Math 471 - Introduction to Numerical Methods - Fall 2019

Assignment # 2. Due: Thursday, September 19, 2019.

- 1. Consider the function $f(x) = \ln(1+x)$.
 - a) Write down the Taylor polynomial of degree n about $x_0 = 0$.
 - b) How large must n be in order to approximate ln(1.1) to within 10^{-5} ?
- 2. Consider the function $f(x) = \sin(\pi x/2)$.
 - a) Expand f(x) in a Taylor series about the point $x_0 = 0$.
 - b) Find an expression for the remainder.

c) Estimate the number of terms that would be required to guarantee accuracy of 10^{-6} for f(x) for all x in the interval [-1, 1]. Write explicitly the resulting Taylor polynomial.

d) On the same graph, plot f(x) and its 1st, 3rd, 5th and 7th degree Taylor polynomials over [-2, 2]. Discuss what you observe. How accurate are the successive Taylor polynomials in approximating f(x)?

3. Let A be the 2 × 2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Use Gauss elimination to obtain A^{-1} by solving the two systems $Ax_1 = e_1$ and $Ax_2 = e_2$, where e_1 and e_2 are the columns of the 2 × 2 identity matrix. Note that you can perform both at the same time by considering the augmented system [A|I]. Show that A^{-1} exists if and only if $det(A) \neq 0$.

4. Let
$$E_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -m_{2,1} & 1 & 0 & 0 \\ -m_{3,1} & 0 & 1 & 0 \\ -m_{4,1} & 0 & 0 & 1 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -m_{3,2} & 1 & 0 \\ 0 & -m_{4,2} & 0 & 1 \end{pmatrix}$, $P_1 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

(a) Show that

$$E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ m_{2,1} & 1 & 0 & 0 \\ m_{3,1} & 0 & 1 & 0 \\ m_{4,1} & 0 & 0 & 1 \end{pmatrix} ,$$

(b) Show that

$$E_1^{-1}E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ m_{2,1} & 1 & 0 & 0 \\ m_{3,1} & m_{3,2} & 1 & 0 \\ m_{4,1} & m_{4,2} & 0 & 1 \end{pmatrix} .$$

(c) Show that $P_1^{-1} = P_1$.

5. Find the LU factorization of A and use it to solve Ax = b.

$$A = \begin{pmatrix} 4 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 4 \end{pmatrix} , \ b = \begin{pmatrix} 3 \\ -2 \\ 2 \\ -3 \end{pmatrix}$$

•

6. Gaussian Elimination: Operation count. Prove that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$