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Summary. We review some recent results on the arithmetic of the theta correspon-
dence for certain symplectic-orthogonal dual pairs and some applications to periods
and congruences of modular forms. We also propose an integral version of a con-
jecture on Petersson inner products of modular forms on quaternion algebras over
totally real fields.

1 Introduction

The theta correspondence provides a very important method to transfer auto-
morphic forms between different reductive groups. Central to the theory is the
important notion of a dual reductive pair. This is a pair of reductive subgroups
G and G′ contained in an ambient symplectic group H that happen to be the
centralizers of each other in H . In such a situation, for every choice of addi-
tive character ψ of A/Q and for automorphic representations π, π′ on G, G′

respectively, one may define theta lifts Θ(π, ψ), Θ(π′, ψ) that (if nonzero) are
automorphic representations on G′, G respectively ([13]). In the automorphic
theory, it is an important and subtle question to characterize when the lift
is non-vanishing. For instance, the non-vanishing could depend on both local
conditions (compatibility of ε-factors) and global conditions (non-vanishing
of an L-value).

The theta lift has its genesis in the Weil representation of H(A) on a
certain Schwartz space S(A). For any choice of Schartz function ϕ ∈ S(A)
and vector f ∈ π one may consider the theta lift θ(f, ϕ, ψ) which is an ele-
ment of Θ(π, ψ). Now it is often the case that one can define good notions of
arithmeticity for elements of π and Θ(π, ψ). Arithmeticity here could mean
algebraicity, rationality over a suitable number field or even p-adic integrality.
The main problems in the arithmetic theory of the theta correspondence are
the following:
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Question A: Suppose f is chosen to be arithmetic. For a given canonical
choice of ϕ, is θ(f, ϕ, ψ) arithmetic (perhaps up to some canonical transcen-
dental period)?

This question has been studied in great detail by Shimura ([23], [24], [25],
and [26]), Harris ([5]), and Harris–Kudla ([6] and [7]) in the case of algebraicity
and in some cases rationality over suitable number fields. However, the study
of such questions in the setting of p-adic integrality is more recent. Before we
mention the progress made recently on this subject, we point out that if the
answer to question A is affirmative, one may pose the following:

Question B: Suppose that the form f is a p-unit (with respect to some
suitable p-adic lattice.) Is θ(f, ϕ, ψ) a p-unit ? If not, what can be said about
the primes p for which θ(f, ϕ, ψ) has positive p-adic valuation?

Question B is undoubtedly more difficult than Question A and the an-
swer seems to involve certain kinds of congruences of modular forms and
µ-invariants of p-adic L-functions. It is also closely related to the classical
question of whether certain spaces of modular forms are (integrally) spanned
by theta series.

To the authors knowledge, the only known results on Questions A and B
in the integral setting are for the following dual pairs.
(i) (GU(2), GU(3)) ([3])
(ii) (GL(2), GO(B)) for B a quaternion algebra. (See [18] for the indefinite
case with square-free level over Q, work of Emerton [2] for the definite case at
prime level over Q, and Hida [11] for the definite case at full level over totally
real fields.)
(iii) (U(n), U(n + 1)) ([8] and [9])

(iv) (S̃L(2), O(V )), for V the space of trace 0 elements in an indefinite quater-
nion algebra over Q. This case and applications are treated in forthcoming
work of the author ([15], [16], and [17].)

In all these cases, there seem to be intimate connections with Iwasawa
theory. For instance, (ii) and (iv) use crucially the main conjecture of Iwa-
sawa theory for imaginary quadratic fields, which is a deep theorem of Rubin.
The work of Harris, Li and Skinner has as an application the construction
of p-adic L-functions for unitary groups and one divisibility of an associated
main conjecture. It is certainly to be expected that other cases of the theta
correspondence will yield other applications to Iwasawa theory. In addition to
this, one also discovers interesting applications to the study of special values
of L-functions and integral period relations for modular forms, on which more
will be said later.

In this article, we will focus only on cases (ii) and (iv), mainly out of
the author’s lack of knowledge of the other cases. Here is a brief outline.
We begin by describing some questions regarding periods and congruences of
modular forms that motivate the study of arithmeticity of the theta correspon-
dence. Next we explain in some detail the integrality of the Jacquet–Langlands
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correspondence, i.e., the dual pair (GL2, GO(B)), in both the indefinite and
the definite setting. Some of the results in the definite setting are new in
that they do not seem to have appeared elsewhere. This is followed by a brief
discussion of integrality results for the Shimura–Shintani–Waldspurger corre-
spondence, i.e. the dual pair (S̃L2, P B×). Here, surprisingly, the results are
more complete in the indefinite case. Finally, we propose a conjecture for the
Petersson inner products of modular forms on quaternion algebras over to-
tally real fields. Such a conjecture was first made by Shimura up to algebraic
factors and mostly proved by Harris in [5]. Ours is a more refined version up
to p-adic units that is motivated by Shimura’s conjecture and a computation
for elliptic curves over Q.

Acknowledgements: We would like to thank the referee for making numer-
ous concrete suggestions towards improving the preliminary version of this
article. In particular, the conjecture formulated in the last section was in-
cluded as a partial response to a question posed by him.

Note and caution: In order to keep the exposition simple, we will ignore
many terms in the formulas that appear below. For instance, we ignore powers
of π (3.1415...), other explicit constants, abelian L-functions, etc. Since we
will be interested mostly in p-integrality, we use the symbol ∼ instead of = to
denote equality up to elements that are units at all places above p. The reader
may rest assured that every formula that occurs below may be worked out
precisely, so that ∼ may be replaced by = after throwing in the appropriate
constants and terms that we have neglected in the present exposition.

2 Periods of modular forms

Let f be a holomorphic newform of weight 2k on Γ0(N) and Kf the field
generated by its Hecke eigenvalues. We assume that N is square-free and that
we have picked a factorization N = N+N− such that N− is the product of
an even number of primes. Let B be the indefinite quaternion algebra over
Q ramified precisely at the primes dividing N− and g the Jacquet–Langlands
lift of f to the Shimura curve X of level N+ coming from B. We assume that
p � N and normalize g (up to a p-adic unit in Kf ) using the integral structure
provided by sections of the relative dualizing sheaf on the minimal regular
model of X at p. Let F be a field containing Kf and if 2k > 2 we also assume
that B splits over F . It is possible then to attach to f and g certain canonical
periods u±(f), u±(g) that are well-defined up to p-adic units in F . (See [15]
for instance for a definition.) The usual Petersson inner product is related to
these periods by

〈f, f〉 ∼ δf · u+(f) · u−(f)
〈g, g〉 ∼ δg · u+(g) · u−(g)
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for some algebraic numbers δf , δg. In fact, one expects (and can show under
certain hypotheses) that δf (resp. δg) is a p-integer that “counts” congru-
ences between f and other eigenforms on X0(N) (resp. between g and other
eigenforms on X).

Remark 2.1. In order to make the last statement precise, one needs to define
an invariant attached to (f, λ) that measures congruences of f modulo λ. Let
R be the ring of integers of a finite extension of Qp containing all the Hecke
eigenvalues of all forms of level N , set TR = T⊗R where T is the usual Hecke
algebra over Z and let m be the maximal ideal of TR corresponding to the
mod λ representation associated to f . If Tm denotes the localization of TR at
m, ϕ : Tm → R is the eigencharacter of Tm corresponding to f and ℘ is the
kernel of ϕ, one defines ηf = ϕ(Ann(℘)). One always has ηf ⊆ (δf ) as ideals in
R based upon the theorem of Hida; and under suitable conditions (such as the
freeness of certain cohomology groups as Tm-modules) one has also ηf = (δf ).
(For these results see [10] and the references therein as well as Lemma 4.17
of [1].) The reader may easily convince himself/herself that l(R/ηf) is a good
measure of congruences satisfied by f . Likewise, one may associate to g an
invariant ηg using the ring T′

m′ , where T′ is the Hecke algebra for B and m′

is the maximal ideal corresponding to (g, λ). Again, one always has ηg ⊆ (δg)
and under suitable freeness assumptions, one has ηg = (δg).

Remark 2.2. The Jacquet–Langlands corespondence implies that T′ is a quo-
tient of T, hence ηf ⊆ ηg as ideals in R. As a consequence, one sees that un-
der suitable conditions, δg|δf and further, the ratio δf /δg counts congruences
between the Hecke eigencharacter associated to f and other systems of eigen-
values that do not transfer to B via the Jacquet–Langlands correspondence.
The example below shows that one may expect u±(f)/u±(g) to be a p-unit if
p is not an Eisenstein prime for f . This leads to the expectation that

〈f, f〉
〈g, g〉 =

δf

δg

up to Eisenstein primes.

Example 2.3. If 2k = 2 and Kf = Q, we may pick F = Q. Then f and g
correspond to elliptic curves E and E′ over Q that are strong elliptic curves
for X0(N) and X respectively, i.e., E, E′ are realized as quotients J0(N) →
E, Jac(X) → E′ with the corresponding dual maps being injective. In this
case, u±(f), u±(g) agree with the usual periods of E, E′ respectively.

Suppose p is not an Eisenstein prime for f , i.e., the mod p Galois rep-
resentation associated to E is irreducible. Then, by Faltings’ isogeny theo-
rem, one may find an isogeny E → E′ of degree prime to p. It follows that
u±(f) ∼ u±(g), hence 〈f,f〉

〈g,g〉 ∼
δf

δg
.

As explained in the preceding remark, the number δf /δg counts congru-
ences between f and forms that do not transfer to the quaternion algebra
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B. In fact, using a result of Ribet and Takahashi [20], one can show more
precisely in this case that

〈f, f〉
〈g, g〉 ∼

∏
q|N−

cq

where cq is the order of the component group of the Neron model of E at q
(See [18], Section 2.2.1.) Further one knows that the term cq counts exactly
level-lowering congruences at q, i.e., congruences between f and other forms
of level dividing N/q.

Remark 2.4. Our motivation lies in proving such results for forms of arbi-
trary weight. The difficulty is that one does not know how to geometrically
relate the motives associated to modular forms of higher weight and those
associated to their quaternionic analogues. As the reader will see, the solution
we have in mind to this problem is to use automorphic methods to replace
the geometric arguments of the example above.

We now make the following assumptions for the rest of this article:

Assumption I: p > 2k + 1.
Assumption II: p � Ñ :=

∏
q|N q(q + 1)(q − 1).

It can be shown that Assumption II implies in particular that the Condi-
tion (*) below is satisfied by p. (See [18], Lemma 5.1.) That p satisfies this
condition is essential in order to apply the integrality criteria (3.5) and Propo-
sition 3.9 below.

Condition (*) There exist infinitely many imaginary quadratic fields K
that satisfy any prescribed set of splitting conditions at the primes dividing
N , are split at p and have class number prime to p.

Question 2.5. Let p be a prime not dividing N . Does p satisfies Condition
(*) even if it does not satisfy Assumption II?

3 Arithmeticity of theta lifts

3.1 The pair (GL2, GO(B))

In this section, B is a quaternion algebra over Q (either definite or indefinite)
with discriminant N− dividing N . We fix isomorphisms Φq : B⊗Qq ! M2(Qq)
for q � N−. If B is unramified at infinity, we also fix an isomorphism Φ∞ :
B ⊗ R !M2(R).

In the case when B is ramified at infinity, we first pick a model for B,
B = Q + Qa + Qb + Qab, with a2 = −N−, b2 = −l and ab = −ba, where l is
an auxiliary prime chosen such that
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−l

q

)
= −1 if q | N− and q is odd,

l ≡ 3(mod 8).

Denote by O′ the maximal order in B given by

O′ = Z + Z
1 + b

2
+ Z

a(1 + b)
2

+ Z
(r + a)b

l

where r is any integer satisfying r2 + N− ≡ 0 mod l. We may assume that
the isomorphisms Φq are chosen such that Φq(O′) = M2(Zq) for q � N−.

Let H be the division algebra of Hamilton quaternions, i.e., H = R + Ri +
Rj + Rk with the relations i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj =
i, ki = −ik = j and fix an isomorphism Φ∞ : B ⊗ R→ H characterized by

Φ∞ : a �→
√

N−j, b �→
√

li.

Note that we can identify the subalgebra of elements of the form a + bi in H
with the field C of complex numbers and H = C+ Cj. We fix an isomorphism
ρ : H⊗R C ! M2(C) characterized by

ρ(γ + δj) =
(

γ δ

−δ γ

)
for γ, δ ∈ C. We denote by the same symbol ρ the composite map (ρ⊗1)◦Φ∞ :
B×

∞ → GL2(C). Let F be the subfield of C generated by
√

N− and
√
−l and

R0 = OF,(l) the subring of F obtained from OF by inverting l. Then one
checks immediately that

ρ(O′) ⊂ M2(R0).

We consider B as a quadratic space over Q, the quadratic form being the
reduced norm. Let GO(B) denote the corresponding orthogonal similitude
group. One has a surjection κ : B× × B× → GO(B)0 onto the connected
component of GO(B), given by (γ1, γ2) �→ (x � γ1xγ−1

2 ), the kernel being a
copy of Gm embedded diagonally. Then there are theta lifts

Θ(·, ψ) : A0(G)→ A0(G′)
Θt(·, ψ) : A0(G′)→ A0(G)

for G = GL2, G′ = GO(B)0 (see [6], [7], and [18] for more details). Note that
via κ, automorphic representations of G′ can be identified with pairs (π1, π2),
the πi being representations of B× such that ξπ1 · ξπ2 = 1. Here ξπi denotes
the central character of πi.

Let πB denote an automorphic cuspidal representation of B×, πB its com-
plex conjugate and set π = JL(πB).
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Theorem 3.1 (Shimizu).

1. Θ(π, ψ) = πB × πB.
2. Θt(πB × πB, ψ) = π.

Suppose now that π corresponds to a holomorphic newform f of weight 2k
on Γ0(N) with N square-free. We assume that the first Fourier coefficient of
f is equal to 1 and denote by the same symbol f the corresponding adelic au-
tomorphic form. On B×, there is no theory of q-expansions and it is not clear
how one might pick a canonical element of πB analogous to the element f in
π. However, the situation can be partially remedied as follows. The represen-
tation πB is a restricted tensor product πB ! ⊗vπB,v of local representations.
For finite primes v = q such that B is split at q, let gq be a local new vector in
πB,q as given by Casselman’s theorem, i.e., gq is nonzero and invariant under
the action of {(

a b
c d

)
∈ GL2(Zq), c ∈ NZq

}
.

Here we have identified (B⊗Qq)× with GL2(Qq) via the isomorphism Φq. For
finite primes v such that B is ramified at v, the local representation πB,v is
one-dimensional since πv is a special representation. In this case, we pick gv

to be any nonzero vector in πB,v. Finally for v =∞, there are two cases since
B is split or ramified at infinity. In the former case, we pick g∞ to be the

unique nonzero vector up to scaling on which κθ =
(

cos θ sin θ
− sin θ cos θ

)
acts by

e2ikθ . In the latter case, one has that the representation πB,∞ is isomorphic
to

ρk : B×
∞ → GL2k−1(C), ρk = Sym2k−2 ρ⊗ (det ρ)1−k.

Let V1 = C2 be the representation space associated to ρ and denote by e1, e2

the standard basis. Then the set of vectors e⊗r
1 ⊗ e⊗2k−2−r

2 , 0 ≤ r ≤ 2k − 2 is
a basis for Vk, the representation space of ρk. Fixing an isomorphism between
πB,∞ and Vk, we pick gl

∞ = e⊗r
1 ⊗ e⊗2k−2−r

2 . Notice that gr
∞ spans the unique

line in πB,∞ on which eiθ ∈ C(1) acts by e2i(r−(k−1))θ. Thus if B is indefinite,
gB = ⊗vgv in πB is well-defined up to scaling, while if B is definite, the vector
of forms [gr

B], with gr
B = ⊗v<∞gv ⊗ gr

∞ in πB is well-defined up to scaling.
We will see below that for a given prime p, we can pick g (resp. [gr

B]) in such
a way that it is well-defined up to a p-adic unit in Kf .

We will now pick a Schwartz function ϕ (resp. functions ϕr) in S(BA)
such that θ(f, ϕ, ψ) = βgB (resp. [θ(f, ϕl, ψ)] = β[gr

B ]) in the indefinite (resp.
definite) case for some scalar β. Suppose that N = N+N− and let O be the
unique Eichler order of level N+ in B such that

Φq(O ⊗ Zq) =
{(

a b
c d

)
∈ M2(Zq), c ∈ N+Zq

}
for q � N− .
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Note that for q | N−, O ⊗ Zq is just the unique maximal order in B ⊗ Qq.
Now for v = q a finite prime, set ϕq = the charactersitic function of O ⊗ Zq.
If v =∞ and B is indefinite, set

ϕ∞(β) =
1
π

Y (β)ke−2π(|X(β)|2+|Y (β)|2)

where for β =
(

a b
c d

)
∈ M2(R), X(β) = 1

2 (a + d) + i
2 (b − c) and Y (β) =

1
2 (a−d)+ i

2 (b+ c). As usual we have identified B⊗R in this case with M2(R)
via Φ∞. If B is definite, Φ∞ identifies B ⊗ R with the space of Hamilton
quaternions. Set

ϕr
∞(u + vj) = v̄2lpk−1−|l|(|u|2)e−2π(|u|2+|v|2), if l ≥ 0

= v2|l|pk−1−|l|(|u|2)e−2π(|u|2+|v|2), if l ≤ 0

where l = k− 1− r and pm is the Laguerre polynomial of degree m, given by

pm(t) =
m∑

j=0

(
l

j

)
(−t)j

j!
.

Finally, set ϕr = ⊗vϕv ⊗ ϕr
∞. The following proposition follows easily from

computations in [32] and [34].

Proposition 3.2. Suppose that B is indefinite (resp. definite.)

Let δ :=
(
−1 0
0 1

)
∈ B×

∞ (resp. δ :=
(

0 1
−1 0

)
∈ B×

∞.) Then

θ(f, ϕ, ψ)(x · δ) = θ(f, ϕ, ψ)(x).

Further, there exist nonzero scalars α, β (resp. αr, β) such that

(a) θ(f, ϕ, ψ) = β · (gB × gB) (resp. [θ(f, ϕr, ψ)] = β · [gr
B × gr

B]).
(b) θt(gB × gB, ϕ, ψ) = αf (resp. θt(gr

B × gr
B, ϕr, ψ) = αrf).

Note that by our assumption that f occurs on Γ0(N), π and πB both have
trivial central character, hence πB = πB. If B is indefinite (resp. definite) let
Ψ (resp. Ψ̃) be such that θ(f, ϕ, ψ) = Ψ × Ψ (resp. [θ(f, ϕr , ψ)] = Ψ̃ × Ψ̃ .)

In the following discussion we write θ(f) instead of θ(f, ϕ, ψ) for simplicity
of notation. There are two important formulas that are very useful in this
situation, namely see-saw duality ([13] and [7]) and the Rallis inner product
formula. In the indefinite case, applying see-saw duality gives

〈θ(f), gB × gB〉 = 〈f, θt(gB × gB)〉
β〈gB, gB〉2 = α〈f, f〉 (3.1)
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where 〈 , 〉 is the Petersson inner product. Next the Rallis inner product
formula gives

〈θ(f), θ(f)〉 ∼ L(1, ad0(π))〈f, f〉
ββ〈gB , gB〉2 ∼ 〈f, f〉2 (3.2)

Combining (3.1) and (3.2) yields

αβ ∼ 〈f, f〉 (3.3)

and

αα ∼ 〈gB, gB〉2. (3.4)

Clearly, exactly the same formulas hold also in the definite case, with
α, β, gB being replaced by αr, β, gr

B respectively. In particular from (3.3) we see
that αr ∼ αr′ and hence αr ∼ αr′ . This implies also that 〈gr

B, gr
B〉 ∼ 〈gr′

B , gr′
B 〉.

The indefinite case

In this section we suppose that B is indefinite. The form gB that we picked
in the previous section corresponds in the usual way to a classical modular
form on the upper half plane H (which we denote simply by the symbol g)
with respect to the group O(1) consisting of the elements of O with reduced
norm. Further we may view ς = g(z)(2πi · dz)⊗k as being a section of the line
bundle Ωk on the curve X = H/O(1). One knows from the work of Shimura
that the curve X admits a canonical model XQ over Q. Let X denote the
minimal regular model of X over OKf

and denote by ω the relative dualizing
sheaf on X/ specOKf

. Since the Hecke eigenvalues of g lie in Kf , we may
choose g such that ς ∈ H0(XKf

, Ωk) and ς is a p-unit in H0(X , ωk). Thus g
is well-defined up to a p-unit in Kf . Fixing such a choice of g, one has:

Theorem 3.3 (Harris–Kudla [6]). β ∈ Kf . Consequently 〈f, f〉/〈g, g〉 ∈
Kf .

Indeed, since Kf is totally real, one gets from (3.2) that β · 〈g, g〉 ∼ 〈f, f〉
so that

β ∼ 〈f, f〉
〈g, g〉 .

We are now in a situation where Questions A and B of the introduction
make sense, namely, we can ask for information about vλ(β) for λ a prime in
Kf above p. The answer is provided by the following theorem and corollary
which constitute the main results of [18].
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Theorem 3.4. (a)

vλ(β) = min
K,χ

vλ(δ(π, K, χ))

where

δ(π, K, χ) :=
L(1

2 , πK ⊗ χ)
Ω4k

K

.

Here K ranges over imaginary quadratic fields that are split at N+ and
inert at N−, χ ranges over unramified Hecke characters of K of type
(k,−k) at infinity, and ΩK is a suitable CM period, i.e., a period of a
Neron differential on an elliptic curve that has CM by OK .

(b)

vλ(δ(π, K, χ)) ≥ 0

for all K, χ as above. Further if there exists a newform f ′ of level M
dividing N but not divisible by N− such that ρf ≡ ρf ′ mod λ, then
vλ(δ(π, K, χ)) > 0.

(c) vλ(β) ≥ 0. Further, if there exists a newform f ′ of level M dividing N but
not divisible by N− such that ρf ≡ ρf ′ mod λ, then vλ(β) > 0.

The reader will note that part (c) of the theorem follows immediately from
parts (a) and (b). We first indicate briefly some of the ingredients in the proof
of part (a). For K, χ as above, pick a Heegner embedding K ↪→ B and set

Lχ(gB) = j(α, i)2k

∫
K×\K×

A
/K×∞

gB(xα)χ(x)d×x

for any α ∈ SL2(R) such that α−1 · (K ⊗ R) · α =
{(

a −b
b a

)
, a, b ∈ R

}
.

(We note that such Heegner embeddings exist, if and only if, K is split at
the primes dividing N+ and inert at the primes dividing N−.) For a suitable
choice of measure on K×

A , the integral above can be interpreted as a sum of
values of g at certain CM points associated to K, twisted by the values of χ,
and divided by the class number hK . Now, a λ-integral modular form must
take λ-integral values at CM points up to suitable CM periods. Conversely,
any form that takes on λ-integral values for a large set of CM points must be
λ-integral. Hence one can show roughly that

min
K,χ,p�hK

vλ

(
Lχ(gB)

Ω2k
K

)
= 0. (3.5)

On the other hand, by the methods of Waldspurger one can show that

βLχ(gB)2 = Lχ×χ(θ(f)) ∼ 1
h2

K

L(
1
2

, πK ⊗ χ) (3.6)
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Part (a) of the theorem follows now by combining (3.5) and (3.6).
Next, we give a brief outline of the proof of part (b). We first assume that

p is split in K, and p � hK . By the Rankin–Selberg method

L(
1
2

, πK ⊗ χ) = 〈fE, θχ〉

where E is a certain weight-1 Eisenstein series and θχ ∈ S2k+1(Γ1(dK)) is the
theta function associated to χ. The form fE has integral Fourier coefficients,
since E does. Let us expand

fE = γ · θχ + H

where H is a linear combination of forms orthogonal to θχ. Then

〈fE, θχ〉
Ω4k

K

= γ
〈θχ, θχ〉

Ω4k
K

∼ γ · L(χ(χρ)−1, 1)
Ω4k

K

where χρ = χ◦ρ is the twist of χ by complex conjugation ρ. From Shimura, one
knows that both γ and L(χ) := L(χ(χρ)−1, 1)/Ω4k

K are algebraic; in fact one
even knows, for example from the results in [22] that L(χ) is λ-integral. The
problem is that γ is unlikely to be λ-integral. However if γ had a denominator,
by multiplying (3.7) by an appropriate power of λ, we would get congruences
modulo λ between θχ and other forms orthogonal to θχ. Let us assume for
the moment that θχ ≡ h mod λ for some eigenform h that is not a theta
lift from K. On the one hand, the λ-adic representation ρh,λ associated to
h is irreducible even when restricted to Gal(K/K) since h is not a theta lift
from K; on the other hand, ρh,λ|Gal(K/K) is reducible, being isomorphic mod
λ to χλ ⊕ χρ

λ = ρθχ,λ|Gal(K̄/K), where χλ, χρ
λ denote the λ-adic characters

associated to χ, χρ, respectively. This latter fact can be used to construct a
lattice in the representation space of ρh,λ whose reduction modulo λ is an
extension of χρ

λ by χλ. For simplicity, let us also say that the class number
of K is one. If K∞ is the unique Z2

p extension of K, the splitting field of the
extension obtained above is an abelian p-extension K ′ of K∞ with controlled
ramification such that the conjugation action of Gal(K/K) on Gal(K ′/K∞)
is via the character χλ(χρ

λ)−1.
The idea that one can construct extensions by the method above is origi-

nally due to Ribet [19]; however we need to employ the more refined methods
of Wiles [33]. The upshot is that we can construct an extension K ′/K∞, as
above, whose size is at least as large as the denominator of γ. In contrast, the
main conjecture of Iwasawa theory for K (a theorem of Rubin [21]) can be
used to bound the size of such an extension from above by the L-value L(χ).
Thus any possible denominators in γ are cancelled by the numerator of L(χ)
and the product γ ·L(χ) is λ-integral as desired. We refer the reader to Chap-
ter 4 of [18] for more details on the above constructions and to Section 5.3
of the same article for the proof that the L-values above are divisible by the
expected level-lowering congruence primes.
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Remark 3.5. The proof outlined above works whenever p is split in K and
p � hK . This is enough to conclude part (c) of the theorem, since one has
infinitely many CM points satisfying these conditions. But by parts (a) and
(c), we see that part (b) must remain true even is p is inert in K or p | hK (or
both.) Thus the ordinary case of part (b) is used to prove the supersingular
case of the same.

Remark 3.6. In fact, one does not need the full main conjecture to deduce the
above integrality result but only the anticyclotomic part. It is also sometimes
possible to prove directly the integrality of 〈G, θχ〉/Ω4k

K for G in integral form
and then deduce the anticyclotomic main conjecture as a consequence. Indeed,
this is the approach taken by Tilouine [28] and Hida [12]. The latter article
deals also with the case of CM fields. However, the results of these articles
require extra hypotheses that may not always be satisfied in our situation.
Thus it seems to the author that only the approach above — using the main
conjecture rather than deducing it as a consequence — provides the requisite
precision needed in our analysis.

Remark 3.7. One would certainly expect conversely, that if
vλ(〈f, f〉/〈g, g〉) > 0, then λ is a level-lowering congruence prime of the ex-
pected type. One might expect an even stronger statement to be true, namely
a canonical factorization of this ratio as a product of integers, the terms of the
product being indexed by the primes dividing N− and admitting a geometric
interpretation, as is the case for elliptic curves (see Example 2.3). Unfortu-
nately, we have nothing to say about this problem at present for forms of
higher weight.

The definite case

In this section, we suppose that B is a definite quaternion algebra. Recall
that for every integer r satisfying 0 ≤ r ≤ (2k− 2), we have picked a form gr

B

on B×
A such that the vector of forms [gr

B] is well-defined up to a scalar. Set
g̃B = [gr

B]t, so that g̃B ∈ S̃k(U) where

S̃k(U) = {g̃ : B× \B×
A → C2k−1 |

g̃(x · uu∞) = ρk(u∞)g̃(x) ∀ u ∈ U, u∞ ∈ B×
∞}

and U =
∏

q Uq is the open compact subgroup of B×
Af

given by Uq = (O⊗Zq)×.
Since any element of S̃k(U) is determined by its values on B×

Af
, the space

S̃k(U) is canonically isomorphic to the space Sk(U) given by

Sk(U) = {g : B×
Af

/U → C2k−1 | g(α · x) = ρk(α−1)g(x) ∀α ∈ B×}.

Denote by gB the element of Sk(U) corresponding to g̃B. We now follow
[27] in defining an integral (or rather p-integral) structure on Sk(U). For R
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any ring such that R0 ⊂ R ⊂ C, let Lk(R) be the R-submodule of C2k−1

consisting of vectors all of whose components are in R. The group B×
Af

acts
on R0-lattices in Lk(K) via the embedding

B×
Af

↪→ (B ⊗ AK,f )×
µk⊗1−−−→ GL2k−1(AK,f ).

Set Lk(R) · x := Lk(OK) · x ⊗ R. We then define Sk(U ; R) to be the set of
h ∈ Sk(U) such that h(x) ∈ Lk(R) · x−1 for all x ∈ B×

Af
.

Let K0,f = KfF be the compositum of Kf and F . We may then normalize
gB by requiring that it be a p-unit in Sk(U, Rp) where Rp is the subring of
p-integral elements in K0,f . With this normalization, it makes sense to study
the arithmetic properties of αr and β. Note that this case is very different
from the indefinite case in that αr ∈ Q while β/u+(f)u−(f) ∈ Q.

Let (, ) denote the inner product on Sk(U) defined in [27] (and denoted by

〈, 〉 in that article). For gB ∈ Sk(U) and δ =
(

0 1
−1 0

)
, g′

B := ρk(δ)g ∈ Sk(U)

and it is easy to see that

〈g̃B, g̃B〉 =
∑

r

〈gr
B, gr

B〉 = (gB, g′
B).

Note that 〈f, f〉2 ∼ ββ〈g̃B, g̃B〉2 = 〈Ψ̃ , Ψ̃〉2 = (Ψ, Ψ)2 = β2(gB, gB)2 since
Ψ(x) · δ = Ψ(x) (and hence Ψ ′ = Ψ).

Set δg = (gB, gB). As in the indefinite case, one may define an invariant
ηg that counts congruences satisfied by g; one always has that (ηg) ⊆ δg and
in good situations (namely when some freeness condition holds) one has also
(δg) = ηg. Now

β ∼ 〈f, f〉
δg

∼ δf

δg
u+(f)u−(f)

and α ∼ (gB, gB). Since ηg ⊆ ηf , we obtain:

Theorem 3.8. (a) vλ(α) ≥ 0.
(b) vλ

(
β

u+(f)u−(f)

)
= vλ

(
δf

δg

)
. In particular, if (δf ) = ηf ,

vλ

(
β

u+(f)u−(f)

)
≥ 0.

We now explain the relation between this result and Rankin–Selberg L-
values. Let K be an imaginary quadratic field that is split at N+ and inert
at N−, i : K ↪→ B is a Heegner embedding with p � hK . For any integer r
with 0 ≤ r ≤ 2k − 2, let χr be an unramified Hecke character of K of type
(r0,−r0) at infinity, where r0 = r−(k−1). With a suitable choice of measure,
one defines
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Lχr (gr
B) =

∫
K×\K×

A
/K×∞

gr
B(xγ)χ(x)d×x

for any γ ∈ (B ⊗ R)× = H× such that γ−1(K ⊗ R)γ = C ⊂ H. Again, by
methods of Waldspurger one can prove that

βLχr (gr
B)2 = Lχr×χr (θ(f, ϕr)) ∼ L(

1
2

, πK ⊗ χr).

Combining this with (3.2) yields

|Lχr(g
r
B)|2 ∼ L(

1
2

, πK ⊗ χr)
〈gr

B, gr
B〉

〈f, f〉

which is just one form of Gross’s special value formula.
The following integrality criterion for forms on B× follows quite easily

from the equidistribution theorem (Theorem 10) of [14].

Proposition 3.9 (Integrality criterion for forms on B×). A form Ψ̃ ′ =
[Ψ ′

r] is p-integral if and only if for some Heegner point K ↪→ B with p � hK and
hK >> 0, and all unramified characters χr of K×

A of infinity-type (r0,−r0),
0 ≤ r ≤ 2k − 2,

Lχr (Ψ ′
r) :=

∫
K×K×

∞\K×
A

Ψ ′
r(x)χr(x)d×x (3.7)

is p-integral.

Note that the expression (3.7) is a finite sum of the values Ψ ′
r twisted by the

values of the character χr. Applying the criterion to the form Ψ̃ constructed
earlier and using Theorem 3.8, we see that

Theorem 3.10. For K, r, χr as above, and λ any prime above p,

vλ

(
L(1

2 , πK × χr)
u+(f)u−(f)

)
≥ vλ(

δf

δg
).

Further, for any K with hK >> 0, there exists a pair (r, χr) such that equality
holds.

3.2 The dual pair (S̃L2, O(V )), V = B0

The indefinite case

Note that Theorem 3.4 above does not address the periods u±(f), u±(g);
rather, it pertains only to the Petersson norms which are products of periods.
It turns out to be much harder to prove results about individual periods. By
studying a relevant theta correspondence, we are able to prove the following
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result about ratios of periods. We denote by A(f, d) the algebraic part of
the L-value L(1

2 , πf ⊗ χd) for d any fundamental quadratic discriminant and
χd the corresponding character, i.e., A(f, d) = g(χd)L(1

2 , πf ⊗ χd)/uτ (f) for
τ = (−1)ksign(d). It is known that A(f, d) ∈ Kf and that it is a p-adic integer
at least when p is not an Eisenstein prime for f .

Theorem 3.11. Suppose that N is odd and square-free.

(a) Let σ ∈ Aut(C/Q). Then(
u±(f)
u±(g)

)σ

=
u±(fσ)
u±(gσ)

.

(b) Suppose there exists a quadratic discriminant d such that p � A(f, d). Then

vλ

(
uτ (f)
uτ(g)

)
≥ 0

where τ = (−1)ksign(d).

In the case f has weight 2, one can use the rationality of period ratios
provided by part (a) to construct directly isogenies between quotients of J0(N)
and Jac(X), completely independent of Faltings’ isogeny theorem. Further in
the case when k = 2, one also has applications relating to questions about
p-divisibility and the indivisibility of central values of quadratic twists. (See
[15] and [17] for more details on these applications.)

The proofs of the above results are based on studying the p-adic properties
of the theta lifting for the dual pair (S̃L2, O(V )) with V the space of trace
zero elements in B. The automorphic theory in this case has been worked
out in great detail in three beautiful articles of Waldspurger ([29], [30] and
[31]). In the arithmetic theory there are three complications that arise. Firstly,
there is not one automorphic form on S̃L2 but rather a packet of forms that
corresponds to gB. Secondly, there is no good theory of newforms for forms
of half-integral weight. Lastly, while one can again measure arithmeticity on
P B× = SO(V ) by means of period integrals on tori, the relevant period
integrals are not related to a Rankin–Selberg L-value as in the case of O(B).
However, for a suitable choice of ψ and ϕ ∈ V (A) and a suitable form h that
has weight k + 1

2 and that is p-adically normalized, one can show:

Theorem 3.12. (a) θt(g, ϕ, ψ) = αu±(g)h for some scalar α.
(b) θ(h, ϕ, ψ) = βg for some scalar β.
(c) α, β ∈ Q. Further vλ(α) ≥ 0 and vλ(β) ≥ 0.

The proof of the above theorem (especially the p-integrality of β) is rather
intricate, so we refer the reader to the article [15] for more details.
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The definite case

It is not hard to show in this case that for suitable choices of ϕ, ψ, and h,
θt(g, ϕ, ψ) = αh and θ(h, ϕ, ψ) = βu±(f)g for some scalars α, β. Unfortu-
nately, the author does not know how to prove in this case the analog of
Theorem 3.8(b), i.e., the p-integrality of β. One would certainly conjecture
that:

Conjecture 3.13. vλ

(
β

u±(f)

)
≥ 0.

However the previous methods of proofs break down; one seems to require
rather refined information, about Petersson inner products and congruences
of half-integral weight forms, that is not presently available. More precisely,
one is lead to conjecture that the algebraic parts of Petersson inner products
of half-integral weight forms count congruences satisfied by these forms just
as in the integral weight setting. The reader is referred to [17] for a discussion
of this issue.

4 A conjecture on Petersson inner products of
quaternionic modular forms over totally real fields

In this section, we consider conjectural generalizations to Hilbert modular
forms and their quaternionic analogs over totally real fields. Let F be a totally
real field, ΣF,∞ (resp. ΣF,fin, resp. ΣF ) the set of infinite places (resp. finite
places, resp. all places) of F . Let π = ⊗vπv the automorphic representation
of GL2(AF ) corresponding to a holomorphic Hilbert modular form f with
even weights at infinity. We will assume for simplicity that πv is a special
representation for all finite places v of F such that πv is discrete series. Let
B be a quaternion algebra over F such that π admits a Jacquet–Langlands
transfer πB to B, i.e., such that for all places v where B is ramified, πv is
a discrete series representation. As explained before, we can pick a non-zero
element gB ∈ πB that is well-defined up to multiplication by a scalar. We
suppose that gB is arithmetically normalized and consider the Petersson inner
product 〈gB, gB〉.

Remark 4.1. The form gB corresponds to a section of an automorphic vector
bundle V on a Shimura variety XB attached to B. Such vector bundles are
known to have canonical models over specified number fields based on the work
of Harris [4]. Thus it is perfectly clear how to normalize gB up to an element
in a specific number field. However, to normalize gB up to a p-adic unit, one
needs to construct canonical integral models of X and V over suitable p-adic
rings. We will assume in what follows that such models exist, and hence that
gB may be normalized up to a p-adic unit.
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The problem of relating the numbers 〈gB, gB〉 as B varies was first con-
sidered by Shimura in the early 80’s. Shimura proved that up to algebraic
factors, this Petersson inner product only depends on the set of infinite places
at which B is unramified. Further, he conjectured that to each infinite place
v of F , one can associate a (transcendental) number cv depending only on π,
such that

〈gB, gB〉 ∼Q
∗

∏
v∈ΣF,∞
v�discB

cv. (4.1)

This conjecture was proved by Harris ([5]) under the hypothesis that for at
least one finite place v, πv is discrete series. Notice that (4.1) implies that

〈f, f〉 ∼Q
∗

∏
v∈ΣF,∞

cv

and thus

〈gB, gB〉 ∼Q
∗

〈f, f〉∏
v∈ΣF,∞
v|discB

cv
.

On the other hand, by Example 2.3, for forms corresponding to elliptic curves
over Q, with B an indefinite quaternion algebra, we have

〈gB, gB〉 ∼
〈f, f〉∏

v∈ΣF,fin
v|discB

cv

where ∼ now denotes equality up to p-units, and the cv’s are orders of certain
component groups. This leads us to make the following conjecture in the
totally real case.

Conjecture 4.2. Suppose that p is a generic prime for (F, π), i.e., p is prime
to discF/Q, degF/Q, the class number of F , and the level of π. Then for each
place v of F such that πv is a discrete series, there exists a complex number
cv such that

〈gB, gB〉 ∼
〈f, f〉∏
v∈ΣF

v|discB
cv

where ∼ denotes equality up to a p-unit.

Remark 4.3. One would expect the cv’s to be transcendental for v infinite
and algebraic integers for v finite. Further for finite v, cv should measure
level-lowering congruences at v satisfied by π. Note that the cv’s are not local
invariants, i.e., they are not determined by the local representation πv but
rather depend very much on the global representation π.
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Remark 4.4. It is well-known that 〈f, f〉 ∼ L(ad0π, 1) where ad0π denotes
the adjoint representation. It is an interesting problem, suggested to the au-
thor by Colmez, to study the relation between the conjecture above and the
Bloch–Kato conjecture for the adjoint L-value. We hope to take this up in
future work.
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