Math 471 - Introduction to Numerical Methods - Fall 2019

Assignment # 5. Due: Thursday, October 10, 2019.

1. Root Finding:

Consider $f(x) = x^3 - 2$.

- (a) Show that f(x) has a root α in the interval [1, 2].
- (b) Compute an approximation to the root by taking 4 steps of the bisection method.
- (c) Repeat, using Newton's method. Take $x_0 = 1.5$ for the starting value.

For each method, present your results in the form of a table. For the bisection method, tabulate the interval $[a_n, b_n]$, the midpoint x_{n+1} , $f(x_{n+1})$ and the error $|x_{n+1} - \alpha|$. For Newton's method, tabulate x_n , $f(x_n)$ and the error $|x_n - \alpha|$. Discuss your results.

2. Fixed-Point Iteration:

Which of the following iterations $x_{n+1} = g(x_n)$ will converge to the indicated fixed point α (provided x_0 is sufficiently close to α)? If it does converge, give the order of convergence; for linear convergence, compute $g'(\alpha)$. In the case that $g'(\alpha) = 0$, expand g(x) in a Taylor polynomial about $x = \alpha$ to determine the order of convergence.

(a)
$$x_{n+1} = -16 + 6x_n + \frac{12}{x_n}, \qquad \alpha = 2$$

(b) $x_{n+1} = \frac{2}{3}x_n + \frac{1}{x_n^2}, \qquad \alpha = 3^{1/3}$
(c) $x_{n+1} = \frac{12}{1+x_n}, \qquad \alpha = 3$

Ill-behaved root-finding:

- 3. Consider the function $f(x) = \tan(x) x$.
 - (a) Use Newton's method to find the root near x = 101. You will observe that this root is difficult to find. Starting with $x_0 = 101$ is not a good initial guess. Use a graphical method to determine roughly where α is, then choose an initial condition x_0 sufficiently close to α in order to achieve convergence. To explain the difficulty compute the quantity $M \approx \frac{1}{2} \frac{|f'(\alpha)|}{|f'(\alpha)|}$, and refer to the discussion in class concerning M. Discuss your findings.
 - (b) Reformulate the problem of finding a root of f(x) by finding a function h(x) whose roots are identical to those of f(x) (hint: use the fact that $\tan x = \frac{\sin x}{\cos x}$). Apply Newton's method to the h(x) that you found with $x_0 = 101$. Comment on the convergence in this case as compared to the findings in part a).
- 4. Solve the equation $x^3 3x^2 + 3x 1 = 0$ using Newton's method with initial guess $x_0 = 1.001$. Discuss the convergence of Newton's method for this problem.

5. In our analysis of Newton's method we showed that if $f'(\alpha) \neq 0$ (i.e. α is a *simple* root), then second order convergence results. However, if α is a *multiple* root of f(x) of multiplicity p then

$$f(\alpha) = f'(\alpha) = f''(\alpha) = \dots = f^{(p-1)}(\alpha) = 0$$

In this case, we can write

$$f(x) = (x - \alpha)^p h(x)$$

for some function h(x), and $h(\alpha) \neq 0$.

- (a) Write the iteration function for Newton's method in this case and evaluate $g'(\alpha)$ (note: it will involve h(x) and h'(x)).
- (b) What is the rate of convergence of Newton's method in this case?
- (c) Discuss again the convergence of Newton's method in Problem 4.

6. Root of Nonlinear Systems:

Write down Newton's method to solve the system $x^2 + y^2 = 4$, $x^2 - y^2 = 1$. Perform one step of Newton's method with initial guess $x_0 = 1, y_0 = 1$.