Math 471 - Introduction to Numerical Methods - Fall 2019

Assignment # 9. Due: Tuesday, November 19, 2019.

- 1. (a) Construct the quadrature formula for $\int_0^{2h} f(x) dx$, using the second order interpolating polynomial through the points $x_0 = 0$, $x_1 = h + \varepsilon$, and $x_2 = 2h$ and $\varepsilon \in (-h, h)$.
 - (b) To establish the order of accuracy of the method, check its accuracy on polynomials. Since it is based on parabolic interpolation, it should give the *exact* answer for polynomials of degree ≤ 2 . Verify that it does. Now take $f(x) = x^3$. Is your method exact? Does your answer depend on ε ? Conclude that for any choice of ε other than $\varepsilon = 0$, the method is $O(h^4)$ instead of being $O(h^5)$.
- 2. (a) Apply the Gram-Schmidt orthogonalization method to find the 4th degree Legendre polynomial $P_4(x)$. The first 3 were derived in class and are:

$$P_0 = 1,$$
 $P_1 = x$
 $P_2 = x^2 - \frac{1}{3},$ $P_3 = x^3 - \frac{3}{5}x$

- (b) Express x^4 as a linear combination of the first four Legendre polynomials $\{P_0, P_1, P_2, P_3, P_4\}$.
- 3. Consider the integral,

$$\int_0^1 x \exp^{-x^2} dx \; .$$

(a) Use the 4-point Gaussian quadrature rule to approximate the integral (after changing variables to obtain an integral over [-1, 1]).

The points and weights are:

$x_1 = -0.861136311594053$	$c_1 = 0.347854845137454$
$x_2 = -0.339981043584856$	$c_2 = 0.652145154862546$
$x_3 = -x_2$	$c_3 = c_2$
$x_4 = -x_1$	$c_4 = c_1$

(b) What value of *n* would be needed to obtain the same accuracy if the compound Trapezoid rule were used?

4. We proved in class that Gauss-Legendre Quadrature rule

(*)
$$\int_{-1}^{1} f(x) dx \approx \sum_{j=1}^{n} c_j f(x_j)$$

is *exact* for polynomials of degree $\leq 2n-1$, where $\{x_j\}_{j=1}^n$ are the *n* distinct roots of the Legendre polynomial $p_n(x)$ of degree *n*, and $\{c_j\}_{j=1}^n$ the corresponding weights. Show that indeed this is the best we can expect by proving that (*) is *not exact* for

$$f(x) = \prod_{j=1}^{n} (x - x_j)^2,$$

a polynomial of degree 2n. (Hint: Compute the approximation for any n).

- 5. The first three Laguerre polynomials are $L_0(x) = 1$, $L_1(x) = 1 x$, and $L_2(x) = x^2 4x + 2$.
 - (a) Show that these polynomials are orthogonal over the interval $(0, \infty)$ with respect to the weight function $w(x) = e^{-x}$.
 - (b) It is easily seen that the roots of $L_2(x)$ are $x_{1,2} = 2 \pm \sqrt{2}$. Using the method of undetermined coefficients, and the fact the 2-point Gauss-Laquerre quadrature rule

$$\int_0^\infty f(x)e^{-x} \, dx \approx c_1 f(x_1) + c_2 f(x_2)$$

is exact for all polynomials of degree ≤ 3 , derive the weights $c_{1,2}$. (They are $c_{1,2} = x_{2,1}/4$.)

6. Write a code that uses the 5-point Gaussian Quadrature to integrate a function from -1 to 1. The roots and weights are as follows:

$c_1 = c_5 = 0.236926885056189,$	$x_1 = -x_5 = -0.906179845938664,$
$c_2 = c_4 = 0.478628670499366,$	$x_2 = -x_4 = -0.538469310105683,$
$c_3 = 128/225,$	$x_3 = 0$

(a) Use your code to evaluate $\int_{-1}^{1} (x^8 + 42x^5) dx$. (b) Use your code to evaluate $\int_{-\frac{1}{2}}^{0} x^6 dx$. (after an appropriate change of variables)

Verify that in both cases, you get the exact answer (to the precision of the machine).