Math 471 - Introduction to Numerical Methods - Fall 2019

Assignment # 6 Due: Thursday, October 24, 2019.

Interpolation:

- 1. The function $f(x) = e^x$ is given at the 4 points: $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3$.
 - (a) Write the interpolating polynomial in Lagrange form.
 - (b) b) Write the interpolating polynomial in Newton form.
 - (c) c) Evaluate $e^{1.5}$ and e^4 using the interpolating polynomial. Which approximate value is more accurate?
 - (d) Use the error formula to find an upper bound for the maximum error

$$||f - p_3||_{\infty} = \max_{1 \le x \le 4} |f(x) - p_3(x)|$$

2. The following data are taken from a polynomial p(x) of degree ≤ 5 . What is the actual degree of p(x)? Explain.

3. Show that $\sum_{k=0}^{n} \ell_k(x) = 1$ (hint: consider the function f(x) = 1)

4. Chebyshev polynomials:

The Chebyshev polynomials are defined for $x \in [-1, 1]$ by $T_n(x) = \cos(n\theta), x = \cos\theta$.

(a) Derive the 3-term recurrence relation,

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$

- (b) Given $T_0(x) = 1$ and $T_1(x) = x$, use the recurrence relation to find $T_2(x)$ and $T_3(x)$.
- (c) What are the roots of $T_3(x)$?

Error and Convergence:

5. We want to study the effect of different choices of interpolation points $\{x_0, x_1, ..., x_n\}$ on the function $w_n(x) = (x - x_0)(x - x_1)...(x - x_n)$ in the formula for the error in interpolation polynomials. In particular, we want to study evenly spaced points and Chebyshev points in the interval [-1, 1]. Consider the following choices:

(a)
$$x_i = -1 + \frac{2i}{n}$$
 $i = 0...n$
(b) $x_i = -\cos\frac{\pi}{n+1}(\frac{1}{2}+i)$ $i = 0...n$.

In each case, plot $w_{10}(x)$ in the interval [-1,1]. Discuss the results.

6. Write a computer program to perform polynomial interpolation using equally spaced points and the Chebyshev points on the interval [-1,1] for the function f(x). Investigate the convergence of p_n to f by running the program for n = 8, 16, 32 in the following cases

$$f_1(x) = |x|$$
, and $f_2(x) = \begin{cases} -1 & \text{if } x < 0, \\ 0 & \text{if } x = 0, \\ 1 & \text{if } x > 0. \end{cases}$

Discuss the results. As n gets larger, is there pointwise convergence? Is convergence uniform in x?

(in MATLAB $f_1(x) = abs(x)$ and $f_2(x) = sign(x)$, you can use the library function "polyfit" in MATLAB. Use "help polyfit" to find how to use it).