Math 471 - Introduction to Numerical Methods - Fall 2019

Assignment # 4. Due: Thursday, October 3, 2019.

1. Matrix Norms:

Suppose that $A \in \mathbb{R}^{n \times n}$ is invertible, B is an approximation of A^{-1} , so that AB = I + E. Show that the relative error in B is bounded by ||E||.

2. (a) Consider the matrix,

$$A = \left[\begin{array}{rrrr} 2 & -3 & 1 \\ -4 & 1 & 2 \\ 5 & 0 & 1 \end{array} \right] \,.$$

Compute $||A||_{\infty}$ and find a vector x such that $||A||_{\infty} = ||Ax||_{\infty}/||x||_{\infty}$.

- (b) Find an example of a 2 × 2 matrix A such that $||A||_{\infty} = 1$ but $\rho(A) = 0$. This shows that the spectral radius $\rho(A) = \{\max |\lambda| : \lambda \text{ is an eigenvalue of } A\}$ does not define a matrix norm.
- 3. Consider the matrix, right side vector, and two approximate solutions,

$$A = \begin{pmatrix} 1.2969 & 0.8648 \\ 0.2161 & 0.1441 \end{pmatrix} , \ b = \begin{pmatrix} 0.8642 \\ 0.1440 \end{pmatrix} , \ x_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} , \ x_2 = \begin{pmatrix} 0.9911 \\ -0.4870 \end{pmatrix} .$$

- (a) Show that $x = (2, -2)^T$ is the exact solution of Ax = b.
- (b) Compute the error and residual vectors for x_1 and x_2 .
- (c) Find $||A||_{\infty}$, $||A^{-1}||_{\infty}$ and cond_{∞}(A) (you may use MATLAB for this calculation).
- (d) In class we proved a theorem relating the condition number of A, the relative error, and the relative residual. Check this result for the two approximate solutions x_1 and x_2 .

4. Ill-Conditioning:

We revisit Problem 2 of hw0: The $n \times n$ Hilbert matrix H_n , with entries $H_{i,j} = \frac{1}{i+j-1}$, is easily produced in MATLAB using hilb(n). Assume the true solution of Hx = b for a given n is $x = [1, ..., 1]^T$, and set up the right hand side vector b accordingly. Solve the system Hx = b for n = 5, 10, 15, 20 (you may use the Matlab command $x = H \setminus b$. Extra credit if you use your own code for GE with partial pivoting). For each n, using the ∞ – norm, compute the relative error and the relative residual. Discuss what is happening here. You may find it useful to look at the *cond* command in MATLAB. **Attach your code**. 5. Iterative Methods: Suppose that A is strictly diagonally dominant. Show that the Jacobi iteration matrix satisfies $||M_J||_{\infty} < 1$ and therefore that Jacobi iteration converges in this case.

Recall that an $n \times n$ matrix A is said to be strictly diagonally dominant if

$$\sum_{j=1, \ j \neq i}^{n} |a_{ij}| < |a_{ii}| \qquad \text{for } i = 1, \dots, n$$

Note that the strict inequality implies that each diagonal entry a_{ii} is non-zero. Why do you need to know that?

6. Iterative Methods: Given the matrix and right hand side vector,

$$A = \begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} , \ b = \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

- (a) Perform 3 iterations by hand using Jacobi and Gauss-Seidel methods. Start from initial guess $x_0 = (0, 0)^T$.
- (b) Write down the iteration matrices for M_J and M_{GS} and compute the l_{∞} norm and spectral radius. Which of the two iterateions converges from arbitrary initial guess? Why?
- (c) Write a program to compute the spectral radius of M_{ω} for ω values ranging from 0 to 2, in increments of 0.001. Plot $\rho(M_{\omega})$ against ω . By inspecting the graph, find the optimal value of the relaxation parameter, ω^* . Compare with the theoretical value discussed in class. Attach your code and plots.
- (d) Write a program to solve the linear system numerically, using Jacobi, Gauss-Seidel, and optimal SOR, using $x_0 = (0,0)^T$. Terminate the iteration after step k if $||x^{(k)} x^{(k-1)}||_{\infty} < 10^{-5}$. Attach your code.
- (e) Make a semilogy plot that compares the evolution of the error $||x x^{(k)}||_{\infty}$ for all three methods.

Discuss your results.