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0. Introduction

The goal of this paper is to describe algorithms for generating explicit matrices repre-

senting the simple reflections in each of the irreducible representations of a Weyl group W .

For the symmetric groups, such matrices are well known, the most prominent being the

seminormal and orthogonal matrix models constructed by Alfred Young [Y] (see also [G],

[JK], [OV], and [Ru]), and it is possible to extend these models to cover the remaining

classical Weyl groups (e.g., see [F1] and [R]). Here, we are primarily concerned with the

five exceptional groups.

An alternative approach to the representations of a Weyl group involves the W -graph

construction of Kazhdan and Lusztig [KL1]. In this approach, the representing matrices

are encoded (mainly) by a single edge-weighted graph whose vertices correspond to basis

elements of the representation. The original W -graphs in [KL1] provide ZW -modules

for each Kazhdan-Lusztig cell, although not all irreducible representations are afforded

by such cells. Later work of Gyoja [Gy] (see also the discussion in Chapter 11 of [GP])

demonstrates that there is a W -graph affording every irreducible representation of every

Weyl group, but knowing the existence of a W -graph is not the same as having explicit

matrices.

In order to clarify what we mean by “explicit,” we should explain that our goal is not

simply a description or algorithm, but a construction that is completely detailed down

to the level of having computer files of representing matrices available for computation.

Considering that the largest irreducible representation of the Weyl group of type E8 has

dimension 7168, this places a premium on solutions in which the representing matrices are

sparse and the entries are small in terms of the number of bits used to represent them.

As far as we are aware, the solutions we have obtained are the first ones available that

provide this level of explicitness for W (E8).

Our motivation for this work originates with the Atlas of Lie Groups Project1, one

of whose goals is to understand the structure and classification of the unitary represen-

tations of real and p-adic semisimple Lie groups. For example, in the split p-adic case,

it is known from the work of Barbasch and Moy [BM] that the unitarity of a spherical

representation may be detected by testing an element of the group algebra RW for posi-

tive semi-definiteness in the regular representation. By passing to the simple components

of the group algebra, one may reduce this to a positivity test involving each irreducible

W -representation. In the case of real groups, it is known there are necessary conditions

for unitarity involving the positivity of an operator on some subset of the irreducible W -

representations, and in the split real cases, there is hope that these necessary conditions

are sufficient. (In the split classical cases, recent work of Barbasch confirms the suffi-

ciency [B].) We plan to use the explicit matrix models reported on here to apply these

tests for unitarity in the exceptional cases, with the ultimate goal being the classification

of the spherical unitary duals of the exceptional real and p-adic groups.

1See 〈atlas.math.umd.edu〉.
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The philosophy of our approach follows that of Young—we construct matrix models

that are “hereditary” in the sense that they behave well when the action is restricted

along a chosen chain of parabolic subgroups of W . It happens that for every Weyl group

except W (E8), one may choose the subgroup chain so that branching from each level to

the next is multiplicity-free; this renders the models essentially unique up to a diagonal

change of basis. Among the various possible diagonal rescalings, our algorithms single out

two: one in which the representing matrices are real orthogonal and have matrix entries

whose squares are rational (these are unique up to diagonal rescaling by factors of ±1),

and a second whose matrix entries are rational. The latter “rational seminormal” models

require non-canonical choices to be made, but may be optimized for quality.

The Maple programs we developed to implement the algorithms described here, the

resulting matrices that these programs produced, and many tables of statistics, such as

measures of the sparseness and quality of the matrices, are available at

〈www.math.lsa.umich.edu/~jrs/archive.html〉, and

〈atlas.math.umd.edu/unitarity/weyl/hereditary〉.

In a project parallel to ours, Adams has developed an alternative approach that has yielded

integral matrix models for most of the irreducible representations of the exceptional groups,

but not yet all of W (E8). See 〈atlas.math.umd.edu/unitarity/weyl/integral〉.

An outline of the paper follows.

We first discuss general features of hereditary models for representations of finite groups;

for example, we show that under mild conditions, if a representation is realizable over some

subfield F of C, then it has a unitary hereditary model with matrix entries whose squares

belong to F (Proposition 1.1).

In Section 2, we specialize to the case of Weyl groups. One of the peculiar features

that develops in this case is that for certain “graceful” chains of parabolic subgroups,

it is possible to compute traces of products of distinct simple reflections by pointwise

multiplication of the diagonals of the corresponding matrices (Corollary 2.6). This trick,

first exploited by Rutherford in the symmetric group case [Ru] (see also Greene [G]),

plays a key role in our approach.

In the final two sections, we describe the algorithms. We do not provide low-level, line-

by-line details of the implementation; the intent is to provide the reader with sufficient

information to write his or her own implementation.

Among the numerous computational issues we address, the core problem is one of

efficiently generating and solving a large system of quadratic equations that define a

0-dimensional variety whose points are orthogonal matrix models for a chosen irreducible

representation. For example, the system we use to identify matrices for the largest repre-

sentation of W (E8) has (roughly) 15,000 equations and 600 variables over a finite extension

of Q. In our experience, general-purpose Gröbner basis packages are not adequate for a

computation of this scale, so we devised a special algorithm that uses Gröbner-like re-
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ductions to find a solution. While we are unable to prove a priori that this algorithm

will necessarily find a solution, the fact remains that the algorithm did succeed in finding

a solution for every irreducible representation of every Weyl group of rank 6 8 (and in

particular, all of the exceptional groups), and the full calculation took only a few hours of

CPU time and 50MB of memory on a 2.8GHz Pentium IV running Maple 9.

Further problems.

It would be interesting to convert the rational matrix models produced by our algorithm

to integral form by identifying a basis for the lattice generated by theW -orbit of the natural

coordinates. What is not clear is whether a sparse model of this type exists.

Another interesting problem would be to explicitly determine the hereditary orthogonal

models for W (Dn)-representations relative to the parabolic chain

W (D2) 6W (D3) 6 · · · 6W (Dn).

Combined with the exceptional group results reported here and the analogous (known)

results for W (An) and W (Bn), this would yield a complete set of hereditary models for

all Weyl group representations. Note that Ram [R] provides explicit (but non-hereditary)

matrices for the irreducible representations of W (Dn) via branching from W (Bn).

Acknowledgment.

I would like to thank Jeffrey Adams for helpful discussions, and for providing access to

additional computer hardware during the development of the software.

1. Hereditary models

Let s1, . . . , sn be an ordered list of generators for some finite group W , and let Wk

denote the subgroup of W generated by s1, . . . , sk. Eventually we will take W to be a

Weyl group and s1, . . . , sn an ordered list of simple reflections, but we can afford to begin

in this more general context.

Let V be a finite-dimensional W -module over the complex field C. We say that a basis

B for V is hereditary (relative to s1, . . . , sn) if for all k 6 n, the basis may be partitioned

into disjoint blocks B1, . . . ,Bl so that

(i) each block spans an irreducible Wk-submodule, and

(ii) if Bi and Bj span isomorphic Wk-modules, then the representing matrices for Wk

relative to Bi and Bj are identical (equivalently, there is a bijection Bi → Bj that

extends to a Wk-module isomorphism).

Analogously, we say that a matrix representation of W is hereditary if the basis formed

by the natural coordinates has this property.

It is an easy consequence of complete reducibility over C that every W -module V has

a hereditary basis. Indeed, when n = 0 every basis is hereditary. Otherwise for n > 1,

we may proceed by induction and assume the existence of a hereditary basis B for V as
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a Wn−1-module. We may then decompose V into irreducible W -modules Vi, and each Vi
into irreducible Wn−1-modules Vij . For each summand Vij , there is at least one block Bij

of B that spans a Wn−1-module isomorphic to Vij , and we may obtain a W -hereditary

basis for V by selecting an isomorphic image of Bij from within each Vij .

We say that a basis B for V (hereditary or not) is unitary if the representing matrices

for W relative to B are unitary. A basis is seminormal if it may be converted to a unitary

basis via some diagonal transformation. Equivalently, this means that B is orthogonal

with respect to some positive definite W -invariant inner product on V .

Given a subfield F of C, we say that V is realizable over F if there is a basis B of V

such that the representing matrices for W with respect to B have entries in F ; in that

case, we say that B is an F -basis. Also, let F̄ denote the smallest extension of F closed

under complex conjugation; i.e., the field generated by the real and imaginary parts of F .

In all cases of interest, such as F = Q, R, or an algebraic number field, we have F̄ = F .

Proposition 1.1. If every irreducible Wk-submodule of V is realizable over F for all

k 6 n, then V has a hereditary F̄ -basis that is seminormal. Moreover, V has a hereditary

unitary basis in which the diagonals of all representing matrices, as well as the squares of

all matrix entries, are in F̄ .

Proof. Without loss of generality, we may assume that F̄ = F .

Let B be an F -basis for V and 〈 , 〉 a positive definite Hermitian inner product that is

W -invariant and F -valued on the F -span of B. A standard way to construct the latter is

to start with the inner product B( , ) relative to which B is orthonormal and then average

over W , setting

〈u, v〉 :=
1

|W |
∑
w∈W

B(wu,wv) (u, v ∈ V ).

This is F -valued on the F -span of B since F̄ = F .

Given any irreducible W -submodule U of V , there must be a W -module embedding

U → V over the ground field F (or indeed, over any ground field of characteristic 0 where

U and V may both be realized), so there is an image of an F -basis for U in the F -span

of B. Since 〈 , 〉 is F -valued, the same must be true for the orthogonal complement of U .

Thus we may replace B with an F -basis B′ that may be partitioned into blocks B′j that

span irreducible, orthogonal W -submodules Vj . Furthermore, we may arrange it so that

isomorphic submodules have isomorphic bases.

Similarly, we may decompose each Vj into orthogonal, irreducible Wn−1-modules, and

we may select an F -basis from one member U of each isomorphism class that occurs, and

make an F -linear change of basis within each block B′j to obtain a new F -basis B′′ that

may be partitioned into bases for orthogonal, irreducible Wn−1-submodules. Again, we

may arrange it so that isomorphic submodules have isomorphic bases. Continuing this

process down to the level of 1-dimensional W0-modules, we obtain an orthogonal (i.e.,

seminormal) hereditary F -basis for V .
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Finally, we may convert this seminormal F -basis to unitary form by rescaling the vectors

to unit length relative to 〈 , 〉. Since there is a unique Wk-invariant form on each irreducible

Wk-module (up to a scalar multiple), it follows that this renormalization preserves the

basis isomorphisms between the blocks that span isomorphic Wk-submodules, and hence

the basis remains hereditary. Note also that this change of basis creates matrix entries

whose squares belong to F , but (as with any diagonal change of basis) has no effect on

the diagonals of the representing matrices. �

We say that V is totally free (relative to s1, . . . , sn) if for all k 6 n, every irreducible

Wk-submodule of V is multiplicity-free as a Wk−1-module.

Proposition 1.2. If V is irreducible and totally free, then all hereditary bases for

V are diagonal transformations of each other, and hence seminormal. In particular, the

diagonals of all representing matrices are independent of the choice of hereditary basis.

Proof. The hypotheses force V to be multiplicity-free as a Wn−1-module, so the (canon-

ical) Wn−1-isotypic components of V provide the unique decomposition of V into irre-

ducible Wn−1-modules. Each of these submodules is multiplicity-free as a Wn−2-module,

so their decompositions into irreducible Wn−2-submodules are unique, and so on. Since

irreducible W0-modules are trivial, it follows that each element of a hereditary basis is

uniquely determined up to a choice of scalar, and hence, all such bases are related by

diagonal transformations. By Proposition 1.1, at least one such basis is seminormal, hence

all hereditary bases are seminormal. �

It is a general principle that unique or canonical objects are easier to construct than

those that require choices to be made. In this sense, the best matrix models for totally

free W -modules are those arising from unitary R-bases. In this case, the representing ma-

trices are (real) orthogonal, and any two such (hereditary) bases are related by a diagonal

orthogonal transformation; i.e., there is a unique such basis up to factors of ±1.

Corollary 1.3. If V is totally free, then the matrix entries relative to any unitary

hereditary R-basis are canonical up to sign.

Given an irreducible, totally free V that has hereditary R-bases, consider the problem

of constructing real orthogonal matrices representing the action of W on V . By taking

direct sums of matrix models for irreducible Wn−1-modules of the appropriate multiplicity,

we may recursively assume that orthogonal matrices A1, . . . , An−1 representing the action

of s1, . . . , sn−1 on V have been previously constructed.

Proposition 1.4. Let V be a W -module that is realizable over R and multiplicity-free

as a Wn−1-module. Given real orthogonal matrices A1, . . . , An−1 as above, the number of

real orthogonal matrices An such that sk 7→ Ak (1 6 k 6 n) extends to a representation

isomorphic to the W -action on V is 2m−l, where l and m denote the number of irreducible

constituents in the actions of W and Wn−1 on V , respectively.
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Proof. Any two orthogonal matrices that could represent the action of sn on V , while

at the same time being compatible with having sk represented as Ak for k < n, must

be related by an orthogonal change of basis that commutes with the action of Wn−1.

However, V is multiplicity-free as a Wn−1-module, so this change of basis must act as the

scalar ±1 on each irreducible Wn−1-submodule of V (Schur’s Lemma). Since V has m

such constituents, there are 2m such changes of basis, and the action of this group of base

changes has a kernel of order 2l. �

We say that two W -modules are clones if they are isomorphic as Wn−1-modules.

Corollary 1.5. Given V and A1, . . . , An−1 as above, the number of real orthogonal

matrices An such that sk 7→ Ak (1 6 k 6 n) extends to a W -representation is
∑

2m−li ,

where the sum ranges over isomorphism classes of clones of V , and li is the number of

irreducible constituents of the ith clone, as a W -module.

If we take the matrices A1, . . . , An−1 as (recursively) granted, the advantage of imposing

only the condition that An should be orthogonal and generate (with A1, . . . , An−1) a

representation of W is that it depends only on the group structure of W , rather than prior

knowledge of the W -action on V . The disadvantage is the possibility of spurious solutions

arising from clones, but these may be eliminated if the W -character of V is known.

2. Weyl groups

Henceforth, we assume that W is a Weyl group; i.e., a finite crystallographic group

generated by reflections in a real Euclidean space, and that s1, . . . , sn is an ordering of a

set of simple reflections for W . We could possibly replace s1, . . . , sn with any sequence of

(not necessarily simple) reflections that generate W , but it will develop that this affords

no particular advantage.

A. Realizability.

As a starting point, it should be noted that every irreducible representation of a Weyl

group is realizable over Q, a result that was first obtained on a case-by-case basis. For

the classical Weyl groups, it can be traced back to the work of Young [Y] (in particular,

see QSA V for types B and D); the exceptional groups were settled by Kondo [K] and

Benard [Be]. Later, Springer’s construction provided a more unified approach to the

subject (see [Sp] and [KL2]). In view of Proposition 1.1, we may conclude the following.

Theorem 2.1. Every representation of a Weyl group has a hereditary Q-basis that is

seminormal, as well as a hereditary R-basis that is unitary and has matrix entries whose

squares are rational.

B. Naming conventions.

It will be convenient to have a canonical name attached to each irreducible represen-

tation of each exceptional Weyl group. In the context of a given group W , we will use
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names such as

Rm, Rm(t), Rεm(t), Rεm(t1, t2)

for an irreducible representation of dimension m in which a reflection has trace t (or there

are two conjugacy classes of reflections, having traces t1 and t2), and the sign of the trace

of the longest element is ε (one of +, 0, or −). For each exceptional group, this is nearly

sufficient to uniquely identify every irreducible representation, the only exceptions being

the two 6-dimensional representations of W (F4).

We remark that the exceptional groups with two conjugacy classes of reflections (namely,

W (F4) and W (G2)) have outer automorphisms that interchange the two classes, so they

need not be distinguished in any particular way, as long as the usage is consistent.

C. Standard chains.

For each irreducible W , we fix a particular ordering of the simple reflections as follows.

In the classical cases, we require (sksk+1)3 = 1 for all k < n, except (s1s2)4 = 1

in W (Bn), and (s1s2)2 = (s1s3)3 = 1 in W (Dn). All other pairs of simple reflections

commute. In this way, Wn−1 is a classical Weyl group in the same series as W (aside from

a few small degeneracies). For W (E8), we order the simple reflections according to the

following numbering of its Coxeter graph:

2

1−3−4−5−6−7−8.

In turn, this induces orderings for W (E6) and W (E7). In W (F4), we follow a linear ordering

of the Coxeter graph (so (s1s2)3 = (s2s3)4 = (s3s4)3 = 1); for W (G2) there is only one

ordering up to automorphisms.

We refer to these orderings as standard.

It will be convenient to adopt the practice that non-conventional Weyl group names,

such as W (E5), W (D3), or W (F3), refer to the subgroup of the appropriate rank in the

standard chain suggested by its name. To be more pedantic, we are working in a category

of ordered Coxeter systems; from this standpoint, W (E5) and W (D5) are objects in this

category that are not equivalent, even though the underlying groups are isomorphic.

D. Branching.

We will take as granted that the character table of each Weyl group W and the fusion

maps between the conjugacy classes of W and its reflection subgroups (especially the

subgroups Wk) are known, in the sense that they are readily available for computing

branching multiplicities for restriction to reflection subgroups, as well as traces.

Of course, for the classical Weyl groups of types A, B, D (and G2), these are well-

known and easy to compute. Among the exceptional groups, the character table of W (F4)

was first obtained by Kondo [K], and W (En) (n = 6, 7, 8) by Frame [F2] [F3]. Modern

computer algebra packages such as GAP and Magma can easily generate these character
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tables starting from a permutation representation of the group; the Maple package coxeter

provides character tables and fusion maps for all of the finite Coxeter groups [S2].

It is well-known that branching from a classical Weyl group to the previous Weyl group

in the same series is multiplicity-free. Less well-known is that multiplicity-free branching

is also found among the exceptional groups (for example, Ram [R] notes that branching

from W (F4) to W (B3), W (E7) to W (E6), and W (E6) to W (D5) is multiplicity-free).

Empirical Fact 2.2. Every irreducible representation of every irreducible Weyl group

is totally free with respect to the standard chain, except for the following nine represen-

tations of W (E8): R3240(±594), R4536(±378), R5600(±280), R6075(±405), and R7168.

Remark 2.3. (a) For a given Weyl group, there may be many parabolic subgroups

W ′ such that branching from W to W ′ is multiplicity-free, and hence, the irreducible

representations of W may be totally free relative to many different orderings of the simple

reflections. For example, an easy special case of the Littlewood-Richardson Rule shows that

branching from W (An) to W (An−2)×W (A1) is multiplicity-free, and every representation

of W (A4) is totally free with respect to every ordering of the simple reflections.

(b) None of the nine representations of W (E8) listed above are multiplicity-free with

respect to any reflection subgroup, so there is no generating set of reflections relative to

which they are totally free. Also, the W (E7)-actions on these nine modules are nearly

multiplicity-free: none of the irreducible constituents have a multiplicity that exceeds 2,

and eight of the nine have just one constituent of multiplicity 2; R7168 has two.

E. Graceful chains and para-Coxeter classes.

Recall that a Coxeter element of W is a product of the simple reflections, taken in any

order. All such elements belong to a single conjugacy class. More generally, we define a

para-Coxeter element of W to be a product of some subset of the simple reflections; i.e.,

a Coxeter element of some parabolic subgroup of W .

In an expository account of Young’s work (see §23 of [Ru], as well as [G]), Rutherford

observed that if A1, . . . , An are the matrices representing s1, . . . , sn in Young’s (hereditary)

orthogonal or seminormal models for representations of the symmetric group W (An), then

for distinct indices i1, . . . , ik, we have

δ(Ai1 · · ·Aik) = δ(Ai1) · · · δ(Aik),

where δ(A) denotes the diagonal of A (i.e., the matrix obtained by replacing all off-diagonal

entries of A with 0’s).

Given the representing matrices Ai, this provides a fast way to evaluate traces of para-

Coxeter elements that avoids full matrix multiplication. In the symmetric group, every

conjugacy class has a para-Coxeter element, so this provides a way to determine the entire

character table of each of the symmetric groups.

Rutherford’s observation may be generalized to hereditary representations of Weyl

groups, but not without restrictions. For example, consider the symmetric group W (A3),
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with the simple reflections in the non-standard order s2, s1, s3. Relative to the (essentially

unique) orthonormal basis that is hereditary for this order, the representing matrices for

the reflection representation of W (A3) are

A2 =

 1 0 0
0 1 0
0 0 −1

 , A1 =

 1 0 0
0 −1/2 3α
0 3α 1/2

 , A3 =

−1/3 β 6αβ
β 5/6 −α

6αβ −α 1/2

 ,
where α2 = 1/12 and β2 = 2/9. However, one may check that δ(A1A3) 6= δ(A1)δ(A3).

Returning to the general case, we say that an ordering s1, . . . , sn of the simple reflections

is graceful if for all i < j < k, we have i and k adjacent in the Coxeter graph (i.e., si and

sk do not commute) only if j and k are also adjacent. It is easy to check that the standard

order we have chosen for each Weyl group is graceful, but the non-standard order in the

above example for W (A3) is not.

Lemma 2.4. If s1, . . . , sn is graceful, then every irreducible, totally free Wn−1-module

is multiplicity-free as a Wr-module, where r is the largest index (0 6 r < n) such that sn
centralizes Wr.

Proof. For clarity, we will assume that r = n− 3; the general case follows by essentially

the same argument. Given that the ordering is graceful, sn−1 and sn−2 must be the only

simple reflections that do not commute with sn. Since the Coxeter graph of every finite

Weyl group is acyclic, it follows that Wn−1 is a direct product of parabolic subgroups,

say WI ×WJ , with generating sets I and J that include sn−1 and sn−2, respectively.

Each irreducible Wn−1-module V is therefore a tensor product of irreducible modules

for WI and WJ , say U ⊗ U ′. As a Wn−2-module, V must be a direct sum of the form

(U1 ⊗ U ′) ⊕ · · · ⊕ (Ul ⊗ U ′), where U1, . . . , Ul are irreducible modules for the parabolic

subgroup generated by I − {sn−1}; if V is totally free, these modules must be distinct.

Similarly, the freeness of V forces U1 ⊗U ′ to be multiplicity-free as a Wn−3-module, so it

must be a direct sum of U1 ⊗ U ′1, . . . , U1 ⊗ U ′m, where U ′1, . . . , U
′
m are distinct irreducible

modules for the parabolic subgroup generated by J − {sn−2}. Hence, V is the direct sum

of the Wn−3-modules Ui⊗U ′j (1 6 i 6 l, 1 6 j 6 m), and is therefore multiplicity-free. �

Proposition 2.5. Let A1, . . . , An be the matrices of s1, . . . , sn relative to a hereditary

basis for some W -module V . If s1, . . . , sn is a graceful ordering and V is totally free as a

Wn−1-module, then δ(Ai1 · · ·Aik) = δ(Ai1) · · · δ(Aik) for all distinct i1, . . . , ik.

Proof. More generally, we claim that the result remains true if we choose invertible

diagonal matrices D1, . . . , Dn and replace each Ai with A′i = DiAi. We may further

assume that n occurs among the indices i1, . . . , ik; otherwise, replace n by n − 1 and

proceed by induction. It follows that A′i1 · · ·A
′
ik

= BA′nC, where B,C, and BC are matrix

products not involving A′n (possibly B or C is an identity matrix). Since the coordinates

are hereditary, each of B and C are block diagonal matrices, say B = B1 ⊕ · · · ⊕ Bl and
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C = C1⊕ · · ·⊕Cl, with the blocks corresponding to a decomposition of V into irreducible

Wn−1-submodules Vi. It follows that

δ(BA′nC) = δ
(
B1(A′n)1C1

)
⊕ · · · ⊕ δ

(
Bl(A

′
n)lCl

)
,

where the notation ( · )i refers to the i-th block along the diagonal of a matrix.

As an operator on Vi, (An)i commutes with the action of Wr, where r denotes the

largest index < n such that sn centralizes Wr. However, Lemma 2.4 implies that Vi is

multiplicity-free as a Wr-module, so by Schur’s Lemma, (An)i, and hence also (A′n)i, must

be a diagonal matrix. By adjusting the choice of diagonal matrices, we may therefore

replace Ci with C ′i := (A′n)iCi, yielding

δ
(
Bi(A

′
n)iCi

)
= δ(BiC

′
i) = δ(Bi)δ(C

′
i) = δ(Bi)δ((A

′
n)i)δ(Ci),

the second equality being a consequence of the induction hypothesis. Hence δ(BA′nC) =

δ(B)δ(A′n)δ(C), and the result follows by induction. �

A consequence of Empirical Fact 2.2 is that every representation of a Weyl group W is

totally free as a Wn−1-representation, relative to the standard chain. Hence,

Corollary 2.6. In every matrix representation of a Weyl group that is hereditary

relative to the standard chain, the matrices A1, . . . , An for the simple reflections satisfy

δ(Ai1 · · ·Aik) = δ(Ai1) · · · δ(Aik) for all distinct i1, . . . , ik.

F. Clones.

Recall that two W -modules are clones if they are isomorphic as Wn−1-modules. Among

the symmetric groups, non-isomorphic clones are rare relative to the standard chain. In-

deed, it is an easy consequence of Young’s Rule for branching from W (An) to W (An−1)

that the only irreducible representations with clones are the reflection representations of

W (An) for n 6 3, and their sign twists.

Empirical Fact 2.7. If V is an irreducible W -module, then for every clone V ′ of

V (relative to the standard chain) that is not isomorphic to V , there is a para-Coxeter

element w ∈W such that the traces of w on V and V ′ differ.

Sketch of Proof. For the exceptional groups, this is an easy calculation involving the

character tables. For the symmetric groups, the result is immediate, since every conjugacy

class in a symmetric group has a para-Coxeter element.

For the case W = W (Bn), there is an irreducible W -module Vµ,ν for each pair of

partitions (µ, ν) of total size n. As a Wn−1-module, Vµ,ν is the direct sum of the modules

obtained by decreasing one part of µ or ν by 1 in all possible ways. The key consequence

of this branching rule is that if Vµ,ν has two or more constituents as a Wn−1-module,

then any two of these constituents may be used to reconstruct (µ, ν). Thus if V ′ is a

clone of an irreducible W -module V , then V ′ must be a direct sum of W -modules that
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are irreducible as Wn−1-modules. The latter are necessarily of the form Vµ,∅ or V∅,ν , and

hence either n = 2 (a case that may be checked separately), or V is also of this form. These

modules restrict irreducibly to the symmetric group generated by s2, . . . , sn, so both V

and V ′ would be clones relative to W (An−1), whence n 6 4 and the para-Coxeter classes

in W (An−1) suffice to distinguish V and V ′.

For the case W = W (Dn), the W (Bn)-modules Vµ,ν and Vν,µ restrict irreducibly to the

same W -module (if µ 6= ν), or to a sum of two distinct W -modules V ±µ,µ (if µ = ν and n is

even). The latter pairs are clones, and it is known (e.g., by Theorem A.1 of [S1]) that the

traces of the para-Coxeter element w = s2s4 · · · sn on these two clones must differ. Via the

branching rule for the B-series, one may deduce that the only other clones of an irreducible

W -module V occur when n 6 4, and these cases may be checked separately. �

Remark 2.8. For the exceptional groups, we have the following inventory of clones.

F4: Seven irreducible representations have clones; in particular, R16 has 5 clones.

E5: Eleven irreducible representations have clones, including R20(±2) with 5 each.

E6: No irreducible representations have clones.

E7: R+
512 and R−512 are clones of each other.

E8: R5670 is a clone of R1134 ⊕R4536(0), and R7168 is a clone of R2688 ⊕R4480.

3. Models for totally free representations

Now we consider the problem of constructing explicit matrices representing the action

of the simple reflections in every irreducible representation of a Weyl group W . We will

present algorithms for producing hereditary models that are real orthogonal, as well as for

converting each real orthogonal model to an optimal rational seminormal form.

In this section, we consider the representations that are totally free relative to the

standard chain; in the next section, we consider the non-free representations.

As the starting point for the algorithms, we will need only the information in the

character tables and the fusion maps between the various parabolic subgroups Wk.

A. Sparsity issues.

The largest irreducible representation of W (E8) that is totally free is R5670. A naive

approach that allocated 32 bits for each matrix entry (assuming this is sufficient), and took

no advantage of sparseness, would need about 1GB of memory to store the representing

matrices for the 8 simple reflections, and multiplication of two such matrices (via the naive

algorithm) would entail about 180 billion scalar multiplications.

In our Maple implementation of the algorithm, we use a sparse representation of ma-

trices in which each row is stored as a linear form in a fixed but potentially infinite list

of variables, say e1, e2, . . . . For example, we would represent the 2× 3 matrix whose rows

are (3, 4, 5) and (6, 0, 7) as the list

[ 3*e1 + 4*e2 + 5*e3 , 6*e1 + 7*e3 ].

12



This has the advantage that the amount of storage space required is proportional to the

number of nonzero entries, regardless of whether the matrix is sparse or dense.

Multiplication of two matrices A and B in this format amounts to composition of linear

forms; in Maple, this may be achieved via the substitution

subs({seq(var[i]=B[i], i=1..m)}, A).

where m denotes the number of rows of B, and var=[e1, e2, ...] is the list of variables.

This has the advantage that only the nonzero matrix entries are multiplied, and when the

coefficients of A are rational, the expansion and collection of terms in each row is done

automatically by the (fast) Maple kernel.

In the hereditary models for R5670, the total number of nonzero entries in the matrices

representing the 8 simple reflections is 135496, an average of about 3 nonzero entries per

row; Maple uses a total of about 1.5MB of memory to store the 8 matrices in the rational

seminormal model found by our algorithm, and it takes roughly 3 seconds on a 2.8GHz

Pentium IV to multiply the matrices representing s7 and s8.

B. Economies of space.

Beyond the question of sparsity, there is extensive redundancy in the representing ma-

trices for any hereditary model. Indeed, for a given r 6 n, one may partition a hereditary

basis B into blocks B1, . . . ,Bm that span irreducible Wr-modules. If Ak is the matrix of

sk relative to B and sk centralizes Wr, then Schur’s Lemma implies that the submatrix of

Ak formed by the rows indexed by Bi and the columns indexed by Bj must be a scalar

multiple of the identity, say aij . Furthermore, we must have aij = 0 unless Bi and Bj

span isomorphic Wr-modules. It follows that the m × m matrix [aij ] encodes all of the

data needed to recover Ak, but in a compact form that has at most
∑
m2
i nonzero entries,

where m1,m2, . . . denote the multiplicities of the irreducible Wr-submodules in the given

representation of W .

Definition 3.1. Given k and r as above, define φr(Ak) to be the matrix [aij ].

We remark that the map sk 7→ φr(Ak) extends to a representation of the parabolic

subgroup of W generated by those simple reflections sk that centralize Wr.

Given the recursive nature of B, we may (recursively) assume the existence of previ-

ously constructed hereditary models for each irreducible Wn−1-submodule that occurs in

the desired representation of W . The correct inventory of models may be identified via

branching calculations derived from the character tables. By taking direct sums, one may

thus obtain representing matrices Ak for sk (1 6 k < n), and the only new information

required is the matrix An representing sn. In turn, this is completely determined by the

matrix φr(An), taking r to be the largest index such that sn centralizes Wr.

In most cases, the standard chains have the property that sn centralizes Wn−2 and we

may take r = n− 2. The only exceptions occur in low ranks.
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For example, we have r = 6 in W (E8), and the representation R5670 decomposes into

88 irreducible summands relative to W (E6); the multiplicities are 2 (four times), 3, 4, 5,

7, 9 (twice each), 10, and 14. Thus, aside from the storage required for the irreducible

representations of smaller Weyl groups, the information contained in a hereditary matrix

model for R5670 may be stored in a sparse 88 × 88 matrix with at most 672 =
∑
m2
i

nonzero entries. In this way, we are able to save the data needed to reproduce orthogonal

hereditary matrix models for every irreducible representation ofW (En) for n 6 8 (including

the non-free cases) in a Maple table whose size is about 1MB.

C. The Coxeter relations.

Continuing the above notation, we assume that r is the largest index such that sn
centralizes Wr, and that A1, . . . , An−1 are (recursively obtained) real orthogonal matrices

representing s1, . . . , sn−1 relative to a hereditary basis for an irreducible W -module V .

The real orthogonal matrices An that may be used to represent sn must satisfy the

Coxeter relations; i.e., (AiAn)m(i,n) = 1, where m(i, n) denotes the order of sisn in W . In

particular, m(n, n) = 1, so the condition that An is orthogonal may be replaced with the

condition that An is symmetric.

It is important to note that V may have clones, so the Coxeter relations alone are

generally not sufficient to characterize An. However, given that V is totally free, there

can only be finitely many choices for An that obey these relations (Corollary 1.5), and the

ones that generate models for V must be among them.

In any case, we may view φr(An) = [aij ] as a symmetric matrix of indeterminates, and

take the Coxeter relations as a collection of polynomial conditions on the variables aij . In

these terms, the matrix An induced by a given choice for [aij ] will necessarily commute

with A1, . . . , Ar, so we need only to impose the relations (AiAn)m(i,n) = 1 for r < i 6 n.

To economize further, it suffices merely to require φr(An)2 = 1 and the braid relations

φk(Ai)φk(An)φk(Ai) · · · = φk(An)φk(Ai)φk(An) · · · (3.1)

for r < i < n, where the number of factors on both sides is m(i, n), and k = ki denotes

the largest index such that si and sn both centralize Wk. These conditions are either

linear in the entries of An (if m(i, n) = 2), or quadratic (if m(i, n) = 3 or 4), or cubic (if

m(i, n) = 6), so in almost all cases of interest, the equations will be quadratic.

Note that φk(Ai) and φk(An) may both be arranged into block diagonal form, the

block sizes being the multiplicities of the irreducible Wk-submodules of V , say n1, n2, . . . .

Furthermore, since φk(Ai) and φk(An) are both symmetric, it follows that the difference

between the two sides in (3.1) is either symmetric (if m(i, n) is odd) or skew-symmetric

(if m(i, n) is even), so the total number of independent scalar conditions implicit in (3.1)

is at most
∑
nj(nj + 1)/2 or

∑
nj(nj − 1)/2, depending on the parity of m(i, n).

Similarly, the requirement that φr(An)2 = 1 is equivalent to
∑
mj(mj + 1)/2 scalar

conditions, where m1,m2, . . . are the multiplicities of the irreducible Wr-modules in V .
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As noted previously, it will usually be the case that r = n− 2. Moreover, among these

cases, it is most common that m(n − 1, n) = 3, and that k = n − 3 is the largest index

such that sn−1 and sn both centralize Wk. Thus, the Coxeter relations involving An will

most typically amount to the conditions that φn−2(An)2 = 1 and

φn−3(An−1)φn−3(An)φn−3(An−1) = φn−3(An)φn−3(An−1)φn−3(An).

For example, when W = W (E8), we have r = 6, k = 5, m(7, 8) = 3, and in the repre-

sentation R5670, the matrix φ6(A8) has 380 =
∑
mj(mj + 1)/2 indeterminates. Also, the

multiplicities n1, n2, . . . are 9 (four times), 24 (three times), 12, 36, 48, 60 (twice each),

and 18, so the Coxeter relations involving A8 amount to 9131 = 380 +
∑
nj(nj + 1)/2

quadratic equations in 380 variables.

D. The orthogonal algorithm.

Let χ be the character of an irreducible, totally free W -module V . To construct an

orthogonal hereditary matrix model for V , we proceed as follows.

1. Decompose χ into irreducible characters relative to Wn−1, and recursively build

orthogonal matrix models for each Wn−1-summand. Taking direct sums, we obtain repre-

senting matrices A1, . . . , An−1 for the action of s1, . . . , sn−1 on V .

2. Following the techniques described in the previous subsection, use the Coxeter rela-

tions to generate a system of equations for the symmetric matrix φr(An) = [aij ].

3. Test for clones; i.e., identify all W -characters χ′ whose restriction to Wn−1 agrees

with that of χ. Once each irreducible W -character is decomposed into irreducible Wn−1-

characters, this amounts to a simple partitioning problem that may be quickly solved by

brute force. For each clone χ′ 6= χ, one knows that there is a para-Coxeter element w such

that χ′(w) 6= χ(w) (Empirical Fact 2.7). Moreover, by Corollary 2.6, the trace of w on V

is expressible in terms of the diagonals of A1, . . . , An, and the condition that χ(w) is the

trace of w on V amounts to a linear equation in the diagonal entries aii of φr(An).

4. Combine the equations in Step 2 with zero or more linear equations that eliminate the

clones identified in Step 3, thereby obtaining a polynomial system whose solutions encode

the possible (orthogonal) matrices representing the action of sn on V ; by Proposition 1.4,

the number of solutions is exactly 2m−1, where m denotes the number of irreducible

constituents of V as a Wn−1-module. Find a solution of this system via the reduction

algorithm described below.

For the totally free W (E8)-representation R5670, we have seen that the system that

determines A8 consists of 9131 quadratic equations (and one linear equation to eliminate

a clone—see Remark 2.8) in 380 variables. As an added complication, the entries of

A1, . . . , A7 are square roots of rationals (Theorem 2.1), so the ground field for this system

is an extension of Q by certain square roots of integers.

As we noted in the introduction, systems of this size may be too large to be handled by

general-purpose Gröbner basis packages. Instead, we employ a sequence of Gröbner-like
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reductions that exploit the special features of these systems and mitigate against internal

expression swell.

First, we order the variables so that aij (i 6 j) precedes akl (k 6 l) if either i < k,

or i = k and j < l. This implicitly assumes an ordering of the rows and columns of

φr(An), or equivalently, an ordering of the blocks of coordinates that span irreducible

Wr-modules. In all cases, we sort these by isomorphism class. The ordering of the classes

(usually by increasing dimension), and the orderings within each class, are determined by

the choices made during the recursive constructions in Step 1. In any case, we expect that

the performance of the algorithm is relatively insensitive to these choices.

Once the variable ordering is established, we employ a degree-lex term ordering for

monomials in these variables; i.e., monomial m1 precedes monomial m2 if m1 has higher

total degree, or if they have the same total degree and the first variable appearing in

m1/m2 has positive degree.

Now we are ready to describe the reduction algorithm. Given the polynomials q1, . . . , ql
whose vanishing identifies the possible solutions for An, we proceed as follows.

1. If any of the polynomials qi is linear, choose one with the fewest number of vari-

ables; set qi aside, and use it to eliminate the first variable of qi from the remaining

system. (If any qi is a nonzero constant, then a branch with no solutions has been

encountered via Step 6 or 7; return a failure flag.)

2. Repeat Step 1 until no remaining equations are linear.

3. If all variables have been eliminated, then the set of saved linear equations forms a

triangular system for a particular solution; solve it by back substitution and halt.

4. Otherwise, sort the remaining (nonlinear) polynomials by increasing number of

dependent variables. For each i = 1, . . . , l, if there is a j < i such that qi and qj
have the same leading term,2 replace qi with qi − qj (renormalized). Repeat this

until qi vanishes, or the leading term of qi does not match those of q1, . . . , qi−1.

5. Repeat steps 1–4 until a solution is found, or no changes occur in the system.

6. If the system is unchanged, and any of the remaining polynomials factors over Q,

say qi = `1`2, where `1 and `2 are linear, replace qi with `1 and return to Step 1.

If no solution is found, then replace qi with `2 and return to Step 1.

7. Otherwise, if any of the remaining polynomials has the form a2
ij − c, where c is a

positive rational, follow Step 6 with `1 = aij − c1/2 and `2 = aij + c1/2.

8. If neither of the conditions in Step 6 or Step 7 apply, then the reduction algorithm

halts and fails.

It is not at all obvious that this algorithm will succeed in all cases; nevertheless, we were

able to use it to construct hereditary orthogonal models for every totally free irreducible

representation of every exceptional Weyl group. We also tested it successfully on every

irreducible representation of every classical Weyl group of rank 6 8.

2At all times we assume that each polynomial qi is normalized to be monic.
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For example, using this algorithm to determine the matrix A8 in the representation

R5670 of W (E8) takes about 16 minutes on a 2.8GHz Pentium IV running Maple 9.

Remark 3.2. Although the Coxeter relations involving An have only finitely many

solutions (Corollary 1.5), it is important that the linear equations that eliminate clones

are part of the initial system. Otherwise, there would in general be exponentially many

solutions, of which a large fraction would have to be discarded. Instead, we have a system

of equations for which any solution suffices, and hence the second branches in Step 6 or 7

will often be unnecessary.

E. The seminormal algorithm.

Once we have orthogonal matrices A1, . . . , An representing the simple reflections rel-

ative to some hereditary basis B, we may consider the problem of finding a diagonal

transformation D so that the matrices DAiD
−1 are rational, seminormal, and hereditary.

Note that Propositions 1.1 and 1.2 show that such a change of basis necessarily exists;

however, there is no obvious canonical choice for D, and poor choices will lead to matrix

entries with large numerators and denominators.

If we partition B into blocks B1, . . . ,Bl that span irreducible Wn−1-modules, then

we may (recursively) assume that diagonal transformations Di for each block Bi have

been identified that produce rational hereditary matrix models for the action of Wn−1.

Moreover, we may assume that these models are optimal with respect to some measure

to be specified later. The remaining problem is to identify scalars x = (x1, . . . , xl) so that

the change of basis D(x) = x1D1 ⊕ · · · ⊕ xlDl converts the matrices A1, . . . , An to an

optimal rational form. Since the choices for x have no effect on Ai for i < n, this amounts

to rationalizing and optimizing D(x)AnD(x)−1.

It should be noted that there will necessarily be rationalizing choices for x, regardless of

the previous choices made for D1, . . . , Dl. Indeed, there must be some diagonal transfor-

mation D′ = D′1⊕· · ·⊕D′l that converts B to a Q-basis, so D′i and Di are both rescalings

that yield Q-bases for the irreducible Wn−1-module spanned by Bi, and hence for each i

there is a scalar xi such that xiDi(D
′
i)
−1 is rational. In other words, there is an x such

that D(x) is a rational diagonal multiple of D′, and the space of rationalizing choices for

x forms a single (Q∗)l-orbit.

To simplify the set of constraints, note that the (nonzero) entries of φr(An) = [aij ] are

the same as those of An, except that they occur with lower multiplicity. Moreover, the

effect of the diagonal change of basis D(x) on φr(An) is to replace aij with a′ijxb(i)x
−1
b(j),

where b(i) denotes the index of the Wn−1-block that contains the i-th Wr-block, and

[a′ij ] = φr(D(1)AnD(1)−1).

To identify a rationalizing x, we treat x1, . . . , xl as variables and proceed as follows.

Selecting any nonzero entry of φr(D(x)AnD(x)−1) from rows and columns belonging to

distinct Wn−1-blocks, say a′ijxb(i)x
−1
b(j), one sees that it is necessary for xb(j) to be a rational

multiple of a′ijxb(i); conversely, since the solution space is (Q∗)l-stable, any rational multi-
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ple will suffice. We may therefore substitute xb(j) = |a′ij |xb(i) and eliminate all occurrences

of the variable xb(j). The effect of this substitution will be to rationalize some entries of

φr(D(x)AnD(x)−1); these may be ignored henceforth. We continue by choosing another

nonzero entry that depends on two remaining variables, and eliminate one of them in the

same way, and so on. Since the support graph of nonzero entries in φr(An) is necessarily

connected (given that V is irreducible), this process ends when only one variable remains.

This last variable may be specialized arbitrarily; it has no effect on the matrix entries.

We remark that absolute values are used in the above substitutions so that we are able

to produce a positive solution for x, and hence by induction, a positive rescaling of B.

F. Optimization.

Having identified a (positive) rationalizing choice for x, say x0, we now describe a

method for finding a point y ∈ (Q+)l that minimizes the least common denominator of

the off-diagonal entries in An(y) := D(yx0)AnD(yx0)−1, or equivalently in φr(An(y)).

In practice, the matrix entries of φr(An(1)) = [a′′ij ] will have denominators involving

relatively few primes. In most cases, the only primes are those that divide |W | (see also

Remark 3.5(b) below). It therefore suffices to solve the following localized version of the

denominator-minimization problem for each of these primes.

Problem 3.3. Given a prime p, find v ∈ Zl so that y = (pv1 , . . . , pvl) maximizes the

lowest exponent of p in An(y). More precisely, find v ∈ Zl so that the objective function

min
i,j

(eij + vb(i) − vb(j))

is maximized, where eij denotes the exponent for the power of p involved in a′′ij , and the

minimum is taken only over those pairs i, j such that i 6= j and a′′ij 6= 0.

Note that the above optimization problem is necessarily bounded; indeed, since An is

symmetric, the nonzero entries of φr(An(1)) are symmetrically placed. It follows that

min(eij + vb(i) − vb(j), eji + vb(j) − vb(i)) 6 (eij + eji)/2,

whence

min
i,j

(eij + vb(i) − vb(j)) 6 min
i,j
b(eij + eji)/2c. (3.2)

It should also be noted that this upper bound is intrinsic to V ; it does not depend on the

initial rationalizing choice x0. If some diagonal change of basis attains this upper bound,

we say that it is strongly p-optimal.

Although Problem 3.3 appears to involve integer optimization with a nonlinear objective

function, the following result allows us to reduce it to linear programming.
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Proposition 3.4. Given a loopless, symmetric (i.e., (i, j) ∈ Γ⇒ (j, i) ∈ Γ), connected

digraph Γ ⊂ [l]× [l] and an integer cij for each (i, j) ∈ Γ, let

P (t) := {v ∈ Ql : v1 = 0 and cij + vi − vj > t for all (i, j) ∈ Γ}.

If t0 is the maximum value for t in the polyhedron Q = {(v, t) ∈ Ql+1 : v ∈ P (t)}, then

bt0c = max
v∈Zl

min
(i,j)∈Γ

cij + vi − vj , (3.3)

and every vertex of the (nonempty) polytope P (bt0c) is a lattice point v that achieves the

above maximum.

Proof. By following paths from 1 to i and i to 1 in Γ, it is easy to derive upper and

lower bounds for vi proving that P (t) is bounded for all t.

The matrix whose rows are the linear forms defining the polytope P (t) is a 0,±1-matrix

with at most one 1 and one −1 per row, and hence each of its invertible submatrices is

invertible over the integers. (Indeed, graphic matroids are totally unimodular.) It follows

that for each integer t, every vertex of P (t) is a lattice point.

Now since the linear forms cij+vi−vj are invariant under translation by v = (1, . . . , 1),

it follows that their value ranges are unaffected by dropping the constraint v1 = 0. Hence

t0 = max
v∈Ql

min
(i,j)∈Γ

cij + vi − vj ,

and this maximum is finite, by the same reasoning used to establish (3.2). It follows that

bt0c is an upper bound for the maximum in (3.3); in particular, P (bt0c) is nonempty,

and hence any vertex of this polytope provides a lattice point where this upper bound is

attained. �

To solve Problem 3.3, we proceed by defining cij to be the lowest power of p appearing

among the nonzero matrix entries of φr(A(1)) in the rows and columns belonging to Wr-

blocks in Bi and Bj (respectively) for all i 6= j. If there are no nonzero entries, we leave

cij undefined. Note that the underlying support graph Γ necessarily fits the hypothesis of

Proposition 3.4; in particular, connectedness follows from the irreducibility of V .

We may thus proceed by using linear programming methods, such as the simplex algo-

rithm, to determine the maximum value for t in the polyhedron Q. Once the maximum t0
is obtained, we then use a second call to a linear program solver to find a vertex v of the

polytope P (bt0c). If t0 happens to be an integer, then the second linear program may be

omitted; in that case, any extreme point (v, t0) ∈ Q produced by the first linear program

will provide an integer solution v for Problem 3.3.

Once we have found v ∈ Zl that optimizes the lowest exponent of p in the off-diagonal

entries of An(y), a secondary constraint we may impose is that among all optimizing v,

we should minimize the highest power of p appearing among the same matrix entries.
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To describe this secondary optimization problem more explicitly, let bij denote the

highest power of p appearing among the nonzero matrix entries of φr(A(1)) in the rows

and columns belonging to Wr-blocks in Bi and Bj (respectively) for all (i, j) ∈ Γ. We

then seek to minimize the objective function

max
(i,j)∈Γ

bij + vi − vj

over all lattice points v ∈ P (m), where m = bt0c denotes the optimal power of p in (3.3).

This optimization problem may also be solved by linear programming methods. Indeed,

having first determined m as described earlier, let t1 denote the minimum value for t among

all v ∈ Ql and t ∈ Q such that

t− bij > vi − vj > m− cij (3.4)

for all (i, j) ∈ Γ. Of course, we may easily determine t1 via linear programming. It follows

by reasoning similar to Proposition 3.4 that

dt1e = min
v∈Zl∩P (m)

max
(i,j)∈Γ

bij + vi − vj ,

and if we add the constraints t = dt1e and v1 = 0 to the polyhedron defined by (3.4),

then any vertex v of the resulting polytope will necessarily be a lattice point, and hence a

solution of our primary and secondary optimization problems.

For example, the representation R5670 of W (E8) decomposes into a sum of l = 16

irreducible W (E7)-modules, and in its orthogonal hereditary model, the least common

denominator of the squares of the off-diagonal matrix entries in A8 is (25345171)2. It follows

that the strong p-bounds for the rational rescalings of A8 (see (3.2)) are −5,−4,−1,−1

for the primes p = 2, 3, 5, 7 (respectively). The initial rationalizing choice for x found by

our algorithm yielded a rational seminormal model for R5670 with an off-diagonal least

common denominator of 26385372. We then used Maple’s simplex package to solve the

linear programs needed to produce an optimal diagonal rescaling (in both the primary

and secondary sense) with respect to the primes 2, 3, 5, 7; this took about 12 seconds on a

2.8GHz Pentium IV, and yielded a model that matched the strong bounds for each prime.

Remark 3.5. (a) Most of the rational seminormal models for W (E8)-representations

we have produced are strongly optimal with respect to each prime (i.e., the bounds in (3.2)

are equalities). Even the cases that fail to be strongly optimal are typically off by a single

prime factor. In fact, we suspect that strongly optimal models exist in all cases, but it may

be difficult to confirm this—there are generally many optimal solutions to choose from,

and the choices made when optimizing the models for the subgroups Wk for k < n have

an effect on the optimum values that can be achieved for k = n.

(b) For each of the exceptional groups, the only primes that occur in the denominators

of the optimized rational seminormal models that we produced, even in the non-free cases

discussed below, are those that divide |W |.
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4. Models for non-free representations

We now turn to the problem of constructing explicit matrices representing the simple

reflections in an irreducible W -module V that is not totally free. The main complication

in this situation is that orthonormal hereditary bases for V are not canonical up to sign.

Indeed, if we proceed recursively and fix hereditary orthogonal matrices A1, . . . , An−1

representing the action of Wn−1 on V , then the collection of all orthonormal W -hereditary

bases for V that are compatible with this choice forms a single orbit under the group of

isometric Wn−1-module automorphisms of V , which by Schur’s Lemma is isomorphic to

O(m1,R)× · · · × O(ml,R), where m1, . . . ,ml denote the multiplicities of the irreducible

Wn−1-modules in V . This is a discrete orbit only if V is multiplicity-free.

The complexity of this orbit space has several negative consequences. First, the variety

of solutions for the matrix An representing sn, as defined by the Coxeter relations and the

clone equations (see Section 3C), is no longer 0-dimensional. In particular, this means that

the Gröbner-like reduction algorithm of Section 3D cannot be used without modifications.

Second, even if we manage to find a solution, there is no guarantee that it will be convertible

to a rational seminormal solution by means of a diagonal transformation. Third, even if

we find a solution that is convertible to rational form, the lack of a canonical solution

means that it is likely to have poor quality (i.e., the matrix entries are likely to have large

numerators and denominators).

On the other hand, our primary goal is not to construct hereditary bases with respect to

every ordering of the simple reflections; rather, we are seeking (optimal) hereditary bases

for the irreducible representations of W with respect to the standard order. Thus we are

practically concerned only with the nine remaining representations of W = W (E8) that are

non-free (see Empirical Fact 2.2). This allows us to make several simplifying assumptions

(see Remark 2.3(b)), the most important of which are

(i) V is totally free as a Wn−1-module, and

(ii) each irreducible Wn−1-module has multiplicity 6 2 (and usually 6 1) in V .

Under these circumstances, we shall see that it is possible to make small adjustments to

the algorithms of Section 3 and still produce suitably optimal orthogonal and rational

seminormal hereditary models for V .

A. Orthogonal models of rational type.

We say that an orthonormal hereditary basis B for V (or equivalently, the corresponding

matrix model) is of rational type if some diagonal transformation of B is a (necessarily

seminormal) hereditary Q-basis.

Following the approach of Section 3, we may recursively assume that orthogonal matrix

models for the irreducible Wn−1-submodules of V have been previously constructed. Using

branching data derived from the character tables of W and Wn−1, we may thus form direct

sums of these models so as to obtain orthogonal matrices Ak representing the action of sk
on V for 1 6 k < n; the problem is to identify one or more possible orthogonal matrices
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An representing the action of sn. As in the totally free case, An may be recovered from

the matrix φr(An) that records the action of sn on Wr-blocks, where r denotes the largest

index such that sn centralizes Wr.

Proposition 4.1. Assume V is totally free as a Wn−1-module, and that there is one

irreducible Wn−1-module of multiplicity 2 in V , at least one of multiplicity 1, and none of

multiplicity > 2. Given orthogonal matrices A1, . . . , An−1 as above, there exist pairs i, j

such that there is a unique solution for An (up to choices of sign) in which the i, j-entry

of φr(An) vanishes. Furthermore, this solution is necessarily of rational type.

Proof. By Proposition 1.1 and Theorem 2.1, we know that V has a hereditary Q-basis

B that is orthogonal with respect to a positive definite W -invariant inner product 〈 , 〉 that

is Q-valued on the Q-span of B. By replacing each v ∈ B with v̄ := v/〈v, v〉1/2, we thereby

obtain an orthonormal hereditary basis B̄ of rational type. Furthermore, since V is totally

free as a Wn−1-module, we may apply sign changes to B̄ (if necessary) so that Ak is the

matrix of sk with respect to this basis, for k = 1, . . . , n− 1 (Corollary 1.3).

Now let B1 = {ui : i ∈ I} and B2 = {vi : i ∈ I} denote the two blocks of B that span

copies of the same irreducible Wn−1-module in V , indexed so that ui 7→ vi extends to an

isomorphism. By Schur’s Lemma, the group G of isometric Wn−1-module automorphisms

of V consists of sign changes and a copy of SO(2,R) that intertwines B̄1 and B̄2. Fur-

thermore, any hereditary orthonormal basis for V that represents sk by Ak for k < n is

in the G-orbit of B̄. Leaving aside sign changes, it follows that every possible matrix An
representing sn may be obtained from some (necessarily hereditary, orthonormal) basis for

V generated from B̄ by selecting a point (a, b) on the circle a2 + b2 = 1 and replacing

B̄1 → {aūi + bv̄i : i ∈ I}, B̄2 → {−būi + av̄i : i ∈ I}.

By hypothesis, B1 ∪ B2 spans a proper subspace of the irreducible W -module V , so it

cannot be the case that 〈snūi, v〉 = 〈snv̄i, v〉 = 0 for all i ∈ I and v ∈ B − (B1 ∪ B2).

Hence, there must exist i ∈ I and v ∈ B − (B1 ∪ B2) such that 〈asnūi + bsnv̄i, v〉 is a

nontrivial linear form in a and b. If we impose the condition that this linear form should

vanish, then there will be a unique solution for (a, b) (up to a choice of sign), and hence a

unique orthonormal hereditary basis B′ (up to sign) such that the representing matrix for

sn relative to B′ has a zero in the row and column corresponding to v̄ and aūi + bv̄i.

To complete the proof, we show that B′ is necessarily of rational type. Returning to

the orthogonal Q-basis B, one knows that there is a unique invariant bilinear form (up to

scalar multiples) for any irreducible Wn−1-module, so there must be a positive rational q

such that q = 〈vi, vi〉/〈ui, ui〉 for all i ∈ I. Furthermore, the vanishing condition for a and

b may be rewritten in terms of the Q-basis B in the form

a
√
q〈snui, v〉+ b〈snvi, v〉 = 0,
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whence t := (a/b)
√
q is rational. (If b = 0 then B̄ = B′ and there is nothing further to

prove.) Now consider the rational change of basis obtained by replacing B1 ∪B2 with

{tui + vi : i ∈ I} ∪ {−qui + tvi : i ∈ I}.

It is easy to see that this yields another hereditary Q-basis for V . Moreover, it is not hard

to check that it remains orthogonal, and that it normalizes to B′ (up to sign), whence B′

is of rational type. �

Remark 4.2. (a) In order to uniquely specify an orthogonal matrix model of rational

type for V via the above argument, we need to identify a pair of isomorphic Wr-blocks,

one in B1 ∪ B2, and one not in B1 ∪ B2, so that the corresponding entry of φr(An) does

not vanish identically as we vary the point chosen from SO(2,R). Although it requires

a posteriori verification, it turns out that among the nine representations of W (E8) that

are not totally free with respect to the standard chain, it is usually the case that all of

the matrix entries of this type do not vanish identically, and hence any such choice will

suffice. The only exception is R6075(±405); each member of this pair of representations

has 102 eligible matrix entries in φ6(A8); of these, 96 are not identically zero.

(b) One may show more generally that if there are k irreducible Wn−1-modules that

occur with multiplicity 2 in V , at least one of multiplicity 1, and none of multiplicity > 2,

then it is possible to specify a unique orthonormal hereditary basis of rational type by

forcing k entries of φr(An) to vanish. However, the sets of entries that suffice for this

purpose are determined by the pattern of generically nonzero entries in φr(An), and hence

difficult to predict a priori. In any case, the only instance of this problem with k > 1 that

is of interest involves the W (E8)-representation R7168, which has two W (E7)-constituents

of multiplicity 2. And as noted in the previous remark, all of the relevant matrix entries

of φ6(A8) turn out to be generically nonzero in this case.

For each of the nine non-free representations of W (E8), we constructed an orthogonal

hereditary matrix model as follows. First, we selected an arbitrary matrix entry of φr(An)

that met the requirements described in Remark 4.2(a). (In the case of R7168, we selected

two such entries, one for each W (E7)-constituent that occurs with multiplicity 2.) We then

combined the condition that these matrix entries should vanish with the Coxeter relations

and clone equations of Section 3C, and passed the resulting system to the reduction al-

gorithm of Section 3D. A more robust approach would include trapping for errors that

would be generated if the chosen matrix entries vanished identically, but as noted above,

this can happen only in two of the nine cases, and is unlikely even for these two.

It was not clear in advance that the reduction algorithm would necessarily succeed;

nevertheless, in each case we did obtain a solution. For example, the equations defining the

matrix for s8 in R7168 include 14597 Coxeter relations in 593 variables, one clone equation

(see Remark 2.8), and two vanishing matrix entries. It took the reduction algorithm about

1.25 hours to find a solution on a 2.8GHz Pentium IV running Maple 9.
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B. Optimizing an orthogonal solution.

Once we have produced an orthonormal hereditary basis for V of rational type, there is

no reason to expect that the representing matrices corresponding to this particular basis

will have good quality. Thus we consider the problem of making an optimal choice among

all such bases of rational type.

For simplicity, we continue the hypotheses of Proposition 4.1; i.e., that V is totally

free as a Wn−1-module, and multiplicity-free with the exception of one Wn−1-isotypic

component of multiplicity two. Let us also assume that we have identified a particular

orthonormal hereditary basis for V of rational type. The algorithm in Section 3E shows

that it is easy to construct a diagonal change of basis D that converts an orthogonal

hereditary matrix model to a rational seminormal hereditary model (given that one exists),

so we may equivalently take an orthogonal hereditary Q-basis B for V as given.

As in the previous subsection, let B1 = {ui : i ∈ I} and B2 = {vi : i ∈ I} denote

the blocks of B that span copies of the one Wn−1-component of V that has multiplic-

ity two, labeled so that ui 7→ vi extends to an isomorphism. As we noted in the proof of

Proposition 4.1, the quantity q = 〈vi, vi〉/〈ui, ui〉 ∈ Q+ is necessarily independent of i ∈ I.

Furthermore, we may easily compute q by recognizing that the matrix of the W -invariant

form 〈 , 〉 with respect to B is D−2, where D denotes the transformation used to convert

the original orthogonal matrix model to rational seminormal form.

Let B̄ = {v̄ : v ∈ B} denote the orthonormal basis corresponding to B.

Proposition 4.3. Given V , B, and q as above, every orthonormal hereditary basis for

V of rational type may be obtained (up to a choice of sign) from the orthonormal basis B̄

by replacing B̄1 ∪ B̄2 with{
1√

1 + qt2

(
ūi + t

√
q v̄i
)

: i ∈ I

}⋃{ 1√
1 + qt2

(
t
√
q ūi − v̄i

)
: i ∈ I

}
(4.1)

for some rational t > 0.

Proof. By Schur’s Lemma, the decompositions of V into irreducible QWn−1-modules

form a single orbit relative to a GL(2,Q) action that intertwines the Wn−1-submodules

spanned by B1 and B2. Furthermore, the hereditary Q-bases for any irreducible, totally

free Wn−1-module are diagonal transformations of each other (Proposition 1.2). Hence, at

least one member of each diagonal equivalence class of hereditary Q-bases for V may be

generated from B by replacing B1 ∪B2 with

{aui + bvi : i ∈ I} ∪ {cui + dvi : i ∈ I}

for suitable a, b, c, d ∈ Q with ad− bc 6= 0. If we add the condition that the resulting basis

should remain orthogonal; i.e., ac+ qbd = 0, then we may rescale cui + dvi if necessary so

that (c, d) = (qb,−a).

24



If a = 0, then the resulting basis is in the same diagonal equivalence class as B, so we

may assume henceforth that a 6= 0. Replacing (a, b) with (−a,−b) if necessary, we may

further assume a > 0. Rescaling by the factor a and setting t := b/a ∈ Q, we conclude

that replacing B1 ∪B2 with

{ui + tvi : i ∈ I} ∪ {qtui − vi : i ∈ I}

allows one to generate at least one member from each equivalence class of orthogonal

hereditary Q-bases. It is also possible to restrict to the case t > 0 (if t < 0, replace

t→ −1/qt and rescale). By normalizing these bases to unit length, we thereby obtain all

orthonormal hereditary bases of rational type (up to a choice of sign), and it is not hard

to see that the normalizations of these bases coincide with (4.1). �

Remark 4.4. The above result easily generalizes for W -modules that have several

Wn−1-components of multiplicity two. In these cases, any two orthonormal hereditary

bases of rational type are related by a sequence of base changes each in the form of (4.1),

one for each doubleton component.

Once we have an initial orthogonal hereditary model for V of rational type, Proposi-

tion 4.3 allows us to search through the space of all such models by varying a nonnegative

rational parameter t. (Or k such parameters, if k of the Wn−1-components of V have

multiplicity two.) In order to identify an optimal value for these parameter(s), we fo-

cus on the diagonal entries of the matrix An representing sn (or equivalently, φr(An));

these (rational) entries will remain unchanged when the model is converted to rational

seminormal form, and hence cannot be improved by any subsequent diagonal rescalings.

An added advantage of this strategy is that the diagonal entries corresponding to each

Wn−1-component of multiplicity two depend only on the parameter for that component,

so the parameters may be optimized independently of each other.

With these considerations in mind, for each Wn−1-component of multiplicity two with

associated parameter t, we use the least common denominator of the corresponding diag-

onal entries of φr(An) as our objective function when optimizing the choice of t.

In theory, finding a value for t that optimizes this objective function is a difficult

number-theoretic problem. However in practice, we found that all of the instances of this

problem that occur among the nine non-free representations of W (E8) are amenable to a

brute force search that finds “good” (but not provably optimal) solutions. More explicitly,

our optimization algorithm proceeds by first making the change of variable t→ (a/q)1/2t,

where a denotes the unique square-free integer such that (a/q)1/2 is rational; equivalently,

this amounts to replacing q with a in (4.1). We then evaluate the objective function at

t = 0 and at each rational t > 0 whose numerator and denominator sum to 2, 3, . . . ,

stopping at some pre-determined maximum sum, such as 100 or 1000.

We applied the above algorithm to the initial orthogonal models for the nine non-free

representations of W (E8) produced by the methods described in the previous subsection,
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and obtained least common denominators of 320 for R3240(±594), 80 for R4536(±378), 72

for R5600(±280), 224 for R6075(±405), and 315 for both doubleton components of R7168.

The corresponding t-values used to produce these quasi-optimal denominators all involved

rationals with single-digit numerators and denominators.

Finally, once a suitably optimal orthogonal hereditary matrix model of rational type

has been identified, one may convert it to an optimal rational seminormal form via the

algorithms of Sections 3E and 3F.
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