the partial order (Λ+, <) is closely related to the

dominance order on the set of partitions of an integer. In the dominance order, one

defines (β1, β2, . . . ) ≼ (α1, α2, . . . ) if β1 + · · · + βi ≤ α1 + · · · + αi for all i ≥ 1. On the

other hand, for the root system Φ = An−1, the dominant weights Λ+ can be identified

with equivalence classes of partitions with at most n parts, two partitions being equivalent

if they differ by a multiple of the n-tuple (1, . . . , 1). With this identification, λ, µ ∈ Λ+

satisfy µ ≤ λ if and only if there exist partitions α and β of the same integer, equivalent

to µ and λ, such that α ≼ β.

We prove several basic theorems about the structure of (Λ+, <), some of which can be

viewed as generalizations of well-known properties of the dominance order on partitions.

For example, we prove that each component of (Λ+, <) is a lattice (Theorem 1.3), and

(assuming Φ is irreducible) these lattices are distributive if and only if Φ is of rank at

most 2 (Theorems 3.2 and 3.3). It is interesting that these properties can be attributed to

features of the Cartan matrix: the lattice property follows from the fact that the Cartan

matrix has at most one positive entry in each column, and distributivity requires at most

one negative entry per column.

The main results are in Sections 2 and 4. In Section 2, we give a detailed analysis of the

covering relation of (Λ+, <). In particular, we prove that λ covers µ in this ordering only if

λ−µ belongs to a distinguished subset of the positive roots (Theorem 2.6). It is surprising

that even the fact that λ − µ is necessarily a positive root seems not to have appeared

previously in the literature. The analogous result for the dominance order is well-known:

α covers β in the dominance order only if β can be obtained from α by decreasing αi and

1See http://www.math.lsa.umich.edu/~jrs/maple.html.

2



increasing αj for some i < j (i.e., subtracting a type A positive root).

In Section 4 we analyze the Möbius function of (Λ+, <). In particular, we prove that

if Φ is irreducible, the Möbius function takes on only the values 0,±1,±2 (Theorem 4.1),

and we determine all component lattices in which the values ±2 occur. For example, if the

diagram of Φ is a path, then only the values 0,±1 occur, which generalizes Brylawski’s

result for the dominance order [Br]. Our proof technique can be viewed as a root system

generalization of Greene’s approach to the dominance order [G].

Warning.

In this paper, the two notions of lattice (discrete subgroups of real vector spaces and

partial orders in which every pair of elements has a least upper bound and greatest lower

bound) figure prominently. In some cases, such as the root lattice ZΦ, these structures are

even attached to the same object. Nevertheless, it should not be difficult for the reader to

discern the meaning of each use of the word “lattice” from its context.

Acknowledgment.

I would like to thank James Humphreys and Andrey Zelevinsky for helpful discussions.

1. Basic Properties

Let Λ1, . . . ,Λf denote the distinct cosets of Λ modulo ZΦ, and let Λ+
i = Λ+ ∩ Λi. It

is clear from the definition that µ, ν ∈ Λ can be related by < only if they belong to the

same coset, so (Λ+, <) is the disjoint union of the subposets (Λ+
i , <).

It should also be noted that if Φ has two or more irreducible factors, then (Λ+, <) is

isomorphic to the direct product of the posets corresponding to these factors. In some

cases, it will be simpler to restrict our attention to the case of irreducible Φ; extending to

the general case is straightforward.

1.1 The Lattice Property.

Lemma 1.1. Each component (Λ+
i , <) is directed; i.e., every pair µ, ν ∈ Λ+

i has an

upper bound.

Proof. Let δ = 2(ω1 + · · ·+ ωn) ∈ Λ+. It is well-known that δ ∈ NΦ+. In fact, δ is the

sum of the positive roots (e.g., [H, §13.3]), so the simple root coordinates of δ are positive.

It follows that if λ is an arbitrary representative of the coset Λi, then every pair µ, ν ∈ Λ+
i

has an upper bound of the form λ+ kδ for k sufficiently large. □

Each component of (Λ, <) is isomorphic to a direct product of n copies of Z, and is

therefore a lattice. Furthermore, the meet and join operations can be expressed in terms
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of the simple root coordinates as follows:

(
∑

i aiαi) ∧ (
∑

i biαi) =
∑

i min(ai, bi)αi, (1.1)

(
∑

i aiαi) ∨ (
∑

i biαi) =
∑

i max(ai, bi)αi. (1.2)

Note that ai and bi need not be integers. However, the operands must belong to the

same coset, so we have ai − bi ∈ Z and therefore ai −min(ai, bi) ∈ Z. Hence, the above

expression for the meet (and similarly the join) does belong to the proper coset.

Lemma 1.2. Let γ ∈ ZΦ∨. We have

〈µ, γ〉, 〈ν, γ〉 ≥ 0 ⇒ 〈µ ∧ ν, γ〉 ≥ 0

for all µ, ν in the same coset of Λ if and only if there is at most one i such that 〈αi, γ〉 > 0.

Proof. If 〈α1, γ〉 = c1 > 0 and 〈α2, γ〉 = c2 > 0, then take µ = c1α2 − c2α1 and

ν = 0. Under these conditions, we have µ ∧ ν = −c2α1, 〈µ ∧ ν, γ〉 = −c1c2 < 0, and

〈µ, γ〉 = 〈ν, γ〉 = 0, so the stated condition is clearly necessary.

For the converse, suppose 〈α1, γ〉 = c1 ≥ 0 and 〈αi, γ〉 = −ci ≤ 0 for 2 ≤ i ≤ n. Given

µ =
∑

i aiαi and ν =
∑

i biαi, the condition 〈µ, γ〉, 〈ν, γ〉 ≥ 0 implies

c1a1 ≥ c2a2 + · · ·+ cnan ≥ c2 min(a2, b2) + · · ·+ cn min(an, bn),

c1b1 ≥ c2b2 + · · ·+ cnbn ≥ c2 min(a2, b2) + · · ·+ cn min(an, bn),

and therefore

c1 min(a1, b1) ≥ c2 min(a2, b2) + · · ·+ cn min(an, bn).

That is, 〈µ ∧ ν, γ〉 ≥ 0. □

Theorem 1.3. Each component (Λ+
i , <) is (a) a complete meet-semilattice, and (b) a

lattice. Furthermore, the meet operation of (Λ+
i , <) is given by (1.1).

Proof. We first prove that (Λ+
i , <) is a meet-semilattice. For this it suffices to show

that µ, ν ∈ Λ+
i implies µ∧ ν ∈ Λ+, where ∧ is defined as in (1.1). Indeed, it is well-known

that 〈αk, α
∨
j 〉 ≤ 0 for all k 6= j (e.g., [H, §10.1]), so γ = α∨

j satisfies the hypothesis of

Lemma 1.2. This allows us to deduce 〈µ ∧ ν, α∨
j 〉 ≥ 0 from the fact that 〈µ, α∨

j 〉 ≥ 0 and

〈ν, α∨
j 〉 ≥ 0. In other words, µ ∧ ν is dominant, which proves the claim.

The meet of an arbitrary subset of Λ+
i can be therefore be expressed in the form

µ1∧· · ·∧µn, where µj is a member of the subset that minimizes the coefficient of αj . Thus

(Λ+
i , <) is complete as a meet-semilattice. Since (Λ+

i , <) is also directed (Lemma 1.1), it

is therefore a lattice. □
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Corollary 1.4. Each component of (Λ+, <) has a minimum element.

Remark 1.5. (a) The above argument shows that the lattice property depends ulti-

mately on the fact that the Cartan matrix [〈αi, α
∨
j 〉] has (at most) one positive entry in

each column.

(b) In Section 3, we shall see that the join operation of (Λ+
i , <) is not necessarily given

by (1.2), so (Λ+
i , <) need not be a sublattice of (Λi, <).

(c) In the case Φ = An−1, the dominance ordering of partitions of n is isomorphic to a

subinterval of (Λ+, <). Hence a corollary of Theorem 1.3 is the well-known fact that the

dominance order is a lattice (e.g., see [Br]).

1.2 Saturation.

The material in this subsection is not new—it is based on the exercises in Bourbaki (see

especially Exercises VI.1.23–24 and VI.2.5 of [B1]).

A subset Σ of Λ is said to be saturated if for every λ ∈ Σ, α ∈ Φ, and integer i satisfying

0 < i ≤ 〈λ, α∨〉, we have λ− iα ∈ Σ.

Lemma 1.6. Saturated sets are W -stable.

Proof. Assume Σ ⊂ Λ is saturated, λ ∈ Σ and α ∈ Φ. We must have λ− 〈λ, α∨〉α ∈ Σ,

since even if 〈λ, α∨〉 < 0, we can replace α with −α. However, λ−〈λ, α∨〉α is the reflection

of λ through the hyperplane orthogonal to α. Since W is generated by such reflections,

the result follows. □

Lemma 1.7. If µ ∈ Λ+ and w ∈ W , then wµ ≤ µ.

Proof. As a subposet of (Λ, <), the W -orbit of µ has at least one maximal element,

say µ+. However µ+ must be dominant, since 〈µ+, α∨
i 〉 = −c < 0 would imply that the

reflection of µ+ through the hyperplane orthogonal to αi is µ
++cαi > µ+, a contradiction.

Since each W -orbit has just one dominant vector, it follows that µ = µ+ is the unique

maximal element of its orbit. □

Lemma 1.8. If Σ is saturated, λ ∈ Σ, and µ ∈ Λ+, then µ < λ implies µ ∈ Σ.

Proof. If not, then there must exist ν ∈ Σ satisfying µ < ν ≤ λ, but with ν−αi /∈ Σ for

all simple roots αi in the support of ν−µ. Setting ν−µ =
∑

i∈I biαi with bi > 0, we have∑
i∈I bi〈ν−µ, αi〉 = 〈ν−µ, ν−µ〉 > 0, so 〈ν−µ, α∨

i 〉 > 0 for some i ∈ I. Furthermore, µ is

dominant by hypothesis, so it must be the case that 〈ν, α∨
i 〉 > 0. However Σ is saturated,

so we must have ν − αi ∈ Σ, a contradiction. □

For λ ∈ Λ+, define Σ(λ) to be the smallest saturated subset of Λ that contains λ. (Since

intersections of saturated sets are saturated, it is clear that a smallest saturated subset
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exists.) A weaker version of the following result, corresponding to the inclusion ‘⊆’ is the

main point of Exercise VI.1.23 of [B1]; the reverse inclusion does not seem to be stated

explicitly anywhere in [B1], but it is implicit in [B2, VIII.7.2].

Theorem 1.9. For λ ∈ Λ+, we have

Σ(λ) = {µ ∈ Λ : wµ ≤ λ for all w ∈ W} =
∪

µ∈Λ+:µ≤λ

Wµ.

Proof. The equality of the second and third expressions is a consequence of Lemma 1.7.

Also, Lemmas 1.6 and 1.8 imply that Σ(λ) ⊇ Wµ for all µ ∈ Λ+ such that µ ≤ λ. Hence

all that remains is to show that Σ̄(λ) := {µ ∈ Λ : wµ ≤ λ for all w ∈ W} is saturated.

Thus suppose µ ∈ Σ̄(λ) and α ∈ Φ. Given 0 < i ≤ 〈µ, α∨〉 and w ∈ W , consider

w(µ− iα). If wα ∈ Φ+, then we have

λ ≥ wµ ≥ wµ− i(wα) = w(µ− iα),

whereas if −wα ∈ Φ+, then

λ ≥ wtαµ = w(µ− 〈µ, α∨〉α) = wµ− 〈µ, α∨〉wα ≥ wµ− iwα = w(µ− iα),

where tα ∈ W denotes the reflection through the hyperplane orthogonal to α. We therefore

have w(µ− iα) ≤ λ for all w ∈ W , so µ− iα ∈ Σ̄(λ) and Σ̄(λ) is saturated. □

Corollary 1.10. For λ, µ ∈ Λ+, we have µ ≤ λ if and only if Σ(µ) ⊆ Σ(λ).

Remark 1.11. If V λ is the irreducible g-module of highest weight λ, then it follows

from Proposition 5 of [B2, VIII.7.2] that Σ(λ) is the set of weights that occur with nonzero

multiplicity in V λ. Along with the above corollary, this proves the assertion mentioned in

the introduction; namely, that for µ ∈ Λ+, dim(V λ
µ ) > 0 if and only if µ ≤ λ.

A dominant weight λ is minuscule if it is nonzero and 〈λ, α∨〉 ∈ {0,±1} for all α ∈ Φ.

Proposition 1.12. A dominant weight λ is a minimal element of (Λ+, <) if and only

if λ = 0 or λ is minuscule.

Proof. If λ is minuscule (or zero), then for any α ∈ Φ, 0 < i ≤ 〈λ, α∨〉 can occur only

if 〈λ, α∨〉 = i = 1. In that case, λ− iα is tαλ, the reflection of λ through the hyperplane

orthogonal to α. HenceWλ is itself saturated, and therefore Σ(λ) = Wλ. By Theorem 1.9,

it follows that λ is a minimal element of (Λ+, <).

Conversely, if λ is nonzero and not minuscule, then there must be a root α such that

〈λ, α∨〉 ≥ 2. In that case, λ − α is an interior point of the line segment from λ to tαλ.
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However tα is an isometry, so λ and tαλ are at the same distance from the origin. Hence

λ− α must be strictly closer to zero; in particular, it cannot belong to the W -orbit of λ.

Thus Σ(λ), which necessarily contains λ− α (by saturation) has more than one W -orbit,

whence by Theorem 1.9, λ cannot be a minimal element of (Λ+, <). □

Combining Corollary 1.4 and the above result we obtain the following.

Corollary 1.13. Each nontrivial coset of Λ contains exactly one minuscule weight.

In particular, the number of minuscule weights is f − 1.

2. The Covering Relation

Assume temporarily that Φ is irreducible. In that case, the roots form either one or two

orbits according to whether Φ is simply or multiply-laced. In the latter case, the roots in

the two orbits have different lengths, “long” and “short,” and the squared ratio of these

lengths is either two or three. (See [H, §10.4], for example.) In the simply-laced case, it

is convenient to say that the roots are both long and short. With this convention, Φ has

exactly one long root that is dominant (the so-called highest root), and one short dominant

root. The latter will be denoted ᾱ.

The following result is equivalent to Exercise VIII.7.22 of [B2].

Proposition 2.1. If Φ is irreducible and λ ∈ Λ+, then λ > 0 implies λ ≥ ᾱ.

Proof. Choose a nonzero dominant µ ≤ λ of minimum length. The weight µ cannot be

minuscule (Proposition 1.12), so there is a root α such that 〈µ, α∨〉 ≥ 2. By reasoning

similar to the proof of Proposition 1.12, it follows that µ − α ∈ Σ(µ) ⊆ Σ(λ) is shorter

than µ, which contradicts the choice of µ unless µ−α = 0. That is, µ = α is a (dominant)

root. It must also be the case that α is short, since the long dominant root is the unique

maximal element of (Φ, <) (e.g., Proposition VI.1.25 of [B1]). □

Remark 2.2. A dominant weight λ is said to be quasi-minuscule if λ covers 0 in

(Λ+, <). By Theorem 1.9, this is equivalent to Σ(λ) = Wλ ∪̇ {0}. The above result shows
that in the irreducible case there is exactly one quasi-minuscule weight: ᾱ.

Lemma 2.3. For α, β ∈ Φ, we have 〈α, β∨〉 ∈ {0,±1} unless α = ±β or α is (strictly)

longer than β.

Proof. Suppose 〈α, β∨〉 ≥ 2. We have 〈α, β∨〉〈β, α∨〉 = 4 cos2 θ ≤ 4, where θ denotes

the angle between α and β, so 〈β, α∨〉 ≤ 2. Hence 〈α, α〉/〈β, β〉 = 〈α, β∨〉/〈β, α∨〉 ≥ 1, so

either α is longer than β, or they have the same length and cos2 θ = 1; i.e. α = ±β. □

For β =
∑

i biαi ∈ ZΦ, let Suppβ = {i : bi 6= 0}.
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Lemma 2.4. If λ ∈ Λ+, β ∈ NΦ+, and 〈λ − β, α∨
i 〉 ≥ 0 for all i ∈ Suppβ, then λ − β

is dominant.

Proof. Recall that 〈αj , α
∨
i 〉 ≤ 0 for i 6= j. It follows that 〈β, α∨

i 〉 ≤ 0 for all i /∈ Suppβ,

and hence 〈λ− β, α∨
i 〉 ≥ 0. □

For I ⊆ {1, . . . , n}, let ΦI denote the root subsystem generated by {αi : i ∈ I}. If ΦI

is irreducible, we let ᾱI denote the short dominant root of ΦI . We say that ᾱI is a locally

short dominant root of Φ; the modification “local” applies to both length and dominance,

since ᾱI may be long in Φ but short in ΦI .

For β =
∑

i biαi ∈ ZΦ and I ⊆ {1, . . . , n}, let β|I =
∑

i∈I biαi.

Lemma 2.5. Suppose µ < µ + β in (Λ+, <), I = Suppβ, J = {i ∈ I : 〈µ, α∨
i 〉 = 0},

and that ΦK is an irreducible subsystem of ΦI (K ⊆ I).

(a) If 〈β|K , α∨
i 〉 ≥ 0 for all i ∈ K − J , then β ≥ ᾱK .

(b) If in addition, 〈µ+ ᾱK , α∨
i 〉 ≥ 0 for all i ∈ I −K, then µ+ ᾱK is dominant.

Proof. (a) For i ∈ J , we have 〈β, α∨
i 〉 = 〈µ + β, α∨

i 〉 ≥ 0, since µ + β is dominant. It

follows that if i ∈ K ∩ J , then

〈β|K , α∨
i 〉 = 〈β, α∨

i 〉 − 〈β − β|K , α∨
i 〉 ≥ 〈β, α∨

i 〉 ≥ 0,

since i is not in the support of β − β|K . Combining this with the stated hypothesis, we

obtain 〈β|K , α∨
i 〉 ≥ 0 for all i ∈ K, so β ≥ β|K ≥ ᾱK by Proposition 2.1.

(b) Given (a), we have that β − ᾱK ≥ 0. Setting λ = µ + β (a dominant weight by

hypothesis), we have µ + ᾱK = λ − (β − ᾱK). By Lemma 2.4, it suffices to prove that

〈µ + ᾱK , α∨
i 〉 ≥ 0 for all i ∈ I. For i ∈ I −K this is part of the stated hypothesis, so we

need only to prove it for i ∈ K. However ᾱK is dominant relative to ΦK , so 〈ᾱK , α∨
i 〉 ≥ 0

for i ∈ K and the claim follows. □

Theorem 2.6. If λ covers µ in (Λ+, <) and I = Supp(λ− µ), then either λ− µ = ᾱI ,

or ΦI
∼= G2 and λ− µ =

∑
i∈I αi.

Proof. Let β = λ − µ, I = Suppβ, and J = {i ∈ I : 〈µ, α∨
i 〉 = 0}, as in the statement

of Lemma 2.5. It suffices to identify some K ⊆ I meeting the hypotheses of Lemma 2.5,

since in that case we deduce that µ+ ᾱK is dominant and µ < µ+ ᾱK ≤ λ (since ᾱK ≤ β).

However λ is assumed to cover µ, so this is possible only if λ = µ+ ᾱK and K = I.

Case I: J is empty. In this case let K = {i}, where i ∈ I is chosen so that αi is short

relative to ΦI . We have β|K = bαi for some b ≥ 1, so the hypothesis (and conclusion)

of Lemma 2.5(a) is trivial. Since αi is short, we have 〈αi, α
∨
j 〉 ≥ −1 (Lemma 2.3) and
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〈µ, α∨
j 〉 ≥ 1 (J is empty) for all j ∈ I. Hence 〈µ + αi, α

∨
j 〉 ≥ 0 for all i ∈ I, and the

hypotheses of Lemma 2.5 are satisfied.

We assume henceforth that J is nonempty. Choose K ⊆ J so that ΦK is an irreducible

component of ΦJ containing a root that is short relative to ΦJ . It follows in particular

that ᾱK must be short relative to ΦJ .

Case II: 〈µ+ ᾱK , α∨
i 〉 ≥ 0 for all i ∈ I−J . The hypothesis of Lemma 2.5(a) is vacuous

in this case, since K ⊆ J . Also, since ΦK is an irreducible component of ΦJ , we have

〈ᾱK , α∨
i 〉 = 0 for all i ∈ J −K, and hence 〈µ + ᾱK , α∨

i 〉 ≥ 0 for i ∈ J −K. Combining

this with the stated premise for this case yields the hypothesis for Lemma 2.5(b).

We may assume henceforth that there is some i ∈ I − J for which 〈µ + ᾱK , α∨
i 〉 < 0.

Since i /∈ J implies 〈µ, α∨
i 〉 ≥ 1, this is possible only if

〈ᾱK , α∨
i 〉 ≤ −2. (2.1)

Now choose L ⊆ I so that ΦL is the irreducible component of ΦJ∪{i} that contains αi.

Note that (2.1) implies K ⊂ L and that αi is strictly shorter than ᾱK (Lemma 2.3). In

particular, ΦL is multiply-laced.

Case III: 〈ᾱK , α∨
i 〉 = −2. In this case, the square of the length ratio of long and

short roots must be 2. Furthermore, since ᾱK is long relative to ΦL but short (by choice)

relative to ΦJ , it must be the case that every simple root of ΦL other than αi is long.

Hence 〈αj , α
∨
i 〉 ∈ {0,−2} for all j ∈ L− {i}. Since 〈αi, α

∨
i 〉 = 2, it follows that

〈γ, α∨
i 〉 is even for all γ ∈ ZΦL. (2.2)

Now since 〈µ + ᾱK , α∨
i 〉 = 〈µ, α∨

i 〉 − 2 < 0 and 〈µ, α∨
i 〉 ≥ 1, it must be the case that

〈µ, α∨
i 〉 = 1. Also, since i /∈ Supp(β − β|L), we have 〈β − β|L, α∨

i 〉 ≤ 0, and hence

〈β|L, α∨
i 〉 = 〈β, α∨

i 〉 − 〈β − β|L, α∨
i 〉 ≥ 〈β, α∨

i 〉 = 〈λ, α∨
i 〉 − 〈µ, α∨

i 〉 ≥ −1.

However 〈β|L, α∨
i 〉 must be even by (2.2), so 〈β|L, α∨

i 〉 ≥ 0.

Using L in the role ofK, the above argument proves that the hypothesis of Lemma 2.5(a)

holds (since L − J = {i}). Furthermore, since αi is strictly shorter than ᾱK , it is also

short relative to the irreducible component of ΦI that contains it, and hence the same is

true for ᾱL. Therefore 〈ᾱL, α
∨
j 〉 ≥ −1 for all j ∈ I (Lemma 2.3). Since 〈ᾱL, α

∨
j 〉 = 0 for all

j ∈ J − L and 〈µ, α∨
j 〉 ≥ 1 for all j /∈ J , it follows that 〈µ+ ᾱL, α

∨
j 〉 ≥ 0 for all j ∈ I − L,

and hence the hypothesis of Lemma 2.5(b) (with K = L) holds.

Case IV: 〈ᾱK , α∨
i 〉 = −3. In this case, αi and ᾱK generate a root subsystem isomorphic

to G2. Since G2 is the only irreducible root system that contains G2, this can happen only
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if ᾱK is a simple root, say αj , and L = {i, j}. Now since 〈µ + ᾱK , α∨
i 〉 < 0, 〈µ, α∨

i 〉 ≥ 1,

and 〈ᾱK , α∨
i 〉 = −3, we have 〈µ, α∨

i 〉 ∈ {1, 2}. Hence

〈µ+ αi + αj , α
∨
i 〉 ≥ 1 + 2− 3 ≥ 0,

〈µ+ αi + αj , α
∨
j 〉 ≥ 0− 1 + 2 ≥ 1,

and since αi +αj is orthogonal to all remaining simple roots, it follows that µ+αi +αj is

dominant. It is also clear that µ + αi + αj ≤ λ since {i, j} ⊆ I = Supp(λ − µ). However

λ covers µ, so this is possible only if λ = µ+ αi + αj and I = {i, j}. □

Since the sum of the two simple roots of G2 is a root, we obtain the following.

Corollary 2.7. If λ covers µ in (Λ+, <), then λ− µ ∈ Φ+.

So far as we have been able to determine, the above Corollary is new, or at least

not easily found in the literature. However the following elegant proof, independent of

Theorem 2.6, was recently obtained by Robert Steinberg and communicated to us by

James Humphreys.

Second Proof of Corollary 2.7. Suppose λ and µ are dominant weights satisfying λ > µ.

Among all expressions λ− µ = β1 + · · ·+ βl with βi ∈ Φ+, choose one that maximizes the

sum of the simple root coordinates of β1. If µ+β1 were not dominant, say 〈µ+β1, α
∨
i 〉 < 0,

then we would have 〈β1, α
∨
i 〉 < 0, so β1 + αi would be a (positive) root. Moreover, since

λ = (µ + β1) + (β2 + · · · + βl) is dominant, we must also have 〈β2 + · · · + βl, α
∨
i 〉 > 0.

Reordering indices if necessary, we may assume that 〈β2, α
∨
i 〉 > 0. But then β2 − αi is a

positive root or zero, and the expression

λ− µ = (β1 + αi) + (β2 − αi) + β3 + · · ·+ βl

contradicts the choice of β1. Therefore µ + β1 is dominant and µ < µ + β1 ≤ λ. Given

that λ covers µ, this implies λ− µ = β1. □

It will be convenient to say that a root α ∈ Φ is exceptional if it is the sum of two

simple roots of Φ that generate a root system isomorphic to G2.

Let E(Φ) denote the set of roots appearing Theorem 2.6; i.e., the set of locally short

dominant roots of Φ, together with the exceptional roots. It follows from the above theorem

that these roots generate (Λ+, <) in the sense that the partial order is the transitive closure

of all relations µ < µ + α with α ∈ E(Φ). Of course, not all relations of this form are

covering relations. The following strengthening of Theorem 2.6 clarifies this precisely.
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Theorem 2.8. If λ > µ in (Λ+, <), I = Supp(λ − µ), and J = {i ∈ I : 〈µ, α∨
i 〉 = 0},

then λ covers µ if and only if ΦI is irreducible and one of the following holds:

(a) λ− µ is a simple root.

(b) I = J and λ− µ = ᾱI .

(c) I = J ∪ {i}, ΦI is of type B, αi is short, 〈µ, α∨
i 〉 = 1, and λ− µ = ᾱI .

(d) I = J ∪ {i}, ΦI
∼= G2, αi is short, 〈µ, α∨

i 〉 ∈ {1, 2}, and λ− µ ∈ ΦI is exceptional.

Proof. If λ covers µ, then one of the Cases I–IV identified in the proof of Theorem 2.6

must apply. In fact, Cases I, II, III, and IV give rise to configurations of the type described

in (a), (b), (c), and (d), respectively. (One should note that in Case III, ΦI has only one

short simple root, and that the squared ratio of root lengths is two. These circumstances

alone are sufficient to imply that ΦI must be of type B.)

It therefore suffices to show that each of the configurations described above is in fact a

covering relation. For (a) this is clear. In the remaining cases, we have λ− µ ∈ E(Φ); say

λ− µ = α. If µ+ α failed to cover µ, then by Theorem 2.6 there would exist some β < α

in E(Φ) such that µ + β is dominant. However β < α implies that β is a non-dominant

root of ΦI . Hence there must be some i ∈ I such that 〈β, α∨
i 〉 < 0, which contradicts the

fact that µ+ β is dominant unless i /∈ J . For (b) there is nothing further to prove, but in

(c) and (d) we still have the possibility that αi is short and that ΦI is of type B or G2.

The Cartan integers of these root systems are such that 〈β, α∨
i 〉 < 0 implies 〈β, α∨

i 〉 = −2

(in type B) or 〈β, α∨
i 〉 = −3 (in G2), which for dominance of µ + β requires 〈µ, α∨

i 〉 ≥ 2

and 〈µ, α∨
i 〉 ≥ 3 respectively, a contradiction. □

Remark 2.9. This result shows that E(Φ) is the minimum generating set for (Λ+, <);

that is, for each α ∈ E(Φ), there exists a covering pair λ > µ in Λ+ such that λ− µ = α.

In fact, suppose that α = ᾱI is a locally short dominant root and µ =
∑

i/∈I miωi. Since

α is locally dominant, it follows that µ + α is dominant if the mi’s are sufficiently large,

and Theorem 2.8 then implies that µ+ α covers µ. (If α = α1 + α2 is exceptional and α1

is short, take µ = ω1 +
∑

i>2 miωi.) This shows furthermore that each α ∈ E(Φ) occurs

infinitely often as the difference between covering pairs in (Λ+, <), except possibly if Φ is

irreducible and α = ᾱ or α is exceptional. In these cases, Theorem 2.8 shows that µ + ᾱ

covers µ if and only if µ = 0 (cf. Proposition 2.1), or µ is minuscule and Φ ∼= A1 or Bn. If

Φ = G2 and α is exceptional, then µ+ α covers µ if and only if µ = ᾱ or 2ᾱ.

Define E∗(Φ) to be the set consisting of those roots α ∈ E(Φ) such that ΦI is not

isomorphic to a root system of type A, where I = Suppα. For such α we claim that there

is a unique index p = p(α) ∈ I such that 〈α, α∨
p 〉 > 0. If α is exceptional, this is an easy

calculation (in fact p is the index of the long simple root), whereas if α is a locally short
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dominant root, this follows from the familiar fact that the extended diagram of a root

system not of type A is acyclic.

Proposition 2.10. The map α 7→ p(α) is a bijection E∗(Φ) → {i : ωi not minuscule}.

Proof. Let α ∈ E∗(Φ), I = Suppα, and p = p(α). Since α is short relative to ΦI and

α 6= αp (otherwise ΦI
∼= A1), Lemma 2.3 implies 〈α, α∨

p 〉 = 1. Also, since 〈α, α∨
i 〉 = 0 for

all i ∈ I except i = p, it follows that ωp − α is dominant (Lemma 2.4). Therefore ωp is

not a minimal element of (Λ+, <) and hence cannot be minuscule (Proposition 1.12).

Conversely, if ωi is not minuscule then it cannot be minimal (again Proposition 1.12), so

by Theorem 2.6 there must be some α ∈ E(Φ) such that ωi − α is dominant. Since α > 0

there must be some index j such that 〈α, α∨
j 〉 > 0, so this is possible only if 〈α, α∨

j 〉 ≤ 0

for all j 6= i and 〈α, α∨
i 〉 = 1. Setting I = Suppα, it cannot be the case that ΦI is a root

system of type A, since in that case we would have either 〈α, α∨
j 〉 = 2 (if |I| = 1) or there

would be two indices j such that 〈α, α∨
j 〉 = 1 (the two end nodes of I, if |I| > 1). It follows

that α ∈ E∗(Φ) and i = p(α).

To complete the proof, it remains to be shown that the map is injective. For this we

have no found no alternative to using the classification of finite root systems. In the case

of G2, one notes that if α is exceptional, then p(α) indexes the long simple root and p(ᾱ)

the short simple root. Otherwise, using the fact that p(ᾱI) is the (unique) node adjacent

to the “extra” node in the extended diagram of Φ∨
I , this can be established by a simple

graph-theoretic analysis of the extended diagrams of the irreducible root systems (see the

Appendix of [B1]). We leave the details to the reader. □

Corollary 2.11. Assume Φ is irreducible.

(a) We have |E∗(Φ)| = n− f + 1.

(b) If Φ is simply-laced, then |E(Φ)| =
(
n+2
2

)
− f .

(c) If the diagram of Φ is linear, then |E(Φ)| =
(
n+1
2

)
(+1 if Φ = G2).

Proof. (a) If Φ is irreducible, then every minuscule weight is a fundamental weight. This

follows from the fact that 〈ωi, ᾱ
∨〉 ≥ 1 for all i (ᾱ has full support), whence 〈λ, ᾱ∨〉 ≥ 2

if λ ∈ Λ+ is not a fundamental weight. Also, the number of minuscule weights is f − 1

(Corollary 1.13), so the number of non-minuscule fundamental weights is n− f + 1.

(b) The members of E(Φ)−E∗(Φ) are in one-to-one correspondence with the irreducible

parabolic subsystems of Φ of type A. If Φ is simply-laced, this is the number of paths in

the Dynkin diagram of Φ. However there are
(
n+1
2

)
paths in any tree with n nodes, so the

cardinality of E(Φ) is
(
n+1
2

)
+ (n− f + 1).
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Figure 1. Figure 2.

(c) The locally short dominant roots are in one-to-one correspondence with the con-

nected subgraphs of the Dynkin diagram of Φ. If this diagram is linear, the number of

such subgraphs is clearly
(
n+1
2

)
. □

3. Grading, Distributivity, and the Lack Thereof

Fix I ⊆ {1, . . . , n}, and let ΛI denote the weight lattice of ΦI . There is a natural map

Λ → ΛI , denoted λ 7→ λ′, that can be defined by the property that 〈λ, α∨〉 = 〈λ′, α∨〉 for
all α ∈ ΦI . In particular, ω′

i = 0 for i /∈ I, and {ω′
i : i ∈ I} is the set of fundamental

weights of ΦI .

Lemma 3.1. If λ, µ ∈ Λ+ and λ − µ ∈ NΦ+
I , then the subinterval [µ, λ] of (Λ+, <) is

isomorphic to the subinterval [µ′, λ′] of (Λ+
I , <).

Proof. Since β = β′ for all β ∈ ZΦI , the map ν 7→ ν′ is an isomorphism between

the subinterval [µ, λ] of (Λ, <) and [µ′, λ′] of (ΛI , <). It therefore suffices to show that

if µ ≤ ν ≤ λ, then ν is dominant if and only if ν′ is dominant. Indeed if µ ≤ ν ≤ λ,

then we have ν = λ − β for some β ∈ NΦ+ with Suppβ ⊆ I, so the result follows from

Lemma 2.4. □

The following result shows that if Φ is irreducible and of rank at least 3, then the lattices

(Λ+
i , <) are not graded, and hence not semimodular, or modular, or distributive.

Theorem 3.2. If Φ is irreducible and of rank n ≥ 3, then each component of (Λ+, <)

has infinitely many subintervals isomorphic to the lattice in Figure 1.

Proof. Choose a coset Λi of Λ and a subset I of {1, . . . , n} so that ΦI is irreducible

and of rank 3. The image of Λi with respect to the map λ 7→ λ′ is a union of cosets

of ΛI modulo ZΦI . Thus if [µ − β, µ] is a subinterval of (Λ+
I , <) that belongs to one of

these cosets, then we can choose a preimage λ of µ in Λ+
i . Any such preimage will have

λ− β dominant (Lemma 2.4), and furthermore, the subinterval [λ− β, λ] of (Λ+
i , <) will

be isomorphic to the subinterval [µ − β, µ] (Lemma 3.1). Thus it suffices to restrict our

attention to Φ = A3, B3, and C3—the irreducible root systems of rank 3.
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Arrange the simple roots α1, α2, α3 in a linear order consistent with the diagram of Φ,

with α1 short, so that 〈αi, α
∨
j 〉 = 0 if |i−j| > 1 and 〈αi, α

∨
j 〉 = −1 if |i−j| = 1, except that

〈α2, α
∨
1 〉 = −2 in B3 and 〈α3, α

∨
2 〉 = −2 in C3. Let λ = (m+2)ω1+ω2+ω3 ∈ Λ+ for some

integer m ≥ 0. We claim that µ = λ−α1 −α2 −α3 is dominant, and that the subinterval

[µ, λ] of (Λ+, <) is isomorphic to the lattice in Figure 1. The weight coordinates

A3 B3 C3

λ− α1 = mω1 + 2ω2 + ω3 mω1 + 2ω2 + ω3 mω1 + 2ω2 + ω3

λ− α1 − α2 = (m+ 1)ω1 + 2ω3 (m+ 2)ω1 + 2ω3 (m+ 1)ω1 + 2ω3

λ− α2 − α3 = (m+ 3)ω1 (m+ 4)ω1 (m+ 3)ω1 + ω2

show that λ−α1, λ−α1−α2, λ−α2−α3 ∈ Λ+, and therefore µ = (λ−α1)∧(λ−α2−α3) is

also dominant (Theorem 1.3). The only other elements in the subinterval [µ, λ] of (Λ, <)

are λ − α2, λ − α3, and λ − α1 − α3. However these weights are not dominant, since

〈λ−α2, α
∨
2 〉 = −1 and 〈λ−α1−α3, α

∨
3 〉 = 〈λ−α3, α

∨
3 〉 = −1. Hence the subinterval [µ, λ]

of (Λ+, <) consists of the five elements {λ, µ, λ− α1, λ− α1 − α2, λ− α2 − α3}, and it is

clear that the subposet they form is isomorphic to Figure 1.

Lastly, note that in each case Λ/ZΦ is a cyclic group generated by ω1. Therefore as

m varies over integers ≥ 0, the subinterval [µ, λ] occurs in each coset of Λ infinitely often

according to the congruence class of m mod 4 (in A3) or mod 2 (otherwise). □

Theorem 3.3. If Φ is of rank n ≤ 2, then each component of (Λ+, <) is a sublattice

of the corresponding component of (Λ, <), and hence distributive (and graded).

Proof. Given Theorem 1.3, it is necessary and sufficient to show that µ∨ ν is dominant

for all dominant µ, ν in the same coset of Λ, where ∨ denotes the join operation defined

by (1.2). By a dual form of Lemma 1.2, we have that for γ ∈ ZΦ∨,

〈µ, γ〉, 〈ν, γ〉 ≥ 0 ⇒ 〈µ ∨ ν, γ〉 ≥ 0

for all µ, ν in the same coset of Λ if and only if there is at most one index i such that

〈αi, γ〉 < 0. Taking γ = α∨
j , we see that the desired conclusion follows if there is at most

one negative entry in each column of the Cartan matrix (cf. Remark 1.5(a)). This is clearly

true if (and if Φ is irreducible, only if) Φ is of rank at most 2. □

Let µ be a minuscule weight or zero; i.e., a minimal element of (Λ+, <). It will be

convenient for what follows to introduce the notation Φ(µ) for the lattice formed by the

component of (Λ+, <) with minimum element µ. If µ is a fundamental weight ωi, we may

also use the abbreviation Φ(i).
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Remark 3.4. (a) Any symmetry of the diagram of Φ induces an automorphism of the

semigroup Λ+, and hence an automorphism of (Λ+, <). In particular, the automorphism

permutes the components of (Λ+, <), and hence provides an automorphism of Φ(µ) if and

only if the automorphism fixes µ. For example, in the case Φ = D4, the lattice D4(0) has

S3-symmetry, and the remaining three components of (Λ+, <) are mutually isomorphic.

(b) Not all isomorphisms among the lattices Φ(µ) arise from diagram symmetries. For

example, if Φ = Bn and α1 is short, then ω1 is the unique minuscule weight of Φ, and we

claim that translation by ω1 is an isomorphism Bn(0) → Bn(1). Since translation by any

dominant weight is clearly an order-preserving map, this amounts to the assertion that

λ ∈ ZΦ is dominant if and only if λ+ ω1 is dominant. However this in turn follows from

the reasoning in Case III of Theorem 2.6 (see (2.2)): since 〈γ, α∨
1 〉 is even for all γ ∈ ZΦ,

〈γ, α∨
1 〉 ≥ −1 implies 〈γ, α∨

1 〉 ≥ 0.

By the fundamental theorem on distributive lattices (e.g., [S]), one knows that a dis-

tributive lattice is isomorphic to the lattice of order ideals of the subposet formed by the

join-irreducible elements. Consequently, it is of interest to determine these posets of join-

irreducibles for the distributive lattices identified by Theorem 3.3. Setting aside the rank

one case as trivial (the two components of (Λ+, <) are total orders), let us consider the

irreducible root systems of rank 2.

Ordering the simple roots so that α1 is short, Remark 3.4 shows that there are only

four lattices to consider: A2(0), A2(1) ∼= A2(2), B2(0) ∼= B2(1), and G2(0). Furthermore,

in each case the set of generators of the partial order (as in Section 2) is given by

E(Φ) = {α1, α2, α1 + α2, ᾱ},

although ᾱ = α1 + α2 in case Φ = A2 or B2. Since α1, α2 < α1 + α2 ≤ ᾱ, it follows from

Theorem 2.6 that λ = m1ω1 + m2ω2 ∈ Λ+ is join-irreducible (or a minimal element) if

and only if λ− α1 and λ− α2 are not both dominant; i.e., min(m1,m2) ≤ 1. Partitioning

these weights into the appropriate cosets and deleting the minimal element from each, we

obtain the following sets of join-irreducible elements:

A2(0) : {3mω1, 3mω2, (3m− 2)ω1 + ω2, ω1 + (3m− 2)ω2 : m ≥ 1},

A2(1) : {(3m+ 1)ω1, (3m− 1)ω2, (3m− 1)ω1 + ω2, ω1 + 3mω2 : m ≥ 1},

B2(0) : {mω2, 2mω1, 2mω1 + ω2 : m ≥ 1},

G2(0) : {mω1,mω2,mω1 + ω2, ω1 +mω2 : m ≥ 1}.

Finite portions of each of the corresponding subposets of (Λ+, <) are displayed in Figure 3.
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A2(0) A2(1) B2(0) G2(0)

Figure 3: Join-irreducibles in rank two.
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In each case, the poset of join-irreducibles can be described as a union of two (not

necessarily disjoint) chains a0 < a1 < a2 < · · · and b0 < b1 < b2 < · · · , together with the

transitive consequences of the relations

A2(0) : bi ≤ a2i, ai ≤ b2i,

A2(1) : bi ≤ a2i, ai ≤ b2i+1,

B2(0) : bi ≤ a2i, ai ≤ bi,

G2(0) : bi+1 ≤ a2i, a3i ≤ b2i+1, a3i+2 ≤ b2i+2

for all i ≥ 0. Among these consequences are the equalities a0 = b0 in A2(0) and B2(0),

and a0 = b1, a2 = b2 in G2(0).

4. The Möbius Function

Recall that for root systems of type A, the partial order (Λ+, <) is closely related to the

dominance order on partitions. By a theorem of Brylawski [Br] (see also [G]), the latter

is known to be totally unimodular, meaning that the Möbius function takes on only the

values {0,±1}. (For an introduction to Möbius functions, see Chapter 3 of [S].) In fact,

not only is it true that the dominance order on partitions of n is a subinterval of (Λ+, <)

for Φ = An−1, but conversely, every subinterval of (Λ+, <) in type A is isomorphic to a

subinterval of the dominance order of partitions of m for some m. Hence (Λ+, <) is also

totally unimodular in type A, and this fact is equivalent to Brylawski’s result.

Theorem 4.1. If Φ is irreducible, then the values of the Möbius function of (Λ+, <)

are restricted to {0,±1,±2}. Furthermore, the values ±2 occur only if Φ = Dn or En.

We will obtain the above theorem as a corollary of the more general Theorem 4.6 below.

Remark 4.2. (a) Set Φ = D4 and let γ denote the sum of the four simple roots. It

is not hard to show that ᾱ + γ is dominant, and that the subinterval [ᾱ, ᾱ + γ] of D4(0)

consists of five elements: ᾱ, ᾱ + γ, and ᾱ + αi, where i ranges over the indices of the

three end nodes. Hence this subinterval is isomorphic to the lattice in Figure 2 and has

Möbius function 2. By the reasoning in Section 3 (see especially Lemma 3.1 and the proof

of Theorem 3.2), it follows that for any root system Φ that properly contains D4 as a

parabolic subsystem ΦI , there are infinitely many subintervals with Möbius function 2

in the components of (Λ+, <) whose image under the map Λ → ΛI contains the trivial

coset ZΦI . This includes every component in the cases of Dn (n ≥ 5) and En except for

the components of the two minuscule weights at the forked end of Dn.

(b) For intervals with Möbius function −2, consider Φ = D5 with the nodes numbered in

the form 1
2345. For any integer m ≥ 1, the subinterval of (Λ+, <) from µ = ω3+ω4+mω5
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Figure 4. Figure 5.

to λ = ω1 + ω2 + ω4 + (m + 1)ω5 is isomorphic to the lattice in Figure 4, and hence has

Möbius function −2. This subinterval belongs to D5(0) or D5(5) according to the parity

of m, so the reasoning in (a) shows that all components in the case Φ = En, and two of the

components in the case Φ = Dn (n ≥ 5), have infinitely many subintervals with Möbius

function −2.

4.1 The Möbius Algebra.

Let L be a finite join-semilattice (including 0̂), and let Z[L] denote the semigroup ring

of L. Thus Z[L] is freely generated as an abelian group by the members of L, and the

multiplication is such that (x, y) 7→ x∨ y for x, y ∈ L. Note that 0̂ = 1; i.e., the minimum

element of L is a unit element for the ring Z[L].

Define elements ex ∈ Z[L] for each x ∈ L so that

ex =
∑
y≥x

µ(x, y)y,

where µ denotes the Möbius function of L. By Möbius inversion, we have

x =
∑
y≥x

ey.

The following result is due to Solomon [So] (see also Theorem 3.9.2 of [S]).

Proposition 4.3. The elements ex are orthogonal idempotents (i.e., ex ∨ ey = δxyex),

and thus Z[L] is ring-isomorphic to a direct sum of |L| copies of Z.

Proof. Define a (possibly) new product on Z[L] by setting ex ∗ ey = δxyex for x, y ∈ L.

For this product, we have

x ∗ y =
∑
z≥x

ez ∗
∑
z≥y

ez =
∑

z≥x,y

ez = x ∨ y,

so this is in fact the defining product for Z[L]. □

The following is a version of Weisner’s Theorem (cf. Corollary 3.9.4 of [S]).
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Proposition 4.4. If {a1, . . . , al} ⊆ L− {0̂} includes the atoms of L, then

(1− a1) ∨ · · · ∨ (1− al) =
∑
x∈L

µ(0̂, x)x = e0̂.

Proof. We have 1 − a = 0̂ − a =
∑

x ̸≥a ex. By Proposition 4.3, it follows that for any

a1, . . . , al, the coefficient of ex in (1− a1) ∨ · · · ∨ (1− al) is 0 or 1, the latter occurring if

and only if x 6≥ a1, . . . , x 6≥ al. If every atom occurs among the ai’s, then x = 0̂ is the only

member of L with this property. □

4.2 Semilattices in NΦ+.

Given any finite subset B ⊂ NΦ+ −{0}, let L(B) denote the join-semilattice generated

by B. Thus L(B) consists of the subposet of (NΦ+, <) formed by the joins of all subsets

of B. The posets L(B) are equivalent to the “lattices of multisets” studied by Greene

in [G, §4]: Each β =
∑

biαi ∈ NΦ+ corresponds to a multiset in which i occurs with

multiplicity bi. In this correspondence, joins in (NΦ+, <) correspond to multiset unions.

Let µB denote the value of the Möbius function of L(B) from 0̂ to 1̂. Let us also define

β|i := bi if β =
∑

i biαi ∈ ZΦ.

We define B to be reducible if either of the following holds:

I. β < β′ for some β, β′ ∈ B.
In this case, working in the Möbius algebra Z[L(B)], we have

(1− β) ∨ (1− β′) = 1− β − β′ + β ∨ β′ = 1− β.

Setting B′ = B−{β′}, it follows from Proposition 4.4 that either µB = µB′ or µB = 0,

according to whether L(B′) includes the maximum element of L(B).

II. There exists β ∈ B and an index i such that β|i > β′|i for all β′ ∈ B − {β}.
More explicitly, suppose that B = {β1, . . . , βl}, β = β1, and that β̄ = β1 ∨ · · · ∨ βl is

the maximum element of L(B). Given the hypotheses, we have βi1∨· · ·∨βik = β̄ if and

only if 1 occurs among the indices i1, . . . , ik (say i1 = 1), and βi2 |I ∨· · ·∨βik |I = β̄|I ,
where I = {j : β1|j < β̄|j}. It follows from Proposition 4.4 that µB = −µB′ , where

B′ = {β2|I , . . . , βl|I}. Note that we may insist that the members of B′ are nonzero,

since B is otherwise reducible in the sense of I.

In either case, we refer to B′ as a simple reduction of B. More generally, if B′ can be

obtained from B by a sequence of zero or more simple reductions, then we say that B′ is

a reduction of B. In such cases, the above analysis shows that µB = ±µB′ or µB = 0.
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4.3 Elementary Semilattices.

To explain the relevance of the semilattices L(B) for computing the Möbius function of

(Λ+, <), recall from Theorem 2.6 that E(Φ) ⊆ Φ+ is the set of generators of (Λ+, <), in

the sense that if λ covers µ, then λ− µ ∈ E(Φ).

The following can be viewed as a generalization of Lemma 3.1 of [G] to root systems.

Lemma 4.5. Every subinterval of (Λ+, <) is dually isomorphic to L(B) for some subset

B of NΦ+ − {0}. Furthermore, if µB 6= 0, then µB = µB′ for some B′ ⊆ E(Φ).

Proof. Consider an arbitrary subinterval [µ, λ] of (Λ+, <). The map ν 7→ λ− ν defines

a dual embedding of [µ, λ] as a subposet of (NΦ+, <). By Theorem 1.3, this map carries

the meet operation of [µ, λ] to the join operation of (NΦ+, <), so [µ, λ] ∼= L(B)∗, where
B = {λ− ν : µ ≤ ν < λ, ν ∈ Λ+}. Now by Theorem 2.6, the set B′ of atoms of L(B) is a
subset of E(Φ), and since B′ can be obtained from B by a sequence of simple reductions

of type I, we have either µB = 0 or µB = µB′ . □

To prove Theorem 4.1, the previous lemma shows that it is sufficient to determine µB

for all B ⊆ E(Φ). It should be noted however that not all such subsets, even those whose

members are pairwise incomparable, are realizable in the sense that there is a subinterval

[µ, λ] of (Λ+, <) whose co-atom set is {λ− α : α ∈ B}.
The following result can be viewed as a generalization of Theorem 2.1 of [G] from root

systems of type A to general root systems.

Theorem 4.6. If Φ is irreducible, then for every B ⊆ E(Φ), we have µB ∈ {0,±1,±2}.
Furthermore, if µB = ±2, then there is a reduction B′ = {ᾱI , ᾱJ , ᾱK} of B in which each

of ΦI ,ΦJ ,ΦK are of type A and L(B′) is isomorphic to the lattice in Figure 2.

Proof. Proceed by induction on |B|+rankΦ, the base of the induction being the trivial

case in which B is empty. We may assume that for each end node i of the diagram of Φ

there exists β ∈ B with i ∈ Suppβ. If not, we can replace Φ with an irreducible subsystem

of lower rank. We may also assume that the members of B are pairwise incomparable,

since otherwise µB = 0 or a simple reduction of type I may be applied, deleting a member

of B and at the same time preserving the value of the Möbius function. On the other

hand, we cannot immediately eliminate the possibility that B has a reduction of type II,

since a reduction of this type might fail to yield a subset of E(Φ).

Declare β ∈ NΦ+ to be thin if β|i ≤ 1 for all i; otherwise β is fat. Note that a locally

short dominant root ᾱI is thin if and only if ΦI is a root system of type A or B.

Case I: The diagram of Φ is a path. In this case, the fat roots in E(Φ) are the locally

short dominant roots corresponding to parabolic subsystems of type C, F4, and G2. In
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particular, if Φ = Cn there is a fat root corresponding to each of the subsystems C3, . . . , Cn;

in F4 there is one each corresponding to C3 and F4, and in G2 there is only the short

dominant root itself. In each case, the “fat” parabolic subsystems are totally ordered

by inclusion, so the fat roots in E(Φ) are totally ordered with respect to <. Since the

members of B are pairwise incomparable, there can be at most one fat root in B.
Now let i be an end node of Φ and α a member of B whose support includes i. The

above case analysis shows that each fat root in E(Φ) has support that contains at least

one end node, so we can insist that i and α are chosen so that all members of B, except
possibly α, are thin.

Since the diagram of Φ is a path, the set of irreducible parabolic subsystems of Φ that

include αi are totally ordered by inclusion, so the corresponding locally short dominant

roots are totally ordered with respect to <. (In G2 there is an exceptional root, but it is

still the case that the members of E(Φ) with support including a fixed end node are totally

ordered.) Hence α is the unique member of B whose support includes i. Furthermore, since

the remaining members of B are thin, we have α|j ≥ β|j for all j ∈ Suppα and β ∈ B. It
follows that we can apply a simple reduction of type II, deleting α from B and restricting

each of the remaining members of B to I = Supp(α)c. However I spans a connected

subgraph of the diagram of Φ, so the restriction β|I of a thin β ∈ B − {α} is a (thin)

member of E(Φ). It follows by induction that µB ∈ {0,±1}.

Case II: The diagram of Φ has a fork (i.e., Φ = Dn or En). In this case, let us allow 0

as the index of a simple root and view the diagram of Φ as a subgraph of

0− 2−

1

3− 4− 5− 6− 7 · · · .

Thus if Φ = Dn, then the simple roots are indexed by 1, . . . , n, whereas if Φ = En, the

indices are 0, 1, . . . , n − 1. For convenience, we will use E5 as the name of the parabolic

subsystem generated by the simple roots indexed by 0, 1, . . . , 4, even though it is isomorphic

to D5. With this convention, the parabolic subsystems of type D (respectively, type E)

are totally ordered by inclusion, so there can be at most one locally dominant root of type

D and one of type E in B.
First consider the possibility that B includes the locally dominant root α of type Er. One

can check that for all locally dominant roots β of types A and D, we have α|2 ≥ 2 > β|2.
Moreover, for all i ∈ Suppα we have α|i ≥ β|i except possibly when β is of type D and

i = r − 1. It follows that B has a simple reduction B′ = {β|I : β ∈ B − {α}} where

I = {r, . . . , n− 1} or {r − 1, . . . , n− 1}. However if B includes a locally dominant root β

of type D, then β|I may fail to be a member of E(Φ). In that case β|I is fat, has support
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that includes an end node of ΦI , and all other members of B′ are thin roots in E(Φ).

Hence, a second reduction of type II can be applied, yielding a configuration of thin roots

in a subsystem of ΦI , which is of type A. Otherwise, B′ is already of this form, so in either

case we obtain µB ∈ {0,±1}, by the reasoning of Case I.

Next suppose that B includes the locally dominant root α of type Dr, but no locally

dominant root of type E. Since all remaining members of B must be thin, we have α|i ≥ β|i
for all i ∈ Suppα, so B′ = {β|I : β ∈ B − {α}} is a reduction of B, where I = Supp(α)c.

If Φ = Dn, then B′ is a set of thin roots in ΦI (an irreducible subsystem of type A), so as

in the previous case, we conclude that µB ∈ {0,±1}. On the other hand, if Φ = En then

I = {0, r + 1, . . . , n − 1}, ΦI is not necessarily irreducible, and the members of B′ need

not be roots. However in that case, the permutation of the simple roots that interchanges

α0 and αr induces a permutation of NΦ+ that preserves the isomorphism class of L(B′),

but at the same time maps B′ to a set of (thin) roots in the type A subsystem indexed by

{r, r + 1, . . . , n− 1}. So again by induction, we obtain µB ∈ {0,±1}.

Henceforth we may assume that all members of B are (thin) locally dominant roots of

type A. If there is an end node that occurs in the support of only one root α ∈ B, then we

can apply a reduction of type II in which α is deleted from B and the remaining members

are restricted to I = Supp(α)c. If 3 /∈ Suppα, then I spans a connected subgraph of the

diagram of Φ, so the members of the reduction B′ are again thin locally dominant roots

and the induction continues. However if 3 ∈ Suppα, then I may have two connected

components and the members of B′ need not be roots. In that case, there is a permutation

of the simple roots that merges the two components into a single path and maps B′ to a

set of roots in this root subsystem of type A. Thus we again obtain µB ∈ {0,±1}.

The remaining possibility is that every end node appears in the support of at least two

members of B. Since the support of a thin root is a path in the diagram of Φ, the fact

that the members of B are pairwise incomparable implies that for each end node i, there

are exactly two members of B whose support paths include i, and these paths must end

in distinct branches of the diagram. However, (at least) one of the branches has only one

node, so two of the supporting paths must be I = {2, 3, 1} and J = {1, 3, 4, . . . , n} (if

Φ = Dn), or I = {0, 2, 3, 1} and J = {1, 3, 4, . . . , n− 1} (if Φ = En). For the remainder of

B there are only two possibilities: (1) there is one additional member, a thin root whose

support K is the remaining path between end nodes of the diagram of Φ, or (2) Φ = En

and there are two additional members, consisting of thin roots whose support paths are

K = {0, 2, 3, . . . , r} and L = {2, 3, 4, . . . , n− 1}, where 4 ≤ r ≤ n− 2. In the former case,

L(B) is isomorphic to the lattice in Figure 2, and hence has Möbius function 2. In the

latter case, L(B) is isomorphic to the lattice in Figure 5, which has Möbius function 0. □
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Remark 4.7. (a) Let Φ = Dn and let [µ, λ] be a subinterval of (Λ+, <) with Möbius

function ±2. Theorem 4.6 and the proof of Lemma 4.5 show that one of the co-atoms

of [µ, λ] must be λ − α, where α = α1 + α2 + α3 is a locally dominant root of type A3.

(The simple roots are indexed as in Case II of the above argument.) Since 〈α, α∨
1 〉 = 1, it

follows that 〈λ, α∨
1 〉 ≥ 1. In fact 〈λ, α∨

1 〉 = 1, since λ − α1 would otherwise be dominant,

contradicting the fact that λ covers λ−α. Similarly, we must have 〈λ, α∨
2 〉 = 1. However,

any weight λ for which 〈λ, α∨
1 〉 = 〈λ, α∨

2 〉 belongs either to the root lattice or the coset of

the minuscule weight ωn. Hence, the (isomorphic) lattices Dn(1) and Dn(2) corresponding

to the remaining components of (Λ+, <) are totally unimodular.

(b) Specializing to the case Φ = D4, the presence of three-fold symmetry implies that if

the subinterval [µ, λ] has Möbius function ±2, then the interval must have three co-atoms,

corresponding to the three locally dominant roots of type A3. Furthermore, the above

reasoning shows that 〈λ, α∨
i 〉 = 1 for i = 1, 2, 4. We must also have 〈λ, α∨

3 〉 = 0, since

otherwise λ−α1−α2 would be dominant. Hence λ = ω1+ω2+ω4 = 2α1+2α2+3α3+2α4,

and µ = ω3 = α1 +α2 +2α3 +α4 (the meet of the co-atoms). In other words, [µ, λ] is the

subinterval identified in Remark 4.2(a).

Remarks 4.2 and 4.7 show that if Φ is irreducible, then the lattice Φ(µ) is totally

unimodular if and only if the diagram of Φ is a path, or Φ = Dn and µ ∈ {ω1, ω2},
or Φ = D4 and µ = ω4. Moreover, if Φ(µ) is not totally unimodular, then the Möbius

function achieves both of the values 2 and −2 infinitely often, unless Φ = D4 and µ = 0,

in which case there is a unique subinterval with Möbius function 2, and no subinterval

with Möbius function −2.
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