Interpolation:

1. The function \(f(x) = e^x \) is given at the 4 points: \(x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3 \).

 (a) Write the interpolating polynomial in Lagrange form.

 (b) Write the interpolating polynomial in Newton form.

 (c) Evaluate \(e^{1.5} \) and \(e^4 \) using the interpolating polynomial. Which approximate value is more accurate?

 (d) Use the error formula to find an upper bound for the maximum error
 \[
 ||f - p_3||_\infty = \max_{1 \leq x \leq 4} |f(x) - p_3(x)|.
 \]

2. The following data are taken from a polynomial \(p(x) \) of degree \(\leq 5 \). What is the actual degree of \(p(x) \)? Explain.

 \[
 \begin{array}{c|cccccc}
 x & -2 & -1 & 0 & 1 & 2 & 3 \\
 p(x) & -5 & 1 & 1 & 7 & 25 & \\
 \end{array}
 \]

3. Show that \(\sum_{k=0}^{n} \ell_k(x) = 1 \) (hint: consider the function \(f(x) = 1 \))

4. Chebyshev polynomials:

 The Chebyshev polynomials are defined for \(x \in [-1, 1] \) by \(T_n(x) = \cos(n\theta) \), \(x = \cos \theta \).

 (a) Derive the 3-term recurrence relation,

 \[
 T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).
 \]

 (b) Given \(T_0(x) = 1 \) and \(T_1(x) = x \), use the recurrence relation to find \(T_2(x) \) and \(T_3(x) \).

 (c) What are the roots of \(T_3(x) \)?
5. We want to study the effect of different choices of interpolation points \(\{x_0, x_1, ..., x_n\} \) on the function
\[
 w_n(x) = (x - x_0)(x - x_1) ... (x - x_n)
\]
in the formula for the error in interpolation polynomials. In particular, we want to study evenly spaced points and Chebyshev points in the interval \([-1, 1]\). Consider the following choices:

(a) \(x_i = -1 + \frac{2i}{n} \quad i = 0...n \)

(b) \(x_i = -\cos \frac{\pi}{n+1}(\frac{1}{2} + i) \quad i = 0...n \).

In each case, plot \(w_{10}(x) \) in the interval \([-1,1]\). Discuss the results.

6. Write a computer program to perform polynomial interpolation using equally spaced points and the Chebyshev points on the interval \([-1,1]\) for the function \(f(x) \). Investigate the convergence of \(p_n \) to \(f \) by running the program for \(n = 8, 16, 32 \) in the following cases

\[
 f_1(x) = |x| , \quad f_2(x) = \begin{cases}
 -1 & \text{if } x < 0, \\
 0 & \text{if } x = 0, \\
 1 & \text{if } x > 0.
\end{cases}
\]

Discuss the results. As \(n \) gets larger, is there pointwise convergence? Is convergence uniform in \(x \)?

(in MATLAB \(f_1(x) = \text{abs}(x) \) and \(f_2(x) = \text{sign}(x) \), you can use the library function ”polyfit” in MATLAB. Use ”help polyfit” to find how to use it).