1. **Elementary Matrices**

 Let B be a 4×4 matrix to which we apply the following operations.
 - Double column 1,
 - halve row 3,
 - add row 3 to row 1,
 - interchange columns 1 and 4,
 - subtract row 2 from each of the other rows,
 - replace column 4 by column 3,

 (a) Write the result as a product of seven matrices, including B.

 (b) Write the result again as a product of three matrices, including B.

2. **Special Matrices:**

 Consider the matrix
 \[
 \begin{pmatrix}
 b & -1 & 0 \\
 -1 & 4 & 1 \\
 0 & 1 & 5
 \end{pmatrix}
 \]

 (a) For what values of b is this matrix positive definite?

 (b) For what values of b is this matrix strictly diagonally dominant? Recall that an $n \times n$ matrix A is said to be strictly diagonally dominant if
 \[
 \sum_{j=1, j \neq i}^{n} |a_{ij}| < |a_{ii}| \quad \text{for } i = 1, \ldots, n.
 \]

3. **Partial Pivoting**

 (a) Prove that the matrix
 \[
 \begin{bmatrix}
 0 & 1 \\
 1 & 1
 \end{bmatrix}
 \]
 does not have an LU decomposition.

 (b) Does the system
 \[
 \begin{bmatrix}
 0 & 1 \\
 1 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 =
 \begin{bmatrix}
 a \\
 b
 \end{bmatrix}
 \]
 have a unique solution for all $a, b \in \mathbb{R}$? How do you know?

 (c) How can you modify the system in part (b) so that LU decomposition applies?
4. Consider the linear system \(Ax = b \) where \(A \) is the following matrix,

\[
A = \begin{pmatrix}
-5 & 2 & -1 \\
1 & 0 & 3 \\
3 & 1 & 6
\end{pmatrix}.
\]

(a) Using Gaussian Elimination with partial pivoting to reduce the matrix to upper triangular form. Show clearly each step. Write the corresponding \(L \), \(U \) matrices. Multiply the \(L \), \(U \) matrices, what do you get? Determine the permutation matrix \(P \) such that \(PA = LU \).

(b) Use the \(P \), \(L \), \(U \) decomposition found in (a) to find the solution to \(Ax = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} \).

Be sure to show all relevant steps.

(c) Use the \(P \), \(L \), \(U \) decomposition found in (a) to find the solution to \(Ax = \begin{pmatrix} 0 \\ 1 \\ 5 \end{pmatrix} \).

Again, clearly show all relevant steps.

5. **Cholesky Factorization**

Find the Cholesky factorization \(A = LL^T \) by hand for

\[
A = \begin{pmatrix}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{pmatrix}.
\]

6. **Gaussian Elimination (with Partial Pivoting)**

Write a program to solve an \(n \times n \) linear system using Gaussian Elimination. As a test of your code, run your code on the system

\[
A = \begin{pmatrix}
2 & 2 & -3 \\
3 & 1 & -2 \\
6 & 8 & 1
\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ -1 \end{pmatrix}.
\]

Extra Credit: Incorporate partial pivoting into your code, test it on the above system.

Print and attach the text file containing your program. No code, no credit.