
A Maple Package for Symmetric Functions
Version 2.4∗

9 November 2005

John R. Stembridge1

Department of Mathematics
University of Michigan

Ann Arbor, Michigan 48109–1043 USA

email: jrs@umich.edu

www.math.lsa.umich.edu/~jrs

Contents
1. Introduction
2. System Requirements
3. Getting Started
4. Definitions
5. Data Structures
6. Short Synopses of the Procedures
7. Changelog
8. Miscellany
9. Copyleft

10. References

1. Introduction
This document provides an introduction to Version 2.4 of SF, a package of 25 Maple

programs that create an environment for computations involving symmetric functions and
related structures. Included are programs for manipulating partitions, for converting sym-
metric functions between various bases, for applying standard operations such as plethysm,
tensor (Kronecker) and scalar products, as well as procedures for adding new bases to the
package. These features make SF especially useful for applications involving
• characters of Sn and GLn,
• classical invariant theory,
• Hall-Littlewood functions and Kostka-Foulkes polynomials,
• zonal polynomials for GLn/On, and
• Macdonald’s two-parameter symmetric functions.

What’s New. Version 2.4 of SF is a major rewrite of Version 2.3, but remains upward-
compatible with it. The main benefit of this rewrite is that the high-level functions are

∗ Version 2.4 is the Hermann Weyl Birthday Edition.
1 This work has been supported by NSF grants DMS–0070685 and DMS–0245385.

1

dramatically faster and more space-efficient than the old ones. For example, converting
a generic symmetric function of degree 30 with rational coefficients from power-sums to
elementary symmetric functions takes just a few GHz-seconds2 in SF 2.4, about 7 to 17
times faster than SF 2.3 (depending on the Maple version). Computing the Schur function
decomposition of the plethysm s5[s6] is about 4 to 6 times faster (roughly 10 GHz-seconds),
and decomposing p81 into Hall-Littlewood functions is about 35 to 45 times faster.

A few of the procedures now support new options, and there is a new procedure
nextPar for constructing space-efficient loops through the set of partitions.

For a more detailed account of the new features and improvements, see §7.

I still get reports from users that have obsolete versions of SF, including versions from
the Maple Share Library. These users should upgrade and take advantage of the vast
improvements in the package that have been added since Version 2.0.

2. System Requirements

First, you must have some version of Maple 〈http://www.maplesoft.com〉.
This version of SF has been developed and tested on various Linux machines running

Releases 3, 4, and 5 of Maple V, Maple 6, Maple 7, Maple 9, and Maple 9.5. While I no
longer have access to machines running the first two releases of Maple V, and have not yet
tried Maple 10, the package will probably work with these versions as well.

Version 2.4 is packaged in two formats: one is a Unix tar file (the “Unix Edition”),
and the second is a collection of plain text files that comprise the Vanilla Edition. Both
editions are available for download from

〈http://www.math.lsa.umich.edu/~jrs/maple.html〉.
The minor functional differences between these two editions are discussed in §3. Users

of Maple on Unix platforms have the choice of installing either edition of SF. For everyone
else, the Vanilla Edition is the only choice.

3. Getting Started

Special Notes for the Unix Edition. The first step is to unpack the tar file and follow the
installation instructions in the provided READ_ME file. If a system administrator has done
the installation for you, and you aren’t already a user of one of my packages, then you will
need to find out the name of the directory where the package has been installed and edit
an initialization file.

For the purposes of this discussion, let’s assume that the SF package has been in-
stalled in the directory /usr/local/maple/packages. You can check this by verifying
that /usr/local/maple/packages has a subdirectory named SF. Next, you will need to
create a file named .mapleinit in your home directory. Or add to it, if you already have
one. In this file you should insert the following two lines:

HomeLib:=‘/usr/local/maple/packages‘:

libname:=libname, HomeLib:

2 A GHz-second represents 1 second of CPU time on a 1 GHz processor.

2

Be careful to correctly type both of the left quote-marks (‘). Each time Maple is invoked,
these statements will define where the package is located. (For Maple V Release 1, the
syntax is slightly different—see the notes below.)

You are now ready to run SF. Simply enter the command with(SF) during a Maple
session. To access documentation about an individual function, use ?SF[function] or
?SF,function. The source code for SF is located in

/usr/local/maple/packages/SF/src,

and the raw text for the on-line help is located in

/usr/local/maple/packages/help/SF.

Additional files that provide applications and extensions of SF can be found in

/usr/local/maple/packages/SF/examples.

Special Notes Regarding Maple V Release 1. The syntax for specifying the locations of
external libraries is slightly different in Maple V Release 1. The .mapleinit file should
instead have the lines

HomeLib:=‘/usr/local/maple/packages‘:

_liblist:=[HomeLib]:

Be careful to correctly type the left quote-marks (‘) and underscore character (_).
Also, when the Unix Edition of SF is installed with Release 1 of Maple V, it is no

longer the case that the help texts are integrated into the package. Instead, users should
consult the HTML version of the help texts provided with the Vanilla Edition. (The
mechanism for loading help for external functions is so primitive in Release 1 that it no
longer makes sense to support it in SF.)

Special Notes for the Vanilla Edition. The Vanilla Edition consists primarily of a single
text file that may be loaded into a Maple session via the read command. It loads all of
the package functions into the workspace, whereas the Unix Edition keeps clutter to a
minimum by loading functions at the moment they are first used.

When the Vanilla Edition is first loaded, the package functions may be used only via
the long form

SF[function](arguments).

Although SF is not recognized by the Maple with command, the Vanilla Edition provides
a special command withSF() that enables the use of the short forms

function(arguments).

Similarly, withSF(arguments) enables the short form for some subset of the package,
modeling the expected behavior of with(SF,arguments).

Documentation for the individual functions is not loaded when the package is loaded.
Instead there is a separate HTML file containing all of the help texts cross-referenced with
hyperlinks. Similarly, the suite of examples is provided as a directory of plain text files
available for download.

3

The remainder of this article presents an overview of the workings of the package,
explaining the fundamental data structures and basic definitions. A one-line description
of the purpose of each procedure is provided in §6. For more detailed information about
the individual commands, consult the on-line help.

4. Some Definitions
We begin with a brief review of some basic ingredients of the theory of symmetric

functions. It is highly recommended, but not strictly necessary, that the reader be ac-
quainted with the definitive treatment by Macdonald [7]. Other reasonable places to look
are [1] (Appendix A), [6], [9], and [11] (Chapter 7), although some of these use notation
that does not conform to Macdonald’s.

By a symmetric polynomial, we mean a polynomial f = f(x1, x2, . . . , xn) that is
invariant under permutations of x1, . . . , xn. The symmetric polynomials of course form
a graded subring of the ring of polynomial functions of x1, . . . , xn. By specialization
(setting some of the xi = 0), one finds that for most purposes, the number of variables
in a symmetric polynomial is irrelevant, as long as there are sufficiently many of them.
Taking this idea to its logical extreme, one is led to consider symmetric “polynomials”
in infinitely many variables, say x1, x2,

3 These symmetric pseudo-polynomials, also
known as symmetric functions, form a graded ring Λ. (For a mathematically rigorous
definition, see [7].)

There are several families of symmetric functions that are of fundamental importance:
the elementary symmetric functions e1, e2, . . ., defined by

er =
∑

i1<i2<···<ir

xi1 · · ·xir ;

the complete homogeneous symmetric functions h1, h2, . . ., defined by

hr =
∑

i1≤i2≤···≤ir

xi1 · · ·xir ;

and the power-sum symmetric functions p1, p2, . . ., defined by

pr =
∑
i≥1

xri .

The most basic result in the theory of symmetric functions is the fact that the ele-
mentary symmetric functions e1, e2, . . . are algebraically independent (over Q, say) and
generate the ring Λ. Consequently, the set of all monomials in the er’s form a vector space
basis for Λ. Since er is homogeneous of degree r, it follows that the dimension of the
nth graded component of Λ is p(n), the number of partitions of n into a sum of positive
integers (disregarding order). If n = λ1 + · · ·+ λl is such a partition, let us define

eλ := eλ1 · · · eλl
,

so that as λ varies over all partitions, the eλ’s yield a basis for Λ.

3 Strictly speaking, these are no longer polynomials, but formal power series.

4

All of the above remarks apply equally well to the hr’s and the pr’s. In particular,
the hλ’s and pλ’s each form bases for Λ.

There are two additional bases of Λ of fundamental importance, the monomial sym-
metric functions mλ and the Schur functions sλ. For the monomial symmetric functions,
given a partition λ = (λ1, . . . , λl), one has

mλ =
∑

xλ1
i1
· · ·xλl

il
,

where the sum ranges over all distinct monomials whose exponent sequence is some per-
mutation of λ. For the Schur functions, the briefest (and least motivated) definition is

sλ = det[hλi−i+j]1≤i,j≤l,

with the conventions h0 = 1 and h−r = 0 for r > 0. The importance of Schur functions
derives from their connection with the irreducible characters of the symmetric groups and
general linear groups. (For more about this, see [1], [5], or [7].)

There is one obvious distinction between the first three bases we defined (eλ, hλ,
and pλ) and the last two (mλ and sλ): the latter are not multiplicative. That is, only in
the former cases do we have a basis bλ such that bλ = bλ1

bλ2
· · · whenever λ = (λ1, λ2, . . .).

There is a natural scalar product on Λ that is (over-)determined by the properties

〈hλ,mµ〉 = z−1λ 〈pλ, pµ〉 = 〈sλ, sµ〉 = δλµ, (1)

where zλ := a1! 1a1a2! 2a2 · · ·, using ai to denote the number of copies of i in λ. In
connection with this definition/assertion it is important to be aware that the transition
matrix between Schur functions and monomial symmetric functions is triangular. In fact,

sλ =
∑
λ≥µ

Kλ,µmµ (2)

for certain scalars Kλ,µ (the Kostka numbers), where the notation ‘λ ≥ µ’ indicates that
λ and µ must be related in the “dominance” partial order; i.e.,

λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i ≥ 1.

A consequence of (1) and (2) is that the Schur functions are the unique orthonormal basis
of Λ (relative to 〈 , 〉) that one would obtain by linearly ordering the mλ’s in any way
consistent with the dominance order and applying the Gram-Schmidt algorithm. Alter-
natively, using the fact that Kλ,λ = 1, one could characterize the Schur functions as the
unique orthogonal basis of Λ satisfying

sλ = mλ + a linear combination of mµ for µ < λ.

This point of view provides a unified method for treating many other important
families of symmetric functions. Indeed, there are a number of bases in the literature on
symmetric functions that may be characterized (up to scalar multiples) by (i) orthogonality

5

with respect to some scalar product, and (ii) having a triangular transition matrix with
respect to the monomial symmetric functions in dominance order.

The following is a list of examples of such bases. Note that in each case, the power
sums pλ are orthogonal with respect to the relevant scalar product.

1. The Hall-Littlewood functions HLλ(t) (see Chapters II–IV of [7]). These are
orthogonal relative to the scalar product

〈pλ, pµ〉t := δλµzλ
∏
i≥1

(1− tλi)−1.

Among the many interesting things encoded in this family of symmetric functions, one
finds information about: (i) counting chains in the lattice of subgroups of finite abelian p-
groups, (ii) the irreducible characters of GLn(q), and (iii) the Kostka-Foulkes polynomials
(a q-analogue of the Kostka numbers).

2. The zonal polynomials Zλ (see [4], [12], and Chapter VII of [7]). These are
orthogonal relative to the scalar product

〈pλ, pµ〉
2

:= 2`(λ)zλδλµ,

where `(λ) is the length (number of nonzero terms) of λ. If we specialize to n vari-
ables x1, . . . , xn, we obtain (after agreeing about questions of normalization) the spherical
functions for the homogeneous space GLn/On of n × n real, symmetric positive definite
matrices. (One identifies x1, . . . , xn as the eigenvalues of a positive definite matrix.)

3. The Jack symmetric functions Jλ(α) (see [10] and §VI.10 of [7]). These are
orthogonal relative to the scalar product

〈pλ, pµ〉α := α`(λ)zλδλµ.

One obtains the Schur functions if α = 1, and the zonal polynomials if α = 2.

4. Macdonald’s two-parameter symmetric functions Pλ(q, t) (see [8] and Chapter VI
of [7]). These are orthogonal relative to the scalar product

〈pλ, pµ〉q,t := δλµzλ
∏
i≥1

1− qλi

1− tλi
,

and have stimulated a vast amount of research (e.g., see [2] and [3]).

5. Some Data Structures
There are several data structures that play special roles in SF.

Partitions. Many of the procedures in SF are designed to accept partitions as input,
or return partitions as output. For these purposes, a partition is defined to be a non-
increasing list of zero or more positive integers. Thus [3,3,2,1,1] is a partition, but
[3,1,0] and [1,1,2] are not. The empty partition is []. Note that Maple’s built-in
combinat package arranges the parts of partitions in non-decreasing order.

6

The procedures Par, subPar, and dominate are useful for generating lists of partitions
satisfying various constraints.

Partition Orderings. There are two total orderings of the set of partitions that are impor-
tant in SF. The lexicographic ordering4 is defined by the rule that λ >L µ if

λ1 = µ1, . . . , λi−1 = µi−1, λi > µi for some i ≥ 1,

and the conjugate-lexicographic ordering is defined by

λ <C µ ⇔ λ′ >L µ
′,

where λ′ denotes the partition conjugate to λ; i.e., λ′i is the number of parts ≥ i in λ.
These two orderings are quite similar, but note that for partitions of 6, we have

6>L 51>L 42>L 411>L 33>L 321>L 3111>L 222>L 2211>L 21111>L 111111,

6>C 51>C 42>C 33>C 411>C 321>C 222>C 3111>C 2211>C 21111>C 111111.

Both orderings are refinements of the dominance order.
The procedure Par lists partitions of n in lexicographic order, starting with [n] and

ending with [1,...,1] (assuming n > 0). Given a partition lambda of n, the procedure
call nextPar(lambda) generates the next partition that appears after lambda in the list
Par(n) (or NULL if there is no such partition), and thus may be used to construct space-
efficient partition loops. For example,

lambda:=[30];

while lambda <> NULL do

f(lambda):

lambda:=nextPar(lambda):

end do:

would apply the function f to each partition of 30.

Bases. Every basis of the ring of symmetric functions that SF understands has a Maple
name associated with it. There are four such bases that are defined when SF is first loaded.
They and their names are:

e, for elementary symmetric functions;
h, for complete homogeneous symmetric functions;
p, for power-sum symmetric functions;
s, for Schur functions.

Note that the monomial symmetric functions mλ are conspicuously absent from this list.
However this is no great loss, since it is easy to add more bases (including the mλ’s) to
the repertoire of SF. See the discussion below regarding “Adding New Bases.”

The first three bases in the above list are distinguished by the fact that they are
multiplicative. If b is the name of any such multiplicative basis (i.e., b=e, h, or p), then
the generators of the basis b are denoted b1,b2,b3,... by SF, and the elements of the

4 We can think of at least four total orderings that could be called “lexicographic.”

7

basis are monomials in these variables. Thus for example, the elementary symmetric
functions e1, e2, e3, . . . are expressed as e1,e2,e3,..., and if λ is the partition (3211),
then eλ may be expressed as e3*e2*e1^2. One implication of this is that the Maple names
e1,e2,e3,... and e itself play a special role in SF, and thus should not be assigned values
by the user. Similar remarks apply to h and p.

On the other hand, if b is the name of a non-multiplicative basis (e.g., b=s), then the
element of this basis indexed by the partition λ = (i1, i2, . . . , ik) is expressed by SF as the
indexed variable b[i_1,i_2,...,i_k]. Thus for example, the Schur functions s3211, s5
and s∅ are expressed as s[3,2,1,1], s[5] and s[]. Note that if lambda is a partition,
say lambda:=[3,3,1], then the Maple expression b[lambda] evaluates to b[[3,3,1]],
which is not a proper expression for an element of the basis b. Instead one should write
b[op(lambda)].

The SF package uses a global variable, ‘SF/Bases‘, to track the set of symmetric
function bases that have been defined in the current Maple session. In particular, when
SF is first loaded, the assignment

‘SF/Bases‘:={e, h, p, s[]}

is used to initialize this variable. The reason that ‘s[]’ appears here, rather than ‘s’, is
to indicate that the Schur function basis is not multiplicative.

Symmetric Functions. At the heart of the SF package are four procedures toe, toh, top,
and tos that take as input any symmetric function and convert it ‘to’ an expression
involving the bases e, h, p, and s, respectively.

For the purposes of SF, a symmetric function is defined to be any Maple expression
that is a polynomial (i.e., of type polynom) with respect to the variables of all bases that
have been defined. For each multiplicative basis b, these variables are b1,b2,..., and for
each non-multiplicative basis b these variables are b[i_1,...,i_k], where [i_1,...,i_k]
ranges over all partitions. Of course, a symmetric function is also allowed to depend
arbitrarily on other parameters. It should be emphasized that SF never processes sym-
metric polynomials that are expressed explicitly in terms of dependent variables, such as
x1, . . . , xn.5 Since the number of terms in a generic polynomial of this type is propor-
tional to n!, any attempt to do arithmetic with these expressions would be doomed by
exponential growth to work only with toy-sized problems.

For example, (1+q*h3)^2*s[2,2,1] - p2*s[4,2]^3 is a valid symmetric function,
but 1/(1-p1) is not. Note also that unless ‘Z’ has already been defined as the name of a
symmetric function basis, SF will assume that variable names such as Z[2,2,1] belong to
the field of scalars.

In many of the procedures of SF, the user has the option of specifying as part of
the input that a given symmetric function, say f, is expressed entirely in terms of some
particular basis b. To be “expressed in terms of base b” means one of two things: (1) If b
is one of the non-multiplicative bases, it means that the only symmetric function variables
that appear in the definition of f are of the form b[i_1,...,i_k], where [i_1,...,i_k]

ranges over all partitions, and that f is a linear expression with respect to these variables.

5 However, using the procedure evalsf, it is possible to recover the explicit dependence of a symmetric

function on the xi’s.

8

(2) If b is one of the multiplicative bases, it simply means that the only symmetric function
variables that appear in the definition of f are b1,b2,b3,....

Thus for example, if m has been defined to be a (non-multiplicative) basis, then the
expression m[2,1]*m[3,1,1] is a valid symmetric function, but it is not considered to be
“expressed in base m.” On the other hand, m[3]+q*m[2,1]+(1+q^2)*m[1,1,1] is a valid
expression in base m.

Since the Schur function basis s is non-multiplicative, similar remarks ought to apply
to it as well. However, due to the special nature of the algorithms we use to convert
between Schur functions and other symmetric functions, we do not need to impose linearity
on expressions designated to be expressed in base s. Hence, in contrast to the previous
example, SF would tolerate being informed that s[2,1]*s[3,1,1] is in base s.

Scalar Products. In SF, there are several procedures (see dual_basis, add_basis, scalar,
and skew) that involve computations in the ring of symmetric functions relative to some
user-specified scalar product. The most basic of these is scalar, which is designed to
compute the scalar product of two symmetric functions. As we saw in §4, all of the useful
scalar products on Λ share the property that the power-sums pλ are orthogonal. To specify
such a product, say (,), the only additional information one would need is the value of
(pλ, pλ) for all partitions λ.

For these reasons, SF is designed so that the user specifies a scalar product by sup-
plying a Maple procedure that accepts any partition λ as input, and returns as output
the desired value of (pλ, pλ) (the assumption being that (pλ, pµ) = 0 for λ 6= µ). Thus
for example, to compute the scalar product of two symmetric functions, one would call
scalar with three arguments—the first two being the symmetric functions, and the third
being the name of the procedure that computes (pλ, pλ). To be more specific, recall that
the standard scalar product is defined by the property that 〈pλ, pλ〉 = zλ (see (1)). One of
the procedures of SF is zee, which returns the value of zλ for each partition λ. Hence to
compute the standard scalar product of symmetric functions f and g, one could use the
command scalar(f,g,zee). One may also compute this via the command scalar(f,g),
since the default is to use the standard scalar product if none is specified.

It should be noted that zee is designed to accept one or two additional optional
arguments that facilitate the specification of scalar products other than the standard one.
For example, the scalar product 〈 , 〉t used in the definition of Hall-Littlewood symmetric
functions (see §4) could be specified by the procedure

zee_for_hall_littlewood := lambda -> zee(lambda,0,t).

Adding New Bases. There are two procedures in SF, dual_basis and add_basis, that are
designed to allow the user to introduce new symmetric function bases into SF. The first
of these, dual_basis, takes any previously defined basis bλ, together with a user-specified
scalar product (,), and adds to SF the basis that is dual to bλ; i.e., the unique basis Bλ
satisfying (Bλ, bµ) = δλµ. The precise calling sequence is

dual_basis(B,b,scp);

where B is a user-chosen name for the dual basis to be created, b is the name of the
previously-defined basis, and scp is the scalar product; i.e., the procedure for computing
(pλ, pλ). If the scalar product is omitted, the default is to use the standard one.

9

The net effect of such a procedure call is the following: First, the name B[] is added
to ‘SF/Bases‘, the global variable that keeps track of all bases that have been defined.
Second, a new procedure named toB is (silently) created. Its purpose is similar to the
built-in procedures toe, toh, top and tos: it converts any given symmetric function into
an expression in the B-basis. The third effect is that the information defining this basis is
saved in tables so that all previously defined ‘to’-procedures are able to process symmetric
function expressions involving the new basis B.

For example, probably the most common use of this feature is to define the monomial
symmetric functions mλ. Recall from (1) that the mλ’s are dual to the hλ’s, relative to the
standard scalar product. Thus to define the mλ’s in SF, one simply uses dual_basis(m,h).
At this point, the new procedure tom will be created, and the user is free to process
symmetric function expressions involving the monomials m[i_1,...,i_k].

The second mechanism for introducing new bases is add_basis. This procedure
is designed for symmetric function bases, such as those discussed in §4, that may be
characterized by orthogonality-plus-triangularity properties. More precisely, let us suppose
that (,) is a scalar product on Λ for which (pλ, pµ) = 0 for λ 6= µ. Given scalars cλ 6= 0,
there is a unique basis Pλ of Λ that (i) is orthogonal relative to (,), and (ii) satisfies

Pλ = cλmλ + a linear combination of mµ for µ <C λ,

where ‘<C ’ denotes the conjugate-lexicographic ordering we defined earlier.
We remark that for n ≥ 1, the Pλ’s indexed by partitions λ with ≤ n parts specialize

to a basis for the ring of symmetric polynomials in n variables. This is a special feature
of the <C-ordering and would not be valid in general if we had used the lexicographic
ordering <L in our definition.6

If scp and lterm are Maple procedures for computing the scalar product (pλ, pλ) and
the desired “leading term” cλ for each partition λ, then the procedure call

add_basis(P,scp,lterm);

defines P to be the name of the symmetric function basis characterized by properties (i)
and (ii) above. If the third argument lterm is omitted, the default is to use cλ = 1. The
effect of add_basis is similar to dual_basis: the name P[] is added to ‘SF/Bases‘, a new
procedure named toP is created, and the defining information for the P-basis is saved in
tables so that all previously defined ‘to’-procedures are able to process symmetric function
expressions involving the new basis P.

In principle, the user should not need to be concerned about how SF internally pro-
cesses symmetric function expressions involving a basis created via add_basis; however,
in order to give a rough idea of the resources that are needed during such computations,
a few remarks about the algorithms are in order. Suppose that P is the name of a basis
created by add_basis. On the first occasion that SF is asked to process a symmetric
function involving, say P[3,3,2,1], the first step is to use the Gram-Schmidt algorithm
to compute the expansion of P[3,3,2,1] in terms of elementary symmetric functions, and

6 However, it should be noted that the orthogonal bases that occur in applications, including all of
the bases discussed in §4, are not sensitive to how the partitions are ordered, provided that the ordering

is a refinement of the dominance order.

10

cache the result in a Maple remember table. Given the recursive nature of the Gram-
Schmidt algorithm, this means that the expansions of all “earlier” members of the basis
(e.g., P[3,2,2,2], P[3,2,2,1,1], etc.) will need to be computed first, or retrieved (if
available) from a remember table. Thus, the first computation involving P[3,3,2,1] may
be slow, but subsequent computations will require only a quick table lookup.

To temper the user’s enthusiasm, note that several of the symmetric function bases
discussed in §4 depend on various free parameters such as q, t, and α. In such cases, the
Gram-Schmidt algorithm is forced to work over rational function fields. The complexity
of arithmetic over such fields and the sheer size of the expressions involved mean that the
adventurous user will severely test the capacity of Maple. For example, here are some
benchmarks I obtained while running the Linux/x86 version of Maple V Release 5. It
takes about 5.6 GHz-sec and 3MB to build the remember table for the Hall-Littlewood
functions of degree 9; for degree 12, it takes about 2 GHz-min and 7MB. For the Macdonald
symmetric functions of degree 8, it takes about 2 GHz-min and 13MB.7

Characters. There is a close relationship between characters of the symmetric group Sn
and the space of homogeneous symmetric functions of degree n; several of the procedures
of SF (e.g., itensor, plethysm, scalar, skew and tos) have special significance in this
context. (For details about this, see [5], [6], or [7].) Furthermore, there are two procedures,
sf2char and char2sf, that are designed to convert between symmetric functions and the
symmetric group characters to which they correspond. For these purposes, a symmetric
group character is defined to be a linear combination of Maple expressions of the form
cl[i_1,...,i_k], where [i_1,...,i_k] ranges over all partitions. Here ‘cl’ is a special
name reserved by SF to designate class functions on the symmetric group; the expression
cl[i_1,...,i_k] represents a function on the symmetric group that takes on the value 1
at any permutation of cycle-type λ = (i1, . . . , ik), and 0 otherwise. Thus for example, the
Maple expression

3*cl[1,1,1,1] + cl[2,1,1] - cl[2,2] - cl[4]

represents the (possibly virtual) character of S4 whose values are 3, 1,−1, and −1 on
permutations whose respective cycle-types are (1111), (211), (22), and (4).

6. Short Synopses of the Procedures
Here is a brief indication of the purpose of each procedure in SF. For the full details,

including syntax, definitions and examples, consult the on-line help via the commands
?SF,function or ?SF[function], or use the HTML document in the Vanilla Edition.

Par list partitions
add_basis add an orthogonal basis to the set of known bases
char2sf convert (virtual) characters to symmetric functions
conjugate conjugate a partition
dominate list/test partitions dominated by another partition
dual_basis add a dual basis to the set of known bases

7 However, by exploiting special features of Macdonald’s symmetric functions it is possible to greatly
accelerate the computation. Some Maple code for this is provided in the examples directory of SF. Using

this specially designed code, the same calculation takes about 18 GHz-sec and 6.6MB.

11

evalsf plethystic evaluation of symmetric functions
hooks hook lengths of a partition
itensor inner tensor product of symmetric functions
jt_matrix Jacobi-Trudi matrix of a (possibly skew) partition
nextPar generate the next partition in lexicographic order
omega apply the automorphism ω to a symmetric function
plethysm plethysm of symmetric functions
scalar scalar product of symmetric functions
sf2char convert symmetric functions to (virtual) characters
skew skew operation on symmetric functions
stdeg degree with respect to the standard grading
subPar list all subpartitions of a partition
theta apply the automorphism θ to a symmetric function
toe convert a symmetric function to the e-basis
toh convert a symmetric function to the h-basis
top convert a symmetric function to the p-basis
tos convert a symmetric function to the Schur function basis
varset variable set of a symmetric function
zee squared norm of power sums

Here is a short summary of the contents of the examples subdirectory. These files
must be explicitly loaded by the user and contain both documentation and source code.

bases annotated list of SF-definitions for commonly used symmetric functions
graph count unlabeled graphs via the Polya-Redfield method
jacks accelerated computation of Jack symmetric functions
kfpoly generate Kostka-Foulkes polynomials via rigged configurations
LR_rule implementation of the Littlewood-Richardson rule
macdonald accelerated computation of Macdonald’s symmetric functions
qt_kostka compute the entries of the q, t-Kostka matrix
seminormal generate matrices for Young’s seminormal representations of Sn
skew_shapes generate all skew shapes of a given size
tableaux generate all standard Young tableaux of a given shape

7. Changelog

Version 2.4. The most significant improvements and additions are:
• Conversions among the e, h, and p bases are more space-efficient and much faster.
• Calls to ‘solve/linear‘ (now deprecated in Maple) have been eliminated.
• The procedure tos for converting to Schur functions has been radically redesigned

and is significantly faster. In particular, the Schur function support of a symmetric
function is now inferred dynamically, and the running time is (roughly) governed by
the number of terms in the output. In previous versions of SF, an instance of tos
could be accelerated by optionally providing a partition list containing the support of
the output; now, this option is ignored.
• The orthogonal bases created by add_basis are now defined in terms of triangularity

with respect to the conjugate-lexicographic order <C , not the lexicographic order <L

12

(see the definitions in §5). This has no effect on computations involving the orthogonal
bases discussed in §4, but has the benefit that in all cases, the basis elements indexed
by partitions with ≤ n rows may be specialized to a basis for the ring of symmetric
polynomials in n variables.

• An optional flag may be provided to add_basis, indicating that the basis being
created is known to be triangular with respect to all refinements of the dominance
order. This information is used to accelerate the Gram-Schmidt algorithm.

• The ‘to’-procedures created by add_basis are now internally and externally similar
to the new tos. In particular, they now derive the support of the output dynamically,
and ignore any user-provided information about this support. Also, they now allow
the option of computing in the ring of symmetric polynomials in n variables (i.e.,
modulo the ideal generated by en+1, en+2, . . .).

• The procedures for converting to and from a basis created via dual_basis have been
redesigned. The old versions consumed large amounts of memory, and large instances
could trigger crashes in old versions of Maple. The new versions are much more
space-efficient, do not trigger crashes, and in most cases, are faster.

• The procedure dominate may now be used to test whether two partitions are related
in dominance order.

• The procedure nextPar has been added to the package.

• The output of evalsf is now filtered through normal in all cases, even if the second
argument is a symmetric function of degree 0.

• Most of the examples have been rewritten and are now faster and more space-efficient.
Also, seminormal now produces matrix entries with smaller denominators.

Version 2.3. In addition to the debut of the Vanilla Edition, the significant changes and
new features in SF are:

• Two new examples, jacks and kfpoly have been added.

• The example m_conjecture has been deleted, on grounds of obsolescence [3].

• Nearly all of the examples have been rewritten, with improved documentation, and
(in some cases) minor changes in functionality.

• A bug in tos and to-procedures defined by add_basis involving misuse of Maple’s
“vector degree” has been fixed. This bug could appear only in rare situations and
would manifest itself by producing a Maple ERROR. Many thanks to Mike Zabrocki
〈zabrocki@math.uqam.ca〉 for spotting the bug.

• A minor bug in dominate has been fixed. When asked to list partitions with at most
n parts dominated by a partition with more than n parts, it now (correctly) returns
an empty list.

• stdeg has been restored. It had been downgraded to an internal role in Version 2.0.

Version 2.2. Aside from cosmetic improvements, the significant changes and new features
in this version of SF are:

• The procedure evalsf has been enhanced. It is still upward-compatible with the old
version, but is now capable of plethystic evaluations. See the help text.

• To minimize the chance of collision with user-defined names, the global variable Bases
has been renamed ‘SF/Bases‘.

13

• The example skew_shapes has been added, and the example graphs has been re-
named graph.

Version 2.1. There were no changes in functionality.

Version 2.0. The main changes affecting users upgrading from Versions 1.x are:
• Every basis-conversion procedure, such as toe, toh, top and tos now returns as out-

put an expression that is collected in ‘distributed’ form (see the Maple documentation
for collect), with normal applied to the coefficients.
• Every procedure in SF that accepts symmetric functions is now able to correctly

process non-homogeneous symmetric functions.
• The code for manipulating monomial symmetric functions (and in particular, tom) is

no longer built-in. It has been replaced by the more general dual_basis construction.
• ch2p and p2ch have been replaced with char2sf and sf2char. The new procedures

allow conversions between symmetric group characters and arbitrary symmetric func-
tions, not just expressions in the power-sums.

• ibocaj and jacobi have been replaced by jt_matrix.
• Par no longer uses option remember.
• stdeg is now an internal procedure, renamed ‘SF/stdeg‘.

8. Miscellany

Global Warning. The following names have been reserved for use by SF and should not be
assigned values by the user:

1. e,h,p,s (names of predefined bases).
2. e1,h1,p1,e2,h2,p2,... (names of symmetric functions).
3. cl (the name reserved for class functions on the symmetric group).

Maple Variations. A new release of Maple often means fundamental changes in the under-
lying syntax. For example, the ditto operator changed from " to % in Maple V Release 5,
and the concatenation operator changed from . to || in Maple 6. Although the source
code for SF has been completely updated to account for these changes, the reader should
beware that there are a few instances in the documentation of individual functions where
usage is explained in terms of the old syntax.

Object too large. Old versions of Maple (prior to Maple 6) have noticeable limits on
the number of operands in a Maple object. On a 32-bit x86 CPU, computations involving
generic symmetric functions of degree 35 will trigger an ‘object too large’ error in these
versions of Maple. Later versions do not have these limitations.

Under the hood. I am frequently asked about the algorithm SF uses to convert a symmetric
function f into Schur functions. The basic idea is that there is a total ordering of the set
of h-monomials such that hλ is the “first” term of the Jacobi-Trudi h-expansion of sλ.
Thus we first convert f into an h-polynomial, and then extract the leading h-monomial
from f , say hλ. The coefficient of hλ in f is also the coefficient of sλ in f ; we then expand
sλ into an h-polynomial via (say) the Jacobi-Trudi determinant, subtract the appropriate
multiple of the h-expression for sλ from f so as to kill the leading term, and iterate.

14

Notice that the main expense of this algorithm is the cost of converting f and each sλ
to the h-basis. The running time is strongly correlated with the number of distinct Schur
functions in the output, and (unlike the implementations of tos in older versions of SF)
there is no advantage in knowing the support of this output in advance.

The ‘to’-procedures created by add_basis operate in a similar way.

More Hints. There is one case in which it is possible to use knowledge of the support
of the output to improve the performance of a ‘to’-procedure. Indeed, suppose that one
intends to compute the B-expansion of a symmetric function f, where B is a basis that was
created by dual_basis. If one can build in advance a list that includes every partition
in the B-support of f, then the function call toB(f,partition list) will be able to do the
conversion by computing scalar products involving only the elements in the dual basis
indexed by the given list, rather than involving all members of the dual basis.

For example, the coefficient of mµ in sλ is nonzero only if λ dominates µ (see (2)), so
dominate([4,3,2,2]) is a partition list that contains the m-support of s[4,3,2,2]. As
an experiment, try running the commands

with(SF); dual_basis(m,h);

parlist:=dominate([4,3,2,2]);

tom(s[4,3,2,2], parlist);

tom(s[4,3,2,2]);

We find that the first call to tom runs about 3 or 4 times faster than the second.

Bugs. Please send reports of reproducible bugs to my e-mail address on page 1. Be sure
to include an example, preferably as small as possible. A common problem that is not a
bug occurs when the user assigns values to the special names e, h, p, s, or m (if m is the
name of a basis added during an SF session). I’ve made this mistake myself on more than
one occasion.

Compensation. If SF proves to be useful in your own research, I would appreciate an
acknowledgment of it in publications derived from that research.

Mailing list. I maintain a low-traffic, private mailing list for users of SF and my other
packages posets, coxeter, and weyl. If you would like to be kept informed of new
versions, new packages, or (gasp) bugs, please send me an e-mail message.

15

9. Copyleft
Copyleft c©1993, 1998, 2001, 2005 by John R. Stembridge.
Permission is granted to anyone to use, modify, or redistribute this software freely,

subject to the following restrictions:

1. The author accepts no responsibility for any consequences of this software and makes
no guarantee that the software is free of defects.

2. The origin of this software must not be misrepresented, either by explicit claim or by
omission.

3. This notice and the copyleft must be included in all copies or altered versions of this
software.

4. This software may not be included or redistributed as part of any package to be sold
for profit without the explicit written permission of the author.

10. References

[1] W. Fulton and J. Harris, “Representation Theory. A First Course,” Springer-Verlag,
Berlin-New York, 1991.

[2] A. M. Garsia and M. Haiman, A graded representation model for Macdonald’s poly-
nomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), 3607–3610.

[3] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture,
J. Amer. Math. Soc. 14 (2001), 941–1006.

[4] A. T. James, Zonal polynomials of the real positive definite symmetric matrices, Ann.
of Math. 74 (1961), 475–501.

[5] G. D. James and A. Kerber, “The Representation Theory of the Symmetric Group,”
Addison-Wesley, Reading, MA, 1981.

[6] D. E. Littlewood, “The Theory of Group Characters,” 2nd ed., Oxford Univ. Press,
Oxford, 1950.

[7] I. G. Macdonald, “Symmetric Functions and Hall Polynomials,” 2nd ed., Oxford Univ.
Press, Oxford, 1995.

[8] I. G. Macdonald, A new class of symmetric functions, Publ. I.R.M.A. Strasbourg,
Actes 20e Séminaire Lotharingien (1988), 131–171.

[9] B. E. Sagan, “The Symmetric Group. Representations, Combinatorial Algorithms,
and Symmetric Functions,” 2nd ed., Springer, New York, 2001.

[10] R. P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. in
Math. 77 (1989), 76–115.

[11] R. P. Stanley, “Enumerative Combinatorics, Vol. 2,” Cambridge Univ. Press, Cam-
bridge, 1999.

[12] A. Takemura, “Zonal Polynomials,” Institute of Mathematical Statistics, Hayward,
CA, 1984.

16

