
A Maple Package for
Root Systems and Finite Coxeter Groups

Version 2.4∗

February 28, 2004

John R. Stembridge†
Department of Mathematics

University of Michigan
Ann Arbor, Michigan 48109–1109 USA

email: jrs@umich.edu

Web: www.math.lsa.umich.edu/~jrs

Contents
1. Introduction
2. System Requirements
3. Getting Started
4. Definitions
5. Data Structures
6. Short Synopses of the Procedures
7. The Non-Crystallographic Kludge
8. Changelog
9. Miscellany

10. Copyleft
11. References

1. Introduction
This article provides an introduction to Version 2.4 of coxeter and weyl, two pack-

ages of 50 Maple programs that provide assistance in the study of root systems, finite
Coxeter groups, and Weyl characters. The coxeter package contains 38 basic procedures
for manipulating roots, vectors and reduced expressions, for generating permutation rep-
resentations and irreducible characters of Coxeter groups, and for retrieving the type of
information one finds in the appendices of Bourbaki [1]. The weyl package is a supple-
ment to coxeter containing 12 procedures for manipulating weights and characters of
irreducible representations of semisimple Lie algebras (i.e., Weyl characters). It is capable
of reproducing the book of tables by Bremner, Moody and Patera [2].

∗ Version 2.4 is the Alexandre-Théophile Vandermonde Birthday Edition.
† This work supported by NSF grants DMS–0070685 and DMS–0245385.

1

I do not claim that these packages will answer every question one might want to ask
about a root system, Coxeter group, or Weyl character. However, even if it doesn’t do
exactly what you want, there is a good chance you can build the procedures you need out
of the raw materials provided here. Alternatives include the LiE package of van Leeuwen,
Cohen and Lisser (et. al.) [6], the CHEVIE package of Meinolf Geck (et. al.) [7], and the
Schur package of Brian Wybourne [8].

The main improvements in the recent versions of coxeter and weyl are:

• Several new functions have been added to weyl, including three algorithms for de-
composing products of Weyl characters (superseding the previously incomplete im-
plementation of the qtensor algorithm in Version 2.1), two algorithms for restricting
Weyl characters to reductive Lie subalgebras, and two functions toM and toX for
manipulating expressions in the character ring of a semisimple Lie algebra.

• Several new examples have been added or improved, including procedures for com-
puting “fake degrees” of finite reflection groups, for generating the crystal graphs
of representations of quantum (Lie) algebras, and for traversing the elements of a
Coxeter group or any of its parabolic quotients.

• A “Vanilla Edition” of the packages is now available. The Vanilla Edition should work
with any OS that runs Maple.

• The package is now compatible with Maple 8 and Maple 9.

The main difference between Versions 2.4 and 2.3 involves a tweak to enable use of Maple 8
and 9; the only changes between 2.3 and 2.2 involve minor bug fixes, not functionality.
For a detailed log of the changes and new features in each version, see §8.

I still get reports from sites that are using obsolete versions of these packages, including
the versions in the Maple Share Library. These sites should upgrade to take advantage of
the vast improvements that have been added since the release of the 1.x versions.

2. System Requirements

First, you must have Maple V, or Maple 6, 7, 8, or 9 〈www.maplesoft.com〉.
The packages have been developed and tested on various Unix machines running

Releases 3, 4, and 5 of Maple V and Maple 6, 7, 8, and 9. While I no longer have access
to machines running the first releases of Maple V, the packages are designed so that they
should be compatible with these versions as well.1

Version 2.4 of coxeter and weyl is packaged in two formats: one is a Unix tar file
(the “Unix Edition”), and the second is a collection of plain text files that comprise the
Vanilla Edition. Both editions are available for download from

〈http://www.math.lsa.umich.edu/~jrs/maple.html〉.
Users of Maple on Unix platforms have the choice of installing either the Unix or

Vanilla Editions; the (minor) differences are discussed in §3. For everyone else, the Vanilla
Edition is the only choice. In particular, users of the special edition packaged for the
Macintosh in older versions of the packages will need to migrate to the Vanilla Edition.

1 Congratulations to anyone who still has access to a working copy of Maple V Release 1 or 2.

2

3. Getting Started

Special Notes for the Unix Edition. All of the information needed to install the packages is
provided in an accompanying READ_ME file. However, if a System Administrator has done
the installation for you, and you aren’t already a user of one of my packages, then you will
need to find out the name of the directory where the packages have been stored and edit
an initialization file.

For the purposes of this discussion, let us assume that the packages have been stored
in the directory /usr/local/maple/packages. You can confirm this by verifying that
/usr/local/maple/packages has subdirectories named coxeter and weyl. Next, you
will need to create a file named .mapleinit in your home directory. Or add to it, if you
already have one. In this file you should insert the following two lines:

HomeLib:=‘/usr/local/maple/packages‘:

libname:=libname, HomeLib:

Be careful to correctly type both of the left quote-marks (‘). Each time Maple is invoked,
these statements will define where the packages are located. (For Maple V Release 1, the
syntax is slightly different—see the notes below.)

You are now ready to run the packages. Simply enter the commands with(coxeter)
or with(weyl) during a Maple session. Although weyl internally uses many of the pro-
cedures in coxeter, it is not necessary to explicitly load coxeter to use weyl. To access
documentation about an individual function, use ?coxeter,function or ?weyl,function.
The source code is located in

/usr/local/maple/packages/coxeter/src,
/usr/local/maple/packages/weyl/src,

the library of data for the exceptional root systems is located in

/usr/local/maple/packages/coxeter/lib,

and some additional files of examples and applications may be found in

/usr/local/maple/packages/coxeter/examples.

Special Notes Regarding Maple V Release 1. The syntax for specifying the locations of
external libraries is slightly different in Maple V Release 1. The .mapleinit file should
instead have the lines

HomeLib:=‘/usr/local/maple/packages‘:

_liblist:=[HomeLib]:

Be careful to correctly type the left quote-marks (‘) and underscore character (_).
Also, when the Unix Edition of coxeter and weyl is installed with Release 1 of

Maple V, the help texts are not integrated into the package. Instead, users should consult
the HTML version of the help texts provided with the Vanilla Edition. (The mechanism
for loading help for external functions is so primitive in Release 1 that it no longer makes
sense to support it.)

Special Notes for the Vanilla Edition. The Vanilla Edition consists primarily of a single
text file that may be loaded into a Maple session via the read command. It loads all of the

3

package functions in coxeter and weyl and the entire contents of the library (including
conjugacy class data and character tables for the exceptional groups) into the workspace,
whereas the Unix Edition keeps clutter to a minimum by loading functions and library
elements only at the moment they are first used.

When the Vanilla Edition is first loaded, the package functions are initially useable
only via the long forms

coxeter[function](arguments) and weyl[function](arguments).

Although coxeter and weyl are not recognized by the Maple with command, the Vanilla
Edition provides two special functions withcoxeter and withweyl so that the commands
withcoxeter() and withweyl() enable the use of the short forms

function(arguments).

Similarly, withcoxeter(arguments) and withweyl(arguments) enable the short forms for
some subset of the package, modeling the expected behavior of with(coxeter,arguments)
and with(weyl,arguments).

Documentation for the individual functions is not loaded when the package is loaded.
Instead there is a separate HTML file containing all of the help texts cross-referenced with
hyperlinks. Similarly, the suite of examples is provided as a directory of plain text files
available for download.

The remainder of this article presents an overview of the workings of coxeter and
weyl, defines the fundamental objects of study, and explains the design of the data struc-
tures that model these objects. A one-line description of the purpose of each procedure
and example is provided in §6. For more detailed information about the individual com-
mands, consult the on-line help. For more information about some of the key algorithms
used by the packages, see [5].

4. Definitions
We begin with some of the basic definitions in the theory of (finite) root systems and

Coxeter groups. For more details, the standard reference is Bourbaki [1]. I also highly
recommend the books by Humphreys on Lie algebras [3] and reflection groups and Coxeter
groups [4]. In the following, we will need a real vector space with a symmetric, positive
definite inner product 〈 · , · 〉 (i.e., a real Euclidean space). For simplicity, let us use Rd

together with its standard inner product.

Root systems. Given a nonzero α ∈ Rd, the reflection corresponding to α is the linear
transformation σα : Rd → Rd defined by σα(β) = β − 〈β, α∨〉α, where α∨ := 2α/〈α, α〉.
A (reduced) root system Φ is a finite subset of Rd−{0} (whose members are called roots)
satisfying the following pair of axioms:

1. For α ∈ Φ, Φ ∩Rα = {±α}.
2. For α ∈ Φ, σα permutes Φ.

If Φ also satisfies

3. 〈α, β∨〉 ∈ Z for all α, β ∈ Φ,

then the root system is said to be crystallographic. In this case, the roots generate a
lattice, which is a valuable property from the point of view of explicit computation, since
it implies the existence of a basis relative to which the roots have integer coordinates.

4

The rank of Φ is the dimension of its linear span.

The classification(s). A root system Φ is irreducible if it cannot be partitioned into two
mutually orthogonal subsets. It is easily verified that the blocks of any orthogonal partition
are themselves root systems, so every root system has a (unique) orthogonal decomposition
into irreducible root systems.

The classification of irreducible root systems is well-known. However, implicit in the
classification is that we agree on the answer to the question of when two root systems are
isomorphic.

The “correct” notion of isomorphism depends on whether the context is crystallo-
graphic or not. For general root systems Φ and Φ′, a reasonable definition of isomorphism
is that there should be a bijection α 7→ α′ such that the angle between α, β ∈ Φ is the same
as the angle between α′, β′ ∈ Φ′. If all roots have the same length (a hypothesis that can
always be imposed but is not always convenient), this is equivalent to the existence of an
isometry that maps Φ to Φ′. For crystallographic root systems, we need a more restrictive
notion of isomorphism—there should be a bijection α 7→ α′ such that 〈α, β∨〉 = 〈α′, β′∨〉.
A given root system may not be isomorphic (in the general sense) to any crystallographic
root system, or it may be isomorphic to two crystallographic root systems that are distinct
(in the crystallographic sense).

Thus there are really two classifications: the isomorphism classes of general and crys-
tallographic irreducible root systems. In the crystallographic case, we have the familiar
An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 3), Dn (n ≥ 4), E6, E7, E8, F4, and G2 (subscripts
indicate rank). In the general case, we have An (n ≥ 1), Bn (n ≥ 2), Dn (n ≥ 4), E6,
E7, E8, F4, H3, H4, and I2(m) (m ≥ 5). It would be more precise to have (for example)
two names for Bn, one for a crystallographic context and one for a general context, but
tradition dictates otherwise.

Bases. Every root system has a base: a linearly independent set of roots ∆ = {α1, . . . , αn}
with the property that every root α is a linear combination

∑
i ciαi with every ci ≥ 0 or

every ci ≤ 0. (If Φ is crystallographic then every ci is an integer, and conversely.) A root
is said to be positive or negative (with respect to ∆) according to the signs of the base
coordinates. The base roots are also referred to as simple roots.

The base generates the root system in the sense that Φ is the smallest root system
containing ∆. Furthermore, all bases of Φ are equivalent, for if ∆ and ∆′ are bases
of isomorphic root systems Φ and Φ′ (in either sense of isomorphism), then there is an
isomorphism that maps ∆ to ∆′.

In the crystallographic case, it follows from the fact that ∆ generates Φ that the
Cartan integers 〈α, β∨〉 for α, β ∈ Φ are completed determined by the Cartan integers
involving the simple roots. In other words, the isomorphism class of a crystallographic
root system depends only on the so-called Cartan matrix [〈αi, α∨j 〉].

Similarly, the fact that ∆ generates Φ also implies that the isomorphism class of Φ (in
the sense of isomorphism of general root systems) depends only on the matrix of angles
between pairs of simple roots.

Coxeter groups. The reflections σα for α ∈ Φ generate a finite group W (Φ) of isometries of
Rd known as a reflection group. Moreover, the reflections σ1, . . . , σn corresponding to the
simple roots α1, . . . , αn (the so-called simple reflections) suffice to generate W (Φ). The

5

reflection groups corresponding to crystallographic root systems are the Weyl groups of
semisimple Lie algebras. In general, reflection groups turn out to be precisely the finite
Coxeter groups; i.e., the finite groups having presentations of the form

〈s1, . . . , sn : (sisj)
mij = 1〉,

where the mij are positive integers such that (1) mij = mji, and (2) mij = 1 iff i = j.
The symmetric matrix [mij], known as the Coxeter matrix, completely determines the

reflection group W (Φ) up to isomorphism. It also determines the isomorphism class of Φ
(in the general, not crystallographic sense), since (1 − 1/mij)π is the angle between the
simple roots αi and αj .

It is often convenient to regard elements of a Coxeter groupW as words in the alphabet
of the generators {s1, . . . , sn}. A word w = si1 · · · sil is said to be reduced if the length l is
as small as possible among all such representations of a given element w ∈W .

Weights. In a crystallographic root system Φ with simple roots α1, . . . , αn, an integral
weight (or more briefly, a weight) is a vector λ with the property that the quantities
mi = 〈λ, α∨i 〉 (1 ≤ i ≤ n) are integers. The weight λ is dominant if m1, . . . ,mn ≥ 0.
The Weyl group W (Φ) permutes the set of weights, and each W (Φ)-orbit of weights has
a unique dominant member.

There are unique weights ω1, . . . , ωn ∈ Span Φ satisfying 〈ωi, α∨j 〉 = δij ; these are the
so-called fundamental weights. Every weight in Span Φ is an integer linear combination of
the fundamental weights; the dominant ones are those in the nonnegative span.

There is a semisimple Lie algebra L = L(Φ) associated to Φ (unique up to isomor-
phism), and for each dominant integral weight λ ∈ Span Φ, there is an irreducible finite-
dimensional L-representation Vλ. Moreover, the Vλ’s form a complete set of irreducible,
non-isomorphic irreducible representations of L.

Orbit sums and Weyl characters. Given a semisimple Lie algebra L with (crystallographic)
root system Φ and Weyl group W = W (Φ), the characters of representations of L may be
regarded as elements of a ring R with a Z-basis consisting of formal exponentials eν , where
ν ranges over integral weights in Span Φ, subject to the rules eµ ·eν = eµ+ν . Moreover, for
each dominant λ, the character χ(λ) of Vλ is given by the Weyl Character Formula; viz.,

χ(λ) = Σ(λ+ ρ)/Σ(ρ),

where Σ(ν) =
∑
w∈W sgn(w)ewν and 2ρ denotes the sum of all positive roots.

We refer to χ(λ) as a Weyl character.
It is easily shown that the Weyl characters χ(λ) form a Z-basis for the W -invariant

part of R (the W -action is inherited from the W -action on weights). On the other hand,
there is another natural Z-basis for the W -invariant part of R formed by the orbit sums

m(λ) :=
∑
ν∈Wλ

eν =
1

Nλ

∑
w∈W

ewλ,

where λ ranges over dominant integral weights in Span Φ and Nλ = |{w ∈ W : wλ = λ}|
denotes the order of the stabilizer of λ.

6

5. Data Structures
Let me now explain (and in some cases justify) the choices I have made in modeling

root systems and Coxeter groups in coxeter and weyl.

Vectors. Perhaps the most important decision one has to make is how to represent vectors.
Many of the efficient algorithms in this subject rely on the geometry of reflections acting
on vectors, and the innermost core of many of the procedures in coxeter and weyl amount
to computations of inner products and sums of vectors.

In these packages, a vector is defined to be a linear combination of a standard ortho-
normal basis e1,e2,e3,....2 The coefficients should be rational or floating-point. Thus
2*e2-e4/3 is a vector, but sqrt(5)*e1+x*e2 is not. One consequence of this is that
coxeter and weyl have reserved e1,e2,e3,... as global variables, and so these should
not be assigned values by the user.

There are three reasons for treating vectors this way. First, the basic operations
of addition and scalar multiplication are now trivial and fast for Maple. If u and v are
vectors and c is a scalar then u+v is a vector sum and c*v is a scalar multiplication.
Second, one frequently needs to compute inner products iprod(r,v), where r is a root
and v is arbitrary. Most root systems can be constructed so that the roots have relatively
few nonzero coordinates. In fact, most roots have only two nonzero coordinates. (The
worst offenders are the root systems of type E, which in their usual construction have
some roots with 8 nonzero coordinates.) With this method of representing vectors, we can
take advantage of the “sparseness” of the roots so that the cost of computing an inner
product with r is proportional to the number of nonzero coordinates in r. Third and last
is the fact that when one sees an expression such as 2*e1-e2-e3, there is no ambiguity
as to what it means—it is simply a vector in standard coordinates. A list of coordinates
conveys less information and can lead to confusion when changes of basis occur.

Root system names. The following names are reserved for the irreducible root systems:

A1, A2, A3,...; B1, B2, B3,...; C1, C2, C3,...; D2, D3, D4,...;

E3, E4, E5, E6, E7, E8, F4, G2, H3, H4, I2[2], I2[3], I2[4],...

In particular coxeter and weyl use these as global variables, so they should not be assigned
values by the user. To name a reducible root system, one merely forms a monomial out
of the names of the irreducible components. Thus A1*A1*C4 specifies a root system of
rank 6 whose irreducible components consist of two copies of A1 and one copy of C4. The
integer 1 is used to designate the empty root system of rank 0.

Note that although the above names all specify well-defined root systems, there are
several isomorphisms among them (in some cases depending on whether the context is crys-
tallographic), and not all of them are irreducible. The redundancy is for the convenience
of the user.

The root system data structure. Most of the procedures of coxeter and weyl include the
specification of a root system as all or part of the input. This specification may given

2 This is not the same as the vector data structure in Maple’s linalg package.

7

in any of four ways: by name (see above), by a list of base vectors (e.g., [e2-e1,e3-e2]
specifies a root system isomorphic to A2), by a Coxeter matrix, or by a Cartan matrix.
Furthermore, the procedures

base, cartan_matrix, cox_matrix, name_of

may be used to convert among these four ways of specifying a root system. For example,
if R is any of the four forms of a root system data structure, then base(R) returns a
list of simple roots for some realization of R, and name_of(R) returns the name of the
isomorphism class of R.

The fact that we have two notions of isomorphism creates some complications. For
example, if R is a Coxeter matrix, then there may either be no crystallographic root
system with this Coxeter matrix, or more than one. In such cases, cartan_matrix(R)
will generate either an error message (in the former case), or choose one of the Cartan
matrices (in the latter case).

Another problem is in determining the name_of a root system. As discussed in §4, it
would be preferable to have a distinct name for a “not necessarily crystallographic” root
system of type (say) B3. For if R is a list of base vectors, and name_of(R) returns B3 as
the result, then R may or may not be a crystallographic base. In rank two, we do have
two names for the ambiguous cases: name_of(R) returns B2 or G2 in most (appropriate)
cases; the only inputs for which it returns the names I2[4] or I2[6] involve lists of base
vectors with floating-point coordinates.

Group elements. In coxeter, elements of a reflection (or Coxeter) group W are represented
primarily as words in the simple reflections, and to a lesser extent as permutations.

If σ1, . . . , σn are the simple reflections, the group element (or word) w = σi1 · · ·σil
is represented in coxeter as the list [i_1,i_2,...,i_l]. In particular, [] represents
the identity element. It is easy to multiply or invert words. For example, if w1 and w2

are two words, then [op(w1),op(w2)] is their product, and the inverse of w is expressible
as [seq(w[-i],i=-nops(w)..-1)]. The function reduce may be used to decide if two
words represent the same group element.

There is a compact way to label the elements of a reflection group, based on the fact
that every vector v in general position (not orthogonal to any of the roots) has a trivial
stabilizer. Given such a vector v, there is a one-to-one correspondence between elements
in the W -orbit of v and W itself; i.e., one may use the vector w.v as a “label” for w. This
trick is used by some of the procedures in coxeter, and you may find it useful if you write
your own programs. In coxeter, one can do this by using the function interior_pt to
produce a vector v in the interior of the fundamental chamber (i.e., on the positive side of
the basic hyperplanes). Then, given a word w, one can use reflect to obtain the vector
u that serves to label w. To invert this procedure and recover the word labeled by the
vector u, use vec2fc. Care must be exercised when floating point coordinates are used,
since two labeling vectors must be presumed equal if the distance separating them is small.

There are also facilities in coxeter for working with group elements represented as
permutations. The main tools for this purpose are

multperm, perm2word, perm_rep, stab_chain.

The function perm_rep produces the permutation representation of a reflection group
acting on the cosets of a parabolic subgroup. In the irreducible case, it is faithful if and

8

only if the subgroup is proper. The format of the output is compatible with Maple’s group
package, but can also produce output formatted for use with the GAP system [9]. The
functions multperm and perm2word may be used to convert back-and-forth between the
word representation of a group element and a permutation.

A possible point of confusion is that in coxeter, reflections act on the left but per-
mutations act on the right. The latter is necessary to maintain compatibility with Maple’s
group package.

Weights. In keeping with the vector philosophy described earlier, an integral weight,
according to weyl, is just another vector. It is up to the user to be sure that it has
integer coordinates relative to the fundamental weights. Using the tools provided in weyl,
this is quite easy to do. For example, to compute weight multiplicities or tensor product
multiplicities for sp(8) (the Lie algebra of C4), one could use the weights function to
produce a list of the fundamental weights for C4, and then take integer combinations of
this list of vectors to create the desired weights; e.g., after loading weyl,

w:=weights(C4);

weight_mults(2*w[1]+w[3],C4);

tensor(2*w[2],w[1]+w[2],C4);

The weight_coords function computes the coordinates of a vector with respect to the
fundamental weights.

Orbit sums and Weyl characters. Several of the procedures in weyl, notably branch,
tensor, toM, toX, and weight_mults produce as output, or accept as input, elements of
the character ring of some semisimple Lie algebra L = L(Φ). The package recognizes the
orbit sums m(λ) and Weyl characters χ(λ) (see the discussion in §4) as primitive objects
in this ring; more complicated elements may be constructed by taking sums and products
of the primitive elements.

The orbit sum m(λ) is represented as a Maple expression of the form M[a,b,...,c],
where [a,b,...,c] denotes the fundamental weight coordinates of λ; similarly, the Weyl
character χ(λ) is represented as a Maple expression of the form X[a,b,...,c]. Thus for
example, the command

toX(X[1,0]*M[0,1]^2, G2);

would convert χ(ω1)m(ω2)2 into a linear combination of Weyl characters for G2.

6. Short Synopses of the Procedures
Here is a brief indication of the purpose of each function in coxeter and weyl. For

the full details, including syntax, definitions and examples, consult the on-line help via
the commands ?coxeter[function] and ?weyl[function], or use the HTML document
provided in the Vanilla Edition.

The coxeter package.

base simple roots of a root system
cartan_matrix Cartan matrix of a crystallographic root system
char_poly characteristic polynomial of a group element
class_rep determine conjugacy class representatives

9

class_size determine sizes of conjugacy classes
co_base simple co-roots of a root system
cox_matrix Coxeter matrix of a root system or Coxeter group
cox_number Coxeter number of a Coxeter group
cprod inner product of characters or class functions
degrees degrees of the basic polynomial invariants
diagram Dynkin diagram of a root system
exponents exponents of a root system
highest_root highest root in an irreducible root system
index index of connection for a crystallographic root system
induce induce characters from reflection subgroups
interior_pt find an interior point of the fundamental chamber
iprod inner product of vectors
irr_chars irreducible characters of a Coxeter group
length_gf length generating function for a Coxeter group
longest_elt longest element of a Coxeter group
multperm multiply permutations
name_of name of a root system or Coxeter group
num_refl number of reflections in a Coxeter group
orbit orbit of a vector under the action of a reflection group
orbit_size size of the orbit of a vector under the action of a reflection group
perm2word convert a permutation to a reduced word
perm_char permutation character induced by a reflection subgroup
perm_rep permutation representation of a Coxeter group
pos_roots positive roots of a root system
presentation generators and relations for a Coxeter group
rank rank of a root system or Coxeter group
reduce find a reduced expression for a group element
reflect apply reflections to a vector
restrict restrict characters to reflection subgroups
root_coords coordinates of a vector with respect to the simple roots
size size of a Coxeter group
stab_chain stabilizer chain for a Coxeter group
vec2fc map a vector to the fundamental chamber by reflections

The weyl package.

branch restrict representations to reductive subalgebras
co_rho half the sum of the positive co-roots
minuscule list minuscule and quasi-minuscule weights
rho half the sum of the positive roots
tensor decompose tensor products of representations
toM convert polynomial expressions into orbit sums
toX convert polynomial expressions into Weyl character sums
weight_coords coordinates of a vector with respect to the fundamental weights
weight_mults weight multiplicities in irreducible representations

10

weight_sys dominant weights below a given dominant weight
weights fundamental weights of a (crystallographic) root system
weyl_dim dimension of an irreducible representation

Here is a short summary of the contents of the examples directory. These files must
be explicitly loaded by the user and contain both documentation and source code.

bruhat_order Bruhat ordering of a finite Coxeter group
coset_reps minimum-length coset representatives for a parabolic subgroup
ct_redex count reduced expressions for a group element
dcoset_reps minimum-length double coset representatives for parabolic subgroups
descent_gf descent generating function for a Coxeter group
fake_degrees fake degrees of a finite reflection group
list_weights list dominant weights in various sorted orders
poincare Poincaré series (length g.f.) for arbitrary Coxeter groups
qmult q-analogue of weight multiplicities in representations
redex list all reduced expressions for a group element
refl_rep matrices for the reflection representation of a Coxeter group
root_poset the partial order of positive roots
traverse iterate over the elements of a Coxeter group or parabolic quotient
weak_order weak ordering (and Cayley graph) of a Coxeter group
weight_order the partial order of dominant weights
xtal_graph generate the crystal graph of a representation

Several of the examples use the posets package3 for visualization.

7. The Non-Crystallographic Kludge
The non-crystallographic root systems pose a special challenge for machine compu-

tations. The crux of the problem is that in these cases, there is no lattice containing the
roots. Thus any computation involving the roots cannot avoid vectors with irrational co-
ordinates. In the cases of H3 and H4, the minimum extension of Q required is Q[

√
5], and

for the dihedral cases I2(m), the most convenient extension is Q[cos(π/m), sin(π/m)].4

Maple does have facilities for working with algebraic extensions of Q, so in principle
it would be possible to write the core procedures of coxeter so that vectors with algebraic
coefficients are correctly processed. However, in order to be able to recognize when two
vectors are equal (for example), it would be necessary to frequently convert vectors to a
normal form. This would impose a severe time penalty for coxeter calculations.

Sacrificing precision for speed, coxeter is designed to use floating-point coordinates
for non-crystallographic root systems. This introduces a few unpleasant side effects, but
these are largely hidden from the user. The main problems occur in deciding when two
vectors are equal or orthogonal, or if a vector is on the positive side of a hyperplane. For
this purpose, coxeter has a global variable

‘coxeter/default‘[epsilon]

3 This package is available for download at 〈http://www.math.lsa.umich.edu/~jrs/maple.html〉.
4 This is not necessarily the smallest extension; e.g., I2(5) is constructible over Q[

√
5].

11

whose value is used to resolve these problems. That is, inner products and distances5

that are less in absolute value than ‘coxeter/default‘[epsilon] are assumed to be
zero. When the coxeter package is loaded, this parameter is assigned the value 0.001.
It may be subsequently modified by the user. Obviously this approach is not foolproof
(computations involving I2(1000) would be problematic), but it works well in practice and
it is unlikely that the user will ever need to change the default value.

8. Changelog

Version 2.4. There were no changes in functionality.
• Minimal internal changes were introduced for compatibility with Maple 8 and 9.
• The example dcoset_reps was rewritten to take advantage of a new (faster, more

space-efficient) algorithm for generating double coset representatives.

Version 2.3. No changes in functionality.
• A bug in stab_chain (present since 2.0) has been fixed. This bug could be exposed

only for certain non-default permutation representations. Thanks to Kenneth Gray
of the University of Western Ontario for spotting this.
• A superficial bug in the function perm_rep has been fixed—when exporting to ‘gap’

format, the group name is once again printed correctly.
• An error in the documentation for minuscule has been fixed—this function is intended

to generate only those minuscule weights that are fundamental weights.
• The formatting of the HTML version of the help texts has been improved—the sym-

bols ‘<’ and ‘>’ should now display correctly in all browsers. Thanks to Brendan
McKay of Australian National University for bringing this to my attention.

Version 2.2. In addition to the debut of the Vanilla Edition, the significant changes and
new features in coxeter and weyl are:
• The qtensor function has been replaced with the more powerful tensor. The original
qtensor was only a partial implementation of the algorithm described in §7 of [5];
the new tensor function provides a complete implementation of three tensor product
algorithms, including qtensor.
• There are five new functions: branch, co_base, minuscule, toM, and toX.
• Two new examples have been added: fake_degrees and xtal_graph.
• The example dim_list has been replaced with the more versatile list_weights.
• The traverse example has been redesigned, and now supports searching through

arbitrary parabolic quotients and Coxeter group orbits.
• The function perm_rep now generates permutation representations of Coxeter groups

relative to any parabolic subgroup.
• The name export is now a Maple keyword, so the export flag used by perm_rep and
presentation has been renamed gap.
• The function multperm now supports additional input formats.
• The output of weight_sys is now sorted by height.

5 Starting with Version 2.2, most of these distances are computed using the (cheaper) L1-norm.

12

• The function name_of now returns the names I2[4] and I2[6] only when the input
data is a list of simple roots with floating-point coordinates.

• Bugs were fixed in the example refl_rep (a minor issue related to the trivial root
system), in root_coords (triggered by unlikely floating-point data), and in name_of

(triggered only by certain inputs in the form of Cartan matrices).

Version 2.1. There were no changes in functionality in Version 2.1.

Version 2.0. Aside from improvements in the documentation, the major changes that
affect users upgrading to Version 2.0 are:
• The function descent_gf has been moved from the coxeter package to the examples

directory, and has been improved.
• The store function has been removed from weyl. It became superfluous with the

improved algorithms in Version 2.0.
• The 120 point (unfaithful) permutation representation of W (E8) is no longer available.

Also, permutation representations for the exceptional groups have been deleted from
the library and are now generated on demand.

• The conjugacy class representatives produced by class_rep, and the order they ap-
pear in, has changed in some cases. In all cases, the representative produced now
has minimum length. (In W (E8) there are a few classes for which I have not verified
minimality, but the representatives are “probably” minimal.)

• The Coxeter matrix and Cartan matrix of the empty root system is now represented
as the empty list [] rather than NULL.

• The contents of weyl/examples have been moved to coxeter/examples.

9. Miscellany

Global warning. The following names are reserved for use by coxeter and weyl:

1. e1,e2,e3,... (the standard orthonormal basis).
2. A1,A2,...,B1,B2,...,I2 (root system names).
3. s1,s2,s3,... (names for the generators used in permutation representations).
4. M, X (table names used by weyl for orbit sums and Weyl characters).

Bugs. Please send reports of reproducible bugs to my e-mail address on page 1. Be sure
to include an example, preferably as small as possible. Note that in their present form,
coxeter and weyl do only a small amount of error-trapping for illegal input.

Compensation. If coxeter and weyl prove to be useful in your own research, I would
appreciate an acknowledgment of it in publications derived from that research.

Mailing list. I maintain a low-traffic, private mailing list for users of coxeter, weyl, and
my other packages SF (symmetric functions) and posets (partially ordered sets). If you
would like to be kept informed of new versions, new packages, or (gasp) bugs, please send
me a request to be added to the list.

Acknowledgment. I would like to thank Arjeh Cohen for a number of valuable discussions
we had that suggested to me the feasibility of creating a Maple package for root systems
and Coxeter groups.

13

10. Copyleft
Copyright c©1992–2004 by John R. Stembridge.
Permission is granted to anyone to use, modify, or redistribute this software freely,

subject to the following restrictions:

1. The author accepts no responsibility for any consequences of this software and makes
no guarantee that the software is free of defects.

2. The origin of this software must not be misrepresented, either by explicit claim or by
omission.

3. This notice and the copyleft must be included in all copies or altered versions of this
software.

4. This software may not be included or redistributed as part of any package to be sold
for profit without the explicit written permission of the author.

11. References

[1] N. Bourbaki, “Groupes et Algèbres de Lie, Chp. IV–VI,” Hermann, Paris, 1968.

[2] M. R. Bremner, R. V. Moody, J. Patera, “Tables of dominant weight multiplicities
for representations of simple Lie algebras,” Marcel Dekker, New York, 1985.

[3] J. E. Humphreys, “Introduction to Lie Algebras and Representation Theory,” Springer
Verlag, Berlin-New York, 1972.

[4] J. E. Humphreys, “Reflection groups and Coxeter groups,” Cambridge Univ. Press,
Cambridge, 1990.

[5] J. R. Stembridge, Computational aspects of root systems, Coxeter groups, and Weyl
characters, in “Interactions of Combinatorics and Representation Theory,” MSJ Mem-
oirs 11, Math. Soc. Japan, Tokyo, 2001, pp.1–38.

[6] LiE: http://young.sp2mi.univ-poitiers.fr/~marc/LiE/

[7] CHEVIE: http://www.math.rwth-aachen.de/~CHEVIE/

[8] Schur: http://smc.vnet.net/schur.html

[9] GAP: http://www.ccs.neu.edu/mirrors/GAP/NEU/

14

