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1. Overview
This article provides an introduction to Version 2.4 of posets, a package of 41 Maple

programs that provide an environment for computations involving partially ordered sets
and related structures. The package is particularly useful for visualizing partial orders, for
isomorphism testing, and for computing various poset invariants, such as Möbius functions
and order polynomials. Also included is a library containing all 19,449 posets with ≤ 8
vertices and all 7,372 lattices with ≤ 10 vertices—this is convenient for investigating
questions of the form “Which posets in class X satisfy property Y ?”

New in Version 2.4:

• A strongcomps function, for extracting (a) the strongly connected components of a
directed graph, and (b) the associated acyclic digraph on those components.
• Improved implementations of the functions related to isomorphism testing and auto-

morphisms. For example, detecting an isomorphism between two randomly labeled
copies of a 7-cube (a graph with 128 vertices and a transitive automorphism group)

∗ Version 2.4 is the Aruban Flag Day Edition.
1 This project has been supported by grants from the NSF and NSA.
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is about 2.5 times faster, and finding generators for the automorphism group of the
lattice of partitions of a 7-set (a poset with 877 vertices) is about 12 times faster.

For those who are behind on their upgrades, the new features in Version 2.3 include

• New functions: chains, ideals, eulerian, f_poly, h_poly, flag_f, and flag_h.
• The function plot_poset has two new options: a levels option that provides greater

control over the layout of the Hasse diagram of a poset, and a dot option that writes
a description of the Hasse diagram in the dot language. The cross-platform GraphViz
package 〈www.graphviz.org〉 converts dot-descriptions of graphs into many output
formats, including gif, png, and PostScript, and also provides graph-viewing tools.
• Many of the existing functions, particularly covers, filter, lattice, J, omega,
subposet, W, and zeta, are now faster and more space efficient. In some cases, the
improvements are dramatic. For example, computing J(chain(6) &* chain(7)) and
W(chain(6) &* chain(7),1,t) is now about 75–80 times faster than Version 2.2.

For a more detailed account of changes and new functionality, see §7.

2. System Requirements
First, you must have some version of Maple 〈www.maplesoft.com〉.
This version of posets has been developed and tested on various Linux machines

running various flavors of Maple from Maple V Release 3 to Maple 11. I anticipate no
problems running this on Maple 12, but have not tested it. In theory, it should work even
on Maple V Release 2, and everything except plot_poset and the integrated help files
should work on Maple V Release 1. My congratulations are offered to anyone out there
who has a working copy of Maple V Release 1.

Version 2.4 is packaged in two formats: one is a Unix tar file (the “Unix Edition”),
and the second is a collection of plain text files that comprise the Vanilla Edition. Both
editions are available for download from

〈www.math.lsa.umich.edu/~jrs/maple.html〉.
The minor functional differences between these two editions are discussed in §3. Users

of Maple on Unix platforms have the choice of installing either edition of posets. For
everyone else, the Vanilla Edition is the only choice.

3. Getting Started

Special Notes for the Unix Edition. The first step is to unpack the tar file and follow the
installation instructions in the provided READ_ME file. If a system administrator has done
the installation for you, and you aren’t already a user of one of my packages, then you will
need to find out the name of the directory where the package has been installed and edit
an initialization file.

For the purposes of this discussion, let’s assume that the posets package has been
installed in the directory /usr/local/maple/packages. You can check this by verifying
that /usr/local/maple/packages has a subdirectory named posets. Next, you will need
to create a file named .mapleinit in your home directory. Or add to it, if you already
have one. In this file you should insert the following two lines:

HomeLib:=‘/usr/local/maple/packages‘:

libname:=libname, HomeLib:
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Be careful to correctly type both of the left quote-marks (‘). Each time Maple is invoked,
these statements will define where the package is located.

You are now ready to run the package. Simply enter the command with(posets)

during a Maple session. To access documentation about an individual function, use
?posets[function] or ?posets,function. The source code for posets is located in

/usr/local/maple/packages/posets/src,

the poset library is located in

/usr/local/maple/packages/posets/lib,

and the raw text for the on-line help is located in

/usr/local/maple/packages/help/posets.

Additional files that provide applications and extensions of the package may be found in

/usr/local/maple/packages/posets/examples.

Special Notes for the Vanilla Edition. The Vanilla Edition consists primarily of a single
text file that may be loaded into a Maple session via the read command. It loads all of the
package functions and the entire contents of the poset library (in a compressed form) into
the workspace, whereas the Unix Edition keeps clutter to a minimum by loading functions
and library elements at the moment they are first used.

When the Vanilla Edition of posets is first loaded, the package functions may be
used only via the long form

posets[function](arguments).

Although posets is not recognized by the Maple with command, the Vanilla Edition
provides a special command withposets() that enables the use of the short forms

function(arguments).

Similarly, withposets(arguments) enables the short form for some subset of the package,
modeling the expected behavior of with(posets,arguments).

Documentation for the individual functions is not loaded when the package is loaded.
Instead there is a separate HTML file available at

〈http://www.math.lsa.umich.edu/~jrs/software/posetshelp.html〉
that provides all of the help texts cross-referenced with hyperlinks. Similarly, the suite of
examples is provided as a directory of plain text files available for download at

〈www.math.lsa.umich.edu/~jrs/software/posetsexamples〉.

The remainder of this article presents an overview of the workings of the package,
explaining the basic definitions and fundamental data structures. A one-line description of
the purpose of each procedure and example is provided in §6. For more detailed information
about the individual commands, consult the on-line help.
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4. Some Definitions

We first summarize some of the basic definitions in the theory of finite partially
ordered sets and lattices. Standard references include [1], [5], and Chapter 3 of [7]. We
refer the reader to these sources for the terminology that we have not explicitly defined
here or in the on-line help.

A partially ordered set (or poset) is a pair P = (X,<) consisting of a vertex set X,
and a binary relation < on X such that for all x, y, z ∈ X, we have

1. (Anti-reflexivity) x 6< x.

2. (Transitivity) x < y and y < z implies x < z.

The notation x ≤ y is an abbreviation for ‘x < y or x = y’.

The poset P is a lattice if every pair x, y ∈ X has a least upper bound (i.e., there is
an element z such that x ≤ z and y ≤ z, and for every z′ such that x ≤ z′ and y ≤ z′,
we have z ≤ z′) and a greatest lower bound. In such cases, the least upper bound of x
and y is also known as the join, and the greatest lower bound is also known as the meet.
A lattice is distributive if the join and meet satisfy the same distributive laws enjoyed by
union and intersection for sets.

A vertex y is said to cover vertex x (in P ) if x < y and there is no z ∈ X such that
x < z < y. Note that the partial order is completely determined by its covering relation
via transitive closure.

It is sometimes useful to think of P as a directed graph having vertex set X and arcs
x ← y for every related pair x < y. The Hasse diagram of P is a planar embedding of
the digraph corresponding to the covering relation of P (with edges allowed to cross each
other) such that whenever x < y, the vertical coordinate of x is less than the vertical
coordinate of y.

We define a poset P to be ranked if there is an integer-valued function r : X → Z (the
rank function) such that r(y) − r(x) = 1 whenever y covers x. Note that in [7], a poset
is defined to be graded if all maximal chains (i.e., maximal totally ordered subsets of the
vertices) have the same length. It is not hard to show that graded posets are ranked, and
also that the converse is false. However, among bounded posets (i.e., posets that have a
maximum and minimum element), the properties of being graded or ranked are equivalent.

An order ideal of P is a subset I of X such that y ∈ I and x < y implies x ∈ I. The
set of all order ideals of P , denoted J(P ), is partially ordered by inclusion; this poset is a
distributive lattice, and conversely, all distributive lattices arise this way.

A linear extension of P is a total ordering w = (w1, . . . , wn) of the vertex set of P
with the property that wi < wj (as elements of P ) implies i < j (as integers).

Although it does not seem to be a standard notion in the literature, another important
concept for the posets package is the filtration of a poset. This is an ordered partition
(F1, F2, . . . , Fr) of the vertex set X, defined so that F1 is the set of minimal elements
of X, F2 is the set of minimal elements of X − F1, F3 is the set of minimal elements of
X − (F1 ∪ F2), and so on. One may similarly define the filtration of an acyclic digraph,
replacing “minimal elements” with “sinks” (vertices of outdegree 0).

Two functions in the package, omega and W, make use of the notion of a labeling of a
poset P = (X,<) as in [6]. By this we mean an injective map λ : X → Z that assigns
integer labels to the vertices. Two labelings of the poset P , say λ and λ′, are said to be
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equivalent if
λ(x) > λ(y)⇔ λ′(x) > λ′(y)

for all x, y ∈ X such that y covers x. The equivalence class of a labeling λ is therefore
determined by the set of pairs (x, y) such that y covers x and λ(x) > λ(y). A labeling is
natural if this set is empty; i.e., x < y implies λ(x) < λ(y).

A (P, λ)-partition is a mapping f : X → {1, 2, . . .} such that for all x < y in P , we
have (1) f(x) ≥ f(y), and (2) λ(x) > λ(y)⇒ f(x) > f(y).

The order polynomial of the pair (P, λ) is the unique polynomial Ω(P, λ; t) with the
property that for all integers m > 0, Ω(P, λ;m) equals the number of (P, λ)-partitions
f such that f(x) ≤ m for all x ∈ X. It can be shown that the order polynomial of
(P, λ) depends only on the equivalence class of λ (and on P ). Note also that if λ is a
natural labeling, then Ω(P, λ;m) equals the number of order-reversing (or equivalently,
order-preserving) maps from P to an m-element chain.

Now suppose that the poset P has n vertices. Given any linear extension w of P , the
descent set of w relative to λ is defined to be

D(λ,w) := {1 ≤ i ≤ n : λ(wi) > λ(wi+1)},

following the convention that λ(wn+1) = −∞. In these terms, the descent set necessarily
includes n, except in the degenerate case of a poset with 0 vertices.

We define the W -polynomial of the pair (P, λ) to be the generating series

W (P, λ; q, t) =
∑

w∈L(P )

qS(D(λ,w))t|D(λ,w)|,

where L(P ) is the set of linear extensions of P and S(D(λ,w)) denotes the sum of the
members of D(λ,w). Note that the W -polynomial in [7] is univariate, and corresponds in
our notation to q−nW (q, 1).

It can be shown that

W (P, λ; q, t)

(1− qt)(1− q2t) · · · (1− qnt)
=

∑
f

qS(f)tmax(f),

where S(f) =
∑
x∈X f(x) and the sum ranges over all (P, λ)-partitions f . It follows that

the order polynomial and W -polynomial are related as follows:

W (P, λ; 1, t)

(1− t)n+1
=

∑
m≥0

Ω(P, λ;m)tm.

It is worth remarking that one of the original motivations that led me to develop the
posets package was to test the Neggers-Stanley Conjecture [3]; i.e., the conjecture that
for every labeling λ of every poset P , all zeroes of the polynomial W (P, λ; 1, t) are real.
Using the package, we verified the conjecture for all labelings of posets with ≤ 8 vertices.
Later, we developed software to search over isomorphism classes of larger posets (see the
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traverse function in the examples directory), and verified the conjecture for the natural
labelings of the 183,231 posets with 9 vertices and the 2,567,284 posets with 10 vertices.

More recently, Petter Brändén found an unnaturally labeled counterexample to the
Neggers-Stanley Conjecture with 22 vertices [2]. This suggested areas to narrow the search,
and allowed us to find a naturally labeled counterexample with 17 vertices (disproving
Neggers original conjecture) and determine that the smallest (unnatural) counterexamples
have 10 vertices (see [9] and 〈www.math.lsa.umich.edu/~jrs/data/pocon/〉).

The package was also crucial in the development of the 3+1 Conjecture in [8, §5].

5. Some Data Structures
The posets package has several special data structures.

Posets. In the package, a poset is represented by the set of ordered vertex pairs [x,y] such
that y covers x.2 This is a reasonable compromise among space, speed, and convenience.

For example, the Maple expression {[a,b],[b,c],[a,d]} represents a poset on four
vertices {a, b, c, d} in which the covering relations are a < b, b < c, and a < d. Note that
transitivity implies a < c, but the pair [a,c] is not listed in the expression, since it is not
part of the covering relation.

One may recover all of the relations implied by transitivity via the closure command
in the posets package. Conversely, given an acyclic relation that is transitive, or merely
partially transitive, one may recover the covering relation via the covers command.

The vertices of a poset must be integers or names.

Poset Structures. There is an apparent defect in the way we have chosen to represent
posets. In the above example, how did we know that the vertex set is {a, b, c, d}? What if
the vertex set was intended to be {a, b, c, d, e}, with the vertex e being unrelated to any
of the other vertices? Indeed, given the possibility of isolated vertices, there is no certain
way to recover the vertex set of a poset from its set of covering pairs.

To cope with these situations, the posets package has the following more general
data structure. Suppose that P is a Maple expression representing the set of covering pairs
of a poset P , as before. A poset structure for P is a Maple expression sequence of one of
the following three forms:

1. P

2. P, X (if X is the vertex set of P)
3. P, n (if {1,2,...,n} is the vertex set of P)

The first form may be used only when the poset has no isolated vertices. Thus

{[a,b],[b,c],[a,d]}

{[a,b],[b,c],[a,d]}, {a,b,c,d,e}

{[2,3],[2,4],[3,5],[4,5]}, 6

are all valid examples of poset structures.
All posets in the package must have non-empty vertex sets. Thus {} and {},{} are

not valid poset structures, but {},1 and {},{a,b} are valid. (Using a poset with 0 vertices
should not cause any fatal errors; we simply make no promises that the output returned
will conform to your expectation of the “correct” answer in such cases.)

2 This is a slight lie, as we shall see in a moment.
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Every procedure in the posets package that accepts a poset as part of its input will
also accept any poset structure.3 For example, consider the function antichains, whose
purpose is to produce a list of all antichains (sets of totally unrelated vertices) in a poset.
Any of the calling sequences

antichains(P);

antichains(P,X);

antichains(P,n);

may be used to produce the list of antichains in P . Of course, the first form may be used
only if P has no isolated vertices.

Similarly, some of the procedures that produce posets as output, notably chain,
subinterval, and the operators &u, &+, and &* will return poset structures of the form
P,X or P,n when there are isolated vertices.

Directed graphs. Some of the procedures in the posets package may be applied to arbitrary
directed graphs, not just the covering relations of posets. These include

autgroup, canon, connected, dual, isom, rm_isom, strongcomps.

Here, the function connected is applied to the underlying undirected graph. Several more
procedures may applied to acyclic digraphs, including

closure, covers, extensions, filter, plot_poset, subinterval.

A directed graph D is represented in the package as a set of ordered pairs. For
example, the Maple expression {[a,b],[b,c],[a,c]} represents the (acyclic) digraph
with vertex set {a, b, c}, and arcs a ← b, b ← c, a ← c. As with posets, the above
procedures also accept what could be called “directed graph structures” of the form D,X

or D,n, specifying that the vertex set of D is X or {1,2,...,n}, respectively.
It is useful to be aware that for a general digraph D (possibly with cycles), the

function filter returns the filtration of the (acyclic) induced subgraph formed by deleting
all vertices of D that can reach a cycle by following a directed path. Thus the expression

nops(map(op,filter(D,X))) = nops(X)

provides a simple test for whether digraph D is acyclic.

Labelings of posets. (This is relevant only for the functions omega and W.) In the package,
one specifies a labeling λ for a poset P (recall the discussion in §4) by means of the subset
S of P consisting of those covering pairs [x,y] such that λ(x) > λ(y); recall that this set
determines the labeling up to equivalence. In particular, to compute the order polynomial
or W -polynomial, one uses the calling sequences

omega(P,t,S);

W(P,q,t,S);

If the set S is omitted, then the default value is S={}, which corresponds to a natural
labeling. If there is no labeling of P whose corresponding subset is S, then an error will be
signaled when computing W or omega.

3 A quasi-exception to this rule is the procedure rm_isom, which accepts lists or sets of covering

relations of posets, but not individual posets.
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6. Short Synopses of the Procedures
Here is a brief indication of the purpose of each procedure in the posets package.

For the full details, including syntax, definitions and examples, consult the on-line help
via the commands ?posets,function or ?posets[function], or use the HTML document
provided in the Vanilla Edition.

antichains list/count antichains in a partially ordered set
atomic test whether a lattice is atomic
autgroup automorphism group of a poset (or directed graph)
canon canonically relabel a poset (or directed graph)
chain total order of specified length
chains list/count chains in a partially ordered set
char_poly characteristic polynomial of a (graded) poset
closure transitive closure of an acyclic digraph
connected connected components and poset connectivity test
covers covering relation of an acyclic digraph
distributive test distributivity of lattices
dual dual of a poset (or directed graph)
eulerian test whether a poset is Eulerian
extensions linear extensions of a poset (or acyclic digraph)
filter filtration of a poset (or directed graph)
flag_f flag f -polynomial of a ranked, bounded poset
flag_h flag h-polynomial of a ranked, bounded poset
f_poly f -polynomial of a bounded poset
h_poly h-polynomial of a bounded poset
ideals list/count order ideals in a partially ordered set
isom test posets (or directed graphs) for isomorphism
J lattice of order ideals of a poset
lattice test whether a poset is a lattice or semi-lattice
Lattices list nonisomorphic lattices
meet compute meets in lattices, maximal lower bounds in posets
mobius Möbius function of a poset
modular test modularity and semi-modularity of lattices
omega order polynomial of a poset
plot_poset plot posets (or acyclic directed graphs)
Posets list nonisomorphic posets
rand_poset random poset generator
ranked test whether a poset is ranked
rm_isom remove isomorphic copies from a list of posets
strongcomps strongly connected components of a digraph
subinterval extract a subinterval from a poset
subposet extract an induced subposet from a poset
W W -polynomial of a poset
zeta zeta polynomial of a poset
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Also, when the package is loaded, the following neutral operators are defined:

&u disjoint union of posets (for help, see posets[disj_union])
&+ ordinal sum of posets (for help, see posets[ord_sum])
&* direct product of posets (for help, see posets[product])

These are binary in-fix operators—thus P &+ Q will return the ordinal sum of P and Q,
and P &* Q &* R will return the direct product of P , Q and R.

Here is a short summary of the contents of the examples subdirectory. These files
must be explicitly loaded by the user and contain both documentation and source code.

bigraphs list non-isomorphic (simple) bipartite graphs
bruhat_order Bruhat ordering of a finite Coxeter group∗

divisor lattice of divisors of an integer
dominance dominance ordering of partitions of an integer∗

graphs list non-isomorphic (simple, undirected) graphs
par_lattice lattice of partitions of a set
traverse iterate over isomorphism classes of posets on n points
weak_order weak ordering (and Cayley graph) of a finite Coxeter group∗

young_diag Young diagram of a (skew) partition
young_lattice Young’s lattice∗

The examples bruhat_order and weak_order require the coxeter package. Likewise,
the examples dominance and young_lattice require the SF package. Both packages are
available at 〈www.math.lsa.umich.edu/~jrs/maple.html〉.

7. Changelog

Version 2.4. The changes are:
• A new strongcomps function, for extracting (a) the strongly connected components

of a directed graph, and (b) the associated acyclic digraph on those components.
• Improved implementations of the functions related to isomorphism testing and auto-

morphisms. For example, detecting an isomorphism between two randomly labeled
copies of a 7-cube (a graph with 128 vertices and a transitive automorphism group)
is about 2.5 times faster, and finding generators for the automorphism group of the
lattice of partitions of a 7-set (a poset with 877 vertices) is about 12 times faster.
• Random number generation has changed significantly in Maple 10. In particular,

the procedure rand no longer produces the same stream of pseudo-random numbers.
For this reason, we have added an option to pass any random number generating
procedure as an argument to rand_poset, overriding the default use of rand.

Version 2.3. The significant changes and additions are:
• Seven new functions have been added: chains, ideals, eulerian, f_poly, h_poly,
flag_f, and flag_h.
• The function antichains now (by default) returns a lexicographically sorted list of

all antichains in a poset, and has options for specifying a range of antichain sizes,
as well as for efficient computation of the generating series for antichains. (The new
chains and ideals functions have similar features.) The old version returned a set
of antichains, had fewer options, and these options used an incompatible syntax.
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• The numbering of vertices by the J-operator is now linked to the lexicographic ordering
used by the ideals function. Thus, the i-th vertex of J(P,X) is the i-th order ideal
listed by ideals(P,X).
• The ranked option in plot_poset has been replaced by the more flexible levels.
• The function plot_poset now has the option of writing a description of the Hasse

diagram of a poset (or acyclic digraph) in the dot language, for external processing
by the GraphViz package (see 〈www.graphviz.org〉).
• Many of the existing functions, particularly covers, filter, lattice, J, omega,
subposet, W, and zeta, are now faster and more space efficient.
• Fast counting of linear extensions of a poset is now possible by evaluating the W -

polynomial at (q, t) = (1, 1). For example, it takes about 0.2 GHz-sec4 to determine
that the product of two chains of length 7 has 475073684264389879228560 linear
extensions, using the command W(chain(7) &* chain(7),1,1).
• The option of installing a small version of the library has been deleted.

Version 2.2. In addition to the debut of the Vanilla Edition, the significant changes and
new features in this version of the posets package are:
• A new function canon has been introduced for generating canonical relabelings of

posets. Two posets (or directed graphs) (P,X) and (Q,Y ) are isomorphic if and only
if canon(P,X)=canon(Q,Y). (However, isomorphism testing is faster with isom.)
• The function automorphisms has been replaced with the more powerful autgroup.
• The old isomorphism tester would provide a complexity estimate when called with

arguments specifying a single poset structure. The new isom is now so much faster
and effective that this functionality has been dropped.
• Three new examples, bigraphs, graphs and traverse have been added.
• The order in which posets are listed in the library has changed, and the particular

vertex labelings of these posets have changed as well.

Version 2.1. Aside from improvements in the documentation, the main changes in Ver-
sion 2.1 of the posets package are the following:
• The procedure plot_poset now passes on any unrecognized optional arguments to

Maple’s plots[display] command. This allows the user to take advantage of the
new options available for Maple 2D graphics that were added in Releases 3 and 4.
• The operators &+ and &* for ordinal sum and direct product have been rewritten so

that they do not conflict with Maple’s internal use of these operators. For exam-
ple, after loading the posets package, one may still use evalm(A &* B) to multiply
matrices A and B.
• The examples bruhat_order and weak_order have been rewritten to take advantage

of new features in the latest version of the coxeter package.

Version 2.0. The main changes affecting users upgrading to Version 2.0 are:
• There are 13 new procedures: atomic, automorphisms, connected, distributive,
&u (disjoint union), lattice, meet, modular, plot_poset, rand_poset, ranked,
subinterval, and subposet.

4 A GHz-sec means one second of time for a machine with a 1 GHz Pentium III CPU.
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• Many of the existing procedures are significantly faster and more space-efficient. Sev-
eral, including antichains, isom, Lattices, omega, Posets, and W, have new features.
• Every procedure is consistent in its use of poset structures. Also, a poset structure is

now an expression sequence, not a list.
• Filtering digraphs with cycles will no longer cause Maple to enter an infinite loop.
• The library now has the 16,999 posets with 8 vertices and the 5,994 lattices with 10

vertices. The storage method (and ordering) of posets within the library is new.
• The examples directory has been completely redesigned.
• The procedures permfit and invariants have been renamed ‘posets/permfit‘ and
‘posets/invariants‘ and are now internal to the package.
• The procedure height has been removed from the package. A functional replacement

is proc() nops(filter(args)) end.
• The W function now computes a two-variable polynomial attached to a (labeled) poset.

The old W function is recovered by taking q = 1.
• rm_isom now returns a sublist (or subset) of the input.
• filter no longer accepts the optional flag ’ranked’. This option is subsumed by the

new ranked function.

8. Miscellany

Isomorphism testing. The algorithms we use for isomorphism and the associated automor-
phism and canonical labeling problems are closely related to the ones used by Brendan
McKay for Nauty (see [4] and 〈cs.anu.edu.au:80/people/bdm/nauty/〉).

The first point is that one should replace isomorphism of directed graphs with a
slightly more general problem: isomorphism of vertex-colored digraphs. Thus we consider
isomorphisms between triples (D,X, π), where X is a vertex set, D is a subset of X ×X,
and π is a mapping that assigns a color π(x) to each vertex x ∈ X. Of course, isomorphisms
are required to preserve colors. If we are interested only in normal (uncolored) digraph
isomorphism, we assign every vertex the same color.

The second point is that we need a reasonably fast operation f that takes a given
colored digraph (D,X, π), and produces a new coloring of (D,X), say σ, with the property
that (D,X, π) and (D′, X ′, π′) are isomorphic if and only if (D,X, σ) and (D′, X ′, σ′) are
isomorphic, where σ = f(D,X, π) and σ′ = f(D′, X ′, π′). Furthermore, the operation f
should always produce a coloring that is at least as discriminating as the previous one—if
two vertices have different colors in π, then they should have different colors in f(D,X, π).
We call any operation f with these properties a discriminant.

Leaving aside the details of how we might choose our discriminant, the algorithm
for isomorphism testing functions as follows. Given two colored digraphs (D,X, π) and
(D′, X ′, π′), we first check to see that both graphs have the same number of vertices of
each color, and then check to see whether a randomly chosen color-preserving bijection
between X and X ′ is an isomorphism. If all vertices have different colors, then there is
only one possible choice for the isomorphism and the algorithm is finished. If not, then
we use the discriminant f to recolor both graphs. If the new colorings distinguish more
vertices than the old ones, then progress has been made, and we recursively apply the
same algorithm. Otherwise, if no progress has occurred, then we fix a vertex x ∈ X from
the smallest color class with more than one vertex, and for each x′ ∈ X ′ of the same color,
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we test whether there is a colored digraph isomorphism that maps x → x′. If no such x′

has this property, then the original graphs are not isomorphic.
By inventing a new color for x and x′, one sees that testing for an isomorphism that

maps x→ x′ is another (recursive) instance of colored digraph isomorphism.
One possibility for the discriminant is trivial: f(D,X, π) = π. As you would expect,

this functions abysmally; it yields an algorithm equivalent to exhaustive search. At the
other extreme, the best discriminant we could hope for would be one that assigns the same
color to two vertices if and only if they belong to the same orbit under the automorphism
group of (D,X, π). If this could be computed in polynomial time, we would have a
polynomial time algorithm for graph isomorphism: once we reached the last stage of the
algorithm, the first vertex x′ we try to match with the chosen x must either lead to an
isomorphism, or the graphs cannot be isomorphic.

In practice, a discriminant that comes close to perfect separation of the vertex orbits
of colored digraphs will function reasonably well. The discriminant used in the posets

package (we call it the “fast discriminant”) is computed as follows. Given (D,X, π), we
first compute a weaker discriminant g whose colors are vectors: for each x ∈ X, the
color of x in τ = g(D,X, π) is defined to be the vector (π(x), a1, b1, a2, b2, . . .), where ai
(respectively, bi) denotes the number of edges (x, y) ∈ D (respectively (y, x) ∈ D) in which
y has the i-th π-color. The fast discriminant f is computed by iterating g until it stabilizes
(i.e., fails to distinguish any additional vertices).

To give you some indication of how well the fast discriminant performs, it takes isom
about 2 GHz-sec to find an isomorphism between two randomly labeled copies of the lattice
of partitions of a 6-set, a poset with 203 vertices and an automorphism group isomorphic
to S6 (see par_lattice in the examples directory).

Using the library. The library is accessed via the functions Posets and Lattices. The
list of posets on 8 vertices (and to a lesser extent, the list of lattices on 10 vertices) is
large enough that using it incautiously may cause Maple to allocate large amounts of
memory. For example, even an operation as simple as map(nops,Posets(8)) requires
the allocation of about 4MB of memory in Maple 9. Also, one should avoid constructing
do-loops involving lists as large as Posets(8). For example, a computation of the form

keepers:=NULL;

for P in list_of_posets do

if is_interesting(P) then keepers:=keepers,P fi

od:

keepers:=[keepers]:

has a running time that is quadratic in the number of items in list_of_posets, and is
virtually unusable for lists whose sizes are in the range of Posets(8). On the other hand,
the above computation could be rewritten using map or seq so that the running time is
linear. To facilitate such practices, the Posets and Lattices commands optionally accept
a Boolean procedure for selecting sublists from the library satisfying a given property. Thus
an efficient way to select the “interesting” posets on 8 points would be

keepers:=Posets(8,is_interesting):

To conduct space-efficient searches of even larger classes of posets, see traverse in the
examples directory.
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Plotting posets. After some experimentation, I’ve settled on red and black as the best
defaults for the edge and vertex colors used by plot_poset.5 Your mileage may vary, so
the default color choices can be changed, either during a Maple session, or permanently.
They can also be passed as arguments to plot_poset. To change the default colors during
a Maple session, use (for example) the assignments

‘posets/default‘[ecolor]:=magenta;

‘posets/default‘[vcolor]:=yellow;

after loading the posets package via the with command. To change the default colors
permanently, edit the file src/posets and then recompile it.

If you have the GraphViz package and suitable viewing software installed on the host
machine, it is possible to process dot plots from within a Maple session using the system

command. For example, if the host OS is some form of Unix with X11 graphics, and the
ImageMagick viewer display is available, then the Maple commands

plot_poset(P, labels, dot=‘/tmp/myplot.dot‘);

system(‘dot -Tps /tmp/myplot.dot | display - &‘);

would generate a temporary PostScript file containing the output of the dotplot of P and
display the image at the terminal.

The dangers of &+ and &*. In Maple V Releases 3, 4 and 5, the neutral operators &+

and &* are protected. There are a few commands in Release 3 (e.g., sqrt), and a few
more in Release 4 and 5 (e.g., solve) that make undocumented use of these operators as
inert place holders. When the posets package is loaded, it “unprotects” these operators,
and assigns to them the procedures for ordinal sum and direct product. Having these
assignments in place does not break sqrt or solve, since the procedures are designed to
return unevaluated when they are called with anything other than a sequence of poset
structures. This allows the continued use of &+ and &* as inert place holders.

But there may be further undocumented uses of &+ and &* that I am unaware of. If
you are paranoid, you can choose alternative names such as &s and &p for ordinal sum and
direct product and restore &+ and &* to their original state:

with(posets);

‘&s‘:=op(‘&+‘); ‘&p‘:=op(‘&*‘);

unassign(‘&+‘,‘&*‘);

If you are really paranoid, you can make these changes permanent in the source code and
recompile it. I have not made these changes part of the package, since this would have
broken upward compatibility.

Bugs. Please send reports of reproducible bugs to my email address on page 1. Be sure
to include an example, preferably as small as possible. Note that the package at present
does only a small amount of testing for valid input.

Compensation. If the posets package proves to be useful in your research, I would appre-
ciate an acknowledgment of it in publications derived from that research.

5 In Maple V R2 and R3, plots have a black background, so white is used as the default vertex color.

However, beware that white is almost certainly not the vertex color you would want for a dot plot.
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Mailing list. I maintain a low-traffic, private mailing list for users of posets and my other
packages SF, coxeter, and weyl. If you would like to be kept informed of new versions,
new packages, or (gasp) bugs, please send me an email message.

9. Copyleft
Copyleft c©1991–2009 by John R. Stembridge.
Permission is granted to anyone to use, modify, or redistribute this software freely,

subject to the following restrictions:

1. The author accepts no responsibility for any consequences of this software and makes
no guarantee that the software is free of defects.

2. The origin of this software must not be misrepresented, either by explicit claim or by
omission.

3. This notice and the copyleft must be included in all copies or altered versions of this
software.

4. This software may not be included or redistributed as part of any package to be sold
for profit without the explicit written permission of the author.
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