Math 471 - Introduction to Numerical Methods - Fall 2019

Assignment # 7. Due: Thursday, October 31, 2017.

- 1. Consider Hermite interpolation for n = 1, $x_0 = 0$, and $x_1 = 1$. Compute (by hand) $\tilde{h}_1(x)$ using the Lagrange polynomials and using the Newton form (from the divided difference table) and then plot $\tilde{h}_1(x)$.
- 2. The theorem describing the error in using Hermite interpolation is as follows. **Theorem:** If $f \in \mathscr{C}^{2n+2}[a, b]$, then

$$f(x) = H(x) + \frac{(x - x_0)^2 \dots (x - x_n)^2}{(2n+2)!} f^{(2n+2)}(\xi)$$

for some ξ with $a < \xi < b$.

Consider $f(x) = x \ln x$, n = 1, $x_0 = 1$, and $x_1 = 3$.

- (a) Use linear interpolation and Hermite interpolation to approximate the value of f(1.5). Which estimate is more accurate?
- (b) Verify that the error bound for Hermite interpolation holds for the Hermite polynomial found in (a).
- 3. Find a polynomial of least degree satisfying:

$$p(1) = -1$$
, $p'(1) = 2$, $p''(1) = 0$, $p(2) = 1$, $p'(2) = -2$

4. Find the natural cubic spline S(x) satisfying

$$S(0) = 0,$$
 $S(1/2) = 1,$ $S(1) = 0.$

Your answer will be 2 cubic polynomials, $S_0(x)$, $S_1(x)$. Verify that your answer satisfies all the necessary conditions (interpolation, continuity of 1st and 2nd derivatives, boundary conditions).

- 5. (a) In the case of the clamped spline, the column vector of unknowns is $m = (M_0, M_1, \ldots, M_{n-1}, M_n)^T$. Note that the equations for M_0 and M_n are no longer $M_0 = 0$ and $M_n = 0$, so that the tridiagonal matrix B will change slightly. Write down the matrix and right hand side for the linear system Bm = f which determines m. Show that the matrix B is invertible, and hence the clamped cubic spline exists and is unique. (Hint: Show that the matrix B is diagonally dominant, hence invertible.)
 - (b) Determine the clamped cubic spline S(x) that interpolates the data f(0) = 0, f(1) = 1, f(2) = 2 and satisfies S'(0) = S'(2) = 1. Again, your answer will consist of 2 cubic polynomials, $S_0(x)$, $S_1(x)$. Verify all the necessary conditions and note that the boundary conditions for the clamped spline are different from those for the natural spline. Plot the spline over the interval [0, 2].

6. The following data describe the shape of a car called "Buggy". Points (x, y) and (v, w) describe the upper and lower surfaces of the car respectively.

x=[0.0	0.5	1.0	1.5	1.7 1	.85 2	.0 2.8	5 3.0	3.5	4.0	4.5	5.0	5.5	5.75	6.0];
y=[0.0	0.9	1.2	1.35	1.4	L.7 1.	95 2.3	3 2.35	2.4	2.35	2.25	1.8	1.0	0.7	0.0];
v=[0.0	0.5	1.0	1.25	5 1.5	1.75	2.0	2.25	2.5	2.75	3.0	3.25	3.5	3.75	4.0
4.25	4.5	4.75	5 5.0	5.25	5.5	5.75	6.0];							
w=[0.0	0.0	0.0	0.0	0.0	0.45	0.6	0.45	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.45	0.6	0.45	5 0.0	0.0	0.0	0.0	0.0];							

- (a) Approximate the shape of the car using
 - i. polynomial interpolant;
 - ii. cubic spline interpolant with natural boundary conditions.

(You may use the built-in Matlab commands polyfit and spline).

(b) Plot the interpolatory polynomials. Which car would you rather drive?