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Abstract. Let W be a simply-laced Coxeter group with generating set S, and let Wc denote

the subset consisting of those elements whose reduced expressions have no substrings of the
form sts for any non-commuting s, t ∈ S. We give a root system characterization of Wc,

and in the case where W corresponds to a finite Weyl group, show that Wc is a union of

Spaltenstein-Springer-Steinberg cells. The latter is valid also for affine Weyl groups of type A,
but not for types D or E.

1. Introduction

Let W be a Coxeter group with (finite) generating set S = {si}i∈I . In the Weyl group

case, the “commutative” elements of W were defined in [F1] to be those elements having

no reduced expression containing a substring of the form sisjsi, where si and sj are (non-

commuting) generators such that the simple root corresponding to sj is at least as long

as the simple root corresponding to si. The “fully commutative” elements of a general

Coxeter group were defined in [S1] to be those elements having no reduced expression

containing a substring sisjsisj · · · of length m ≥ 3, where m is the order of sisj in W . In

the simply-laced case these two definitions agree, since the product of any pair of generators

has order 2 or 3, and all roots have the same length.

There are numerous characterizations and properties of (fully) commutative elements

in [F1], [F3], [S1] and [S2]. In this paper, we extend some previous characterizations

in [F1] for finite, simply-laced Coxeter groups to arbitrary simply-laced Coxeter groups. In

particular, in Section 2, we provide a root system characterization of commutativity. (The

special case corresponding to finite Weyl groups was first proved in [F1], by a different

argument.) This can be viewed as a generalization of the fact that in the symmetric

group, the commutative elements are the permutations with no decreasing subsequence of

length 3.
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In Section 3, we study the relationship between commutative elements and certain

nilpotent orbits in the associated Lie algebra when W is a (simply-laced) finite or affine

Weyl group. In particular, we obtain that Wc is a union of Spaltenstein-Springer-Steinberg

cells if and only if W is affine of type A, or finite.

2. Root System Characterizations of Wc.

We assume henceforth that the Coxeter group W is simply-laced; thus sisj = sjsi or

sisjsi = sjsisj for all i, j ∈ I. Let Γ denote the Coxeter graph corresponding to W ; i.e.,

the simple graph with vertex set I and i adjacent to j if and only if si and sj do not

commute. We let Wc denote the subset of W consisting of those elements with no reduced

expression containing a substring sisjsi for any adjacent pair i, j of Γ.

Let V be a vector space over Q with basis Π = {αi}i∈I , and let 〈 , 〉 denote the

symmetric bilinear form on V defined by

〈αi, αj〉 =


2 if i = j,

−1 if i and j are adjacent in Γ,

0 otherwise.

The space V carries the reflection representation of W ; namely,

siβ = β − 〈β, αi〉αi
for all β ∈ V , i ∈ I. Furthermore, 〈 , 〉 is W -invariant relative to this action.

Let Φ denote the (generalized) root system generated by the action of W on Π; i.e.,

Φ = {wαi | w ∈ W, i ∈ I}. Every α ∈ Φ is an integer linear combination of the simple

roots αi ∈ Π. Let Φ+ denote the set of positive roots; i.e., the set of α ∈ Φ whose

coefficients relative to Π are nonnegative. For every root α, we have either α ∈ Φ+ or

−α ∈ Φ+ (e.g., [H, §5.4]). We write α > 0 and α < 0 in these cases, respectively.

For w ∈ W , let Φ(w) denote the set of roots α > 0 such that wα < 0. The cardinality

of Φ(w) is the length l of any reduced expression w = si1· · · sil , also denoted `(w). In fact

Φ(w) = {γ1, . . . , γl}, where

γ1 = αil , γ2 = silαil−1
, . . . , γl = sil· · · si2αi1 .

We refer to (γ1, . . . , γl) as the root sequence of the reduced expression si1· · · sil .
We remark that Φ(w) is “biconvex” (cf. [Bj, §3]) in the sense that for all α, β ∈ Φ+ and

all integers c1, c2 > 0 such that c1α+ c2β ∈ Φ+, we have

α, β ∈ Φ(w)⇒ c1α+ c2β ∈ Φ(w)

α, β 6∈ Φ(w)⇒ c1α+ c2β 6∈ Φ(w).
(2.1)

In fact, these convexity properties characterize the finite subsets of Φ+ of the form Φ(w)

for some w ∈W .
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Lemma 2.1. We have 〈α, β〉 ≥ −1 for all α, β ∈ Φ(w).

Proof. If α, β ∈ Φ(w) are roots such that 〈α, β〉 = −c ≤ −2, then the reflection cor-

responding to α maps β to β + cα, a root in the positive linear span of α and β. Hence

β + cα ∈ Φ(w), by (2.1). However 〈β, β + cα〉 = 2 − c2 ≤ −2, so iterations of the map

(α, β) 7→ (β, β + cα) generate an infinite sequence in the finite set Φ(w). �

Given a root sequence (γ1, . . . , γl) for w, let us partially order Φ(w) by taking the

transitive closure of the relations γi < γj for all i < j such that 〈γi, γj〉 6= 0.

Proposition 2.2. The partial ordering of Φ(w) is independent of the choice of root

sequence if and only if w ∈Wc.

Proof. Any reduced expression for w ∈W can be obtained from any other by a sequence

of braid moves (i.e., sisjsi → sjsisj or sisj → sjsi, according to whether i and j are

adjacent in Γ) [B, §IV.1.5]. Therefore, if there are no opportunities to apply braid moves

of length three (i.e., w ∈ Wc), all reduced expressions for w can be generated merely

by interchanging consecutive pairs of commuting generators. In the root sequence, these

moves correspond to interchanging consecutive pairs of orthogonal roots and clearly have

no effect on the partial order.

On the other hand, if i and j are adjacent in Γ, then the root sequences correspond-

ing to the two reduced expressions for x = sisjsi = sjsisj are (αi, αi + αj , αj) and

(αj , αi + αj , αi), and the partial orders are total. It follows that if sisjsi is a substring

of some reduced expression for w (i.e., w 6∈ Wc), then there exist root sequences for w

containing W -conjugates of these two subsequences, and hence the corresponding partial

orders differ. �

Remark 2.3. The partial ordering of a root sequence is isomorphic to the dual of the

“heap” (see [S1, §1]) of the corresponding reduced expression. In particular, it follows

that the extensions of the partial order to a total order are the root sequences that can be

generated from the given root sequence by interchanging consecutive pairs of orthogonal

roots.

In the following, let ≺ denote the customary partial ordering of Φ in which α ≺ β

whenever β − α has nonnegative coordinates relative to the simple roots.

Theorem 2.4. For w ∈W , the following are equivalent.

(a) w ∈Wc.

(b) 〈α, β〉 ≥ 0 for all α, β ∈ Φ(w).

(c) There does not exist a triple α, β, α+ β ∈ Φ(w).
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(d) The partial ordering of Φ(w) relative to some (equivalently, every) root sequence

is consistent with ≺ (i.e., α < β in Φ(w) implies α ≺ β).

Proof. We demonstrate that the negations of these properties are equivalent.

¬(a)⇒ ¬(b). If (a) fails, then w has a reduced expression of the form xsisjsiy for some

adjacent pair i, j. It follows that the corresponding root sequence includes α = y−1αi and

β = y−1sisjαi = y−1αj , for which 〈α, β〉 = 〈αi, αj〉 = −1.

¬(b) ⇒ ¬(c). If α, β ∈ Φ(w) are roots such that 〈α, β〉 < 0, then 〈α, β〉 = −1 by

Lemma 2.1. Therefore α + β is a root (being the reflection of β through α), and hence

by (2.1) must belong to Φ(w).

¬(c) ⇒ ¬(d). Every initial segment of a root sequence is also a root sequence, and

hence the subset of Φ(w) formed by such an initial segment must satisfy (2.1). It follows

that a set of roots of the form α, β, α + β ∈ Φ(w) must occur in the order (α, α + β, β)

or (β, α+ β, α) in every root sequence, and hence also in the corresponding partial order.

However, neither of these orderings is consistent with ≺.

¬(d) ⇒ ¬(a). If (d) fails, then there is a root sequence for w whose partial order

includes a covering relation α < β that is not consistent with ≺; in particular, β−α 6∈ Φ+.

By choosing a suitable linear extension of the partial order, we may obtain a root sequence

for w in which α and β appear consecutively, and hence α = y−1αi, β = y−1siαj , given

that the corresponding reduced expression for w is of the form xsjsiy. Since 〈α, β〉 6= 0

(otherwise α < β could not be a covering relation), it follows that

〈α, β〉 = 〈y−1αi, y−1siαj〉 = −〈αi, αj〉 = 1.

Hence α−β = −y−1αj is a root, necessarily positive, since β−α 6∈ Φ+. However, y−1αj < 0

implies that there is a reduced expression for y that begins with sj (e.g., [H, §5.4]). Hence

there is a reduced expression for w containing the substring sjsisj , and w 6∈Wc. �

Remark 2.5. The previous result can be viewed as a generalization of the fact that the

commutative elements of the symmetric group Sn are the permutations w = (w1, . . . , wn)

of {1, . . . , n} that do not contain a decreasing subsequence of length 3. Indeed, using

{εj − εi | 1 ≤ i < j ≤ n} as the set of positive roots for An−1, one sees that the triples of

positive roots of the form α, β, α+ β are εj − εi, εk − εj , εk − εi, where 1 ≤ i < j < k ≤ n.

Having such a triple occur in Φ(w) is equivalent to having wi > wj > wk. A similar

description can be provided in type D; see [F1, §7] or [S2, §10].

3. Cells

Now suppose that W is the Weyl group of a semisimple, simply-laced, simply connected

algebraic group G over C with Lie algebra g. We may assume that Φ is the root system
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of g relative to some choice of Cartan subalgebra h, and that b is the Borel subalgebra

corresponding to the chosen simple roots Π.

Let n be the nilpotent radical of b, and define n0 = w0nw0, where w0 denotes the longest

element of W . For w ∈W , set nw0 = wn0w
−1.

Let N be the subvariety of nilpotent elements in g, and let N/G denote the G-orbits

of such elements. Following Spaltenstein, Springer, and Steinberg (et. al.), one may define

a map φ : W → N/G by taking φ(w) to be the (unique) nilpotent orbit O such that

O∩nw0 ∩n is dense in nw0 ∩n. (This differs from the standard definition by a factor of w0.)

The fibers of φ are cells.

We now pass to analogous structures for the affine Weyl group Ŵ . It should be noted

that Ŵ is also simply-laced (in the sense of §2) unless W is of type A1. In this exceptional

case, we can maintain the validity of Theorem 2.4 by defining Ŵc := Ŵ .

Let Ĝ = G(F ), where F = C((t)). The abstract root system Φ̂ generated by Ŵ (in the

sense of §2) can be identified with the real roots of the Lie algebra g⊗C F .

Let b̂ be the Iwahori subalgebra which sits in g⊗C[[t]] as the inverse image of b relative

to the canonical projection t 7→ 0, and let n̂ ⊂ b̂ be the inverse image of n relative to the

same projection. Let n̂0 be the inverse image of n0 relative to the canonical projection

g⊗ C[t−1] → g defined by t 7→ ∞. For w ∈ Ŵ , we set n̂w0 = wn̂0w
−1. For further details

on this setup, see [KL, §0].

Each nilpotent orbit O in N/G also indexes a G(F̄ )-orbit Ô, where F̄ denotes the

algebraic closure of F . Following Lusztig [L], we may define a map φ̂ : Ŵ → N/G by

taking φ̂(w) to be the (unique) nilpotent orbit O such that Ô ∩ n̂w0 ∩ n̂ is dense in n̂w0 ∩ n̂.

Note that n̂w0 ∩ n̂ is finite-dimensional over C; in fact, it is spanned by the root spaces

indexed by Φ̂(w−1).

Let N4 = {n ∈ N | ad(n)4 = 0}, and let N4/G denote the nilpotent orbits in N4.

Theorem 3.1. We have

(a) Wc = φ−1(N4/G).

(b) Ŵc ⊃ φ̂−1(N4/G), with equality if and only if W is of type A.

Let Eα denote a generator for the root space corresponding to α ∈ Φ̂.

Lemma 3.2. For w 6∈ Ŵc, there exists n ∈ n̂w0 ∩ n̂ such that ad(n)4 6= 0.

Proof. Given that w 6∈ Ŵc (and hence w−1 6∈ Ŵc), Theorem 2.4 implies that there

is a triple α, β, α + β ∈ Φ̂(w−1). This given, we take n := Eα + Eβ ∈ n̂w0 ∩ n̂. Since

n is the regular element of an sl3 subalgebra, it follows that ad(n)4 6= 0 (e.g., see [K]).
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Alternatively, one can directly compute ad(n)4E−α−β and verify that it is a non-zero

multiple of Eα+β . �

Lemma 3.3. In an affine root system of type D or E, there exists a quadruple of

orthogonal simple roots γ1, . . . , γ4 and a root ρ such that 〈ρ, γi〉 = −1 for all i.

Proof. For type D, we may take γ1, . . . , γ4 to be the simple roots corresponding to the

four end nodes of Γ, and ρ to be the sum of the remaining simple roots.

For Em, use I = {0, 1, . . . ,m}, with the indexing arranged so that 4 labels the node of

degree three, 0 labels the node corresponding to the highest root, and 1, 3, 4, . . . ,m − 4

labels a path in Γ.

In E6, it suffices to take {γ1, . . . , γ4} = {α0, α1, α4, α6} and ρ = α2 + α3 + α4 + α5;

in E7, {γ1, . . . , γ4} = {α0, α3, α5, α7} and ρ = α1 + α2 + α3 + 2α4 + α5 + α6; in E8,

{γ1, . . . , γ4} = {α0, α2, α5, α7} and ρ = α1 + α2 + 2α3 + 3α4 + 2α5 + 2α6 + α7 + α8. �

Proof of Theorem 3.1. Lemma 3.2 implies that φ̂−1(N4/G) ⊂ Ŵc, and essentially the

same argument proves φ−1(N4/G) ⊂ W . To prove the reverse inclusions, it would suffice

to show that for w ∈ Ŵc and n ∈ n̂w0 ∩ n̂ (resp., w ∈Wc and n ∈ nw0 ∩ n), we have n ∈ N4.

Since any n ∈ n̂w0 ∩ n̂ is a linear combination of those Eα such that α ∈ Φ̂(w−1), it

follows that ad(n)4 is a linear combination of monomials of the form

M = ad(Eγ1) ad(Eγ2) ad(Eγ3) ad(Eγ4), (3.1)

where γ1, . . . , γ4 ∈ Φ̂(w−1).

If ad(n)4 6= 0, at least one such monomial must be nonzero. Let us therefore suppose

M(Eρ) 6= 0 for some ρ ∈ Φ̂∪{0}, following the convention that E0 represents an arbitrary

member of h ⊗ F . Setting δ = ρ +
∑
i γi, it is clearly necessary that δ ∈ Φ̂ ∪ {0}.

Furthermore,

〈δ, δ〉 = 〈ρ, ρ〉+ 8 + 2
∑
i

〈ρ, γi〉+ 2
∑
i<j

〈γi, γj〉 ≥ 〈ρ, ρ〉+ 8 + 2
∑
i

〈ρ, γi〉, (3.2)

since 〈γi, γj〉 ≥ 0 by Theorem 2.4.

If ρ = 0, this implies 〈δ, δ〉 ≥ 8, which is impossible. Hence ρ ∈ Φ̂ and 〈ρ, ρ〉 = 2.

Since 〈 , 〉 is positive semidefinite, it follows that 〈ρ, γi〉 ≥ −2 for all i. If 〈ρ, γ1〉 = −2,

then ρ+ γ1 would belong to the radical of 〈 , 〉, and therefore

〈δ, δ〉 = 〈γ2 + γ3 + γ4, γ2 + γ3 + γ4〉 ≥ 6,
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a contradiction. Thus 〈ρ, γi〉 ≥ −1 and the bound implied by (3.2) yields 〈δ, δ〉 ≥ 2.

This bound is tight, so equality occurs in (3.2); in particular, the γi must be pairwise

orthogonal and 〈ρ, γi〉 = −1 for all i. Conversely, in any such configuration of roots, we

have 〈γi+1 + · · ·+γ4 +ρ, γi〉 = −1, so γi+ · · ·+γ4 +ρ ∈ Φ̂ for all i, and hence M(Eρ) 6= 0.

Furthermore, if we set n := Eγ1 + · · ·+Eγ4 , then the above analysis shows that every term

in the expansion of ad(n)4 is 0 except for the 24 monomials that correspond to selecting

a permutation of (3.1). However, ad(Eγi) and ad(Eγj ) commute pairwise for i 6= j, so

ad(n)4 = 24M 6= 0.

If W is of type A, we claim that there can be no configuration ρ, γ1, . . . , γ4 ∈ Φ̂ as

above. Indeed, since the inner products among these roots coincide with those formed

by the simple roots of an affine system of type D4, they generate either a finite or affine

subsystem of type D4 in Φ̂, according to whether ρ is in the linear span of γ1, . . . , γ4.

In either case, modulo the radical of 〈 , 〉, we would have an embedding of a finite root

system of type D4 in a finite root system of type A, which is impossible—every irreducible

subsystem in type A is also of type A.

If W is of type D or E, Lemma 3.3 implies that there is a suitable configuration of

roots ρ, γ1, . . . , γ4 in which the γi are simple. If we take w to be the product of the simple

reflections corresponding to the γi, it is clear that w = w−1 ∈ Ŵc and Φ̂(w) = {γ1, . . . , γ4}.
Hence there exists n ∈ n̂w0 ∩ n̂ such that ad(n)4 6= 0, and the inclusion in (b) is proper.

Turning now to (a), the above reasoning also proves that for w ∈ Wc and n ∈ nw0 ∩ n,

we have ad(n)4 = 0 unless there exist pairwise orthogonal roots γ1, . . . , γ4 ∈ Φ(w) and

ρ ∈ Φ satisfying 〈ρ, γi〉 = −1 for all i. However in this case 〈 , 〉 is positive definite, so

ρ, γ1, . . . , γ4 must generate a finite root system ∆ of type D4.

Setting ∆+ = Φ+ ∩∆, we can choose an orthogonal basis ε1, . . . , ε4 for the span of ∆

so that ∆+ = {εi± εj | 1 ≤ i < j ≤ 4}. There are three quadruples of pairwise orthogonal

roots in ∆+; namely, {εi±εj , εk±εl}, where {{i, j}, {k, l}} ranges over the three partitions

of {1, . . . , 4} into doubletons. We claim that if any of these configurations occurs in Φ(w),

then there would exist a root β ∈ Φ(w) such that 〈β, γi〉 = −1 for some i, contradicting

the fact that w ∈Wc (cf. Theorem 2.4).

If ε1 ± ε2, ε3 ± ε4 ∈ Φ(w), then the decomposition ε1 + ε2 = (ε1 − ε4) + (ε2 + ε4)

together with the convexity properties of (2.1) imply ε1 − ε4 or ε2 + ε4 ∈ Φ(w). However

〈ε1 − ε4, ε3 + ε4〉 = −1 and 〈ε2 + ε4, ε3 − ε4〉 = −1, so both cases lead to a contradiction.

Similarly, if ε1±ε3, ε2±ε4 ∈ Φ(w), then the decomposition ε1+ε3 = (ε1−ε2)+(ε2+ε3)

and convexity together imply ε1 − ε2 or ε2 + ε3 ∈ Φ(w). However 〈ε1 − ε2, ε2 + ε4〉 = −1

and 〈ε2 + ε3, ε1 − ε3〉 = −1, so again both cases yield contradictions.

Finally, if ε1± ε4, ε2± ε3 ∈ Φ(w), then the decomposition ε2 + ε3 = (ε2− ε4) + (ε3 + ε4)
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and convexity imply ε2 − ε4 or ε3 + ε4 ∈ Φ(w). However 〈ε2 − ε4, ε1 + ε4〉 = −1 and

〈ε3 + ε4, ε1 − ε4〉 = −1, so both cases yield contradictions. �

Remark 3.4. (a) Part (a) of Theorem 3.1 was first proved in [F1, §7] and used there

to determine the longest elements in Wc for finite simply-laced Weyl groups W .

(b) If W is of type D or E, Theorem 3.1(b) implies that there exists w ∈ Ŵc such

that φ̂(w) = O 6∈ N4/G. On the other hand, it is known that every fiber of the map φ is

non-empty, so φ−1(O) must contain elements not in Wc, by Theorem 3.1(a). Since φ and

φ̂ commute with the natural embedding of W in Ŵ , it follows that in these cases, Ŵc is

not a union of cells.

(c) From the tables in [C], it can be shown that for E8 there are exactly five nilpotent

orbits in N4. On the other hand, it is known that there are only finitely many commuta-

tive elements in the affine Weyl group Ê8 [F1, §3]. (In fact, there are exactly 44,199 such

elements.) Thus Ê8 has at least five finite cells.

(d) The members of N4 are precisely the “spherical” nilpotents as classified by Pa-

nyushev [P]. (A nilpotent element is spherical if its orbit under the action of some Borel

subgroup is dense in its G-orbit.) Panyushev’s classification is achieved on a case-by-case

basis; it is possible that further analysis of the fibers of φ will lead to a uniform proof, at

least in the simply-laced cases.
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