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ABSTRACT. We propose a relationship between the cohomology of arithmetic groups, and
the motivic cohomology of certain (Langlands-)attached motives. The motivic cohomol-
ogy group in question is that related, by Beilinson’s conjecture, to the adjoint L-function at
s “ 1. We present evidence for the conjecture using the theory of periods of automorphic
forms, and using analytic torsion.

RÉSUMÉ. Nous proposons une relation entre la cohomologie des groupes arithmétiques
et la cohomologie motivique de certains motifs attachés. La cohomologie motivique en
question est liée à la fonction L adjointe en s “ 1 par la conjecture de Beilinson. Nous
présentons des éléments de confirmation pour la conjecture en utilisant la théorie des péri-
odes des formes automorphes et la torsion analytique.
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1. INTRODUCTION

A remarkable feature of the cohomologyH˚pΓ,Cq of arithmetic groups Γ is their spec-
tral degeneracy: Hecke operators can act in several different degrees with exactly the same
eigenvalues. For an elementary introduction to this phenomenon, see [73, §3]. In some
cases, such as Shimura varieties, it can be explained by the action of a Lefschetz SL2 but
in general it is more mysterious.

We shall propose here that this degeneracy arises from a hidden degree-shifting action
of a certain motivic cohomology group on H˚pΓ,Qq. This is interesting both as an extra
structure of H˚pΓ,Qq, and because it exhibits a way to access the motivic cohomology
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group. We do not know how to define the action directly, but we give a formula for the
action tensored with C, using the archimedean regulator. Our conjecture, then, is that this
action over C respects Q structures.

The conjecture has numerical consequences: it predicts what the “matrix of periods”
for a cohomological automorphic form should look like. We shall verify a small number of
these predictions. This is the main evidence for the conjecture at present; we should note
that we found the verifications somewhat miraculous, as they involve a large amount of
cancellation in “Hodge–linear algebra.” The most novel aspect of our proofs is the use of
analytic torsion to compute cohomological periods even when there are no natural cycles
to integrate over (§9), and it is this technique that gives rise to what seems to us the most
compelling evidence for the conjecture.

It takes a little while to formulate the conjecture: in §1.1 we will set up notation for
the cohomology of arithmetic groups; as usual it is more convenient to work with adelic
quotients. We formulate the conjecture itself in §1.2. §1.3 discusses the case of tori –
this is just a small reality check. In §1.4 we describe how to extract numerically testable
predictions from the conjecture, some of which we have verified.

1.1. Cohomological representations. Fix a reductive Q-group G, which we always sup-
pose to have no central split torus. Let S be the associated symmetric space; for us, this
will be G{K0

8, where K0
8 is a maximal compact connected subgroup of G :“ GpRq; thus

S need not be connected, but G preserves an orientation on it.
Let Af denote the finite adeles of Q and let K Ă GpAfq be a level structure, i.e., an

open compact subgroup; we suppose that K factorizes as K “
ś

vKv . We may form the
associated arithmetic manifold

Y pKq “ GpQqzS ˆGpAfq{K.

If the level structure K is fixed (as in the rest of the introduction) we allow ourselves to
just write Y instead of Y pKq.

The cohomology H˚pY,Qq is naturally identified with the direct sum
À

H˚pΓi,Qq
of group cohomologies of various arithmetic subgroups Γi ď GpQq, indexed by the con-
nected components of Y . However, it is much more convenient to work with Y ; for ex-
ample, the full Hecke algebra for G acts on the cohomology of Y but may permute the
contributions from various components.

As we recall in (1.1.2) below, the action of the Hecke algebra on H˚pY,Cq often ex-
hibits the same eigencharacter in several different cohomological degrees. Our conjecture
will propose the existence of extra endomorphisms of H˚pY,Qq that commute with the
Hecke algebra and explain this phenomenon.

First of all, we want to localize at a given character of the Hecke algebra. For each v not
dividing the level of K, i.e., at which Kv is hyperspecial, let χv : H pGpQvq,Kvq Ñ Q
be a character.

Consider the set of automorphic representations π “ bπv of GpAq1 such that:

- πK ‰ 0
- π8 has nonvanishing pg,K0

8q-cohomology.
- For finite places v not dividing the level ofK (places for whichKv is hyperspecial)

the representation πv is spherical and corresponds to the character χv .

1Here and throughout the paper, we understand automorphic representations not as abstract representations,
but as being realized on subspaces of functions on GpAq{GpQq.
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This is a finite set, which we shall assume to be nonempty, say

Π “ tπ1, . . . , πhu.

These automorphic representations are nearly equivalent; we moreover shall assume that:
‚ Each πi is cuspidal;
‚ Each πi is tempered at8 and at one finite place v at which Kv is hyperspecial.

Here, the cuspidality assumption is to avoid complications of non-compactness. The
second assumption is simply an unconditional proxy for asserting that πi belong to a tem-
pered A-packet; temperedness is important for the way we formulate our conjecture. (One
expects that the condition at v implies the condition at8, cf. [16, Conjecture 2A]).

We will be interested in the part of cohomology which transforms according to the
character χ, which we will denote by a subscript Π:

H˚pY,QqΠ “ th P H
˚pY,Qq : Th “ χvpT qh for all T P H pGpQvq,Kvq(1.1.1)

and all places v not dividing the level of K.u

We sometimes abridge HipY,QqΠ to Hi
Π.

In particular, under our assumptions above, H˚pY,CqΠ can be computed from the
pg,K0

8q-cohomology of the πi. The computation of the pg,K8q-cohomology of tempered
representations (see [8, Theorem III.5.1] and also [9, 5.5] for the noncompact case) implies
that

(1.1.2) dimHjpY,RqΠ “ k ¨

ˆ

δ

j ´ q

˙

,

where we understand
`

δ
a

˘

“ 0 if a R r0, δs,

(1.1.3) δ :“ rankG´ rank K8, q :“
dimY ´ δ

2
,

and k “ dimHqpY,RqΠ. For example, if G “ SL2m, then q “ m2 and δ “ m´ 1.
In words, (1.1.2) asserts that the Hecke eigensystem indexed by Π occurs in every de-

gree j between q and q ` δ, with multiplicity proportional to
`

δ
j´q

˘

.

1.1.1. Galois representations and motives attached to Π. In the situation just described, Π
should conjecturally [13] have attached to it a compatible system of Galois representations
ρ` : GalpQ{Qq Ñ LGpQ`q. Actually all that is important for us is the composition with
the adjoint or the co-adjoint representation of LG:

Ad ρ` : GalpQ{Qq Ñ GLppgbQ`q, Ad˚ ρ` : GalpQ{Qq Ñ GLprgbQ`q,

where pg denotes the Lie algebra of the dual group pG (considered as a split reductive Q-
group) and rg “ Homppg,Qq is its linear dual. In fact, if G is not simply connected the
representation ρ` requires, for its definition, a modification of the notion of L-group (see
again [13]); however, no such modification should be required for Ad ρ` or Ad˚ ρ`; see
§4.2 and in particular footnote 5 for more discussion.

We will assume throughout, as is predicted by the Langlands program, that Ad ρ` and
Ad˚ ρ` are Galois representations underlying a Grothendieck motive; this weight zero mo-
tive will be denoted by Ad Π or Ad˚Π respectively. Thus, for example, the Galois repre-
sentation on the etale realisation of Ad Π is identified with Ad ρ`.

Before we proceed, a brief remark about “adjoint” versus “coadjoint.” The represen-
tations Ad ρ` and Ad˚ ρ` “ pAd ρ`q

˚ are isomorphic if G is semisimple, because of
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the Killing form. Consequently, the associated motives Ad Π and Ad˚Π should be iso-
morphic. However, both to handle the reductive case and to be more canonical, we will
distinguish between the two.

1.2. The conjecture. It is expected (cf. (3.2) of [41]) that the adjoint L-function

Lps,Π,Ad˚q

that is to say, the L-function attached to the motive Ad˚Π, is holomorphic at s “ 1 under
our assumptions (in particular, that G has no central split torus). According to Beilinson’s
conjecture, the value of this L-function is related to a regulator on a certain motivic coho-
mology group attached to Ad˚Π. It is this motivic cohomology group that will play the
starring role in our conjecture. We defer to later sections more careful expositions of points
of detail; in particular, what we need of motivic cohomology and Beilinson’s conjectures
is summarized in §2, and discussion of “automorphic versus motivic” L-functions, at least
in the case we need it, is given in §6.4.4.

First, to the real reductive group G “ GR we shall attach in §3 a canonical C-vector
space aG, such that dimpaGq “ δ; it can be described in either of the following ways:

- aG is the split component of a fundamental Cartan subalgebra inside LiepGqC.
- The dual a˚G :“ HomCpaG,Cq is the fixed points, on the Lie algebra Liep pT q of

the dual maximal torus, of w0σ, where w0 is a long Weyl element and σ is the
(pinned) action of complex conjugation on pG.

We shall construct in §3 an action of the exterior algebra^˚a˚G on the pg,K0
8q-cohomology

of a tempered representation of GpRq. This gives rise to a natural degree-shifting action
of ^˚a˚G on H˚pY,CqΠ, with the property that the associated map

(1.2.1) HqpY,CqΠ b^
ia˚G

„
ÝÑ Hq`ipY,CqΠ

is an isomorphism. For a more careful discussion see §3.
Next, standard conjectures allow us to attach to a Grothendieck motiveM over Q a mo-

tivic cohomology group Hi
M pMZ,Qpjqq (the subscript Z means that these are classes that

“extend to an integral model”; the group Hi
M should however be independent of integral

model). ThenHi
M pMZ,Qpjqq is a Q-vector space, conjecturally finite dimensional, and is

equipped with a regulator map whose target is the Deligne cohomology Hi
DpMR,Rpjqq.

We are interested in the case of M “ Ad˚Π, and write for brevity:

(1.2.2) L :“ H1
M ppAd˚ΠqZ,Qp1qq.

In this case (§5.1) the target of the archimedean regulator (tensored with C) is canonically
identified with aG; we get therefore a map

(1.2.3) LbC ÝÑ aG

which is conjecturally an isomorphism.
Write L˚ “ HompL,Qq for the Q-dual and L˚C “ HompL,Cq. Dualizing (1.2.3), the

map

(1.2.4) a˚G ÝÑ L˚C

is again conjecturally an isomorphism. We are ready to formulate our central

Conjecture 1.2.1. Notation as above: H˚pY,CqΠ is the subspace of cohomology associ-
ated to the automorphic form Π, aG is the C-vector space associated to G, and L is, as in
(1.2.2), the motivic cohomology of the adjoint motive associated to Π.
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Then the action of ^˚a˚G on H˚pY,CqΠ described above is compatible with ratio-
nal forms, i.e., if an element of a˚G maps to L˚, then its action on cohomology preserves
H˚pY,QqΠ Ă H˚pY,CqΠ.

In particular, the conjecture means that
There is a natural, graded action of ^˚L˚ on HpY,QqΠ, with respect to
which the cohomology is freely generated in degree q.

As we mentioned earlier, this is interesting because it suggests a direct algebraic re-
lationship between motivic cohomology and the cohomology of arithmetic groups. At
present we cannot suggest any mechanism for this connection; it doesn’t seem to be read-
ily related to other heuristics in the Langlands program. The occurrence of algebraic K-
groups of rings of integers in the stable homology of GLn (see, e.g. [67, p 25]) is likely a
degenerate case of it. For the moment, we must settle for trying to check certain numerical
consequences.

Although it is not the concern of this paper, the conjecture has a p-adic counterpart,
which itself has a rich algebraic structure. As written, the conjecture postulates an action
of L˚ onH˚pY,QqΠ; this action (assuming it exists) is pinned down because we explicitly
construct the action of L˚C. But the conjecture also implies that L˚Qp

“ L˚ bQp acts on
the cohomology with p-adic coefficients H˚pY,QpqΠ. Conjecturally, the p-adic regulator
gives an isomorphism

(1.2.5) LbQp
»
ÝÑ H1

f pQ,Ad˚ ρpp1qq,

where the subscript f denotes the “Bloch-Kato Selmer group,” [6]. This means that there
should be an action of H1

f pQ,Ad˚ ρpp1qq
˚ on H˚pY,QpqΠ by degree 1 graded endomor-

phisms. The papers [21] and [75] give two different ways of producing this action. One
advantage of the p-adic analogue of the conjecture is that it is more amenable to computa-
tions, and numerical evidence for its validity will be given in [25].

Finally we were informed by Michael Harris that Alexander Goncharov has also sug-
gested, in private communication, the possibility of a connection between the motivic co-
homology group LΠ and the cohomology of the arithmetic group.

1.3. The case of tori. We briefly explicate our constructions in the case of tori. In this
case the conjecture is easy, but this case is helpful for reassurance and to pinpoint where
there need to be duals in the above picture.

Let T be an anisotropic Q-torus. Let a˚T be the canonical C-vector space attached to
T, as in the discussion preceding (1.2.1). Then a˚T is canonically identified with the dual
of

aT “ LiepSq bC,

where S is the maximal R-split subtorus of TR. This identification gives a natural loga-
rithm map

log : TpRq Ñ aT

characterized by the fact that it is trivial on the maximal compact subgroup K8 and coin-
cides with the usual logarithm map on the connected component of SpRq.

The associated symmetric space is

Y “ TpQqzTpRq ˆTpAf q{KK˝8

Then Y has the structure of a compact abelian Lie group: each component is the quotient
of TpRq˝{K˝8 » aT by the image of

∆ “ tt P TpQq : t P TpRq˝ ¨Ku,
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which is a discrete cocompact subgroup of TpRq.
As in the general discussion above, there is a natural action of^˚a˚T on the cohomology

of Y . In this case the action of ν P ^˚a˚T is by taking cup product with Ωpνq. Here,

Ω : ^˚a˚T ÝÑ invariant differential forms on Y

comes from the identification of the tangent space of TpRq{K8 at the identity with aT .
Note that, for ν P a˚T , the cohomology class of Ωpνq is rational (i.e., lies in H1pY,Qq) if
and only if xlogpδq, νy P Q for all δ P ∆.

On the other hand, as in our prior discussion, to any cohomological representation Π
is associated a motive Ad˚Π of dimension equal to dimpT q. In fact, Ad˚Π is the Artin
motive whose Galois realization is the (finite image) Galois representation onX˚pTqbQ.
Then H1

M pAd˚Π,Qp1qq “ TpQq b Q and the subspace of “integral” classes is then
identified with

(1.3.1) H1
M ppAd˚ΠqZ,Qp1qq “ ∆bQ.

The regulator map H1
M pAd˚ΠZ,Qp1qq Ñ aT is just the logarithm map.

Then Conjecture 1.2.1 just says: if ν P a˚T takes Q-values on logp∆q, then cup product
with Ωpνq preserves H˚pY,Qq. But this is obvious, because the assumption means that
Ωpνq defines a class in H1pY,Qq.

1.4. Numerical predictions and evidence for the conjecture. We now turn to describing
our evidence for the conjecture. To do so, we must first extract numerical consequences
from the conjecture; for this we put metrics on everything. It turns out there are plenty of
consequences that can be examined even with minimal knowledge of motivic cohomology.

Throughout this section, we continue with the general setup of §1.1; in particular, all
the cohomological automorphic representations that we consider are tempered cuspidal.

By a metric on a real vector space we mean a positive definite quadratic form; by a
metric on a complex vector space we mean a positive definite Hermitian form. If V is
a vector space with metric x´,´y, there are induced metrics on ^˚V and on V ˚; these
arise by thinking of a metric as an isomorphism to the (conjugate) dual space, and then by
transport of structure. Explicitly, the induced metric on ^mV is given by the formula:

(1.4.1) xv1 ^ ¨ ¨ ¨ ^ vm, w1 ^ ¨ ¨ ¨ ^ wmy “ det pxvi, wjyq .

A perfect pairing V ˆ V 1 Ñ R of metrized real vector spaces will be said to be a
“metric duality” when there are dual bases for V, V 1 that are simultaneously orthonormal
(equivalently: V 1 Ñ V ˚ is isometric, for the induced metric on V ˚).

If V is a metrized real vector space and VQ Ă V is a Q-structure, i.e., the Q-span of an
R-basis for V , then we can speak of the volume of VQ,

(1.4.2) volVQ P R
ˆ{Qˆ,

which is, by definition, the covolume of Zv1 ` . . .Zvn for any Q-basis tv1, . . . , vnu for
VQ, with respect to the volume form on VR defined by the metric. Explicitly

(1.4.3) pvolVQq
2 “ detpxvi, vjyq.

We will later allow ourselves to use the same notation even when the form x´,´y is not
positive definite; thus volVQ could be a purely imaginary complex number. By (1.4.1), the
volume of VQ equals the norm of a generator of ^nVQ for the induced metric on ^nV ,
that is to say

(1.4.4) volVQ “ vol^nVQ.
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Fix an invariant bilinear Q-valued form on LiepGq, for which the Lie algebra of K8
is negative definite and the induced form on the quotient is positive definite. This gives
rise to a G-invariant metric on the symmetric space, and thus to a Riemannian metric on
Y . Once this is fixed, HjpY,RqΠ and HjpY,CqΠ both get metrics by means of the L2

norm on harmonic forms. (Scaling the metric g ÞÑ λg leaves the notion of harmonic form
unchanged; but it scales the metric on Hi by λd{2´i, where d “ dimpY q.)

The Poincaré duality pairing HjpY,Rq ˆHj˚pY,Rq Ñ R, where j ` j˚ “ dimpY q,
induces a metric duality, in the sense just described. The same conclusions are true for the
induced pairing

(1.4.5) Hj
ΠpY,Rq ˆH

j˚

rΠ
pY,Rq Ñ R

between the Π part and the rΠ-part, where rΠ denotes the contragredient of Π; since we are
supposing that Π arose from a Q-valued character of the Hecke algebra, we have in fact
rΠ » Π.

In §3.5, we explain how to introduce on a˚G a metric for which the action of ^˚a˚G is
“isometric,” i.e., for ω P HqpY,CqΠ and ν P ^ta˚G we have

(1.4.6) }ω ¨ ν} “ }ω} ¨ }ν}.

This metric on a˚G depends, of course, on the original choice of invariant form on LiepGq.
It also induces a metric, by duality, on aG.

Note that we also introduce an R-structure on a˚G – the “twisted real structure”, see
Definition 3.1.2 – which is compatible with the real structure L b R Ă L b C, and
preserves the real structure HqpY,Rq Ă HqpY,Cq – see Lemma 5.1.1 and Proposition
5.5.1. Therefore, we get also corresponding statements for real cohomology.

With these preliminaries, we now examine explicit period identities that follow from
our conjecture:

Prediction 1.4.1. Suppose that dimHqpY,CqΠ “ 1. Let ω be a harmonic q-form on Y
whose cohomology class generates HqpY,QqΠ. Then

(1.4.7) xω, ωy „ pvol Lq

where the volume of L is measured with respect to the metric induced by the inclusion
L Ă aG, or more precisely the inclusion ofL into the twisted real structure on aG discussed
above; we have used the notation A „ B for A{B P Q˚.

Note that (1.4.7) is equivalent to

(1.4.8)
xω, ωy
ˇ

ˇ

ˇ

ş

γ
ω
ˇ

ˇ

ˇ

2 „ pvol Lq

where ω is now an arbitrary nonzero harmonic q-form belonging to HqpY,CqΠ and γ is a
generator for HqpY,QqΠ.

At first sight, (1.4.7) or the equivalent (1.4.8) look like they would require a computation
of the motivic cohomology group L to test. However, Beilinson’s conjecture implies a
formula for volpLq in terms of the adjoint L-function and certain other Hodge-theoretic
invariants. Thus, although not formulated in a way that makes this evident, (1.4.7) can be
effectively tested without computation of motivic cohomology.

To assist the reader we say a few words about how Beilinson’s conjecture is used to
compute volpLq – it is, in fact, used twice. First of all, Beilinson’s conjecture applied to
the adjoint L-function of Π expresses a special value of that L-function as the product of
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(a) a certain period depending only on the underlying Hodge structure, and
(b) a regulator, given by the volume of L above.

In the main text, this fact is expressed by (2.2.9), which will be applied with M the motive
underlying this adjoint L-function – the period from (a) is the “volS F

1” term of (2.2.9),
and the regulator from (b) is the “volS H

1
M ” of (2.2.9). Now, to remove term (a) we

use Beilinson’s conjecture a second time (in fact, in this case, the conjecture reduces to
Deligne’s conjecture about critical values). In the examples that we study, there is a second
L-function in the picture, and Deligne’s conjecture shows that its value at a certain critical
point coincides with (a) up to Q˚. This rather surprising equality is expressed by (7.2.10)
in the main text. Therefore, by taking the ratio of these two applications of Beilinson’s
conjecture, we obtain a formula for volpLq purely in terms of L-functions.

Proof. (that Conjecture 1.2.1 implies Prediction 1.4.1): Let ν generate ^δL˚ (the top
exterior power). The conjecture implies that ω1 “ ω ¨ ν gives a nonzero element of
Hq˚pY,QqΠ, where q ` q˚ “ dimpY q. Since (1.4.5) is a metric duality we get

(1.4.9) }ω}L2 ¨ }ω1}L2 P Q˚.

By (1.4.6), we have

(1.4.10) }ω1}L2 “ }ω}L2 ¨ }ν}.

Combining (1.4.9) and (1.4.10) yields

(1.4.11) xω, ωy ¨ }ν} P Q˚.

Now }ν} is precisely the volume (see (1.4.4)) of L˚ with respect to the given metric on
a˚G; said differently, }ν}´1 is the volume of L for the dual metric on aG. �

The first piece of evidence for the conjecture, informally stated, is a verification of
Prediction 1.4.1, in the following sense (see Theorem 7.2.1 for precise statement):

Evidence for Prediction 1.4.1: Assume Beilinson’s conjecture, as for-
mulated in §2. Assume also the Ichino–Ikeda conjecture on period inte-
grals and the “working hypotheses” on local period integrals, all formu-
lated in §6.10.2

Let pG,Hq be as in the “cohomological GGP cases” of §6.3: either
pPGLn`1ˆPGLn Ą GLnq over Q 3, or pPGLn`1ˆPGLn Ą GLnq over
a quadratic imaginary field, or pSOn`1 ˆ SOn Ą SOnq over a quadratic
imaginary field.

Then, for ω a cohomological form on G, and γ the homology class of
the cycle defined by H we have

(1.4.12)

ˇ

ˇ

ˇ

ş

γ
ω
ˇ

ˇ

ˇ

2

xω, ωy
P
a

QpvolLq´1,

In other words, (1.4.8) is always compatible with the period conjectures
of Ichino–Ikeda, up to possibly a factor in

?
Q.

Remark 1. The left-hand side of (1.4.12) is nonzero if and only if both:

2Note that many cases of the Ichino–Ikeda conjecture are already known: we include in our formulation the
GLn ˆ GLn`1 cases, which were established by Jacquet, Piatetski-Shapiro and Shalika. Also, the working
hypotheses on local period integrals are primarily used to handle archimedean integrals. In view of recent work
there is reason to hope that they should be soon removed.

3In this case, we prove not (1.4.12) but a slight modification thereof, since the hypothesis dimHqpY,CqΠ “

1 is not literally satisfied.
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‚ the central value of the Rankin–Selberg L-function for Π is nonvanishing, where
Π is the automorphic representation underlying ω.

‚ (in the SO cases only): there is abstractly a nonzero HpAq-invariant functional on
Π (this condition can be rephrased in terms of ε-factors, by [81]).

Without getting into details let us say why we found the proof of (1.4.12) striking. The
conjecture and Prediction 1.4.1 are phrased in terms of the motivic cohomology group L;
this group is closely related to the adjoint L-function Lps,Π,Adq at the edge point s “ 0
or s “ 1. By contrast, the Ichino–Ikeda conjecture involves various Rankin-Selberg type
L-functions, and it is, at first, difficult to see what they have to do with L.

We are saved by the feature that was discussed after (1.4.8). Namely, Beilinson’s con-
jecture for the central values of these Rankin-Selberg type L-functions (which in this case
is due to Deligne) involves many of the same “period invariants” as Beilinson’s conjecture
for the adjoint L-functions at s “ 1, leading to various surprising cancellations – it is the
ratio of these two L-functions that recovers volpLq. 4 A further miracle is that all the
factors of π (the reader can glance at the Table in §7 to get a sense of how many of them
there are) all cancel with one another. Finally, there are various square classes that occur at
several places in the argument, giving rise to the

?
Q factor. To the extent that we tried to

check it, these square classes indeed cancel, as we would expect; however, we found that
this added so much complexity to the calculations that we decided to omit it entirely.

It may be worth pointing out that in the Ichino-Ikeda conjecture, it is usually the central
L-value that is of most interest, and the adjoint L-value (at s “ 1) that appears may be
viewed a “correction factor”. In the analysis above however, the tables are turned and it is
the adjoint L-value at 1 that is of central importance while the central L-value provides the
correction terms in the period identity.

We would also like to acknowledge that there is a substantial body of work on the
cohomological period in degree q, for example [58, 39, 54, 53, 22]. The focus of those
works is the relationship between this period and Deligne’s conjecture, and many of these
papers go much further than we do in verifying what we have simply called “working
hypotheses,” and in evading the issues arising from possibly vanishing central value. Our
work adds nothing in this direction, but our focus is fundamentally different: it sheds light
not on the interaction betwen this period and Deligne’s conjecture, but rather its interaction
with the motivic cohomology group mentioned above. (Closer in spirit to this paper is the
work [72], where the relationship between periods in different degrees and the adjoint L-
function plays an important role.)

Remark 2. The fact that we obtain no information when the Rankin–Selberg L-function
vanishes at the critical point may seem disturbing at first. However, we do not regard it
as onerous: if one assumes standard expectations about the frequency of non-vanishing
L-values, it should be possible to deduce (1.4.8) for all such Π – again, up to

a

Qˆ, and
assuming Beilinson’s conjectures.

Consider, for example, the case of PGLn over an imaginary quadratic field. For any co-
homological automorphic representation π2 on PGL2, the equality (1.4.8) can be verified
using known facts about nonvanishing of L-functions. (Note that in this case the evaluation
of the left-hand side in terms of L-functions was already carried out by Waldspurger [81].)
Now for a given form π3 on PGL3 one expects that there should be a cohomological form
π12 on PGL2 for which Lp 1

2 , π3 ˆ π12q ‰ 0; in this case, our result (1.4.12) above permits

4See §8 of [74] for an attempt at understanding this striking coincidence.
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us to deduce the validity of (1.4.8) for π3 ˆ π
1
2, and thus for π3 (and then also for π3 ˆ π2

for any π2). We may then proceed inductively in this way to PGLn for arbitrary n.
Admittedly, such non-vanishing results seem to be beyond current techniques of proof;

nonetheless this reasoning suggests that the result above should be regarded as evidence in
a substantial number of cases.

As for the “working hypotheses” on archimedean period integrals, these do not seem
entirely out of reach; a key breakthrough on nonvanishing has now been made by Sun [68].
We have formulated the hypotheses fairly precisely and we hope that the results of this
paper will give further impetus to studying and proving them.

Next, suppose that dimHqpY,CqΠ “ d ą 1. Choose a basis ω1, . . . , ωd of harmonic
forms whose classes give a Q-basis for HqpY,QqΠ. Then similar reasoning to the above
gives

(1.4.13) det pxωi, ωjyq „ pvolLqd.

More precisely, if G,G1 are inner forms of one another, we may equip the associated
manifolds Y and Y 1 with compatible metrics – i.e., arising from invariant bilinear forms
on LiepGq and LiepG1q which induce the same form on LiepGq b Q “ LiepG1q b Q.
Assume that there exist automorphic representations Π and Π1 as in §1.1 corresponding to
(for almost all v) matching characters χv, χ1v of the local Hecke algebras. We assume that
all the representations in Π and Π1 are tempered cuspidal, as before.

Prediction 1.4.2. Suppose, as discussed above, that G,G1 are inner forms of one an-
other, and Π,Π1 are nearly-equivalent automorphic representations, contributing to the
cohomology of both Y and Y 1. Equip Y, Y 1 with compatible metrics, as explained above.
Then

det pxωi, ωjyq
d1
„ det

`

xω1i, ω
1
jy
˘d
,

where d “ dimHqpY,QqΠ, d1 is similarly defined, and the ω, ω1 are as above a basis for
harmonic forms which give Q-rational bases for cohomology.

Again, this prediction is pleasant because it does not mention motivic cohomology.
The general phenomenon that period matrices for different inner forms are related has
been observed for Shimura varieties where it is closely tied to the Tate conjecture [65],
[50], [23], [52]. However, the prediction above suggests that such relationships exist also
outside the Hermitian case. This feature is (to us) rather unexpected (see, however, [14] for
an example of this in a simple setting). Rather than focus on this, we move on to a more
interesting consequence.

The above examples mentioned only periods in the lowest cohomological degree (q) to
which tempered representations contribute. The conjecture, however, gives control on the
cohomology groups H˚pY,QqΠ in intermediate dimensions q ă j ă q˚. In principle, it
allows us to compute the entire “period matrix” of cohomology, i.e., the matrix of pairings
xγi, ωjy between a Q-basis γi for homology and an orthogonal basis ωj of harmonic forms,
given a complete knowledge of L. It is difficult, however, to test this directly, for two
reasons:

‚ it is almost impossible to numerically compute with motivic cohomology, and
‚ it is hard to exhibit explicit cycles in those dimensions (at least, it is hard to exhibit

cycles that are geometrically or group-theoretically natural).
Here is a case where we can finesse both of these issues. Suppose that E Ą F is a

field extension. Start with an F -algebraic group G; let GF be the restriction of scalars
of G from F to Q, and let GE be the restriction of scalars of G ˆF E to Q. We write
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δF , qF , δE , qE for the quantities defined in (1.1.3) but for GF and GE respectively. A
(near-equivalence class of) cohomological automorphic representation(s) ΠF for GF con-
jecturally determines a base change lift ΠE on GE . LetLΠF andLΠE be the motivic coho-
mology groups attached to ΠF ,ΠE respectively. We will assume that the archimedean reg-
ulator is an isomorphism on these groups; in particular dimLΠE “ δE and dimLΠF “ δF .
Now there is a natural map (dualizing a norm map) L˚ΠF ãÑ L˚ΠE and the induced map

(1.4.14) ^δF L˚Π,F Ă ^
δFL˚Π,E

has image a Q-line inside ^δFL˚Π,E .
To get a sense of what this implies, suppose that we can fix a level structure for GE

such that the associated manifold YE satisfies dimHqE pYE ,CqΠE “ 1. Then the Q-line
above should, according to the conjecture, give rise to a “distinguished” Q-line Qη Ă
HqE`δF pYE ,Qq – namely, we act on the Q-line HqE pYE ,QqΠE using the image of
(1.4.14). The conjecture also allows us to predict various periods of the cohomology
class η in terms of L-functions. In some special cases when E{F is quadratic (e.g., when
G “ GLn) this is related to the theory of base change; but when rE : F s ą 2 this seems
to be a new and “exotic” type of base change identity (indeed, in the classical theory, only
quadratic base changes have a nice “period” interpretation). We can generalize this in var-
ious evident ways, e.g. if E{F is Galois we can isolate various subspaces of LΠ,E indexed
by representations of GalpE{F q, and make a corresponding story for each one.

Let us turn this discussion into a more precise prediction in one case:

Prediction 1.4.3. Notation as above; suppose that E{F is Galois, with Galois group
GalE{F , and split at all infinite primes. Choose a level structure for GF and a GalE{F -
invariant level structure for GE , giving arithmetic manifolds YF and YE respectively. Fix
compatible metrics on YF and YE . Suppose again that

dimHqF pYF ,QqΠF “ dimHqE pYE ,QqΠE “ 1.

Then there exist harmonic representatives ωF , ωE , ω1E for nonzero classes in

(1.4.15) HqF pYF ,QqΠF , H
qE pYE ,QqΠE , H

qE`δF pYE ,Qq
GalE{F
ΠE

.

such that

(1.4.16)
}ω1E}}ωF }

2

}ωE}
P
a

rE : F s ¨Q˚

In the case δF “ 1, the third space of (1.4.15) is also one-dimensional and ωF , ω1E and
ω1E are all determined up to Q˚; we can achieve a similar situation in general by a slightly
more careful discussion of ω1E .

As in (1.4.8), we can translate this to a statement of periods and L2 norms. The nice
thing about (1.4.16) is that, like the second prediction, it doesn’t involve any motivic co-
homology.

Proof. Let νF be a generator for ^δFL˚Π,F . As in (1.4.11) we have

xωF , ωF y ¨ }νF }aF P Q
˚.

Let νE be the image of νF under (1.4.14) and set ω1E “ ωE ¨ νE . Also }νE}aE “
a

rE : F s ˆ }νF }aF . Taking norms and using (1.4.6) we get the result. �
The second piece of evidence for the conjecture is a verification of Prediction 1.4.3, in

the following setting (see §9.5 and also Theorem 9.1.1 for a more general statement):
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Evidence for Prediction 1.4.3: (1.4.16) is valid up to
a

Qˆ when G is
an inner form of PGL2, F is a quadratic imaginary field, E Ą F is a
cyclic cubic extension, and (for level structures precisely specified) ΠF is
the only non-trivial representation contributing to H˚pYF q and ΠE is the
only non-trivial representation contributing to H˚pYEq.

Note that we do this without knowing how to produce any cycles on the nine-manifold YE
in dimension qE ` δF “ 4! Rather we proceed indirectly, using analytic torsion.

In fact, in the text, we prove a stronger result (Theorem 9.1.1), which relies for its
phrasing on Beilinson’s conjectures.

1.5. Some problems and questions. Here are a few problems that are suggested by the
conjecture:

(i) General local systems: it would be interesting to generalize our discussion beyond
the case of the trivial local system. While the general picture should adapt to that
setting, the verifications described in §1.4 use the specific numerology of Hodge
numbers associated to the trivial local system – it is by no means apparent the
same miraculous cancellations should occur in general.

(ii) Non-tempered representations: our entire discussion in this paper concerns only
tempered representations, but it seems very likely that the phenomenon continues
in the non-tempered case. For example, that part of the cohomology of Y asso-
ciated with the trivial automorphic representation shows interesting connections
with algebraic K-theory. It seems important to formulate precisely the conjecture
in the general case.

(iii) Coherent cohomology: a Hecke eigensystem can appear in multiple cohomologi-
cal degrees. For example, this already happens for the modular curve, in the case
of weight one. It would be good to develop a version of the theory of this paper
that applies to that context.

(iv) We have formulated here a conjecture concerning rational cohomology; but, of
course, it would be most desirable to understand the integral story. It is plausible
that this can be done by integrating the current discussion with that of the derived
deformation ring, developed in [21].

1.6. Notation. We gather here some notation that will be consistently used throughout the
paper.

As in §1.4, we will often refer to the “volume” of a vector space: if VQ is a rational vec-
tor space, equipped with a real-valued symmetric bilinear form x´,´y on VR, we define
volQ V P C

ˆ{Qˆ by the rule

pvolVQq
2 “ detpxvi, vjyq,

for a Q-basis v1, . . . , vn. If the form x´,´y is indefinite, the volume could be imaginary.
G will denote a reductive group over Q; for all the global conjectures we will assume

that G has no central split torus. pG denotes the dual group to G, a complex reductive
Lie group. It is equipped with a pinning, in particular a “Borus” T̂ Ă B̂. We put LG “
pG ¸ GalpQ{Qq, as usual. Now pG and LG can be descended to algebraic groups over Z,
using the Chevalley form of pG; we will, by a slight abuse of notation, refer to the R-points
of the resulting groups by pGpRq and LGpRq. We will also write pGR and LGR for the
corresponding algebraic groups over Spec R.

Note that, at certain points in the paper it will be useful to refer to the “c-group” a
modification of the L-group that (in effect) does not require one to choose square roots
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in normalizing the Langlands correspondence. The definition of this group is recalled in
§A.1.2.

We denote byG “ GpRq the real points of G and by K8 a maximal compact subgroup
of G. Set gQ “ LiepGq to be the Q-Lie algebra, and set

gR “ LiepGq “ gQ bR, kR :“ LiepK8q,

g “ gR bC, k “ kR bC.

We denote by GR the base-change of G from Q to R, and similarly define GC.
We set

(1.6.1) rGs “ GpQqzGpAq

to be the associated adelic quotient. We will usually use the letter K to denote an open
compact subgroup of GpAfq. For such a K, we have an attached “arithmetic manifold,”

(1.6.2) Y pKq “ rGs{K˝8 ¨K,

which coincides with the definition given in the introduction.
There are two numerical invariants attached to G and Y pKq which will occur often.

Firstly, the difference δ “ rankpGq ´ rankpK8q between the ranks of G and its max-
imal compact subgroup. Secondly, the minimal cohomological dimension q in which a
tempered G-representation has nonvanishing pg,K0

8q-cohomology; these are related via
2q ` δ “ dimY pKq.

The notation pg denotes the complex Lie algebra that is the Lie algebra of pG and if R is
any ring we denote by pgR the Lie algebra of pG as an R-group. Also, as above, rg denotes
the linear dual of pg, i.e.,

rg “ HomCppg,Cq,

and we similarly define rgQ to be the Q-dual of pgQ.
We use the word “cohomological” in a slightly more narrow way than usual. A repre-

sentation of GpRq is cohomological, for us, if it has nontrivial pg,K0
8q-cohomology. In

other words, we do not allow for the possibility of twisting by a finite dimensional rep-
resentation; any cohomological representation, in this sense, has the same infinitesimal
character as the trivial representation.

Π will usually denote a near-equivalence class of cohomological automorphic repre-
sentations on G, or a variant with a stronger equivalence relation; π will usually be an
automorphic representation belonging to this class.

For any automorphic L-function Lpsq and any special value s0, we denote by L˚ps0q

the leading term of the Taylor expansion of Lpsq at s “ s0, i.e. L˚ps0q “ limsÑs0ps ´
s0q

´rLpsq, where r is the order of vanishing of the meromorphic function Lpsq at s “ s0.
Occasionally, when typographically convenient, we will write this instead as Lps0q

˚.
We often use the notation A „ B to mean that A “ αB for some α P Qˆ. We will

often also encounter situations where pA{Bq2 P Qˆ, in which case we write A „?
Qˆ

B.

For fields E1 Ą E, an E-structure on an E1-vector space V 1 is, by definition, an E-
vector subspace V Ă V 1 such that V bE E1

„
Ñ V 1. If V is a complex vector space we

denote by V the conjugate vector space with the same underlying space and conjugated
scaling. So there is a tautological antilinear map V ÞÑ V that we denote by v ÞÑ v̄.

If Q is a nondegenerate quadratic form on a finite-dimensional vector space V , and Q˚

a form on the dual space V ˚, we say that Q and Q˚ are in duality if Q induces Q˚ via the
isomorphism V

„
Ñ V ˚ associated toQ; this is a symmetric relation. The Gram matrices of
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Q andQ˚ with reference to dual bases are inverse;Q andQ˚ are called “inverse” quadratic
forms by Bourbaki [10, Chapter 9].

The terminology Q-motive will be used to denote a motive with coefficients in Q. This
will be mostly relevant in §8.
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2. MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

The first part (§2.1) of this section is a recollection of Beilinson’s conjecture and the
theory of motives. The second part (§2.2) is less standard: we use a polarization to put a
metric on Deligne cohomology. The most important result is Lemma 2.2.2, which allows
us to compute volumes of certain motivic cohomology groups in terms of values of L-
functions.

2.1. Beilinson’s conjecture for motives. In this section we recall Beilinson’s conjecture
for motives. For simplicity, we restrict to the case of motives defined over Q and coeffi-
cients in Q, which is the main case we require. The summary below follows for the most
part [33] §4, which the reader is referred to for more details. (Our notation however is
somewhat different.)

2.1.1. Cycles and correspondences. For k a field, let Vark denote the category of smooth
projective varieties over k. For any variety Y P Vark, let CHj

pY qQ denote the Q-
vector space given by the group of algebraic cycles of codimension j on Y modulo ra-
tional equivalence, tensored with Q. If we replace rational equivalence by homological or
numerical equivalence, the corresponding Q-vector spaces will be denoted CHj

hompY qQ
and CHj

numpY qQ respectively. If Z1 P CHj
pY qQ and Z2 P CHk

pY qQ, there is a
well defined intersection product Z1 ¨ Z2 P CHj`k

pY qQ. This makes CH˚pY qQ :“

‘
dimpY q
j“0 CHj

pY qQ into a graded commutative Q-algebra with multiplication given by the
intersection product.

If X,Y P Vark, a correspondence on X ˆ Y is an element of CH˚pX ˆ Y qQ. Corre-
spondences may be composed as follows: if X,Y, Z P Vark, and Z1 P CH˚pX ˆ Y qQ,
Z2 P CH˚pY ˆ ZqQ, then

Z2 ˝Z1 :“ p13,˚ pp
˚
12pZ1q ¨ p

˚
23pZ2qq ,

where p12 : XˆY ˆZ Ñ XˆY , p23 : XˆY ˆZ Ñ Y ˆZ and p13 : XˆY ˆZ Ñ XˆZ
denote the natural projections. Note that if Z1 P CHj

pXˆY qQ and Z2 P CHk
pY ˆZqQ,

then Z2 ˝Z1 P CHj`k´dimpY q
pX ˆ ZqQ.
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2.1.2. Chow motives. Let Mk,rat denote the category of Chow motives over k. An object
in Mk,rat consists of a triple M “ pX, p, rq where X is a smooth projective variety over k
of dimension d say, p is an idempotent in CHd

pX ˆXqQ (i.e., p ˝ p “ p) and r P Z is an
integer. Formally, the category of Chow motives is obtained by starting with the category
of effective motives (i.e., pairs pX, pq with p idempotent) and inverting the Tate motive

Qp´1q “ pP1, t0u ˆP1q,

Informally, the reader should think of pX, p, rq as first projecting X according to p, and
then “Tate-twisting” by r. In this optic, we have Qp´1q “ pspecpkq, id,´1q.

The morphisms in Mk,rat are described thus: for N “ pY, q, sq another object of M

(2.1.1) HompM,Nq “ q ˝ CHdimY`r´s
pX ˆ Y qQ ˝ p.

Note that this convention is opposite to Deligne [17], who uses “cohomological” motives;
this amounts to the opposite of the above category.

Let ∆X be the diagonal on X ˆ X . We denote pX,∆X , rq by the symbol hXprq,
and if further r “ 0 we denote this simply by hX . We then get a covariant functor
h : Vark Ñ Mk,rat by sending f : X Ñ Y to the graph of f on X ˆ Y . The dual motive
M_ of M is defined by

M_ “ pX, pt, d´ rq,

where p ÞÑ pt is the involution induced by interchanging the two components of X ˆX .
(Caution: the realizations of M_ are closely related to but not exactly the duals of the
realizations of M . See §2.1.3 below.) The category Mk admits a symmetric monoidal
tensor structure defined by

pX, p, rq b pY, q, sq “ pX ˆ Y, pˆ q, r ` sq.

The commutativity and associativity constraints M b N » N b M and pM b Nq b
P » M b pN b P q are induced by the obvious isomorphisms X ˆ Y » Y ˆ X and
pXˆY qˆZ » XˆpY ˆZq. If k Ñ k1 is a field extension, there is a natural base-change
functor Mk Ñ Mk1 , denoted either M ÞÑM bk k

1 or M ÞÑMk1 .
There is also a notion of restriction of scalars along a finite field extension for Chow

motives; we warn that it does not correspond to restriction of scalars of the underlying
variety. See [17, Example 0.1.1].

2.1.3. Cohomology. For any subring A of R, we use Apjq to denote p2πiqjA Ă C. We
will need various cohomology theories on VarQ: Betti cohomology Hi

BpXC,Qpjqq, alge-
braic de Rham cohomology Hi

dRpX, jq, `-adic cohomology Hi
etpXQ,Q`pjqq, the Deligne

cohomology Hi
DpXR,Rpjqq and motivic cohomology Hi

M pX,Qpjqq.
These are all twisted Poincaré duality theories in the sense of Bloch and Ogus [7]; see

e.g. [34, Examples 6.7, 6.9, 6.10] and §1,2 of [19]. Moreover, they all admit a cup-product
in cohomology such that the cycle class map is compatible with the product structure.

Any such theory H˚ may be extended to MQ,rat as follows. First, for motives of the
form hXprq set

HiphXprq, jq :“ Hi`2rpX, j ` rq.

If f P HomphXprq, hY psqq, define

f˚ : HiphY psq, jq Ñ HiphXprq, jq

by
f˚pαq “ πX,˚pclpfq Y π˚Y pαqq,
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where πX and πY denote the projections from X ˆ Y onto X and Y respectively. Then
for M “ pX, p, rq, define

(2.1.2) HipM, jq “ p˚HiphXprq, jq.

If Hi is a geometric cohomology theory (such as Hi
B , Hi

dR or Hi
etpMQq), then it satis-

fies usual Poincaré duality and we have canonical isomorphisms

(2.1.3) H´ipM_q » pHipMqq_.

2.1.4. Comparison isomorphisms and periods. We continue to suppose thatM is an object
of MQ,rat.

There are comparison isomorphisms

(2.1.4) compB,dR : Hi
BpMC,Qq bC » Hi

dRpMq bC.

(2.1.5) compB,et : Hi
BpMC,Qq bQ` » Hi

etpMQ,Q`q.

Let cB and cdR denote the involutions given by 1 b c on the left and right of (2.1.4)
respectively, where c denotes complex conjugation. Then via compB,dR, we have ([17,
Proposition 1.4])

(2.1.6) F8 ¨ cB “ cdR

where, if M “ hX is the motive of a variety X , then F8 denotes the involution on
Hi

BpXC,Qq induced by the action of complex conjugation on the topological spaceXpCq;
this definition passes to Hi

BpMC,Qq via (2.1.2). Note that F8 is complex-linear, whereas
cB and cdR are complex antilinear. We will often denote cB by the usual complex conju-
gation sign, i.e.,

v̄ “ cBpvq.

More generally, we can go through the same discussion with Qpjq coefficients: replac-
ing M by its Tate twist we obtain the comparison isomorphisms

(2.1.7) compB,dR : Hi
BpMC,Qpjqq bC » Hi

dRpM, jq bC

We denote by δpM, i, jq the determinant of the comparison map compB,dR taken with
respect to the natural Q-structures HB “ Hi

BpMC,Qpjqq and HdR “ Hi
dRpM, jq. This

may be viewed as an element in Cˆ{Qˆ. The equation (2.1.6) needs to be modified
slightly; while cB and cdR are still defined as the complex conjugations with reference
to the real structures defined by (2.1.7), one twists F8 by p´1qj to take into account the
complex conjugation on Qpjq.

The Q-vector space Hi
BpM,Qpjqq is in a natural way the underlying vector space of

a rational Hodge structure, pure of weight w “ i ´ 2j; as usual we denote by F˚HdR

the associated Hodge filtration on HB bC “ HdR bC. Thus HB bC “ ‘p`q“wH
p,q

and F8 : Hp,q » Hq,p is a complex-linear isomorphism. We denote by H˘B the ˘1
eigenspaces for the action of F8.

We suppose now that pM, i, jq satisfies the following additional condition:

(2.1.8) If w is even, then F8 acts on Hw{2,w{2 as a scalar ε “ ˘1.

Let

p˘ “

#

w´1
2 , if w is odd;

w´1
2 ¯ 1

2ε, if w is even.
.

Set F˘ “ F p
˘

HdR and H˘dR “ HdR{F
¯. Then

dimH˘B “ dimH˘dR
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and the Deligne period c˘pM, i, jq is defined to be the determinant of the composite map

H˘B bCÑ HB bC
compB,dR
ÝÝÝÝÝÝÑ HdR bCÑ H˘dR bC

with respect to the Q-structures H˘B and H˘dR, viewed as an element of Cˆ{Qˆ. Note
that this is defined only under the assumption of (2.1.8).

2.1.5. Cohomology of MR. Suppose M “ hX , and let A be a subring of the complex
numbers, containing Q and stable by conjugation. Complex conjugation induces an in-
volution ι of XpCq. This involution is covered by an involution of the constant sheaf A,
which induces complex conjugation on each fiber, and by an involution of the de Rham
complex Ω˚XpCq, sending a differential form ω to ι˚ω. Accordingly we obtain conjugate-
linear involutions on de Rham cohomology tensored with C, as well as on each step of the
Hodge filtration; on Betti cohomology with A coefficients, and (since the involutions are
compatible under the map AÑ Ω0

XpCq) also Deligne cohomology with A coefficients.
In each case, the fixed points will be denoted, following Beilinson, by the notation

H˚? pXR,´q. Compare [2, p. 2037]. This notation extends, as before, to general motives
M .

Thus, for example,
Hi

BpMR, Aq “ Hi
BpMC, Aq

F8cB ,

is the subspace fixed by F8cB, where F8 is “acting on the topological spaceMC” (at least
when M “ hX) and cB is acting on the coefficients.

On the other hand,
Hi

dRpMRq “ Hi
dRpMq bR

is simply the (real) de Rham cohomology of the associated real algebraic variety (or mo-
tive). Similarly, FnHi

dRpMRq is the nth step of the Hodge filtration on the above space.
Observe, then, that FnHi

dRpMRq has a natural Q-structure.

2.1.6. The fundamental exact sequences and Q-structures. For n ě i
2`1 there are canon-

ical isomorphisms (see [2, §3.2])

Hi`1
D pMR,Rpnqq » Hi

BpMR,Cq{pH
i
BpMR,Rpnqq ` F

nHi
dRpMRqq

» Hi
BpMR,Rpn´ 1qq{FnHi

dRpMRq,

In the second equation, we regard FnHi
dRpMRq as a subspace of Hi

BpMR,Rpn´ 1qq via
the composite

(2.1.9) π̃n´1 : FnHi
dRpMRq ãÑ Hi

BpMR,Cq
πn´1
ÝÝÝÑ Hi

BpMR,Rpn´ 1qq

where the latter map is the projection along C “ Rpnq ‘Rpn´ 1q.
This gives rise to two fundamental exact sequences:

(2.1.10) 0 Ñ FnHi
dRpMRq

π̃n´1
Ñ Hi

BpMR,Rpn´ 1qq Ñ Hi`1
D pMR,Rpnqq Ñ 0,

and
(2.1.11)

0 Ñ Hi
BpMR,Rpnqq Ñ Hi

dRpMRq{F
nHi

dRpMRq Ñ Hi`1
D pMR,Rpnqq Ñ 0,

These exact sequences can be used to put (different) Q-structures on the R-vector space
detHi`1

D pMR,Rpnqq using the canonical Q-structures on the left two terms of each se-
quence. The first, denoted RpM, i, nq will be the Q-structure obtained from (2.1.10),
namely using the Q-structures detHi

BpMR,Qpn ´ 1qq and detpFnHi
dRpMqq. The sec-

ond, denoted DRpM, i, nq will be the Q-structure obtained from (2.1.11), namely using
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the Q-structures detpHi
dRpMq{F

nq and detHi
BpMR,Qpnqq. These Q-structures are re-

lated by

(2.1.12) DRpM, i, nq “ p2π
?
´1q´d

´
pM,i,nq ¨ δpM, i, nq ¨RpM, i, nq,

where d´pM, i, nq “ dimHi
BpMC,Qpnqq

´. (See [33] (4.9.1).)

2.1.7. L-functions. For M in MQ,rat and i an integer, the L-function LipM, sq is defined
by

(2.1.13) LipM, sq “
ź

p

LippM, sq,

with
LippM, sq “ detp1´ Frobp p

´s|Hi
etpMQ,Q`q

Ipq´1,

where Frobp denotes a geometric Frobenius at p, the superscript Ip denotes taking invari-
ants under an inertia subgroup at p and ` is any prime not equal to p.

Implicit in this definition is the following conjecture, which we will will assume:
Each factor LippM, sq´1 is in fact a polynomial in p´s, with rational coef-
ficients, independent of the choice of `. Moreover, this factor has no poles
in the plane Repsq ą i

2 .
See [62, C5 and C6] of Serre’s article on local factors, for example. The last statement
is not necessary for Beilinson’s conjecture, but is very useful in handling bad factors; e.g.
it would be necessary in formulating Beilinson’s conjecture for the partial L-function,
which is implicitly what we end up using. In fact, we could get by with the weaker bound
Repsq ě i`1

2 .
The Euler product (2.1.13) converges on some right half plane in C; conjecturally, one

also expects (see [70]) that LipM, sq admits a meromorphic continuation to all of C that is
analytic as long as either i is odd or the pair pM, iq satisfies the following condition:

p‹q i “ 2j is even and H2j
et pMQ,Q`pjqq

GalpQ{Qq “ 0.

One also expects that LipM, sq satisfies a functional equation of the form:

pL8 ¨ Lq
ipM, sq “ pε8 ¨ εq

ipM, sq ¨ pL8 ¨ Lq
´ipM_, 1´ sq.

where L8 is the archimedean L-factor, and ε8, ε are ε-factors; for definitions, we refer to
[69].

2.1.8. Regulators and Beilinson’s conjecture. There are regulator maps

(2.1.14) rD : Hi
M pM,Qpjqq bRÑ Hi

DpMR,Rpjqq

which give rise to a morphism of twisted Poincaré duality theories.
Scholl has shown [61, Theorem 1.1.6] that there is a unique way to assign Q-subspaces

Hi`1
M pMZ,Qpnqq Ď Hi`1

M pM,Qpnqq to each Chow motive over Q, in a way that respects
morphisms, products, and so that Hi`1

M phXZ,Qpnqq is given by the image of motivic
cohomology of a regular model X , when one exists (for details, see loc. cit.). We now
present a version of Beilinson’s conjectures relating regulators to L-values.

Conjecture 2.1.1. (Beilinson) Suppose that n ě i
2 ` 1 and that if n “ i

2 ` 1 then pM, iq
satisfies the condition p‹q above.

(a) Then
rD : Hi`1

M pMZ,Qpnqq bRÑ Hi`1
D pMR,Rpnqq

is an isomorphism.
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(b) Further, we have equivalently

(2.1.15) rD
`

detHi`1
M pMZ,Qpnqq

˘

“ L´ipM_, 1´ nq˚ ¨RpM, i, nq,

(where, for typographical reasons, we have written Lp. . . q˚ instead of L˚ for the regular-
ized value) and

(2.1.16) rD
`

detHi`1
M pMZ,Qpnqq

˘

“ LipM,nq ¨DRpM, i, nq.

We understand the meromorphic continuation of theL-function and its functional equation,
as well as the properties of local Euler factors discussed after (2.1.13), to be part of this
conjecture.

Remark 3. We have omitted the description at the central point (conjecture of Bloch and
Beilinson). The point of main interest for us is the near right-of-center point, given by
n “ i

2 ` 1 (with i even). At this point, the formulation has to be typically modified to
allow for Tate cycles. For the motive that will be of most interest to us (namely the adjoint
motive attached to a tempered automorphic representation) this is unnecessary since this
motive satisfies assumption p‹q in the cases of interest.

However, we will make use of the conjecture at the central point in part of our argu-
ments; there we will simply use Deligne’s formulation [17]. We also note that we implic-
itly assume a version of the Tate conjecture below in order to claim that the adjoint motive
is determined up to isomorphism (in the category of Grothendieck motives, see §2.1.9–
§2.1.11) by its associated Galois representations. (See Appendix A and the reference to
[63] therein.)

Remark 4. In Beilinson’s original formulation of this conjecture one postulates the exis-
tence of a Chow motive M0 (Beilinson denotes this M0) such that

(2.1.17) H´ipM_q “ HipM0, iq

for all geometric cohomology theories H˚ and all i. Then

L´ipM_, 1´ sq “ LipM0, i` 1´ sq,

so the value L´ipM_, 1´nq˚ in (2.1.15) can be replaced by LipM0, i`1´nq˚. See also
§2.1.12 below.

2.1.9. Pure motives. The category of Chow motives has the disadvantage that it is not
Tannakian. To construct a (conjectural) Tannakian category one needs to modify the mor-
phisms and the commutativity constraint. For any field k, let Mk,hom and Mk,num denote
the categories obtained from Mk,rat by replacing the morphisms in (2.1.1) by cycles mod-
ulo homological and numerical equivalence respectively. Thus there are natural functors

Mk,rat Ñ Mk,hom Ñ Mk,num.

Jannsen [35] has shown that Mk,num is a semisimple abelian category and that numerical
equivalence is the only adequate equivalence relation on algebraic cycles for which this is
the case.

To outline what would be the most ideal state of affairs, we assume the following stan-
dard conjectures on algebraic cycles:

(1) (Kunneth standard conjecture) For any smooth projective variety X , the Kunneth
components of the diagonal (with respect to some Weil cohomology theory) on
X ˆX are algebraic.

(2) Numerical and homological equivalence coincide on CH˚pXqQ.
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Then the second functor above is an equivalence of categories, so we can identify Mk,hom

and Mk,num; this will be the category of pure motives or Grothendieck motives.
To make this category Tannakian, one needs to modify the commutativity constraint as

described in [18] §6, [35]. With this new commutativity constraint, the category of pure
motives is Tannakian ([35] Cor. 2); we denote it Mk. If k “ Q, then M ÞÑ H˚BpMCq,
M ÞÑ H˚dRpMq and M ÞÑ H˚etpMQq are Tannakian fiber functors.

We say moreover that a motiveM is pure of weightw when the cohomologyHj
BpM,Cq

is concentrated in degree j “ w. In this case, we write for short HBpM,Cq for the graded
vector space H˚BpM,Cq, which is entirely concentrated in degree w. Note that in general,
a pure motive is not necessarily pure of a fixed weight.

2.1.10. Passage from Chow motives to pure motives. The L-function of a Chow motive
only depends on the associated Grothendieck motive. Therefore, one would like to make
sense of Beilinson’s conjectures directly for Grothendieck motives over Q. As we shall ex-
plain in §2.1.10, §2.1.11, this can be done satisfactorily assuming the filtration conjectures;
and this assumption seems to be inevitable in our current state of understanding. While the
discussion that follows is presumably known to experts, we were not able to find it in the
literature.

When we apply Beilinson’s conjecture to Grothendieck motives, we always understand
that the filtration conjectures are assumed. One could remove this, in each fixed instance,
by starting with a Chow motive rather than a Grothendieck motive; however, it is more
natural in our applications to work with Grothendieck motives, see Remark 9.

For any field k, Beilinson conjectures the existence of a descending filtration F ‚ on
motivic cohomology Hi

M pX,Qpjqq for X in Vark satisfying the properties pãq through
pẽq of [36] Remark 4.5(b):

(1) F 0Hi
M pX,Qpjqq “ Hi

M pX,Qpjqq.
(2) On H2j

M pX,Qpjqq “ CHj
pXqQ, we have F 1 “ CHj

pXqhom,Q.
(3) F ‚ is respected by pushforward and pullback for maps f : X Ñ Y .
(4) F rHi1

M pX,Qpj1qq ¨ F
sHi2

M pX,Qpj2qq Ď F r`sHi1`i2
M pX,Qpj1 ` j2qq.

(5) F rHi
M pX,Qpjqq “ 0 for r " 0. For k a number field, F 2Hi

M pX,Qpjqq “ 0.
(6) There are functorial isomorphisms

GrrF pH
i
M pX,Qpjqqq “ ExtrMMk

p1, hi´rpXqpjqq.

Here MMk is a conjectural abelian category of mixed motives containing Mk,hom

as a full subcategory and 1 denotes the trivial motive hpSpec kq.
Assuming these conjectures, one also gets a filtration F ‚ on Hi

M pM,Qpjqq for M P

Mk,rat.
Let us note the following consequence of the above conjectures, a proof of which can

be found in [48, §7.3 Remark 3.bis]:

Proposition 2.1.1. (Beilinson) Assuming the conjectures above on the filtration F ‚, the
functor Mk,rat Ñ Mk,hom is essentially surjective. Given M P Mk,hom, and any two lifts
ĂM and ĂM 1 of M to Mk,rat, there exists an isomorphism ĂM » ĂM 1 in Mk,rat that maps to
the identity on M in Mk,hom.

Remark 5. In fact, (assuming the filtration conjectures) if ξ : M Ñ N is an isomorphism
in Mk,hom, any lift ξ̃ : ĂM Ñ rN of ξ to Mk,rat is an isomorphism in Mk,rat. Indeed,
let η : N Ñ M be the isomorphism which is inverse to ξ and let η̃ : rN Ñ ĂM be a lift
of η. Then ξ̃η̃ :“ ξ̃ ˝ η̃ P Endp rNq maps to the identity in EndpNq. Now the filtration
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conjectures imply that the kernel of the map Endp rNq Ñ EndpNq is a nilpotent (two-
sided) ideal. It follows from this that ξ̃η̃ is invertible in Endp rNq, which implies that ξ̃
admits a right inverse ξ̃1. Similarly, η̃ξ̃ is invertible in EndpĂMq, so ξ̃ admits a left inverse
ξ̃2. Clearly, ξ̃1 “ ξ̃2, so ξ̃ is an isomorphism.

Corollary 2.1.1. Let M “ pX, p, rq in Mk,hom. For any two lifts ĂM “ pX, p̃, rq and
ĂM 1 “ pX, p̃1, rq of M to Mk,rat, there exist canonical isomorphisms

GrnF pH
i
M p

ĂM,Qpjqqq » GrnF pH
i
M p

ĂM 1,Qpjqqq

Proof. Let ξ̃ be an element in p̃1˝CHdimpXq
pXˆXqQ˝p̃ giving an isomorphism ĂM » ĂM 1,

covering the identity map on M . Then ξ̃ induces maps

ξ̃˚ : Hi
M p

ĂM 1,Qpjqqq Ñ Hi
M p

ĂM,Qpjqqq

that preserve the filtration, given as usual by x ÞÑ p1,˚pξ ¨ p
˚
2 pxqq. Now ξ̃ is well defined

up to an element in p̃1 ˝CHdimpXq
pX ˆXqhom,Q ˝ p̃ = p̃1 ˝ F 1 CHdimpXq

pX ˆXqQ ˝ p̃.
It follows from property (4) of the filtration that the induced map on Grn is independent of
the choice of ξ̃. �

This corollary allows us to defined graded pieces of motivic cohomology for motives in
Mk,hom. Indeed, for M P Mk,hom, we lift M to ĂM in Mk,rat and define

GrnF pH
i
M pM,Qpjqqq :“ GrnF pH

i
M p

ĂM,Qpjqqq.

The corollary above shows that this is independent of the choice of ĂM up to canonical
isomorphism.

Corollary 2.1.2. Let M “ pX, p, rq, N “ pY, q, sq P Mk,hom and ξ : M Ñ N a
morphism in Mk,hom. Then ξ induces canonical maps

ξ˚ : GrnF pH
i
M pN,Qpjqqq Ñ GrnF pH

i
M pM,Qpjqqq.

Proof. To construct ξ˚, first pick lifts ĂM “ pX, p̃, rq and rN “ pY, q̃, sq of M and N
respectively to Mk,rat. Let ξ̃ be a lift of ξ to q̃ ˝ CH˚pX ˆ Y q ˝ p̃. The map

ξ̃˚ : Hi
M pN,Qpjqq Ñ Hi

M pM,Qpjqq

preserves filtrations; by the same argument as in the previous propostiion, the induced map
on graded pieces is independent of the choice of ξ̃, and is thus canonical. �

The following corollary follows immediately from the canonicity of the map ξ˚.

Corollary 2.1.3. (1) Suppose ξ : M Ñ N and ξ1 : N Ñ P are morphisms in
Mk,hom. Then pξ1 ˝ ξq˚ “ ξ˚ ˝ ξ1

˚ on GrnHi
M pP,Qpjqq.

(2) Suppose that ξ : M Ñ N is an isomorphism in Mk,hom. Then

ξ˚ : GrnHi
M pN,Qpjqq Ñ GrnHi

M pM,Qpjqq

is an isomorphism.
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2.1.11. Beilinson’s conjectures for pure motives. Now we specialize the previous section
to the setting of Beilinson’s conjectures on L-values. The key point is that even though
these conjectures are formulated in terms of motivic cohomology of Chow motives, in
each case it is only a certain graded piece that matters, so the conjectures make sense for
Grothendieck motives as well. Indeed, let us now specialize to k “ Q, and let X be a
variety over Q. Then:

(i) For n ě i
2 ` 1, we see from (6) that

Gr0Hi`1
M pX,Qpnqq “ HomMQ

p1, hi`1pXqpnqq “ 0

since hi`1pXqpnq is pure of weight i` 1´ 2n ď ´1. Thus in this range we have

Hi`1
M pX,Qpnqq “ F 1Hi`1

M pX,Qpnqq “ Gr1Hi`1
M pX,Qpnqq,

since F 2 “ 0 by (5).
(ii) If n “ i

2 ` 1, the conjecture typically also involves

CHn´1
pXqQ{CHn´1

pXqhom,Q “ Gr0H2n´2
M pX,Qpn´ 1qq.

(iii) If n “ i`1
2 , we are at the center and the conjecture involves

CHn
pXqhom,Q “ F 1H2n

M pX,Qpnqq “ Gr1H2n
M pX,Qpnqq,

since F 2 “ 0 by (5).
To be more precise, in case (i) (which is the case of main interest in this paper), one

needs to work with the subspace of “integral” elements, Hi`1
M pXZ,Qpnqq. But as pointed

out earlier, Scholl has defined rational subspaces Hi`1
M pMZ,Qpnqq for M P MQ,rat that

are invariant under isomorphisms in MQ,rat. Consequently, if M P MQ,hom, one can lift
M to ĂM in MQ,rat and then consider the subspace Hi`1

M pĂMZ,Qpnqq, this being indepen-
dent of the choice of ĂM .

2.1.12. The dual motive. One sees now that there are two different notions of the “dual
motive”. On the one hand, if M “ pX, p, rq is either a Chow motive or a Grothendieck
motive, we have defined M_ “ pX, pt, d´ rq with d “ dimpXq. Recall that this satisfies

(2.1.18) H´ipM_q “ HipMq_

for any (geometric) cohomology theory. On the other hand, assuming the conjectural
framework described above (so that Mhom is a Tannakian category), one can attach to
any M in Mhom a motive M˚ in Mhom such that

(2.1.19) HipM˚q “ HipMq_

for all i. By Prop. 2.1.1, one can lift M˚ to a Chow motive, any two such lifts being
isomorphic but not canonically so. We note the following example: if M “ pX,πj , 0q
with πj the Kunneth projector onto hjpXq, then

M_ “ pX,π2d´j , dq,

M˚ “ pX,π2d´j , d´ jq.

and we can take M0 “M “ pX,πj , 0q (see Remark 4).

Remark 6. The case of most interest in this paper is whenM P Mk,hom is (pure) of weight
zero so that HipMq vanishes outside of i “ 0. It follows then from (2.1.18) and (2.1.19)
that M˚ “M_. Further, from (2.1.17) we see that we can choose

M0 “M˚ “M_,
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so all notions of dual agree in this case. Let us restate Beilinson’s conjecture in this case for
n “ 1. Writing simplyL instead ofL0 and RpMq, DRpMq for RpM, 0, 1q, DRpM, 0, 1q
respectively, the conjecture predicts, equivalently:

(2.1.20) rD
`

detH1
M pMZ,Qp1qq

˘

“ L˚pM˚, 0q ¨RpMq

and

(2.1.21) rD
`

detH1
M pMZ,Qp1qq

˘

“ LpM, 1q ¨DRpMq.

2.2. Polarizations, weak polarizations and volumes. In this section, we examine the
fundamental exact sequence (2.1.10) in the presence of a polarization on M . We also
introduce the notion of a weak polarization, which for us will have all the properties of a
polarization except that we replace the usual definiteness assumption by a non-degeneracy
requirement.

2.2.1. Hodge structures. We first discuss these in the context of rational Hodge structures.
A Q-Hodge structure of weight m consists of a finite dimensional Q-vector space V and
a decomposition

(2.2.1) VC “ ‘p`q“mV
p,q,

such that V p,q “ V q,p. The Hodge filtration on VC is given by F iVC :“ ‘ pěi
p`q“m

V p,q .

The splitting (2.2.1) can be recovered from the Hodge filtration since V pq “ F pVC X
F qVC.

If M P MQ, the Betti cohomology Hm
B pMCq carries a Hodge structure of weight m.

The Hodge structure Qpmq of weight´2m is defined by the cohomology of the motive
Qpmq, explicitly:

(2.2.2) V “ p2π
?
´1qmQ, V ´m,´m “ VC.

In particular, Qp1q should be regarded as the Hodge structure of H1pGmq (or H2pP1q,
if one wants to only work with projective varieties). Indeed, if we identify

H1,BpGm,Cq » C

by integrating the form dz
z , the resulting identification carries the Betti Q-structure to

p2π
?
´1qQ Ă C, and the de Rham Q-structure to Q Ă C.

If V is a Q-Hodge structure then there is an action of Cˆ on VC, which acts by the
character

(2.2.3) z ÞÑ zpzq

on V pq . This action preserves V bR Ă VC.
For the cohomology of motives defined over Q this action extends to a larger group: let

WR and WC denote the Weil groups of R and C respectively. Thus WC “ Cˆ while WR

is the non-split extension
1 Ñ Cˆ ÑWR Ñ xjy Ñ 1

where j2 “ ´1 and j´1zj “ z̄ for z P Cˆ. For M P MQ, we extend the action of (2.2.3)
to the real Weil group via

j “ i´p´qF8 on V pq

see [69, §4.4] (we have used an opposite sign convention to match with (2.2.3)).



24 KARTIK PRASANNA AND AKSHAY VENKATESH

2.2.2. Polarizations on Hodge structures. A weak polarization on a pure Q-Hodge struc-
ture V of weight m will be a non-degenerate bilinear form

Q : V ˆ V Ñ Q

satisfying (here we continue to write Q for the scalar extension to a bilinear form VC ˆ
VC Ñ C)

(i) Qpu, vq “ p´1qmQpv, uq. Thus Q is p´1qm-symmetric.
(ii) QpV p,q, V p

1,q1q “ 0 unless pp, qq “ pq1, p1q.
We mention various equivalent formulations of these conditions. Firstly, since Q is

defined over Q, we have Qpu, vq “ Qpū, v̄q. From this it is easy to see that (ii) may be
replaced by (ii1):

(ii1) F iVC is orthogonal to F i
˚

VC where i˚ :“ m´ i` 1.

Since Q is non-degenerate and since F iVC and F i
˚

VC have complementary dimensions
in VC, we can also replace (ii1) by (ii2):

(ii2) The orthogonal complement of F iVC is F i
˚

VC.
Now define

S :“ p2π
?
´1q´mQ,

considered as a linear function

S : V b V Ñ Qp´mq.

Then condition (ii2) above is exactly equivalent to saying that S gives a morphism of Q-
Hodge structures. Thus we can equivalently define a weak polarization on V to consist of
a morphism of Q-Hodge structures S as above satisfying Spub vq “ p´1qmSpv b uq.

A polarization on a Q-Hodge structure V is a weak polarization Q that satisfies the
following additional positivity condition:

(iii) If u P V p,q , u ‰ 0, then ip´qQpu, ūq ą 0. (That ip´qQpu, ūq lies in R follows
from (i) and the fact that Q is defined over Q.)

Let C be the operator on VC given by the action of i P Cˆ (see (2.2.3)). Then we can
rewrite (iii) above as QpCu, ūq ą 0. This statement holds for all u P VC (and not just on
elements of fixed type pp, qq) on account of (ii). Thus condition (iii) is equivalent to:

(iii1) The hermitian form pu, vq ÞÑ QpCu, v̄q is positive definite.
Now C restricts to an R-linear operator on VR, and the condition (iii1) is equivalent to

(iii2) The R-bilinear form

VR ˆ VR Ñ R, pu, vq ÞÑ QpCu, vq

is symmetric and positive definite.

2.2.3. Polarizations on motives. A weak polarization on a pure motive M P MQ of
weight m will be a morphism

s : M bM Ñ Qp´mq

that is p´1qm-symmetric and such that the induced map

M ÑM˚p´mq

is an isomorphism. In particular, writing V “ HBpMC,Cq for the associated Q-Hodge
structure, s induces an isomorphism V

„
ÐÝ V ˚p´mq, which gives a p´1qm-symmetric

bilinear form
HBpsq : V b V Ñ Qp´mq,
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commuting with the action of Cˆ.
Thus HBpsq is a weak polarization of Hodge structures, in the sense of §2.2.2. A polar-

ization on M is a weak polarization s such that HBpsq is a polarization on V .
For the next statement, recall that V “ HBpMC,Cq is equipped with an involution F8.

Lemma 2.2.1. The (complexification of the) weak polarizationHBpsq : V bV Ñ Qp´mq
is equivariant for cB, F8 and the action of the Hodge S1 on VC.

Proof. It is enough to show these assertions for the morphism V ˚p´mq Ñ V . But given
any morphism f : M ÑM 1 of objects in MQ the induced morphism on Betti cohomology
commutes with cB, F8 and S1. �

In practice, instead of a weak polarization on M , we can work just with part of the
linear algebraic data given by such a form.

Namely, we give ourselves a nondegenerate symmetric bilinear form

(2.2.4) S : V ˆ V Ñ Qp´mq “ p2πiq´mQ

on V “ HBpMC,Qq whose complexification SC on VC satisfies:

(a) SC is invariant by F8 and Cˆ, i.e., by the action of WR, and
(b) SC restricts to a Q-valued form on HdRpMq.

This gives a Hermitian form x¨, ¨y on VC defined by

xx, yy “ Spx, ȳq

2.2.4. Metrics on Deligne cohomology. We shall now explain how to use a polarization
to equip Deligne cohomology with a quadratic form. In fact, we do not need a polariza-
tion, but simply the linear algebra-data associated to a weak polarization, as in (2.2.4) and
discussion after it.

Recall (for M P MQq the Beilinson exact sequence:

(2.2.5) 0 Ñ FnHi
dRpMRq

π̃n´1
ÝÝÝÑ Hi

BpMR,Rpn´ 1qq Ñ Hi`1
D pMR,Rpnqq Ñ 0,

where i and n are integers with i ď 2n´ 1; and the first map is as in (2.1.9).
Let M be pure of weight i and let V be the Q-Hodge structure Hi

BpMC,Qq. We
suppose, as in the discussion above, we are given the linear algebraic data associated to a
weak polarization, i.e.

S : V ˆ V Ñ Qp´iq

and we define Q “ p2π
?
´1qiS, as before. The distinction between S and Q is that S is

rational valued on de Rham cohomology, and Q is rational valued on Betti cohomology.

Proposition 2.2.1. Let p¨, ¨q denote the bilinear form u, v ÞÑ Qpu, v̄q on Hi
BpMR,Rpn´

1qq. Then

(1) The form p¨, ¨q is R-valued.
(2) Suppose that i is even. Then the form p¨, ¨q is symmetric and non-degenerate and so

is its restriction to the subspace π̃n´1pF
nHi

dRpMRqq. In particular, it induces by
orthogonal projection a non-degenerate form, also denoted p¨, ¨q, on the quotient
Hi`1

D pMR,Rpnqq.
(3) If i “ 2n´2 and S arises from a polarization, the form p¨, ¨q onHi`1

D pMR,Rpnqq
is symmetric and positive-definite.
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Proof. Q is real-valued onHi
BpMC,Rq and soQpu, v̄q “ Qpū, vq. Let u, v P Hi

BpMR,Rpn´
1qq. Then ū “ p´1qn´1u and same for v; thus

Qpu, v̄q “ Qpū, vq “ Qpp´1qn´1u, p´1qn´1v̄q “ Qpu, v̄q,

from which we see that p¨, ¨q is R-valued.
Now suppose that i is even. ThenQ is symmetric, and so pv, uq “ Qpv̄, uq “ Qpu, v̄q “

Qpū, vq “ pu, vq. Thus p¨, ¨q is symmetric.
The Hermitian form pu, vq ÞÑ Spu, v̄q is nondegenerate, and so pu, vq ÞÑ Re Qpu, v̄q is

a nondegenerate real-valued quadratic form on VC considered as a real vector space.
Now the inclusion Rpn´ 1q ãÑ C induces an identification (§2.1.5)

Hi
BpMR,Rpn´ 1qq “ Hi

BpMC,Cq
cB“p´1qn´1,F8“p´1qn´1

(2.2.6)

“ V
cB“p´1qn´1,F8“p´1qn´1

C .

The quadratic form Re Qpu, v̄q is preserved by cB, and QpF8u, F8vq “ p´1qiQpu, v̄q;
since i is even, we see that Re Qpu, v̄q is preserved by F8. Therefore, the restriction
of Re Qpu, v̄q to Hi

BpMR,Rpn ´ 1qq remains nondegenerate, since this subspace is an
eigenspace for the action of the Klein four-group generated by F8, cB, and this group
preserves Re Qpu, v̄q.

The same analysis holds verbatim replacing VC by V p,q‘V q,p, and shows that ReQpu, v̄q

is nondegenerate on pV p,q ‘ V q,pqcB“p´1qn´1,F8“p´1qn´1

. Since

π̃n´1pF
nHi

dRpMRqq “
à

pěn

p`q“i

pV p,q ‘ V q,pqcB“p´1qn´1,F8“p´1qn´1

the non-degeneracy of p¨, ¨q restricted to π̃n´1pF
nHi

dRpMRqq follows.
Finally, for (3), we note that when i “ 2n´2, the orthogonal complement of π̃n´1pF

nHj
dRpMRqq

is just
pV n´1,n´1qcB“p´1qn´1,F8“p´1qn´1

and the restriction of p¨, ¨q to this subspace is positive definite if S is a polarization. �

2.2.5. Motives of weight zero. The case of most interest to us is when M is of weight 0
and n “ 1, i “ 0 and we restrict to this case for the rest of this section.

The exact sequence (2.2.5), specialized to n “ 1 and i “ 0 is:

(2.2.7) 0 Ñ F 1HdRpMq bQ R
π̃0
ÝÑ H0

BpMR,Rq Ñ H1
DpMR,Rp1qq

loooooooomoooooooon

“H1
M pMZ,Qp1qqbR

,Ñ 0

where the equality in the second line is conditional on Beilinson’s conjecture. The map π̃0

here is given by:

π̃0pxq “
1

2
px` x̄q.

Note that the Weil group WR acts naturally on HBpMC,Rq and the fixed set can be de-
scribed in equivalent ways:

HBpMC,Rq
WR “ subspace of the p0, 0q-Hodge part of HBpMC,Cq fixed by F8 and cB

“ orthogonal complement of π̃0

`

F 1HdRpMq bQ R
˘

inside HBpMR,Rq,

for any weak polarization s on M . Thus (2.2.7) induces an isomorphism

(2.2.8) HBpMC,Rq
WR „

ÝÑ H1
DpMR,Rp1qq.
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Proposition 2.2.1 implies that, if we are given a weak polarization s onM , then the form
S induces on HBpMC,Rq

WR
„
ÝÑ H1

DpMR,Rp1qq a non-degenerate quadratic form; if s
is actually a polarization, this quadratic form is in fact positive definite.

2.2.6. Volumes. We continue to study the setting of a weight 0 motiveM . In what follows,
we do not need the full structure of a polarization: all we need is the associated linear-
algebraic data, i.e., S as in equation (2.2.4), and thus we will just assume M to be so
equipped. Recall that although S is nondegenerate, no definiteness properties are imposed
on it.

We can compute the volumes (in the sense of (1.4.2)) of the three Q-vector spaces
appearing in (2.2.7), using the metric arising from S.

The restriction of SC to HBpMR,Rq “ V F8,cBC is just given by px, yq ÞÑ SCpx, yq.
When we pull back this form to F 1HdRpMq bR via π̃0, the result is

px, yq “ x
x` x̄

2
,
y ` ȳ

2
y “

1

4
pSCpx, ȳq ` SCpx̄, yqq “

1

4
pSCpx, ȳq ` SCpx, ȳqq

“
1

2
ReSCpx, ȳq “

1

2
SCpx, ȳq.

Here we have used that SCpx, ȳq P R for x, y P F 1HdRpMq b R: this is because cB
preserves HdRpMq bR (since cB and cdR commute), and so ȳ P HdRpMq bR also.

The next lemma describe some basic results concerning these volumes and their rela-
tions. In particular, up to factors of Qˆ, the squares of these volumes do not depend on the
choice of S:

Lemma 2.2.2. With notation as above, the square of volS HBpMR,Qq lies in Qˆ, and
the square of volS F

1HdRpMq is, at least up to Qˆ, independent of the choice of the form
S (subject to S satisfying the conditions (a) and (b) after (2.2.4)).

If we moreover assume Beilinson’s conjecture, as formulated in (2.1.20), we have:

(2.2.9) volS H1
M pMZ,Qp1qq „Qˆ L

˚pM˚, 0q ¨
volS HBpMR,Qq

volS F 1HdRpMq
,

where L˚ means highest non-vanishing Taylor coefficient; and again all volumes are com-
puted with respect to the form S.)

Proof. The first assertion is immediate, since S is rational-valued on HBpMC,Qq. We
next prove the assertion concerning volS F

1HdRpMq. The form S descends to a perfect
pairing

S : F 1HdRpMq ˆHdRpMq{F
0HdRpMq Ñ Q,

and hence a perfect pairing

S : detF 1HdRpMq ˆ detpHdRpMq{F
0q Ñ Q.

Note also that the complex conjugation cB induces an isomorphism

F 1HdRpMq bC » pHdRpMq{F
0q bC.

Choose generators v`, v´ for the Q-vector spaces detF 1HdRpMq and detpHdRpMq{F
0q.

If dimF 1HdRpMq “ d, the image of v` under the natural projection

ϕ :
ľd

pHdRpMq bCq Ñ
ľd `

HdRpMq{F
0 bC

˘

is a generator for the right-hand side, so we have

(2.2.10) ϕpv`q “ λ ¨ v´
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for some scalar λ P Cˆ (in fact, in Rˆ) which is obviously independent of the choice of
S. The volume of F 1HdRpMq is then given by

(2.2.11) 2d ¨
`

volS F
1HdRpMq

˘2
“ SCpv

`, v`q “ SCpv
`, ϕpv`qq “ λ ¨ Spv`, v´q.

The result follows since Spv`, v´q P Qˆ.
We finally verify (2.2.9): by (2.1.20) we have:

(2.2.12) detpHBpMR,Qqq ¨ L
˚pM˚, 0q „ detF 1HdRpMq ¨ detpH1

M pMZ,Qp1qqq,

which we should regard as an equality inside
ľ˚

HBpMR,Rq »
ľ˚

pF 1HdRpMRqq b
ľ˚

H1
DpMR,Rp1qq.

Computing volumes of both sides of (2.2.12) with respect to the polarization we get (2.2.9).
�

We remark that the Lemma allows us to define volF 1HdRpMq up to
a

Qˆ– namely,
take

?
λ where λ is in (2.2.10) – even without a polarization.

3. FUNDAMENTAL CARTAN AND TEMPERED COHOMOLOGICAL REPRESENTATIONS

In this section, we will associate a canonical C-vector space aG to the real reductive
group GR; its complex-linear dual will be denoted by a˚G. These vector spaces depend on
GR only up to isogeny.

Despite the notation, the group GR does not need to be the extension of a reductive
group over Q; for this section alone, it can be an arbitrary real reductive group. We denote
byG the real points of GR. Similarly, in this section alone, we will allow LG to denote the
dual group of the real algebraic group, rather than the Q-algebraic group; in other words,

LG “ pG¸GalpC{Rq,

rather than the variant with GalpQ{Qq.
We shall then construct an action of ^˚a˚G on the cohomology of any tempered, coho-

mological representation of G, over which this cohomology is freely generated in degree
q. We will always have

(3.0.1) dim a˚G “ δ “ rankpGq ´ rankpK8q,

The short version is that the vector space a˚G is dual to the Lie algebra of the split part
of a fundamental Cartan algebra, but we want to be a little more canonical (in particular,
define it up to a unique isomorphism).

We will give two definitions of a˚G. The first in §3.1 is analogous to the definition of
“canonical maximal torus” of a reductive group. The second definition in §3.2 uses the
dual group.

There is a natural real structure on aG, arising from either of the constructions. How-
ever, what will be more important to us is a slightly less apparent real structure, the “twisted
real structure,” which we define in Definition 3.1.2.

In §3.4 we construct the action of ^˚a˚G on the pg,K8q-cohomology of a tempered
representation; in fact we will work with pg,K0

8q-cohomology, where K0
8 is the identity

component of K8. The book [8] is a standard reference for pg,K8q cohomology.
We follow in this section the convention of allowing g etc. to denote the complexifica-

tions of the Lie algebras and reserving gR or LiepGRq for the real Lie algebra. We write
kR for the Lie algebra of K8; let θ be the Cartan involution of gR that fixes kR, and pR
the ´1 eigenspace for θ, with complexification p. Thus g “ k ‘ p. Finally, let ZG be the
center of GR, with Lie algebra z and real Lie algebra zR.
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Moreover, let us fix

(3.0.2) BR “ an invariant, θ-invariant, R-valued quadratic form on gR,

with the property that BRpX, θpXqq is negative definite. (Invariant means that it is invari-
ant by inner automorphisms, whereas θ-invariant means BRpθpXq, θpY qq “ BRpX,Y q.)
For example, if GR is semisimple, the Killing form has these properties. Note that such a
form gives rise to a positive definite metric on gR{kR, and this normalizes a Riemannian
metric on the locally symmetric space Y pKq.

3.1. First construction of a˚G via fundamental Cartan subalgebra. A fundamental Car-
tan subalgebra of gR is a θ-stable Cartan subalgebra whose compact part (the fixed points
of θ) is of maximal dimension among all θ-stable Cartan subalgebras. These are all con-
jugate, see [82, 2.3.4]. Let δ be the dimension of the split part (´1 eigenspace of θ) of
a fundamental Cartan subalgebra. Then δ “ rankpGq ´ rankpK8q. Informally, δ is the
smallest dimension of any family of tempered representations of G. The integer δ depends
only on the inner class of GR. For almost simple groups, δ “ 0 unless GR is “a complex
group” (i.e. GR » ResC{RG˚ where G˚ is a simple complex reductive group) or GR is
(up to center and inner twisting) SLnpn ě 3q,Esplit

6 or SOp,q where p, q are odd.
Consider triples pa, b, qq that arise thus: Begin with a Cartan subgroup B Ă K˝8, with

Lie algebra bR Ă kR and complexified Lie algebra b Ă k. Form its centralizer tR “

aR ‘ bR inside gR, where aR is the ´1 eigenspace for θ; it is a fundamental Cartan
subalgebra with complexification t “ a‘ b. Pick generic x P ibR and let q be the sum of
all eigenspaces of x on g which have non-negative eigenvalue. Thus q is a Borel subalgebra
and its torus quotient is a‘ b.

Proposition 3.1.1. Suppose pa, b, qq and pa1, b1, q1q arise, as described above, from pb, xq
and pb1, x1q.

Then there then there exists g P GRpCq such that Adpgq carries pa, b, qq to pa1, b1, q1q
and preserves the real structure on a (i.e., carries aR Ă a to a1R Ă a1). Moreover, any two
such g, g1 induce the same isomorphism aÑ a1.

Note that pa, b, qq and pa1, b1, q1q need not be conjugate under GRpRq.

Proof. The last (uniqueness) assertion is obvious: g, g1 differ by an element of the Borel
subgroup corresponding to q, which act as as the identity on its torus quotient.

We thank the referee for suggesting the following proof (much shorter than our original
one): There certainly exists such a g carring q to q1, and a‘b to a1‘b1. It suffices to show
that the map

Adpgq : a‘ bÑ a1 ‘ b1

commutes both with complex conjugation and with the Cartan involution. For this, it
suffices to show that the adjoint action of θpgq and ḡ also carry pq, a ‘ bq to pq1, a1 ‘ b1q,
for this characterizes them up to the centralizer of a‘ b.

But θpgq takes θpqq “ q to θpq1q “ q1, and similarly it takes a ‘ b to a1 ‘ b1. Also, ḡ
takes q to q1 (all complex conjugations are for the real structure on G) and takes a ‘ b to
a1 ‘ b1. Since q̄ is the opposite to q with respect to a‘ b, and similarly for q1, we see that
ḡ also takes q to q1 as claimed. �

Therefore, a or aR as above is well-defined up to unique isomorphism; we denote this
common space by aG. More formally,

(3.1.1) aG :“ lim
ÐÝ
pa,b,qq

a,



30 KARTIK PRASANNA AND AKSHAY VENKATESH

and we define a˚G to be its C-linear dual. Visibly aG does not depend on the isogeny class
of GR - it depends only on the Lie algebra LiepGRq. It is also equipped with a canonical
real structure arising from aR Ă a.

There is another real structure on a of importance to us. To describe it, the following
Lemma (which we shall prove in §3.1.1) will be useful:

Lemma 3.1.1. With notation as described, let nK P K˝8 normalize b and take the par-
abolic subalgebra q X k Ă k to its opposite, with respect to the Cartan subalgebra b.
Similarly, let nG P GRpCq normalize a‘ b and carry q to its opposite. Then nG and nK
both preserve a, and coincide on it.

It is at least clear that nK preserves a, and the same statement for nG can be proved in
a fashion that is analogous to the proof of Proposition 3.1.1. However, the full statement
seems a bit tricker, which is why we confine the proof to §3.1.1.

Definition 3.1.1. The long Weyl element is the involution of aG “ lim
ÐÝpa,b,qq

a induced by
the common action of nG or nK from the prior Lemma.

The long Weyl element preserves aG,R, since wK can be represented by an element of
K8. We use it to define a second real structure:

Definition 3.1.2. The twisted real structure a1G,R on aG is the fixed points of the involution
given by

pX ÞÑ X̄q ¨ w,

where X ÞÑ X̄ is the antilinear involution defined by aG,R, and w is the long Weyl group
element for aG.

3.1.1. Root systems on b. The following section – whose aim is to prove Lemma 3.1.1 –
owes much to an anonymous referee of this paper, whose suggestions greatly simplified
our previous arguments.

Write M for the centralizer of a in GC; it is a Levi subgroup. Write m for the (complex)
Lie algebra of M.

It is proved in [20, Proposition 18.2.3]; that the set of roots of b on g form a not neces-
sarily reduced root system inside the dual of ibR{ipzR X bRq; we regard the latter as an
inner product space by using the form BR. (The reference cited uses the Killing form, but
B has all the necessary properties for the argument.)

We will abuse notation slightly and simply say that these roots form a root system

∆pg : bq Ă ib˚R,

with the understanding that their span is only the subspace of ib˚R orthogonal to the central
space zRXbR Ă bR. Then the roots ∆pk : bq on k or the roots ∆pm : bq on m form subsys-
tems of ∆pg : bq. The Weyl groups of these root systems will be denoted WG,WK ,WM

respectively; these are all regarded as subgroups of Autpbq. We note two useful facts about
this setup:

‚ Each root of b on g is either a root on k or a root on m:

(3.1.2) ∆pg : bq “ ∆pk : bq Y∆pm : bq.

Indeed, for α a root of b on g, the corresponding root subspace gα is preserved
by θC, the complex-linear extension of the Cartan involution for gR, and also by
adpaq. If the fixed space of θC on gα is nontrivial, then α lies inside ∆pk : bq.
Otherwise θC acts as ´1 on gα, and for Z P a, X P gα we compute

´rZ,Xs “ θprZ,Xsq “ rθpZq, θpXqs “ r´Z,´Xs “ rZ,Xs.
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so that a centralizes the whole root space; in particular, gα Ă m. This proves
(3.1.2).

‚ Each element of WM has a representative nM P GRpCq which normalizes a
and b. For this it is harmless to assume (passing to the derived group) that G is
semisimple, and to consider the case of a root reflection sβ for some root β P
∆pm : bq. Now β is the restriction of some root β˚ of a ‘ b on m, and so w has
a representative w̃ inside the normalizer of a ‘ b inside MC; now w̃ preserves a,
and therefore it preserves b too by consideration of the Killing form. (At the last
step, we note that aR, bR are orthogonal to one another under BR, which follows
from the fact that they are in different eigenspaces for the Cartan involution.)

Lemma 3.1.2. Suppose that C ,C 1 are chambers for ∆pg : bq that lie in a fixed chamber
for ∆pk : bq. (Here, a“chamber” for a root system is a connected component of the
complement of all hyperplanes orthogonal to the roots.) Then there is wM P WM , the
Weyl group of ∆pm : bq, such that wMC “ C 1.

Proof. Because of (3.1.2) a fixed chamber for ∆pk : bq is subdivided by hyperplanes H
orthogonal to roots β P ∆pm : bq; the corresponding reflection sα P W pm : bq allows one
to move between the two sides of this H . �

Conclusion of the proof of Lemma 3.1.1. We choose a chamber C in ibR for ∆pg : bq
that is associated to q, i.e. for x P C the Borel subalgebra q Ą b ‘ a is spanned from
non-negative root spaces of x.

Let wK be the automorphism of b induced by nK (equivalently n´1
K ). Let wG be an

element in the Weyl group of ∆pg : bq such that wGC “ ´C (this is possible because the
Weyl group WG acts simply transitively on chambers).

Then wKwGC and C both lie in the same positive chamber for ∆pk : bq. By Lemma
3.1.2 there is wM P WM such that wMC “ wKwGC . Choose a representative nM P

GRpCq for this wM , normalizing a and b. Then n :“ nK ¨ nM P GRpCq normalizes
a and b; this element n takes the chamber C to ´C , and so it takes q to qop. We may
therefore suppose n “ nG. It follows that nG preserves a, and its action on a coincides
with nK . �

3.2. Second construction of a˚G via the dual group. Let pT Ă pB be the standard maximal
torus and Borel in pG. Let LW denote the normalizer of pT inside pG¸GalpC{Rq, modulo
pT . There exists a unique lift w0 P

LW of the nontrivial element of GalpC{Rq with the
property that w0 sends pB to the opposite Borel (w.r.t. pT ). Moreover, we may choose a
representative of w0 that lies inside pGpRq ¸ GalpC{Rq, unique up to pT pRq; thus the
space Liep pT qw0 carries a real structure arising from the real structure on pT . (Here, and in
what follows, we are using the structure of pG as a split Chevalley group to speak of its R
points, as mentioned in §1.6).

We will show that a˚G can be identified with Liep pT qw0 , in a fashion that carries the real
structure a˚G,R to the natural real structure on the latter space.

Observe, first of all, that a choice of pa, b, qq as before yields a torus T Ă GR with Lie
algebra a‘ b, and a Borel subgroup of GR ˆR C containing T, with Lie algebra q; then
we get identifications

(3.2.1) Liep pT q » X˚p pT q bC “ X˚pTq bC “ pa‘ bq˚

We have used the fact that, for any complex torus S, we may identify LiepSqwithX˚pSqb
LiepGmq and thus with X˚pSq bC, choosing the basis for LiepGmq that is dual to dz

z .
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If we choose a different triple pa1, b1, q1q there exists g P GRpCq conjugating pa, b, qq to
pa1, b1, q1q; the maps (3.2.1) differ by Adpgq. In particular, we get by virtue of Proposition
3.1.1, a map

(3.2.2) Liep pT q Ñ lim
ÐÝ
pa,b,qq

a˚ “ a˚G.

Lemma 3.2.1. The map (3.2.2) carries Liep pT qw0 isomorphically onto a˚G, and preserves
real structures.

Moreover, the long Weyl group element w
pG for pT , carrying pB to its opposite, preserves

Liep pT qw0 , and is carried under this identification to the long Weyl element acting on a˚G
(see discussion after Lemma 3.1.1).

This justifies using Liep pT qw0 as an alternate definition of a˚G.
In the following proof, we will refer to the “standard” antiholomorphic involution on pT

or its Lie algebra. The torus pT is, by definition, a split torus; as such it has a unique split
R-form, and we refer to the associated antiholomorphic involution as the “standard” one.

Proof. Under the identification of (3.2.1) the action ofw0 on Liep pT q is carried to the action
on X˚pTqbC “ pa‘bq˚ of an automorphism γ of g that belongs to the same outer class
as complex conjugation, and switches q and its opposite qop relative to a ‘ b. However,
by virtue of the construction of q from an element x P ibR, complex conjugation switches
q and qop. It follows that γ corresponds precisely to the action of complex conjugation c
on X˚pTq bC. It readily follows that it acts by ´1 on b˚ and 1 on a˚. This shows that
Liep pT qw0 is carried isomorphically onto a˚G by (3.2.2).

Now the antiholomorphic involution pcb pz ÞÑ z̄qq on X˚pTq b C “ pa ‘ bq˚ fixes
precisely a˚R‘b

˚
R. Transporting to Liep pT q by means of the above identification, we see that

the real structure on paR‘bRq
˚ Ă pa‘bq˚ corresponds to the antiholomorphic involution

c1 on Liep pT q which is the composition of w0 with the standard antiholomorphic involution.
In particular, restricted to the w0-fixed part, c1 reduces to the standard antiholomorphic
involution. This proves the statement about real structures.

For the second claim, we note that w
pG and w0 commute, so certainly w

pG preserves
Liep pT qw0 ; under the identifications of (3.2.1) w

pG corresponds to an element of the Weyl
group of pa ‘ bq which sends q to the opposite parabolic. This coincides with the long
Weyl element for aG by Lemma 3.1.1. �

3.3. The tempered cohomological parameter. We will next construct a canonical iden-
tification

(3.3.1) a˚G » Lie algebra of the centralizer of ρ : WR Ñ
LG

where ρ is the parameter of any tempered cohomological representation forG; correspond-
ingly we get

(3.3.2) aG » fixed points of Ad˚ ρ : WR Ñ GLprgq on rg.

where Ad˚ : LGÑ GLprgq is the co-adjoint representation.
To see this we must discuss the L-parameter of tempered cohomological representa-

tions:
Write as usual WR “ Cˆ Y Cˆj, where j2 “ ´1, for the real Weil group. Let

ρ : WR Ñ LG be a tempered Langlands parameter whose associated L-packet contains
a representation with nonvanishing pg,K0

8q cohomology (with respect to the trivial local
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system, as always in this paper). In particular, the infinitesimal character of this represen-
tation coincides with that of the trivial representation. The infinitesimal character can be
read off from the Cˆ part of the Langlands parameter (see [49, §15.1, Lemma] although
we believe this result to be folklore). Therefore, by examining infinitesimal characters, we
can conjugate ρ in pG to a representation ρ0 such that

(3.3.3) ρ0|Cˆ : Cˆ Ñ LG

is given by ΣGp
a

z{z̄q, where ΣG is the canonical cocharacter Gm Ñ pG given by the sum
of all positive coroots. The connected centralizer of ρ0|Cˆ is then pT , so the image of j in
LG must normalize pT and sends pB to pBop. Therefore, ρ0pjq defines the same class as w0

inside LW (notation of §3.2) and therefore

(3.3.4) a˚G “ Lie algebra of the centralizer of ρ0.

Now ρ “ Adpgqρ0 for some g P pG; since the centralizer of ρ0 is contained in pT , g is
specified up to right translation by pT , and consequently the induced map

Lie algebra of the centralizer of ρ0
„
Ñ Lie algebra of the centralizer of ρ

is independent of the choice of g. Composing with (3.3.4), we arrive at the desired identi-
fication (3.3.1).

Remark 7. In general, there are multiple possibilities for the conjugacy class of ρ, i.e.
multiple L-packets of tempered cohomological representations; however, if GR is simply
connected or adjoint, ρ is unique up to conjugacy: any two choices of w0 differ by an
element t P pT , which lies in the fixed space for τ : z ÞÑ 1{zw0 on pT . Thus we must
verify that every element of the τ -fixed space pT τ is of the form x ¨ τpxq for some x P pT ;
equivalently that pT τ is connected. If pG is simply connected, coroots give an isomorphism
Grm » pT , and the map α ÞÑ ´w0α permutes the coroots; we are reduced to verifying
connectivity of fixed points in the case of τ the swap on G2

m or τ trivial on Gm, which are
obvious. The adjoint case is similar, replacing the use of coroots by roots.

3.4. The action of the exterior algebra ^˚a˚G on the cohomology of a tempered rep-
resentation. In this section, we will construct an action of ^˚a˚G on H˚pg,K0

8; Πq, for
any finite length, tempered, cohomological representation Π of G. In this situation, by
“cohomological,” we mean that every constituent of Π is cohomological – note that Π is
tempered, and thus semisimple.

This action will have the property that the induced map

(3.4.1) Hqpg,K0
8; Πq b ^ja˚G ÝÑ Hq`jpg,K0

8; Πq

is an isomorphism. Here q is the minimal dimension in which the pg,K0
8q-cohomology is

nonvanishing; explicitly, we have 2q ` dimCaG “ dimY pKq. The action of ^˚a˚G will
commute with the natural action of K8{K

0
8 on H˚pg,K0

8; Πq.
As a general reference for pg,K0

8q cohomology, the reader may refer to [8]. In general,
pg,K0

8q cohomology of π is computed by a complex with terms HomK0
8
p^pg{k, πq. How-

ever, for unitary irreducible cohomological π, all the differentials in this complex vanish
(as proved by Kuga, see [8, Theorem 2.5]); so we may identify the pg,K0

8q cohomology
with HomK0

8
p^pg{k, πq.

We construct the action first in the simply connected case, and then reduce the general
case to that one.
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3.4.1. The action for GR simply connected. Here G is connected, as is its maximal com-
pact; and the cohomological, tempered representations are indexed (with notation as in
§3.1) by choices of a positive chamber C for the root system ∆pg : bq:

We have already explained that such a chamber C gives rise to a Borel subgroup q and
a notion of positive root for ∆pg : bq. Vogan and Zuckerman [76] attach to C a tempered
cohomological representation πpC q characterized by the additional fact that it contains
with multiplicity one the irreducible representation VC of K8 “ K0

8 with highest weight

µC “ the sum of roots associated to root spaces in uX p,

where u is the unipotent radical of q. (See [76, Theorem 2.5]). Moreover, it is known
that VC is the only irreducible representation of K8 that occurs both in πpC q and in ^˚p
(proof and discussion around [76, Corollary 3.7]).

We write V´C for the dual representation to VC ; its lowest weight is then equal to´µC .
Let us fix a highest v` P VC and a lowest weight vector v´ in V´C , with weights µC and
´µC . In what follows, a vector of “weight µ” means that it transforms under the character
µ of qXk: and a vector “of weight´µ” transforms under that character of qopXk, where qop

is the parabolic subgroup associated to ´C . In other words, “weight µ” is a requirement
on how the vector transforms by a Borel subalgebra, not merely a toral subalgebra.

Write W rC s for the VC -isotypical subspace of an arbitrary K8-representation W , and
W r´C s for the ĂVC -isotypical subspace. Thus W rC s “ VC b HompVC ,W q and f ÞÑ
fpv˘q gives isomorphisms

(3.4.2) HompVC ,W q “ vectors in W of weight µC under qX k.

(3.4.3) HompV´C ,W q “ vectors in W of weight ´µC under qop X k.

Let u be the unipotent radical of qop. From the splitting

(3.4.4) a‘ puX pq ‘ puX pq “ p,

we get a tensor decomposition of ^˚p and of ^˚p˚. For the spaces of vectors of weights
µ and ´µ we get

(3.4.5) p^˚pq
µ
“ ^˚ab detpuX pq, p^˚p˚q

´µ
“ ^˚a˚ b detpuX pq˚.

In particular, there is a natural inclusion a˚ ãÑ p˚ (from (3.4.4)), and then the natural
action of ^˚a˚ on ^˚p˚ makes the space of weight ´µ vectors in the latter a free, rank
one module. Note that we may regard ^˚p˚ either as a left- or a right- module for ^˚a˚;
the two actions differ by a sign p´1qdeg on a˚. We will use either version of the action
according to what is convenient.

Thus we have an action of ^˚a˚ on

(3.4.6) HompV´C ,^
˚p˚q

„
ÝÑ p^˚p˚q´µ pvia f ÞÑ fpv´qq,

given (in the left-hand space) by the rule Xfpv´q “ X ^ fpv´q.
There is also a contraction action of ^˚a˚ on ^˚p: for X P a˚, the rule Y ÞÑ X  Y

is a derivation of ^˚p with degree ´1, which in degree 1 realizes the pairing a˚ˆ pÑ C.
As a reference for contractions, see [11, Chapter 3]. This action again makes the space of
weight µ vectors a free, rank one module.

The two actions are adjoint:

(3.4.7) xX ^A,By “ xA,X  By, X P a˚, A P ^˚p˚, B P ^˚p,
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where the pairing between ^˚p and ^˚p˚ is the usual one (the above equation looks a bit
peculiar – it might seem preferable to replace X ^ A by A ^X on the left – but in order
to do that we would have to use a different pairing, which we prefer not to do).

From
(3.4.8)
H˚pg,K0

8;πpC qq “ p^˚p˚ b πpC qq
K8

loooooooooomoooooooooon

“HomK8 p^
˚p,πpC qq

» HompV´C ,^
˚p˚q

loooooooooomoooooooooon

»p^˚p˚q´µ

bHompVC , πpC qq,

we have also constructed an action of ^˚a˚ on the pg,K0
8q cohomology of πpC q. Again,

it can be considered either as a left action or a right action, the two being related by means
of a sign; we will usually prefer to consider it as a right action.

This action is characterized in the following way: for any f P HomK8p^
˚p, πpC qq,

and any vector v of weight µC in ^˚p, and for X P ^˚a˚, we have

(3.4.9) Xf : v ÞÑ fpX  vq.

The left action is related to this via f ¨X “ p´1qdegpfqpX ¨ fq pX P a˚q.
To verify (3.4.9), note that the map f factors through VC Ă πpC q. We may replace

πpC q by VC , regarding f as a K8-map ^˚p Ñ VC , and write f t : V´C Ñ ^˚p˚ for
the transpose of f . Now, for v` P VC a vector of weight µC , the evaluation fpv`q is
determined by its pairing with a lowest weight vector v´ P V´C . We have

xv´, Xfpv`qy “ xpXfqtv´, v`y “ xX^f tpv´q, v`y
(3.4.7)
“ xf tpv´q, X v`y “ xv´, fpX v`qy.

In summary, we have a well-defined action of^˚a˚G on the pg,K0
8q cohomology of any

tempered irreducible cohomological representation. (Strictly speaking, we should verify
that our definitions did not depend on the choice of pb,C q. If k P K8 conjugates pb,C q to
pb1,C 1q, then it carries pq, µC q to pq1, µC 1q; there is an isomorphism ι : πpC q Ñ πpC 1q,
and the actions of Adpkq : ^˚a » ^˚a1˚ are compatible with the map on pg,K0

8q coho-
mology induced by ι; thus we get an action of ^˚a˚G as claimed.)

Finally, it is convenient to extend the action to representations that are not irreducible,
in the obvious fashion: If Π is any tempered representation of finite length, we have

H˚pg,K0
8; Πq “

à

α

Hompπα,Πq bH
˚pg,K0

8;παq,

the sum being taken over (isomorphism classes of) tempered cohomological representa-
tions πα; we define ^˚a˚G to act term-wise.

Remark 8. It is also possible to construct this action using the realization of tempered
cohomological representations as parabolic induction from a discrete series on M. We
omit the details.

3.4.2. Interaction with automorphisms. We continue to suppose that GR is semisimple
and simply connected. Suppose that α is an automorphism of GR that arises from the con-
jugation action of the adjoint form Gad, preserving K8. If Π is a tempered representation
of finite length, then so is its α-twist αΠ, defined by αΠpαpgqq “ Πpgq.

Also α induces an automorphism Y ÞÑ αpY q of p; the K8 representations p and αp are
intertwined via the inverse map Y ÞÑ α´1pY q.

Lemma 3.4.1. Let Π be tempered cohomological of finite length. The natural map

(3.4.10) HomK8p^
˚p,Πq Ñ HomK8p^

˚p, αΠq,

which sends f to the composite ^˚p » ^˚ pαpq
αf
Ñ αΠ, commutes the ^˚a˚G actions on

both spaces.
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Proof. This reduces to the irreducible case. So suppose that π “ πpC q, where C is a
chamber C Ă ib˚R, giving rise to data pa, b, qq. Adjusting α by an element of K8, we may
suppose that α preserves K8 and b and the Borel subalgebra qX k Ă k.

If W is an irreducible K8-representation of highest weight µ, then αW has highest
weight µ ˝ α´1. Therefore the representation απpC q contains the K8-representation with
highest weight µC ˝α

´1, which is associated to the chamber αpC q and the parabolic αpqq:
απpC q “ πpαpC qq.

Now α sends pa, b, qq to pa, b, αpqqq. Although it belongs only to GadpRq it can be
lifted to GRpCq, and so the following diagram commutes:

(3.4.11) aG
C //

α

��

a

“

��
aG

αpC q // a.

where the vertical arrows refer to the identification of a with aG induced by the triples
pa, b, qq (at top) and pa, b, αpqqq (at bottom).

Note that the map Y ÞÑ α´1pY q takes p^˚pqµα
´1

Ñ p^˚pqµ (where the weight spaces
are computed for the usual actions, not the twisted ones). The map (3.4.10) explicitly sends
f to f 1 : Y P ^˚p ÞÑ fpα´1pY qq; if f on the left factors through highest weight µ, then
f 1 on the right factors through highest weight µα´1.

For v P p^˚pqµ and X P ^˚a˚G we have αpvq P p^˚pqµα
´1

and, for f as above,

pXfq1 : αv ÞÑ pXfqpvq “ fpX  vq,

pαpXqf 1q : αv ÞÑ f 1pαpXq  αpvqq “ fpX  vq

In view of diagram (3.4.11) this proves the statement.
�

3.4.3. Interaction with duality and complex conjugation. Suppose that j ` j1 “ d “
dimpY pKqq. Let Π be a tempered cohomological representation of finite length. There is
a natural pairing

(3.4.12) Hjpg,K8,Πq ˆH
j1pg,K8, rΠq ÝÑ det p˚

corresponding to

p^jp˚ bΠqK8 b p^j
1

p˚ b rΠqK8 ÝÑ det p˚,

amounting to cup product on the first factors and the duality pairing on the second factors.

Lemma 3.4.2. The pairing (3.4.12) has the following adjointness:

xf1 ¨X, f2y “ xf1, pwXq ¨ f2y

for X P ^˚a˚G, and w the long Weyl group element (Lemma 3.1.1).

Proof. This reduces to the irreducible case Π “ πpC q; its contragredient is πp´C q, pa-
rameterized by the chamber ´C associated to pa, b, qopq. We must verify that a˚G acts (up
to sign) self-adjointly for the the cup product

^jp˚r´C s b ^d´jp˚rC s Ñ det p˚

or, what is the same, the map

HompV´C ,^
jp˚q bHompVC ,^

d´jp˚q Ñ HompV´C b VC ,det p˚q Ñ det p˚
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Suppose f1 P HompV´C ,^
jp˚q and f2 P HompVC ,^

d´jp˚q; their image under the first
map is given by v1bv2 ÞÑ f1pv1q^f2pv2q. This map factors through the one-dimensional
subspace of invariants on V´C b VC ; to evaluate it on a generator for that space, we may
as well evaluate it on v´b v`, which has nonzero projection to that space. In other words,
we must prove the adjointness statement for pf1, f2q ÞÑ f1pv

´q ^ f2pv
`q. For X P ^˚a˚

we have

pf1 ¨Xqpv
´q ^ f2pv

`q “ f1pv
´q ^X ^ f2pv

`q “ f1pv
´q ^ pXf2qpv

`q,

where the sign is as in the statement of the Lemma. However, the identifications of a with
aG arising from pa, b, qq and pa, b, qopq differ by a long Weyl group element, as in Lemma
3.1.1. �

Lemma 3.4.3. Let Π be a tempered, finite length, cohomological representation, and ob-
serve that the natural real structure on p induces a “complex conjugation” antilinear map
H˚pg,K8,Πq Ñ H˚pg,K8,Πq, where, as usual, Π denotes the representation with the
same underlying vectors but the scalar action modified by complex conjugation.

Then the following diagram commutes:

(3.4.13) H˚pg,K8,Πq b ^
˚a˚G

//

��

H˚pg,K8,Πq

��
H˚pg,K8,Πq b ^

˚a˚G
// H˚pg,K8,Πq

where all vertical maps are complex conjugation; the complex conjugation on a˚G is that
corresponding to the twisted real structure.

Proof. Again, this reduces to the irreducible case Π “ πpC q. Fixing an invariant Hermit-
ian form on VC , we may identify V´C with VC , in such a way that v` “ v´.

The following diagram commutes:

(3.4.14) HomKpV´C ,^
˚pq

S ÞÑSv´//

S ÞÑS̄

��

p^˚pq
´µ

conjugation
��

HomKpVC ,^
˚pq

R ÞÑRv´ // p^˚pqµ

where we define S̄ by S̄pv̄q “ Spvq. There is an induced complex conjugation

^˚pr´C s
loooomoooon

HomKpV´C ,^˚pqbV´C

Ñ ^˚prC s
looomooon

HomKpVC ,^˚pqbVC

where we tensor S ÞÑ S̄ with the conjugation on V´C , and then the following diagram is
also commutative:

(3.4.15) ^˚pr´C s b ^˚a //

pS ÞÑS̄qbconj.

��

^˚pr´C s

conjugation
��

^˚prC s b ^˚a // ^˚prC s

where the conjugation on a˚ is that which fixes a˚R.
This gives rise to (3.4.13) – however, just as in the previous Lemma, the identifications

of a with aG induced by pa, b, qq and pa, b, qopq again differ by the long Weyl element,
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and so in (3.4.13) we take the conjugation on aG as being with reference to the twisted real
structure. �

3.4.4. Construction for general GR. Let GR now be an arbitrary reductive group over R.
Let G1 be the simply connected cover of the derived group of GR, and let ZG be the

center of GR. Thus there is an isogeny G1 ˆ ZG Ñ GR. Let g1, k1, aG1 be the various
Lie algebras for G1. Let aZ be the a-space for ZG; it is naturally identified with the Lie
algebra of a maximal split subtorus. We have

aG “ aG1 ‘ aZ .

For any representation Π ofG let Π1 be its pullback to G1; this is a finite length tempered
representation. There is a natural identification

H˚pg,K0
8; Πq “ ^˚aZ bH

˚pg1,K18; Π1q

Our foregoing discussion has given an action of^˚aG1 on the second factor; and so we get
an action of

^˚aG1 b^
˚aZ “ ^

˚paG1 ‘ aZq
˚ “ ^˚a˚G

on H˚pg,K0
8; Πq. Lemma 3.4.2 and Lemma 3.4.3 continue to hold in this setting.

Observe that the group K8{K
0
8

„
Ñ π0GpRq acts naturally on H˚pg,K0

8; Πq. By the
discussion of §3.4.2, this action of a˚G will commute with the action of K8{K

0
8.

3.5. Metrization. As remarked near (1.4.6) it is very convenient to put a Euclidean metric
on a˚G in such a way that the induced action on cohomology is isometric.

Let the bilinear form BR be as in (3.0.2). With notation as in §3.1, BR induces a
invariant quadratic form on aR ‘ bR, so also on aR and a˚R. In particular, we get a C-
valued positive definite hermitian form on a˚G. Then:

Lemma 3.5.1. Let X P ^˚a˚G. Let Π be a finite length cohomological tempered represen-
tation. Let T P Hqpg,K0

8,Πq, where q is the minimal cohomological degree as in (3.4.1);
equip H˚pg,K0

8,Πq with the natural hermitian metric (arising from a fixed inner product
on Π, and the bilinear form BR). Then

}T ¨X} “ }T }}X}.

Proof. This reduces to the case where GR is simply connected, and then again to the case
when Π “ ΠpC q is irreducible. There it reduces to a similar claim about the weight space
p^˚p˚q´µ, since (with notations as previous) the map HompV´C ,^

˚p˚q
„
Ñ p^˚p˚q

´µ of
(3.4.6) is isometric (up to a constant scalar, which depends on the choice of highest weight
vector) for the natural Hermitian forms on both sides. But the corresponding claim about
p^˚p˚q´µ is clear from (3.4.5), noting that the factors a and pu‘ ūq X p are orthogonal to
one another under B. �

The following explicit computation will be useful later:

Lemma 3.5.2. Suppose GR is one of GLn,ResC{R GLn, and endow g with the invariant
quadratic form B “ trpX2q or trC{R trpX2q, where tr is taken with reference to the
standard representation. Then, with reference to the identification (3.2.2), the form on
a˚G,R induced by the dual of B is the restriction of the trace form on pg (by which we mean
the sum of the trace forms on the two factors, in the case of ResC{R GLn). A similar
result holds when GR is one of SOn and ResC{R SOn, except that the form on a˚G,R is the
restriction of 1

4 ¨ (trace form).
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Proof. Write ptr for the trace form on pg, in each case. As explained in (3.2.1) the choice of
pa, b, qq induces a natural perfect pairing of C-vector spaces

pa‘ bq b Liep pT q
loomoon

ĄLiep pT qw0

Ñ C,

wherein Liep pTw0q is identified with the dual of a. We want to show that, under this pairing,
the form tr |a is in duality with the form ptr|Liep pT qw0

. Since a and b are orthogonal with

respect to tr, it is enough to check that the form tr on a‘b and ptr on Liep pT q are in duality.
It is convenient to discuss this in slightly more generality: Note that, if H is a reductive

group over C, the choice of a nondegenerate invariant quadratic form Q on h “ LiepHq

induces a nondegenerate invariant quadratic form pQ on the dual Lie algebra ph. Indeed,
choose a torus and Borel pTH Ă BHq in H; then Q restricts to a Weyl-invariant form on
the Lie algebra of TH , and the identification

LiepTHq » Liep pT q˚,

induced by pTH Ă BHq allows us to transportQ to a Weyl-invariant form on Liep pT q. This
does not depend on the choice of pair pTH Ă BHq, because of invariance of Q. Finally
the resulting Weyl-invariant form on Liep pT q extends uniquely to an invariant form on ph.

In this language, the question is precisely to compute pQ, where H “ GC and Q is the
complexification of tr, i.e. a form on the Lie algebra of GC.

(i) GR “ GLn. Here it is clear that ptr “ tr.
(ii) GR “ ResC{R GLn. Here again ptr “ tr:

The associated complex group is GLnˆGLn, and the form there is trpX1q
2`

trpX2q
2. The dual form on glnˆgln is thus, again, the trace form on GLnˆGLn.

(iii) GR “ SOn: In this case we have

(3.5.1) ptr “
1

4
ptr on the dual group.q .

We will analyze the cases of SOp2q and SOp3q, with the general cases being sim-
ilar:
(a) Consider SOp2q, which we realize as the stabilizer of the quadratic form

qpx, yq “ xy. The maximal torus is the image of the generating co-character

χ : t ÞÑ

ˆ

t 0
0 t´1

˙

, and (with the standard identifications) xχ, χ1y “ 1

where χ1 is the co-character χ : t ÞÑ

ˆ

t 0
0 t´1

˙

of the dual SOp2q. De-

note simply by dχ the image of the standard generator of LiepGmq under χ.
Then xdχ, dχytr “ 2, and so xdχ1, dχ1y

ptr “
1
2 .

(b) Consider SOp3q, which we realize as the stabilizer of the quadratic form
qpx, yq “ xy ` z2, and a maximal torus is the image of the co-character
χ : diagpt, t´1, 1q. This is dual to the same character χ1 as above (now con-
sidered as a character of SL2). We reason just as in (a).

(iv) ResC{R SOn. Here again (3.5.1) holds. To see this, note that the associated com-
plex group is SOn ˆ SOn, and the form there is given by trpX2

1 q ` trpX2
2 q; then

the result follows from (iii).

�
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4. THE MOTIVE OF A COHOMOLOGICAL AUTOMORPHIC REPRESENTATION:
CONJECTURES AND DESCENT OF THE COEFFICIENT FIELD

We briefly formulate a version of the standard conjectures relating cohomological au-
tomorphic forms and motives, taking some care about coefficient fields. A more system-
atic discussion of the general conjectures is presented in Appendix A; for the moment we
present only what is needed for the main text.

4.1. The example of a fake elliptic curve. To recall why some care is necessary, let us
consider the example of a fake elliptic curve over a number field F : this is, by definition,
an abelian surface A over F which admits an action of an (indefinite) quaternion algebra
D ãÑ EndF pAq bQ.

In any realization H1pAq admits a natural right D-action, and thus, for any rational
prime `, one gets a Galois representation

ρA,` : GalpQ{F q Ñ GLDpH
1pAQ,Q`qq » pD bQ`q

ˆ,

where the latter identification depends on a choice of a basis forH1pAQ,Q`q overDbQ`.
If ` is not ramified inD, a choice of splittingDbQ` »M2pQ`q converts this to a genuine
two-dimensional representation

ρA,` : GalpQ{F q ÝÑ GL2pQ`q.

This is expected to correspond to an automorphic form π on PGL2pAF q with Hecke
eigenvalues in Q, characterized by the fact that we have an equality

trpρA,`pFrobvqq “ avpπq

for all but finitely many v; here tr denotes the trace and avpπq is the Hecke eigenvalue of
π at v.

The correspondence between π andA, in this case, has two deficiencies. The first is that
the dual group of PGL2 is SL2 but the target of the Galois representation is pD bQ`q

ˆ.
The second is that the automorphic form π has Q coefficients; but there is no natural
way, in general, to squeeze a motive of rank two with Q-coefficients out of A. One could
get a rank two motive after extending coefficients to some splitting field of D, but this is
somewhat unsatisfactory.

However, although one cannot directly construct a rank two motive attached to ρA,`, it
is possible to construct a rank three motive that is attached to the composition Ad ρA,` with
the adjoint representation PGL2 Ñ GL3. Namely, construct the motive

(4.1.1) M “ End0
Dph

1pAqq,

where EndD denotes endomorphisms that commute with the natural (right) D-action on
h1pAq and the superscript 0 denotes endomorphisms with trace zero. This is a motive over
F of rank three with Q-coefficients, which can be explicitly realized as a sub-motive of
h1pAq b h1pAq˚.

Write g for the Lie algebra of SL1pDq; this is a three-dimensional Lie algebra over Q,
and is an inner form of sl2. We have natural conjugacy classes of identifications

HetpM,Q`q » gbQ`,

HBpMv,C,Qq » g,

for any infinite place v of F .
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We expect that this phenomenon is quite general. Below we formulate, in a general
setting, the properties that such an “adjoint motive” M attached to a cohomological auto-
morphic form should have.

4.2. The conjectures. It will be useful to formulate our conjectures over a general number
field; thus let F be a number field, let GF be a reductive group over F , and let π be
an automorphic cohomological tempered representation for GF . (Recall from §1.6 that
“cohomological,” for this paper, means cohomological with reference to the trivial local
system.) The definitions that follow will depend only on the near-equivalence class of π.

We suppose that π has coefficient field equal to Q, i.e., the representation πv has a
Q-structure for almost all v. One can attach to π the associated archimedean parameter

WFv ÝÑ
LG,

for any archimedean place v. The Langlands program also predicts that π should give rise
to a Galois representation valued in a slight modification of LG (see [13]).5 Composing
these representation with the adjoint representation of the dual group on its Lie algebra pg,
we arrive at representations

(4.2.1) Ad ρ` : GF ÝÑ AutppgQ`
q.

(4.2.2) Ad ρv : WFv ÝÑ AutppgCq.

of the Galois group and each archimedean Weil group. With these representations in hand,
we can formulate the appropriate notion of “adjoint motive attached to (the near equiva-
lence class of) π,” namely,

Definition 4.2.1. An adjoint motive associated to π is a weight zero Grothendieck motive
M over F with Q coefficients, equipped with an injection of Q-vector spaces

ιv : HBpMv,C,Qq ÝÑ pgQ

for every infinite place v, such that:
The image of HBpMv,C,Qq is the fixed set of an inner twisting of the
standard Galois action on pgQ. Said differently, ιv identifies HBpMv,Cq

with an inner form pgQ,˚ of pgQ:

(4.2.3) ιv : HBpMv,C,Qq
„
ÝÑ pgQ,˚ Ă pgQ.

(This inner form may depend on v.) Moreover, for any such v, and for any rational prime
`, we require:

1. The isomorphism

(4.2.4) HetpMF̄ ,Q`q » HBpMv,C,Qq bQ Q`
ιv
Ñ pgQ,˚ bQ` » pgQ`

identifies the Galois action on the étale cohomology of M with a representation in
the conjugacy class of Ad ρ` (see (4.2.1)).

2. The isomorphism

(4.2.5) HdRpMq bQ C » HBpMv,C,Qq bQ C
ιv
Ñ pgQ,˚ bC » pgC

identifies the action of the Weil groupWFv on the de Rham cohomology ofM with
a representation in the conjugacy class of Ad ρv (see (4.2.2)).

5Here we draw attention to a slight subtlety: this Galois representation is characterized by the conjugacy
classes of Frobenius, and in some (rather rare) cases this may not characterize it up to global conjugacy. However,
this problem does not occur if the target group is GLn, and in particular the composition of this representation
with the adjoint is uniquely characterized. It is only this composition which enters into our conjecture.
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3. Each Q-valued bilinear form on pgQ, invariant by the action of LGQ
6, induces

a weak polarization M ˆM Ñ Q with the property that, for each v, its Betti
realization HBpMv,Cq ˆHBpMv,Cq Ñ Q is identified, under ιv , with the given
bilinear form.7

We are not entirely sure if every cohomological π should have an attached adjoint mo-
tive, because of some slight subtleties about descent of the coefficient field from Q to Q.
However, it seems very likely that the overwhelming majority should admit such attached
adjoint motives, and we will analyze our conjectures carefully only in this case. (One can
handle the general case at the cost of a slight loss of precision, simply extending coeffi-
cients from Q to a large enough number field.)

In Appendix A we explain more carefully what the correct conjectures for motives at-
tached to automorphic representations should look like and why, if we suppose that the
Galois representation has centralizer that is as small as possible, these conjectures imply
the existence of an adjoint motive associated to π. Moreover, assuming the Tate conjecture,
this motive is uniquely determined up to isomorphism.

Remark 9. We could have also in principle formulated this conjecture in terms of Chow
motives rather than Grothendieck motives, since as explained in Prop. 2.1.1 – assuming
Beilinson’s filtration conjectures – every Grothendieck motive lifts to a Chow motive which
is well defined up to isomorphism. However, the formulation with Grothendieck motives
is more natural for two reasons:

(1) The category of Grothendieck motives is (conjecturally) semi-simple Tannakian;
the Tannakian formalism is important to the way we formulate the automorphic to
motivic correspondence in Appendix A. On the other hand, the category of Chow
motives is not even abelian in general. (See the introduction and Cor. 3.5 of [60]
for a discussion of this issue.)

(2) Technically, to define the relevant motivic cohomology group that occurs in our
main conjecture below, one needs to work with a lift to the category of Chow
motives. However, as explained in §2.1.11, the filtration conjectures imply that
this motivic cohomology group is nevertheless independent of the choice of such
lift, up to canonical isomorphism. Thus all objects involved in the main conjecture
below only depend on the associated Grothendieck motive.

Note that even in the more familiar setting of Shimura varieties, the known constructions of
motives associated to cohomological automorphic forms typically only yield Grothendieck
motives, eg. the case of GL2 modular forms of higher weight that is discussed in [59]. Thus
it is psychologically useful to break up the problem of attaching a motive to an automorphic
form into two steps: first, construct a Grothendieck motive, and then lift it to a Chow mo-
tive. In the setting that is of most interest in this paper (non-hermitian symmetric spaces),
neither of these steps is easy since the locally symmetric space has no natural structure of
an algebraic variety.

6Explicitly, this means it is invariant both by inner automorphisms of G and by the pinned outer automor-
phisms arising from the Galois action on the root datum.

7Observe that a Q-valued invariant bilinear form on gQ induces also a Q-valued bilinear form on gQ,˚,
characterized by the fact that their linear extensions to gQ agree.
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5. FORMULATION OF THE MAIN CONJECTURE

Here we combine the ideas of the prior two sections to precisely formulate the main
conjecture. (We have already formulated it in the introduction, but we take the opportu-
nity to write out a version with the assumptions and conjectures identified as clearly as
possible.)

We briefly summarize our setup. We return to the setting of §1.1 so that G is a reductive
Q-group without central split torus. Now let H be the Hecke algebra forK at good places,
i.e., the tensor product of local Hecke algebras at places v at which K is hyperspecial. We
fix a character χ : H Ñ Q, and let

Π “ tπ1, . . . , πru

be the associated set of cohomological automorphic representations which contribute to
cohomology at level K, defined more precisely as in §1.1. The set Π determines χ and we
suppress mention of χ from our notation.

Just as in our introductory discussion in §1.1 we make the following
Assumption: Every πi is cuspidal and tempered,

where, as in §1.1, “tempered” is a proxy for “tempered Arthur parameter” and is taken to
mean tempered at8 and at one unramified place. We define

(5.0.1) H˚pY pKq,QqΠ “ tα P H
˚pY pKq,Qq : Tα “ χpT qα for all T P H u

and similarly H˚pY pKq,CqΠ, etc.
Let Ad Π be the adjoint motive associated to Π, in the sense of Definition 4.2.1. We

have attached to G a canonical C-vector space a˚G in §3. Also a˚G comes with a real
structure, the “twisted real structure” of Definition 3.1.2.

We shall first explain (§5.1) why the Beilinson regulator on the motivic cohomology
of Ad Π, with Qp1q coefficients, takes values in (a space canonically identified with) a˚G,
and indeed in the twisted real structure on this space. Then, after a brief review of coho-
mological automorphic representations (§5.3) we will be able to define an action of a˚G on
the cohomology H˚pY pKq,CqΠ and then we formulate precisely our conjecture in §5.4.
Finally, Proposition 5.5.1 verifies various basic properties about the action of a˚G (e.g., it is
self-adjoint relative to Poincaré duality and it preserves real structures).

5.1. The Beilinson regulator. The motive Ad Π has weight zero. The Beilinson regulator
gives
(5.1.1)
H1

M pAd Π,Qp1qq
(2.2.8)
Ñ HBppAd ΠqC,Rq

WR ãÑ HBppAd ΠqC,Cq
WR

(4.2.5)
ÝÑ pgWR

(3.3.1)
ÝÑ a˚G,

where the last two arrows are isomorphisms of complex vector spaces. Proceeding simi-
larly for the dual motive, we get a map

(5.1.2) H1
M pAd˚Π,Qp1qq Ñ aG,

and, just as in the introduction, we call L the image of (5.1.2); thus if we accept Beilinson’s
conjecture, L is a Q-structure on aG.

We want to understand how (5.1.1) interacts with the real structure on a˚G. Recall that
we have defined a second “twisted” real structure on a˚G, in Definition 3.1.2.

Lemma 5.1.1. The map HBpAd ΠqC,Rq
WR Ñ a˚G has image equal to the twisted real

structure on a˚G. In particular, the Beilinson regulator carries H1
M pAd Π,Qp1qq into the

twisted real structure on a˚G.
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Proof. We may as well suppose that (4.2.5) identifies the WR-action with the action ρ0 :
WR Ñ Autppgq arising from ρ0 normalized as in (3.3.3). Also, (4.2.5) allows us to think
of the “Betti” conjugation cB on HdRpAd Πq bC “ HBppAd ΠqCq bC as acting on pg.
From (4.2.3) the fixed points of cB are given by pgQ,˚bR and so cB is an inner twist of the
standard antiholomorphic involution. (By “standard antiholomorphic involution” we mean
the involution of pg with respect to the Chevalley real form.) Since ρ0pS

1q preserves real
Betti cohomology, cB commutes with ρ0pS

1q.
Define an antilinear self-map ι on pg via

ιpXq “ Adpw
pGqX,

where X refers to the standard antilinear conjugation, and w
pG is an element of pGpRq that

normalizes pT and takes pB to pBop. Then ι also commutes with the action of ρ0pS
1q.

The composition ιcB is now an inner automorphism of pg which commutes with ρ0pS
1q

and thus is given by conjugation by an element of pT . Thus ι and cB act in the same way
on the Lie algebrapt of pT .

The image of HBppAd ΠqC,Rq
WR

(4.2.5)
ÝÑ pgWR is just the fixed points of cB. However,

we have just seen that cB and ι act the same way on pgWR Ă pt. The fixed points of ι on
pgWR » a˚G give (by Lemma 3.2.1 and Definition 3.1.2) the twisted real structure. �

5.2. Trace forms. Endow pgQ with any nondegenerate LGQ-invariant Q-valued quadratic
form pB; it gives by scalar extension a complex valued quadratic form on pg. The pullback
of this form under

HBppAd ΠqC,Qq » pg˚

defines (part (3) of Definition 4.2.1) a weak polarization Q on Ad Π: since pg˚ is an inner
form, the restriction of pB is actually Q-valued on it.

We may form the corresponding Hermitian formQpx, cByq onHBppAd ΠqC,Cq; when
restricted to HBppAd ΠqC,Cq

WR » a˚G, this is given by

(5.2.1) pX,Y q P a˚G ˆ a˚G ÞÑ
pBpX,Adpw

pGqY q,

where the conjugation is that with reference to gR, and w
pG is as in Lemma 5.1.1.

This form is real-valued when restricted to the twisted real structure, since (writing just
wX for AdpwqX , etc.):

(5.2.2) pBpX,w
pGY q “

pBpX,w
pGY q “

pBpw´1
pG
X,Y q “ pBpw

pGX,Y q.

and w
pGX “ X,w

pGY “ Y on the twisted real structure.
We warn the reader that, although real-valued, the form (5.2.1) need not be positive

definite on the twisted real structure. This corresponds to the fact that the form pB gives a
weak polarization on Ad Π but not necessarily a polarization.

5.3. Review of cohomological automorphic forms. For any cohomological automorphic
representation π for G, denote by Ω the natural map

(5.3.1) Ω : HomK˝8
p^pg{k, πKq Ñ p-forms on Y pKq

looooooooomooooooooon

ΩppY pKqq

where πK , as usual, denotes the K-invariants in π.
Indeed, ΩppY pKqq can be considered as functions on GpF qz pGpAq ˆ ^pg{kq {K˝8K

that are linear on each^pg{k-fiber. Explicitly, for X P g{k and g P GpAq, we can produce
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a tangent vector rg,Xs to GpF qgK˝8K P Y pKq – namely, the derivative of the curve
GpF qgetXK˝8K at t “ 0. This construction extends to X1^¨ ¨ ¨^Xp P ^

pg{k by setting

rg,X1 ^ ¨ ¨ ¨ ^Xps “ rg,X1s ^ ¨ ¨ ¨ ^ rg,Xps,

which belongs to the pth exterior power of the tangent space at the point gK. The map Ω is
normalized by the requirement that, for f P HomK˝8

p^pg{k, πKq and Xi P g{k, we have

(5.3.2) Ωpfqprg,X1 ^ ¨ ¨ ¨ ^Xpsq “ fpX1 ^ ¨ ¨ ¨ ^Xpqpgq.

As discussed in §3.4, we may identify Hppg,K0
8;πKq “ HomK0

8
p^pg{k, πKq for

unitary cohomological π. We will freely make use of this identification. In particular, the
map Ω defines a map on cohomology

(5.3.3) Ω : Hppg,K0
8;πKq Ñ HppY pKq,Cq.

This map is injective if Y pKq is compact, or if π is cuspidal, by [9, 5.5]; in particular, if
we have fixed a Hermitian metric on g{k we also get a Hermitian metric on the image, by
taking L2-norms of differential forms. We also put a metric on Hppg,K0

8;πKq for which
(5.3.3) is isometric.

Moreover, this story is compatible, in the natural way, with complex conjugation: if
T P Hppg,K0

8;πKq, we have ΩpT̄ q “ ΩpT q, where T̄ P H˚pg,K0
8;πq is defined so that

T̄ pv̄q “ T pvq and the embedding π ãÑ p functions on rGsq is obtained by conjugating the
corresponding embedding for π. If π and π are the same (i.e., they coincide as subrep-
resentations of functions on rGs, and so we have an identification π » π) we shall say
that T is real if T “ T̄ ; in that case ΩpT q is a real differential form and defines a class in
HppY pKq,Rq.

5.4. Formulation of main conjecture. In the setting at hand, the map Ω induces (see [9])
an isomorphism

(5.4.1)
r
à

i“1

H˚pg,K0
8;πKi q

Ω
ÝÑ H˚pY pKq,CqΠ.

We have previously defined (§3.4) an action of ^˚a˚G on each H˚pg,K0
8;πKi q, and we

may transfer this action via Ω to get an action of ^˚a˚G on H˚pY pKq,CqΠ.
We now formulate the main conjecture assuming that Π satisfies the assumptions formu-

lated at the beginning of the section (in particular, it is tempered). We also need to assume
the existence of an adjoint motive attached to Π and part (a) of Beilinson’s conjecture
(Conjecture 2.1.1) as extended to pure motives in §2.1.11. We will keep these as standing
assumptions for the rest of the article. Observe then that the image of H1

M pQ,Ad˚Πp1qq
under (5.1.2) gives a well defined Q-structure on aG. Then we have the following:

Main conjecture: (motivic classes preserve rational automorphic coho-
mology). The induced Q-structure on ^˚a˚G preserves

H˚pY pKq,QqΠ Ă H˚pY pKq,CqΠ

for the action just defined.
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5.5. Properties of the a˚G action.

Proposition 5.5.1. The action of ^˚a˚G on H˚pY pKq,CqΠ just defined has the following
properties:

(i) Fix a bilinear form BR on GR, as in §3.5; it gives rise to a hermitian met-
ric on a˚G and a Riemannian metric on Y pKq by that discussion. Then if T P

HqpY pKq,CqΠ is in minimal cohomological degree we have }XT } “ }X}}T }
for X P ^˚a˚G; the hermitian metric on H˚pY pKq,CqΠ is that obtained by its
identification with harmonic forms.

(ii) The action of^˚a˚G onH˚pY pKq,CqΠ satisfies the same adjointness property as
that formulated in Lemma 3.4.2, with respect to the Poincaré duality pairing.

(iii) Suppose that the character χ of the Hecke algebra is real-valued. Then the twisted
real structure on a˚G preserves real cohomology H˚pY pKq,RqΠ.

Proof. The map (5.4.1) is isometric, so property (i) is now immediate from Lemma 3.5.1.
It will be convenient, just for the remainder of the proof, to abuse notation and write Π

for the direct sum
Àr

i“1 πi.
For property (ii): Regard Π as embedded in functions on GpQqzGpAq, by conjugat-

ing the elements of Π. We note, first of all, that for T P H˚pg,K0
8; ΠKq and T 1 P

H˚pg,K0
8,Π

K
q with degpT q ` degpT 1q “ dimpY pKqq the pairing

ş

Y pKq
ΩpT q ^ΩpT 1q

is proportional to the natural pairing H˚pg,K0
8; ΠKq b H˚pg,K0

8,Π
K
q Ñ pdet pq˚,

where we integrate Π against Π. (The coefficient of proportionality has to do with choices
of measure, and will not matter for us.) This integration pairing identifies rΠ with Π, thus
giving rΠ an embedding into the space of functions on rGs; and so the pairing

ż

Y pKq

ΩpT q ^ ΩpT 1q, T P H˚pg,K0
8; ΠKq, T 1 P H˚pg,K8, rΠ

Kq

is proportional to the natural pairing on H˚pg,K0
8; ΠKq ˆ H˚pg,K0

8; rΠKq. Then the
conclusion follows from Lemma 3.4.2.

For (iii) note that, by the discussion at the end of §5.3, the following diagram commutes

(5.5.1) H˚pg,K8,Π
Kq //

conjugation

��

H˚pY pKq,CqΠ

conjugation

��
H˚pg,K8,ΠKq // H˚pY pKq,CqΠ

Our claim now follows from Lemma 3.4.3. �
To conclude, we discuss adjointness a little more. The Langlands parameter of the

contragredient rΠ is obtained from Π by composition with the Chevalley involution, which
we shall denote by C0: this is a pinned involution of pG that acts, on pT , as the composition
of inversion and the long Weyl group element. The general conjectures (see Appendix A)
predict that there exists an identification of motives d : Ad Π » Ad rΠ which fits into a
commutative diagram

(5.5.2) HBpAd Π,Cq
(4.2.3) //

��

pg

C

��
HBpAd rΠ,Cq

(4.2.3) //
pg.
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where C is the composite of C0 with an inner automorphism. We denote also by d the
resulting isomorphism H1

M pAd˚Π,Qp1qq Ñ H1
M pAd˚ rΠ,Qp1qqq.

Lemma 5.5.1. With assumptions as above: The action ofH1
M pAd˚Π,Qp1qq˚ onH˚pY pKq,CqΠ,

induced by (5.1.2), and the similar action ofH1
M pAd˚ rΠ,Qp1qq˚ onH˚pY pKq,Cq

rΠ, are
adjoint to one another, up to sign, with respect to the Poincaré duality pairing and the
identification of motivic cohomologies induced by d:

xf1 ¨X1, f2y “ ´xf1, X2 ¨ f2y,

where X1 P H
1
M pAd˚Π,Qp1qq˚ and X2 P H

1
M pAd˚ rΠ,Qp1qq˚ correspond under the

identification induced by d.

Proof. Conjugating the horizontal arrows in (5.5.2) we may suppose that the induced ac-
tions of WR on pg, top and bottom, both arise from the maps ρ0 normalized as in (3.3.3);
since C intertwines these, it must be a conjugate of C0 by pT .

Thus we get:

(5.5.3) H1
M pAd˚Π,Qp1qq //

d
��

rgWR

C

��

(3.3.2) // aG

´w

��
H1

M pAd˚ rΠ,Qp1qqq //
rgWR

(3.3.2) // aG.

wherew is the long Weyl element on a˚G, and we used Lemma 3.2.1 (or the same statements
transposed to the dual Lie algebra). Our conclusion now follows from the prior adjointness
results (part (ii) of the Proposition). �

This discussion has also shown:

Lemma 5.5.2. If Π » Π̃, then the image of H1
M pAd˚Π,Qp1qq inside aG is stable by w.

6. PERIOD INTEGRALS

6.1. The remainder of the paper is devoted to giving evidence for Prediction 1.4.1. As
discussed there, we must analyze quantities of the type (1.4.8) – that is to say, integrals of
cohomology classes on Y pKq against cycles. In this section we will study such integrals
when the cycles come from a sub-locally symmetric space ZpUq defined by a Q-subgroup
H Ă G. We will relate these integrals to L-functions in two steps:

‚ Proposition 6.9.1 relates the integral of an L2-normalized automorphic cohomol-
ogy class over ZpUq (i.e., the reciprocal of the left-hand side of (1.4.8)) to a more
standard automorphic period integral – that is to say, the integral of a certain auto-
morphic form over rHs.

‚ Then, we rely on standard conjectures and assumptions about periods of automor-
phic forms to express the latter in terms of L-values (Theorem 6.11.1).

The steps in the section are routine, but one must be careful about factors of π, normaliza-
tions of metrics, volumes, and so forth. Similar results have been derived by several other
authors in related contexts; for example, see [58, §3].

The pairs pG,Hq that we study are a subset of those arising from the Gan-Gross-Prasad
conjecture; we specify them in §6.3. There is no reason not to consider other examples of
periods, but these are convenient for several reasons:

‚ It is an easily accessible source of examples, but sufficiently broad to involve var-
ious classical groups;
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‚ There are uniform conjectural statements (after Ichino–Ikeda);
‚ Although we invoke simply the uniform conjectural statements, there are in fact

many partial results towards them known. 8

Recall our notation A „ B whenever A{B P Q˚.

6.2. Setup on submanifolds. Let H Ă G be a reductive Q-subgroup.
We write H,G for the R-points, K8 for a maximal compact subgroup of G and U8 for

a maximal compact subgroup of H . We write (e.g.) dH for the dimension of H and rH
for its rank (for us this means always the geometric rank, i.e. the rank of the C-algebraic
group HC). We introduce notation for the various Lie algebras:

g “ LiepGCq, k “ LiepK8qC, p “ g{k, pG “ dimppq,

h “ LiepHCq, u “ LiepU8qC, pH “ h{u, pH “ dimppHq.

These are complex vector spaces, but they are all endowed with natural real forms; as
before we denote (e.g) by hR the natural real form of h, and so forth.

Let U Ă HpAfq be a compact open subgroup, and define the analog of Y pKq (see
(1.6.2)) but with G replaced by H and K replaced by U :

ZpUq “ HpQqzHpAq{U˝8U.

Fixing an H-invariant orientation on H{U˝8, we get an HpAq-invariant orientation of
HpAq{U˝8U and thus an orientation of ZpUq. (If ZpUq is an orbifold, choose a deeper
level structure U 1 Ă U such that ZpU 1q is a manifold; then ZpU 1q admits a U{U 1-invariant
orientation.) This discussion gives a fundamental class

rZpUqs P HBM
pH pZpUq,Qq

where we work with Q coefficients, rather than Z coefficients, to take into account the
possibility of orbifold structure.

Let g “ pg8, gf q P GpAq “ GpRq ˆGpAf q be such that Adpg´1qU8U Ă K8K.
Then also Adpg´1

8 q carries U˝8 to K˝8. Then the map induced by right multiplication by g,
call it

(6.2.1) ι : ZpUq
ˆg
ÝÑ Y pKq,

is a proper map. Moreover, the action of U8{U
˝
8 on ZpUq corresponds, under ι, to its

action on Y pKq via Adpg´1
8 q : U8{U

˝
8 Ñ K8{K

˝
8.

The image of ZpUq is a pH -dimensional cycle on Y pKq and defines a Borel–Moore
homology class

ι˚rZpUqs P H
BM
pH pY pKq,Qq.

Our goal will be to compute the pairing of this with classes in H˚pY pKq,QqΠ, and inter-
pret the result in terms of “automorphic periods.”

Remark 10. Now the class ι˚rZpUqs can only be paired with compactly supported classes.
The classes that we pair with will be attached to cuspidal automorphic representations.
Therefore, the associated cohomology classes lift, in a canonical way, to compactly sup-
ported cohomology, by [9, Theorem 5.2]; if ω is a cuspidal harmonic form, the integral of
ι˚ω overZpUq coincides with the pairing of this compactly supported class with ι˚rZpUqs.
In other words, in the setting of §1.1, the map

H˚c pY pKq,Cq Ñ H˚pY pKq,Cq

8For example, in the PGL cases it seems that all the hypotheses of §6.10 are known except (iv), the exact
evaluation of archimedean integrals on the cohomological vector.
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induces an isomorphism when localized at the ideal of the Hecke algebra corresponding
to Π. In what follows we will then pair ι˚rZpUqs with such cuspidal cohomology classes
without further comment.

6.3. We will study the following cases:
1. Let E “ Qp

?
´DEq be an imaginary quadratic field. For pV, qq a quadratic space

over E, with dimpV q ě 2, set pV 1, q1q “ pV, qq ‘ pE, x2q, and put

HE “ SOpV q Ă GE “ SOpV 1q ˆ SOpV q,

with respect to the diagonal embedding. Put H “ ResE{Q HE ,G “ ResE{Q GE .
2. Let E “ Qp

?
´DEq be an imaginary quadratic field. For V a finite-dimensional

E-vector space, set V 1 “ V ‘ E and put

HE “ GLpV q Ă GE “ PGLpV 1q ˆ PGLpV q.

Define H,G by restriction of scalars, as before.
3. Let E “ Q. For V a finite-dimensional Q-vector space, set V 1 “ V ‘Q and put

H “ GLpV q Ă G “ PGLpV 1q ˆ PGLpV q.

In this case, we set HE “ H,GE “ G.
These cases correspond to cases of the Gross–Prasad conjecture where the cycle ZpUq

has dimension pH equal to the minimal tempered cohomological degree for Y pKq, i.e.

(6.3.1) pH “
1

2
pdG ´ dK ´ prG ´ rKqq ðñ pG ´ 2pH “ rG ´ rK .

This dimensional condition is satisfied in the cases Up,q ˆ Up`1,q Ą Up,q and SOp,q ˆ

SOp`1,q Ą SOp,q only when q “ 1; that is why we did not discuss these cases.
The numerical data in the cases we will consider is presented in Table 1. We shall

also need the following lemma, which assures us that the archimedean component of g (as
defined before (6.2.1)) is almost determined:

Lemma 6.3.1. In all examples of §6.3, the fixed point set of (the left action of) U8
on G{K8 is a single orbit of the centralizer of H in G; in particular, the condition
Adpg´1

8 qU8 Ă K8 determines g8 up to right translation by K8 and left translation
by this centralizer.

Note that K8{K
˝
8 is nontrivial only in case (3), i.e. the GL cases over Q. In this case,

the induced map
Adpg´1

8 q : U8{U
˝
8 Ñ K8{K

˝
8

will be an isomorphism; both groups are isomorphic to ˘1. In particular, right translation
of g8 by K8 does not affect the image of the embedding ZpUq Ñ Y pKq, and indeed
affects the embedding itself only through the action of U8{U

˝
8 on the source.

The Lenma will mean that, in computations, we may suppose that Adpg´1
8 qH Ă G

arises from the “standard” inclusion of the real group of type H into the group of type
G. By explicit computations with the standard realizations, we see that this inclusion is
compatible with Cartan involutions. In other words, if θ is the Cartan involution of G that
fixes K8, then Adpg´1

8 qH is stable by θ and θ induces a Cartan involution of Adpg´1
8 qH ,

fixing Adpg8q
´1U8.

Proof. In what follows, On and Un mean these compact groups in their standard real-
izations as stabilizers of the forms

ř

x2
i on Rn and

ř

|zi|
2 on Cn. The embeddings

On ãÑ On`1 etc. are the standard ones also.
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G H dG{K dH{U dG{K ´ 2dH{U
SOnpCq ˆ SOn`1pCq SOnpCq n2 n2

´n
2 n

PGLnpCq ˆ PGLn`1pCq GLnpCq 2n2 ` 2n´ 1 n2 2n´ 1

PGLnpRq ˆ PGLn`1pRq GLnpRq n2 ` 2n´ 1 n2
`n
2 n´ 1

TABLE 1. The cases of the Gross-Prasad family that we will study

Consider, first, case (3) in the numbering at the start of §6.3: We must compute the fixed
points of On´1 acting on pairs of a scaling class of a positive definite quadratic form on
Rn´1, and a scaling class of a positive definite quadratic form on Rn. There is a unique
fixed point on scaling classes of positive definite forms on Rn´1. Thus, we are left to
compute the fixed points of On´1 acting on scaling classes of quadratic forms on Rn: A
positive definite quadratic form q on Rn whose scaling class is fixed by On´1 is actually
fixed by On´1 (it is clearly fixed up to sign, and then definiteness makes it fixed). By
considering the action of ´Id P On´1 we see that q “

řn´1
i“1 x

2
i ` paxnq

2. Such forms
constitute a single orbit of the centralizer of GLn´1pRq within PGLnpRq, which implies
the claimed result.

The remaining cases follow similarly from the computation of the following sets:
Case 2: The fixed points of Un´1 acting on scaling classes of positive definite Hermitian

forms on Cn:
As above, any such form is

řn´1
i“1 |zi|

2`a|zn|
2; again, these form a single orbit

of the centralizer of GLn´1pCq within PGLnpCq, as desired.
Case 1: The fixed points of SOn acting on SOn`1pCq{SOn`1pRq.

Suppose SOn Ă gSOn`1g
´1 for g P SOn`1pCq; then SOn fixes the subspace

gRn`1 Ă Cn`1; this subspace gives a real structure on Cn`1 and of course
řn`1
i“1 x

2
i will be positive definite on this subspace.

For n ě 3, the only R-structures of Cn`1 that are fixed by SOn are of the form
α.Rn ‘ β.R, pα, β P Cˆq, and moreover if

ř

x2
i is real and positive definite

on this space, this means it is simply the standard structure Rn`1. It follows that
gRn`1 “ Rn`1, and so g P SOn`1 as desired. Thus the fixed set mentioned
above reduces to a single point.

For n “ 2, there are other real structures fixed by SOn, namely

tx` iϕpxq : x P R2u ‘R,

where ϕ P M2pRq commutes with SO2. However, for
ř

x2
i to be real-valued on

this space we should have ϕ` ϕT “ 0; the real structure is therefore of the form

tpx` iAy, y ´ iAxq : px, yq P R2u ‘R,

for some A P R; definiteness of
ř

x2
i means that A2 ă 1. This is the image

of the standard real structure by the matrix 1?
1´A2

ˆ

1 iA
´iA 1

˙

, which lies in

SO2pCq Ă SO3pCq and (obviously) centralizes the commutative group SO2pCq.
�

6.4. Setup on automorphic representations and differential forms. We now fix as-
sumptions on the automorphic representations to be studied.

Let Π be as in §1.1: a (near-equivalence class of) cohomological automorphic represen-
tation(s) for G at level K, satisfying the assumptions formulated there. In particular, we
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may define, as in (5.0.1), the Π-subspace H˚pY pKq,QqΠ Ă H˚pY pKq,Qq of rational
cohomology.

In fact, we want to impose a stricter condition, namely a multiplicity one condition on
cohomology. This is very convenient: it makes everything defined over Q and forces Π to
be a singleton.

6.4.1. The condition in the case of imaginary quadratic base field. In the cases besides
PGLn ˆ PGLn`1 over Q, we assume that the level structure K has multiplicity one for
Π, in the sense that

(6.4.1) dimHqpY pKq,QqΠ “ 1.

In particular, in this case, there is just one automorphic representation in Π contributing
to this cohomology, Π “ tπu say; in particular π “ π. We ask that π be tempered
cuspidal (just as in our prior discussion in §1.1). In this case, we obtain from π a harmonic
differential form

ω P ΩqpY pKqq

whose cohomology class generatesHqpY pKq,RqΠ. This form is unique up to real scalars.

6.4.2. The case of PGLn ˆ PGLn`1 in the case of rational base field. In the remaining
case G “ PGLn ˆ PGLn`1{Q, it is impossible to satisfy (6.4.1) because of disconnect-
edness issues. We ask instead that9

(6.4.2) dimHqpY pKq,Qq˘Π “ 1,

where ˘ denotes eigenspaces under K8{K
˝
8 » t˘1u. This again means there is just one

automorphic representation Π “ tπu contributing to this cohomology (see discussion of
cohomological representations for PGLnpRq in [45, §3] or [54, §5]); we again require that
π “ π is tempered cuspidal. In this case, we similarly obtain from π harmonic differential
forms

ω˘ P ΩqpY pKqq

whose cohomology classes generate HqpY pKq,Rq˘Π.

6.4.3. Rational structures. Under our assumptions above, we discuss rational structures
on the representation.

Fix a character χ : K8{K
˝
8 Ñ t˘1u. Both sides of

(6.4.3) HompK8,χqp^
qg{k, πKq » HompK8,χqp^

qg{k, π8q b π
K
f

are one-dimensional, and the map T ÞÑ ΩpT q of §5.3 identifies this with HqpY pKq,Cqχπ .
This cohomology space is one-dimensional, and has a rational structure, namelyHqpY pKq,Qqχπ .

Note that the induced real structure on the left-hand side is simply the natural one
(arising from combining the real structures on g, k and on πK , thought of as a space of
complex-valued functions). In what follows we may accordingly refer to an element of
HompK8,χqp^

qg{k, πKq as being “real.”
It also follows, examining the right-hand side of (6.4.3), that the Hecke action on each

πKvv is by rational scalars, and therefore πv itself admits a Q-rational structure (arbitrarily
take a Kv-stable vector, and take the rational span of its translates). Our situation has
been rendered particularly simple by our multiplicity one hypothesis – see [77, Lemma

9 For example, for the group PGL2, a tempered cohomological representation contributes two dimensions
to cohomology – an antiholomorphic form and a holomorphic form; these are interchanged by the action of O2,
and so (6.4.2) holds.
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I.1] for a related argument using multiplicity one, and [37] for a more complete discussion
of rationality fields.

6.4.4. L functions. In the situation above, we can consider the L-functions Lpπ, ρ, sq at-
tached to a representation ρ of the dual group of G; here, we will only be concerned with
the standard representation and the adjoint representation. (Here, the standard representa-
tion of the product of two classical groups is simply the tensor product of their standard
representations.)

Let us summarize the state of knowledge concerning meromorphic continuation of these
L-functions (this is simply assumed in Beilinson’s conjectures, but much is known uncon-
ditionally). For the partial L-function – that is to say, the L-function ignoring archimedean
factors and factors at ramified finite places – the situation is as follows:

‚ In the PGL cases, both standard and adjoint L-functions have meromorphic con-
tinuation in s because of the Rankin-Selberg method [32].

‚ In the SO case, the situation is the same if we impose the assumption that
(*) the form π has a transfer π˚ to the general linear group GLmˆGLm1

(with pm,m1q “ pn, nq or pn´ 1, n` 1q).
Here we use in addition to the Rankin-Selberg method, the theory of exterior
square L-functions from the Langlands-Shahidi method [64] to handle the adjoint
L-function.

In more detail, (*) demands an automorphic form π˚ on the general linear
group whose Hecke eigenvalues at almost all primes coincide with the functorial
transfer of π. Assumption (*) has been proved by Arthur in the quasisplit case [1]
- the form π˚ need not be cuspidal, but it is readily described in terms of cuspidal
constituents. It is currently the focus of substantial work to extend to the general
case (see [38] for parallel work in the case of unitary groups).

In addition (assuming (*) in the orthogonal case) one has definitions of the correspond-
ing local L-factor at all places, and work of Henniart [27, §1.2] and [28] moreover shows
that the local factors thus defined are, in fact, compatible with the local Langlands corre-
spondence for GL.

In any case, for our main theorems, it is not necessary to assume (*); rather we can
simply use the assumptions that are already made in Beilinson’s conjecture. Namely, the
output of this section involves only the partial L-function omitting ramified finite places
(see Theorem 6.11.1); this manifestly agrees with the “motivic” L-function whenever one
has a motive that matches the L-function at good places, and the assumptions that are part
of Beilinson’s conjecture imply that it admits a meromorphic continuation. We will tran-
sition to the completed motivically normalized L-function (i.e., including ramified finite
factors) after (7.2.4).

6.5. Tamagawa measure versus Riemannian measure. On rGs there are two measures,
one arising from the Riemannian structure and one from the Tamagawa measure. Our
eventual goal is to compare them. For the moment, we explain carefully how to construct
both of them:

For the Riemannian measure, we first fix once and for all the “standard” representation
of G, or rather of an isogenous group G1. Let η : G1 Ñ GLpW q be the following Q-
rational faithful representation: in all cases, we take W to be ResE{QpV

1 ‘ V q, and we
take G1 to be the restriction of scalars of SLpV 1qˆSLpV q in cases (2) and (3), and G1 “ G
in case (1).
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Define the form B on gQ via

(6.5.1) BpX,Y q “ tracepdηpXq.dηpY qq.

This defines a G-invariant Q-valued quadratic form B on the Lie algebra. Note that (the
real-linear extension of) B is invariant by the Cartan involution θ on gR, by explicit com-
putation. Moreover B is nondegenerate and negative definite on the associated splitting
kR ` ipR, because the standard representation η just introduced carries the associated
maximal compact of G1pCq into a unitary group. It follows that B is negative definite on
kR and positive definite on pR. In particular, B defines a Riemannian structure on Y pKq.

We will also use the same letter B to denote the corresponding Hermitian form on the
complexification of any of these spaces, e.g. x´,´yB on p » g{k is the Hermitian-linear
extension of B from pR to p.

We shall also equip hQ Ă gQ with the restriction of the form B, i.e., with the form
arising similarly with the representation η|h. When extended to hR this coincides with the
pullback of B under Adpg´1

8 q : hR Ñ gR, since the form B was invariant; therefore the
restricted form is preserved by a Cartan involution fixing U8 (see remark after Lemma
6.3.1), and similarly defines a Riemannian structure on ZpUq.

For Tamagawa measure, what one actually needs is a measure on gAQ
, where AQ is

the adele ring of Q. Choose a volume form on gQ:

(6.5.2) ωG P detpg˚Qq.

Let ψ be the standard additive character of AQ{Q, whose restriction to R is given by
x ÞÑ e2πix. We choose the ψv-autodual measure on Qv for every place v; from that and
ωG we obtain a measure on gv “ g bQv for every place v, and so also a measure µv on
GpQvq.

By abuse of notation we refer to all the measures µv as “local Tamagawa measures."
They depend on ωG, but only up to Qˆ, and their product

ś

v µv is independent of ωG.
We proceed similarly for H, fixing a volume form ωH P detph˚q, which gives rise to

local Tamagawa measures on HpQvq and a global Tamagawa measure on HpAq.
The last needs a short discussion: Note that in case (2) and (3) the group H has a center

equal to Gm, and so the product of local measures is formally divergent; however,
ś

vp1´
q´1
v q

´1µv is convergent, and whenever we write an integral over H against the measure
ś

µv , it will appear in combination with a product of ζ functions that formally contains
the factor ζp1q. We shall therefore understand that this ζp1q should be incorporated into
the measure, i.e. ζp1q is removed from the expression outside the integral, and the measure
is modified to be

ś

vp1 ´ q´1
v q

´1µv . We hope this causes no confusion; the expressions
are always formally valid and then literally valid when interpreted in this way.

6.6. Lattices inside Lie algebras. We choose an integral lattice inside g and k:
For g, we simply choose a lattice gZ Ă gQ of volume 1 for ωG, i.e. xωG,det gZy “ 1.
For k, Macdonald [44] has specified a class of lattices kcmpt

Z Ă kR deriving from a
Chevalley basis. First choose in k a Chevalley basis associated to the complexification of
the compact real Lie group K˝8. This can be done in such a way that the compact form
kR is the R-linear span of the torus elements of

?
´1Hi (where Hi are the torus elements

indexed by simple roots), together withXα`X´α and ipXα´X´αq, where α varies over
all positive roots. We take kcmpt

Z to be the integral span of these elements.
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With these definitions, we define discriminants of g, k, p thus:

disc g :“ xdet gZ,det gZyB(6.6.1)

disc k :“ xdet kcmpt
Z ,det kcmpt

Z y´B .(6.6.2)

disc p :“

ˇ

ˇ

ˇ

ˇ

disc g

disc k

ˇ

ˇ

ˇ

ˇ

.(6.6.3)

Note that

(6.6.4) disc g “ xωG, ωGy
´1
B ,

and that the signs of the discriminants of g, k, p are given by p´1qdK , 1, 1 respectively.
Also all these definitions carry over to H: in particular, we define disc pH in a similar
way.

We need:

Lemma 6.6.1. The discriminants of g, k, p all belong to Qˆ.

Proof. For discpgq this follows from the fact that B is Q-valued. It is enough to prove the
result for k. There we observe that

det kZ P Q
ˆ ¨ i

dK`rK
2 det kChev

Z ,

where kChev
Z is a Chevalley lattice in k arising from the complexification of K˝8. The repre-

sentation η defining the bilinear form B gives a representation ηC of the Chevalley group
underlying kC; this representation, like all representations of the complexified Chevalley
group, can be defined over Q and so the trace form takes rational values on kChev

Z , as
desired. �

Note that the same reasoning applies to H; thus the discriminants of h, u, pH all lie in
Qˆ too.

6.7. Factorization of measures on G. First let us compute the Riemannian volume of
K8. Macdonald [44] shows that, for any top degree invariant differential form ν on K˝8,
regarded also as a volume form on the Lie algebra in the obvious way, we have

(6.7.1) ν-volume of K˝8 “
ź

i

2πmi`1

mi!
νpdet kcmpt

Z q „ ∆K ¨ νpdet kcmpt
Z q

where ∆K “ πpdK`rKq{2; here the mi are the exponents of the compact Lie group K˝8, so
that

ř

mi “ pdK ´ rKq{2. Therefore,

volpK˝8q :“ Riemannian volume of K˝8 w.r.t. ´B|k „ ∆K ¨
a

discpkq.

We can factor detpg˚Rq » detpk˚Rqbdetpp˚Rq, and with reference to such a factorization,

ωG
(6.6.4)
“

1
a

|disc g|
¨ ωK b ωP ,

where ωK P det k˚R is determined (up to sign) by the requirement that xωK , ωKy´B “ 1,
and similarly ωP P det p˚R is determined by requiring that xωP , ωP yB “ 1. We can regard
ωK and ωP as differential forms on K8 and G{K8, extending them from the identity
tangent space by invariance; the measures on K8 and G{K8 defined by the differential
forms ωK and ωP coincide with the Riemannian measures (associated to ´B|k and B|p
respectively).
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This implies that

local Tamagawa measure on G pushed down to G{K˝8
Riemannian measure on G{K˝8 w.r.t. B|p

“
volpK˝8q
a

|disc g|
(6.7.2)

„ ∆K ¨
a

disc p.

6.8. Tamagawa factors. Let µf denote the volume of K Ă GpAfq with respect to Tam-
agawa measure (more precisely: the product of local Tamagawa measures as in §6.5, over
finite places). Evaluating µf is a standard computation, and is particularly straightforward
in the split cases where we use it: There is an L-function ∆G attached to G, with the prop-
erty that its local factor at almost all places is given by pdim G

#GpFpq
; for example, if G “ SLn,

then ∆G “ ζp2q . . . ζpnq. Then µf „ ∆´1
G . We shall later use the notation

∆G,v “ local factor of ∆G at the place v.

Let us introduce

(6.8.1) ∆G{K “ ∆G{∆K ,

where ∆K “ πpdK`rKq{2 as before. We can define similarly ∆H{U .
Now examine the Riemannian measure on Y pKq. We write

(6.8.2) Y pKq “
ž

i

ΓizG{K
˝
8,

where I “ GpQqzGpAfq{K and, for i P I with representative gi, we have Γi “ GpQq X
giKg

´1
i . If we choose a fundamental domain Fi Ă GpRq, right invariant by K˝8, for the

action of Γi, then
š

i FigiK is a fundamental domain in GpAq for the action of GpQq,
and FigiK maps bijectively to Y pKqi, the ith component of Y pKq under (6.8.2). The
global Tamagawa measure of FigiK equals µf multiplied by the local Tamagawa measure
of Fi; on the other hand, the Riemannian measure of Y pKqi is the Riemannian measure of
Fi{K

˝
8, and so by (6.7.2) we have

(6.8.3)
projection of Tamagawa measure to Y pKq

Riemannian measure on Y pKq
„ ∆´1

G{K

a

disc p.

Similarly,

(6.8.4)
projection of Tamagawa measure to ZpUq

Riemannian measure on ZpUq
„ ∆´1

H{U

a

disc pH

6.9. Cohomological periods versus automorphic periods. We now carry out the first
step mentioned in §6.1. Our situation and notation on groups, manifolds, automorphic
forms differential forms and measures is as stated in §6.2 – §6.5.

Proposition 6.9.1. Fix ν0
H P detppH,Rq with xν0

H , ν
0
HyB “ 1; let νH “ Adpg´1

8 qν
0
H the

the corresponding element of ^pHp:

detppHq “ ^
pHpH

Adpg´1
8 q

ÝÑ ^pHp.

If T P HomK˝8
p^pHg{k, πKq lies in a K8{K

˝
8 eigenspace and induces the differential

form ΩpT q on Y pKq, as in (5.3.1), then

(6.9.1)

ˇ

ˇ

ˇ

ş

ZpUq
ι˚ΩpT q

ˇ

ˇ

ˇ

2

xΩpT q,ΩpT qyR
„ pdisc pq

1{2
∆2
H{U

∆G{K
¨

ˇ

ˇ

ˇ

ş

rHs
gT pνHqdh

ˇ

ˇ

ˇ

2

xT pνHq, T pνHqy
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(where we regard the statement as vacuous if T pνHq “ 0). Here gT pνHq is the translate
of T pνHq P π by g “ pg8, gf q, and xT pνHq, T pνHqy is the L2-norm

ş

rGs
|T pνHq|

2 with
respect to Tamagawa measure.

On the left-hand side the L2-norm of ΩpT q is taken with respect to Riemannian mea-
sure10 on Y pKq induced by B (thus the subscript R), whereas on the right-hand side
everything is computed with respect to Tamagawa measure.

Proof. We follow the convention that a subscriptR will denote a computation with respect
to the Riemannian measure induced by B. Although this measure is defined on the locally
symmetric space Y pKq, we will also refer to a “Riemannian” measure on rGs; this is
simply a Haar measure that is normalized to project to the Riemannian measure under
rGs Ñ Y pKq.

We want to integrate ι˚ΩpT q overZpUq, for which we will first evaluate ι˚ΩpT q against
a unit length element in the determinant of a tangent space. Take a point in ZpUq repre-
sented by h P HpAq, with tangent space T , and consider a positively oriented unit length
element of the top exterior power ^dimTT . In the notation established after (5.3.1) such
an element is denoted by rh, ν0

H s, and its pushforward by ι is given by

rhg,Adpg´1
8 qν

0
H s “ rhg, νH s.

Consequently, the value of ι˚ΩpT q on this unit length element is given by T pνHqphgq.
The integral of ι˚ΩpT q over ZpUq is therefore the same as the integral of T pνHqphgq

over ZpUqwith respect to Riemannian measure. Note that h ÞÑ T pνHqphgq indeed defines
a function on ZpUq: for u P U˝8, writing u1 “ Adpg´1

8 qu, we have T pνHqphugq “
T pνHqphg ¨ u

1q “ T pu1 ¨ νHqphgq, but u1 preserves νH , because u preserves ν0
H .

Therefore, when we integrate ΩpT q over the cycle representing ι˚rZpUqs we get

ż

ZpUq

ι˚ΩpT q “

ż

ZpUq

gT pνHqdRh
(6.8.4)
„ ∆H{U

a

disc pH

ż

rHs

gT pνHqdh.

here dR is Riemannian measure on ZpUq and dh is Tamagawa measure, and g “ pg8, gf q
as before; we also used the fact pdisc pHq

1{2 „ pdisc pHq
´1{2.

Next we compute the norm of ΩpT q with respect to Riemannian volume and compare
it to the Tamagawa-normalized L2 norm of T pνHq. Let B be a B-orthogonal basis for
^pHpR. For each x P B, if we evaluate ΩpT q at x (considered at the tangent space of
the identity coset) we get, by definition, T pxq evaluated at the identity. More generally the
sum

ÿ

xPB

|T pxq|2

defines a function on rGs{K that is K˝8-invariant, and therefore descends to Y pKq; its
value at a point of Y pKq is the norm of ΩpT q at that point. Integrating over Y pKq with

10The reason we use Riemannian measure at all is that it interfaces well with the action of aG (e.g. Proposition
5.5.1 part (i)).
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respect to Riemannian norm, we see

xΩpT q,ΩpT qyR “

ż

gPY pKq

˜

ÿ

xPB

|T pxq|2

¸

dRg(6.9.2)

“

ş

gPY pKq

`
ř

xPB |T pxq|
2
˘

dRg

xT pνHq, T pνHqyR
xT pνHq, T pνHqyR(6.9.3)

“
}T }2

xT pνHq, T pνHqy
xT pνHq, T pνHqyR.(6.9.4)

Here we define

(6.9.5) }T }2 “
ÿ

xPB

xT pxq, T pxqyL2prGsq,

and the L2-norm is now computed with respect to Tamagawa measure on rGs. After
translating (6.8.3) between Riemannian and Tamagawa measure for xT pνHq, T pνHqyR,
the result follows from Lemma 6.9.1 below. �

Lemma 6.9.1. Notation as above; in particular pG,Hq are as in §6.3 and B is the trace
form defined in (6.5.1). Let T P HomK˝8

p^pHg{k, πKq lie in a K8{K
˝
8 eigenspace (nec-

essarily one-dimensional, see §6.4). Let νH be as in Proposition 6.9.1, and the norm }T }
be as in (6.9.5). Then

xT pνHq, T pνHqy

}T }2xνH , νHyB
“
xg8T pνHq, g8T pνHqy

}T }2xνH , νHyB
P Q,

Note that xνH , νHyB “ 1, by the way it was defined in the statement of Proposition
6.9.1, but we prefer to write the expression above because it is scaling invariant.

Proof. Observe the ratio under consideration is invariant under rescaling the norm either
on source or target of T , or rescaling T , or rescaling νH . The validity of the statement
depends only on the data

(6.9.6) pGpRq Ą K8,HpRq Ą U8, g8, π8, T q

together with the scaling class of the form induced by B on pR and pH . By Lemma 6.3.1,
it suffices to treat the case when g8 “ e, the identity element, and GpRq Ą K8,HpRq Ą
U8 is one of the following:

PGLnpRq ˆ PGLn`1pRq Ą POn ˆ POn`1, GLnpRq Ą On.(6.9.7)

PGLnpCq ˆ PGLn`1pCq Ą PUn, GLnpCq Ą Un.(6.9.8)

SOn`1pCq ˆ SOnpCq Ą SOn`1 ˆ SOn, SOnpCq Ą SOn.(6.9.9)

In all cases, O and U refer to the standard orthogonal form
ř

x2
i and the standard Hermitian

form
ř

|zi|
2.

In other words, the assertion in question is a purely archimedean one, and we may freely
assume that G,H are the Q-split forms in the first case, and (the restriction of scalars of
the) Qpiq-split forms in the second and third cases. With these Q-structures, the inclusion
of H into G is Q-rational, the form B remains Q-rational on the Q-Lie algebra, and
moreover the maximal compacts U8,K8 described above are actually defined over Q.
Therefore, pR and also^pHpR inherits a Q-structure, and the line RνH Ă ^pHpR is thus
defined over Q. We may freely replace νH , then, by a Q-rational element ν1H P R.νH .

First let us consider the latter two cases: GR is a “complex group” and so K8 “ K0
8.

In this case (see §3.4.1 or the original paper [76]) T factors through a certain K8-type
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δ Ă π8, which occurs with multiplicity one inside ^pHp. In particular, xT pvq, T pvqy is
proportional simply to xprojδpvq,projδpvqyB . The ratio in question is therefore simply

pdim δq´1 xprojδν
1
H ,projδν

1
HyB

xν1H , ν
1
HyB

It suffices to see that projδν
1
H is Q-rational. However, the isomorphism class of δ is fixed

by outer automorphisms of K8: the highest weight of δ is the sum of positive roots, and
the character of δ on the center of K8 is trivial. It follows that projδ , as a self-map of
^pHp, is actually defined over Q.

In the remaining case (6.9.7), fix a character χ : K8 Ñ t˘1u. The subspace

Homp^pHp, π8q
pK8,χq Ă Homp^pHp, π8q

transforming under pK8, χq, remains 1-dimensional (if nonzero). This space consists pre-
cisely of the K8-homomorphisms

^pHp ÝÑ π8|K8 b χ.

In this case there is a unique irreducible K8-representation δ1 Ă ^pHp which is common
to ^pHp and π8|K8 b χ. This δ1 splits into two irreducibles when restricted to K0

8 “

PSOn`1 ˆ PSOnpRq; these two irreducibles are switched by K8{K
0
8, which is just the

outer automorphism group of K0
8, and each irreducible occurs with multiplicity one inside

π8 (one in each irreducible factor of π8|SLn`1 ˆ SLn ). It follows that the projection from
^pHp to the δ1-isotypical component is actually defined over Q, and we can proceed just
as before. �

6.10. Working hypotheses on period integrals. We now simplify (6.9.1) a little bit fur-
ther using the Ichino-Ikeda conjecture [29]. Note that the original conjectures of Ichino
and Ikeda were formulated only for orthogonal groups, but in fact the analogue of their
conjecture is known to be valid in the GL case (see, e.g. [57, Theorem 18.4.1], although
the result is well-known to experts).

At this point it is convenient, in cases (1) and (2) from §6.3, to work with the E-groups
HE ,GE instead of their restriction of scalars to Q. Recall that we regard E “ Q in the
remaining case.

To normalize Tamagawa measures, we must choose a measure on Ev for each place;
we choose these measures so that the volume of AE{E is 1 and so that the measure of the
integer ring of Ev is Q-rational for every finite place v, and 1 for almost every place v.
Note that this implies that, for v the archimedean place of E,

(6.10.1) measure on Ev „ D
1{2
E ¨ Lebesgue.

Fix now E-rational invariant differential forms of top degree on HE and GE and use
this to define Tamagawa measures dh and dg on HEpAEq “ HpAQq and GEpAEq “

GpAQq, thus on rHs “ rHEs and rGEs “ rGs; these global Tamagawa measures coin-
cide with the ones made using Q-rational differential forms.

We factorize dh and dg as
ś

dhv and
ś

dgv where dhv, dgvs are local Tamagawa
measures, and the factorization is over places of E rather than places of Q. As before, the
dhv, dgv depend on the choices of differential form, but they only depend up to Qˆ, since
|e|v P Q

ˆ for each e P E and each place v.
We will use the following expected properties; not all are presently known, and thus we

regard the currently unproven ones as assumptions. (i) is known in the PGL cases and is
the Ichino–Ikeda conjecture in the orthogonal case; (ii) is known in all cases and it should
be possible to establish (iii) with some effort. Finally (iv) is a problem of special functions.
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(i) (Global integral): Suppose that, with reference to a factorization π “ bπv , gT pνHq
can be factored11as bvϕv and factorize also the inner product. Then

ˇ

ˇ

ˇ

ş

rHs
gT pνHqdh

ˇ

ˇ

ˇ

2

ş

rGs
|T pνHq|2dg

„
ź

v

ş

HpFvq
xhvϕv, ϕvydhv

xϕv, ϕvy
.

where the right-hand side is regularized as a globalL-value according to (ii) below.
This is the conjecture of Ichino–Ikeda [29]. Its validity in the PGL case is

folklore, see e.g. [57, Theorem 18.4.1].
(ii) (Local integrals at almost all nonarchimedean places): At almost all nonarchimedean

places v, with local Tamagawa measures dhv , we have

(6.10.2)

ş

HpFvq
xhvϕv, ϕvydhv

xϕv, ϕvy
loooooooooooomoooooooooooon

:“LHSv

“
∆G,v

∆2
H,v

Lp 1
2 , πv; ρq

Lp1, πv,Adq
loooooooooomoooooooooon

:“RHSv

¨

where the representation ρ of theL-group of G is that corresponding to the Rankin-
Selberg L-function in the SO cases, and that corresponding to the square of the
Rankin-Selberg L-function in the PGL cases. Also ∆H,v and ∆G,v are the local
factors described in §6.8.

This is known in the SO cases by [29, Theorem 1.2] (note that our measure
normalization differs from theirs), and in the PGL cases by [26, §2].

(iii) (Local integrals at the remaining nonarchimedean places) If v is a nonarchimedean
place and πv admits a Q-rational structure (as is the case in our setting, see §6.4.3),
then for ϕv in this Q-structure we have

(6.10.3) LHSv P Q

where LHSv is the left-hand side of (6.10.2).
We believe this should not too difficult to show – on the left hand side, for

example, the ratio xhvϕv,ϕvy
xϕv,ϕvy

is already a rational-valued function of hv . However,
we do not know a reference, and to make the argument carefully would take us too
far afield.

(iv) (Rationality, archimedean places) For v the unique archimedean place of E, let T
and νH be as in Lemma 6.9.1. The condition we will enunciate depends only on
the same archimedean data as in (6.9.6), and we thus may freely assume (just as
in the discussion following that equation) that g8 “ e and that pGR,HRq have
been put in the standard position of Lemma 6.3.1.

Moreover, if we are in the PGLn ˆ PGLn`1 over Q case, assume that T
transforms under the character of K8{K

˝
8 » t˘1u given by x ÞÑ xn`1: this is

the only case that will be encountered in our application in §7, and the specific
choice of character arises from numerology discussed in §7.0.1.

Finally write ϕ8 P π8 for the archimedean component of the factorizable
vector g8T pνHq; this is uniquely defined up to scalar multiple, and the associated
line is characterized purely locally (take the image of νH under a nonzero element
of HomK˝8

p^pHg{k, π8q and translate by g8).

11In our application, we will only have to deal with a factorizable vector, because of the one-dimensionality
of (6.4.3). However, we note for completeness that knowledge of a factorizable Hermitian form on pure tensors
determines the Hermitian form; the Hermitian forms arising from the periods we consider are factorizable by
multiplicity one.
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With these choices of data, we have

(6.10.4)
LHSv
RHSv

„ D
dH{2
E

where DE was the absolute value of the discriminant of E. (We understand here
that the RHSv , which involves an archimedean L-factor, is defined via the local
Langlands correspondence for archimedean fields.)

Aside from the factor DdH{2
E , this simply states the belief that “in good situa-

tions, the archimedean integral behaves like the nonarchimedean integrals.” This
belief must be applied with caution, see e.g [31] for other examples where this
is expected to be false, but seems reasonable in the instances at hand. The factor
D
dH{2
E is necessary to make the conjecture independent of E, because of (6.10.1).

Note the very fact that LHSv is nonzero is not known in all cases; it has been
proven by B. Sun by a remarkable positivity argument in the GLn cases [68].

6.11. Summary. Combining Proposition 6.9.1 with the working hypotheses of §6.10, we
have proved:

Theorem 6.11.1. Let ι : ZpUq Ñ Y pKq be, as in §6.2, a map of arithmetic manifolds
associated to the inclusion H Ă G and the element g “ pg8, gf q P GpAq, as in §6.3.

Let π be as in §6.4, a cohomological automorphic representation for G, tempered at8
and cuspidal, with π “ π.

In the PGLn ˆ PGLn`1{Q case let χ be the order 2 character of K8 described after
(6.10.4); otherwise we understand χ to be trivial. Let

T P HompK8,χqp^
qg{k, πKq

be nonzero and real, and let ΩpT q be the associated differential form on Y pKq (as in
(5.3.1)).

Assume the working hypothesis on period integrals (§6.10). Then

(6.11.1)

´

ş

ZpUq
ι˚ΩpT q

¯2

xΩpT q,ΩpT qyR
P Qcfc8

˜

Lpurqp 1
2 , π; ρq

Lpurqp1, π,Adq

¸

where purq means that we omit factors at finite ramified places, ρ is the representation of
the L-group occurring in (6.10.2), c2f P Qˆ, c8 is a half-integral power of π, and the
subscript R means that we compute the L2-norm with respect to a Riemannian measure
normalized as in §6.5. Explicitly:

cf “

´

disc p ¨DdH
E

¯1{2 ´

P
a

Qˆ
¯

,

c8 “

ˆ

∆K

∆2
U

˙

˜

∆G,8

∆2
H,8

¸

ˆ

L8p
1
2 , π; ρq

L8p1, π,Adq

˙

Moreover, if Lpurqp 1
2 , π; ρq ‰ 0 and there exists a nonzero HpAq-invariant functional

on the space of π, it is possible to choose the data pg8, gf q and level structure U in such a
way that the left-hand side of (6.11.1) is also nonzero.

Proof. This follows by putting together Proposition 6.9.1 with the statements of §6.10.
(See §6.4.3 for the rational structures, used for (6.10.3).)

Note that the assumption that T was real means that ΩpT q is a real differential form,
and that T pνHq is a real-valued function on rGs; this allows us to drop absolute value
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signs. We were able to drop the ramified factors using (6.10.3). The last sentence of the
Theorem follows because for each finite place v of E and any nonzero ϕv P πv , it is
(under the assumption quoted) possible to choose gv P GEpEvq with the property that
ş

HEpEvq
xhvgvϕv, gvϕvy ‰ 0 (see [81] or [57]).

7. COMPATIBILITY WITH THE ICHINO–IKEDA CONJECTURE

We now study more carefully the compatibility of our conjecture with the Ichino–Ikeda
conjectures on periods. We work in the following situation:

Let H Ă G be as discussed in §6.3. Each case involves a field E, which is either
imaginary quadratic Qp

?
´DEq or E “ Q.

As in §6.3, we use (e.g.) GE for G regarded as an E-group and G for it as a Q-group
and similar notations for Lie algebras: in particular gE is the Lie algebra of GE , an E-
vector space, whereas gQ “ ResE{QgE is the Q-Lie algebra that is the Lie algebra of
G.

We use other notation as in section §6.4, §6.2 and 6.3; in particular we have a map of
arithmetic manifolds

ι : ZpUq Ñ Y pKq

associated to H,G and the element g “ pg8, gf q P GpAq. The Borel–Moore cycle
ι˚rZpUqs defined by H lies in the minimal cohomological dimension for tempered repre-
sentations for G (see (6.3.1) and Table 1), which we shall now call q:

q “ pH “ minimal cohomological dimension for tempered representations.

Finally, as in §6.4, we have fixed a near equivalence class Π of automorphic representa-
tions; only one representation π in Π contributes to cohomology at level K.

7.0.1. The cycle ZpUq and its twisted versions. We have available in all cases the class
ι˚rZpUqs in Borel–Moore homology. However in the case G “ PGLn ˆ PGLn`1 we
want to twist it, for reasons that we will now explain:

The point is that the fundamental class of ZpUq is not preserved by the action of
U8{U

˝
8 » t˘1u. Rather, the nontrivial element ´1 alters the orientation by a sign

p´1qn`1, as one sees by a direct computation (cf. [45, 5.1.1]. Therefore, ι˚rZpUqs trans-
forms as x ÞÑ xn`1 under K8{K

˝
8 » t˘1u; as such, it can only pair nontrivially with a

cohomology class of this sign. By twisting it, we will produce a class that transforms un-
der the opposite character x ÞÑ xn. This motivates the precise numerology of the twisting
below:

Fix an auxiliary quadratic character ψ of AˆQ{Q
ˆ which, at8, gives the sign character

of R˚. The function ψ ˝ det now gives rise to a locally constant function on rHs, and thus
a Borel–Moore cycle

rZpUqsψ P H
BM
pH pZpUq,Qq

of top dimension on ZpUq. To be precise first choose U 1 Ă U on which ψ is constant, so
that ψ gives a locally constant function on ZpU 1q, then push forward the resulting cycle
and multiply by 1

rU :U 1s ; however, this will equal zero unless ψ was trivial on U to start
with. It will be convenient to write for ε P t˘1u

(7.0.1) rZpUqsε “

#

rZpUqs, ε “ p´1qn`1;

rZpUqsψ, ε “ p´1qn.

The notation is designed so that rZpUqsε has trivial sign under U8{U
˝
8 if ε “ 1 and

nontrivial sign if ε “ ´1.
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7.1. Motivic cohomology; traces and metrics and volumes. We assume that there ex-
ists an adjoint motive Ad Π attached to Π, in the sense of Definition 4.2.1. By its very
definition, it is equipped with an isomorphism

(7.1.1) HBpAd Π,Cq » pgQ,˚ bC “ pg.

where pgQ,˚ is as in Definition 4.2.1. Now we may define the motivic cohomology group

(7.1.2) LΠ “ H1
M pAd˚Π,Qp1qq,

as in (1.2.2). As described in §5.1, the regulator on LΠ takes the shape

(7.1.3) LΠ ÝÑ aG

and indeed LΠ lands inside the twisted real structure on aG (see §5.1).
There are two natural metrics which can be used to compute the volume of LΠ. One of

these metrics arises from a bilinear form on the Lie algebra of G, and the other one arises
from a bilinear form on the Lie algebra of the dual group. We will need to pass between
the volumes with respect to these metrics in our later computations, and so we explain now
why they both give the same volume, up to ignorable factors.

As per §5.2 we can equip Ad Π with a weak polarization whose Betti incarnation is the
standard trace form on pg itself. Note that pg is a sum of classical Lie algebras; by “standard
trace form,” we mean that we take the form trpX2q on each factor, where we use the
standard representation of that factor. This is visibly Q-valued on pgQ. We refer to this as
the “trace weak polarization” and denote it by ptr.

This induces a quadratic form (denoted ptr
˚

) on rg, by duality, which corresponds to a
weak polarization on Ad˚Π. As in §2.2.4 we may use this to induce a quadratic real-
valued form on H1

DppAd˚ΠqR,Rp1qq, which we extend to a Hermitian form on

H1
DppAd˚ΠqR,Rp1qq bC.

As in §2.2.5 this C-vector space is identified with rgWR , and thus with aG. (Here, and
in the remainder of this proof, we understand WR to act on g by means of the tempered
cohomological parameter, normalized as in §3.3.)

Explicitly, this induced Hermitian form on aG is given by

(7.1.4) pX,Y q P aG ˆ aG ÞÑ ptr
˚
pX ¨ wY q

where w is the long Weyl group element; we used the computation of the Betti conjugation
in the proof of Lemma 5.1.1.

By its construction the Hermitian form (7.1.4) is a real-valued quadratic form when it
is restricted to the twisted real structure a1G,R. This quadratic form need not be positive
definite, since we started only with a “weak” polarization, but this makes little difference
to us. The volume of LΠ with reference to ptr

˚
may be analyzed by means of Lemma 2.2.2

(the failure of positive definiteness means that the volume may be purely imaginary: the
square of the volume is, by definition, the determinant of the Gram matrix). We denote this
volume by vol

ptrpLΠq.
On the other hand there is a different Hermitian form on a˚G, which is positive definite,

and whose interaction with the norm on harmonic forms is easy to understand. Namely,
we have equipped (§6.5) gQ with a Q-rational bilinear form, the trace form for a standard
representation; this form endows Y pKq with a Riemannian metric. Then, by (i) of Propo-
sition 5.5.1, a˚G acts “isometrically” (in the sense specified there) for the dual of the form
given by

(7.1.5) pX,Y q P aG ˆ aG ÞÑ BpX,Y q.
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This form is also real-valued on the twisted real structure pa˚G,Rq
1, and moreover it defines

a positive definite quadratic form there. It is positive definite because BpX, X̄q ą 0 for
X P p, and this contains (a representative for) aG. To see that it is real-valued, observe that

(7.1.6) BpX,wY q “ BpX,wY q “ Bpw´1X,Y q “ BpwX, Y q,

so BpX,Y q P R if X,Y belong to the twisted real structure; but if Y belongs to the
twisted real structure, so does Ȳ .

By Lemma 3.5.2, the quadratic forms given by restriction of ptr to a˚G,R Ă pg, and the
restriction of B to aG,R, are in duality with one another (after possibly multiplying ptr by
1
4 ); thus also their complex-linear extensions ptr on a˚G Ă pg and B on aG are dual to one
another (up to the same possible rescaling). Noting that ptr

˚
on rgWR and ptr on gWR are

also dual quadratic forms, it follows that (as quadratic forms on aG) we have an equality
B “ ptr

˚
(up to the same possible rescaling).

We will be interested in

voltrpLΠq :“ volume of LΠ with respect to (7.1.5).

Choosing a Q-basis xi for LΠ and with notation as above, we compute:

voltrpLΠq
2 (7.1.5)
“ detBpxi, xjq

Lem. 3.5.2
“ 4k ptr

˚
pxi, xjq “ 4k detpwqptr

˚
pxi, wxjq

(7.1.7)

“ p4k detpwqq vol
ptrpLΠq

2(7.1.8)

for some k P Z. Clearly detpwq “ ˘1; it is possible that detpwq “ ´1, but in any case
our final results will have factors of

a

Qˆ which allow us to neglect this factor.

7.2. We may state our theorem:

Theorem 7.2.1. Notation as before, so that pH,Gq is as in §6.3, the embedding ZpUq Ñ
Y pKq is set up as in §6.2, and the cuspidal cohomological automorphic representation Π
is as in §6.4.

Make the following assumptions:
(a) Beilinson’s conjectures on special values of L-functions (both parts (a) and (b) of

Conjecture 2.1.1) extended to pure motives as discussed in §2.1.11.
(b) Existence of an adjoint motive attached to Π (as in Definition 4.2.1), arising from

a pG-motive attached to Π (Conjecture A.2.1 in Appendix A).12

(c) Working hypotheses on period integrals (§6.10).
Then, with ω, ω˘ as in §6.4, and cycles rZpUqs˘ as in §7.0.1, we have

(7.2.1)
xω, ι˚rZpUqsy

2

xω, ωy
P
a

Q pvoltr LΠq
´1
,

(7.2.2)
xω`, ι˚rZpUqs

`y2

xω`, ω`y

xω´, ι˚rZpUqs
´y2

xω´, ω´y
P
a

Q pvoltr LΠq
´2
.

where rZpUqs˘ is as in (7.0.1); the pairing xω, ι˚rZpUqsy is to be interpreted as in Remark
10.

12The latter conjecture is, roughly speaking, a generalization of requiring the existence of an adjoint motive,
but replacing the adjoint representation of the dual group by all representations at once. However Conjecture
A.2.1 is a little less precise about coefficient fields than the existence of an adjoint motive as in Definition 4.2.1.
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Moreover, in case (7.2.1): if the central value of the Rankin-SelbergL-function attached
to Π is nonvanishing and there exists a nonzero HpAq-invariant functional on the space
of Π, it is possible to choose the data pg8, gf q and level structure U in such a way that
the
?
Q factor is nonzero. A similar assertion holds for (7.2.2), where we require the same

conditions both for Π and its twist Πψ (see (7.2.3)).

Note that (7.2.1) and (7.2.2) conform exactly to the prediction of the conjecture – see
(1.4.8) and (1.4.13). In an early draft of this paper, we attempted to eliminate the factor
of

a

Qˆ as far as possible, and indeed found that (to the extent we computed) the square
classes all appear to cancel – often in a rather interesting way. However, this makes the
computation exceedingly wearisome, and to spare both ourselves and our readers such
pain, we have omitted it from the present version of the paper.

Proof. We will now give the proof of the Theorem, relying however on several computa-
tions that will be carried out in the next section. To treat the two cases uniformally, it will
be convenient to use the following shorthand for this proof only:

- For all cases except PGLn ˆ PGLn`1 over Q, we put π “ Π. The reader is
advised to concentrate on this case, the modifications for the other case being
straightforward but notationally complicated.

- In the remaining case of PGLnˆPGLn`1 over Q, we “double” everything. First
of all, factor Π “ ΣPGLn b ΣPGLn`1 as an external tensor product of an automor-
phic representation on PGLn and an automorphic representation on PGLn`1, as
we may.

Now define a new automorphic representation on PGLn ˆ PGLn`1

(7.2.3) Πψ “

#

pΣPGLn ¨ ψqb ΣPGLn`1
, n P 2Z.

ΣPGLn b pΣPGLn`1
¨ ψq, else.

be the twist of Π by the quadratic character ψ, i.e., we twist by ψ ˝det only on the
even-dimensional factor so that the resulting automorphic representation remains
on PGL.

Now, put
π “ Π b Πψ

considered as an automorphic representation of pPGLn ˆ PGLn`1q
2. Observe

that the adjoint motive attached to Πψ is identified with the adjoint motive attached
to Π; thus Lπ “ LΠ ‘ LΠ.

Finally replace all the groups G,K8, H,U8 by a product of two copies: thus
G “ pPGLnpRq ˆ PGLn`1pRqq

2, H8 “ GLnpRq ˆGLnpRq and so on.
We have proved in Theorem 6.11.1 that

(7.2.4) left-hand side of (7.2.1) „Qˆ cfc8
Lpurqp 1

2 , π; ρq

Lpurqp1, π,Adq
,

where ρ is the representation of the dual group of G described in that theorem. Note
in particular that cf P

a

Qˆ. In the pPGLn ˆ PGLn`1q
2 case, the same result holds,

replacing (7.2.1) by (7.2.2), and now taking ρ to be the sum of two copies of the tensor
product representations of the two factors.

Now the L-functions defined above are Euler products over unramified places, together
with an archimedean factor, and these agree with the corresponding motivic L-function
arising from the pG-motive of π. Moreover, for these motivic L-functions, the factors at
missing (ramified) places are rational and nonvanishing, by the assumptions discussed in
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(2.1.13). So we can replace Lpurq by the full L-function, which we henceforth understand
to be the motivic L-function obtained from the assumed pG-motive attached to π:

(7.2.5) left-hand side of (7.2.1) „Qˆ cfc8
Lp 1

2 , π; ρq

Lp1, π,Adq
,

So let us look at the right-hand side of (7.2.1) or (7.2.2), according to which case we
are in. Lemma 2.2.2, applied with tr the trace weak polarization and p an arbitrary weak
polarization on Adπ, implies

volume
ptr H

1
M pAd˚ π,Qp1qq „Qˆ L˚p0, π,Adq

vol
ptr HBp

`

Ad˚ π
˘

R
,Qq

vol
ptr F

1HdRpAd˚ πq

„?
Qˆ

L˚p0, π,Adq

volp F 1HdRpAdπq

where we also used, at the last step, the fact that vol
ptr F

1HdRpAd˚ πq „?
Qˆ

volp F
1HdRpAdπq,

beause Adπ and Ad˚ π are abstractly isomorphic and volS F
1 is independent, up to

a

Qˆ, of the choice of weak polarization S (again, Lemma 2.2.2). Using (7.1.7) and
(7.2.4), we see that proving (7.2.1) or (7.2.2) is equivalent to verifying

(7.2.6) c8
Lp 1

2 , π; ρq

Lp1, π,Adq

L˚p0, π,Adq

volp F 1HdRpAdπq
P
a

Q.

The functional equation means that L˚p0, π,Adq “
?

∆Ad
L8p1,π,Adq

L˚8p0,π,Adq
Lp1, π,Adq, where

∆Ad P Qˆ is the conductor of the adjoint L-function; so, substituting the expression for
c8 from Theorem 6.11.1, we must check

(7.2.7)
L8p

1
2 , π; ρq

L˚8p0, π,Adq
looooooomooooooon

γ11

ˆ

∆K

∆2
U

˙

˜

∆G,8

∆2
H,8

¸

loooooooooomoooooooooon

γ12

¨
Lp 1

2 , π; ρq

volppF 1HdRq
P
a

Q.

Now computing case-by-case (see Table 2 below):

(7.2.8) γ11 „Qˆ p2πiq
´m, γ12 „Qˆ 1,

where

(7.2.9) m “

$

’

’

’

&

’

’

’

%

npn` 1q, if G “ PGLn ˆ PGLn`1;

npn` 1q, if G “ ResE{QpPGLn ˆ PGLn`1q;

2n2, if G “ ResE{QpSO2n ˆ SO2n`1q;

2npn` 1q, if G “ ResE{QpSO2n`1 ˆ SO2n`2q.

Moreover, (assuming Deligne’s conjecture [17], which is a special case of Beilinson’s
conjecture):

(7.2.10)
Lp 1

2 , π; ρq

volppF 1HdRpAdπqq
P
a

Q ¨ p2πiqm.

with m the same integer as above. Equation (7.2.10) requires an argument, and is in fact
quite surprising: the numerator is related to the Rankin-Selberg L-function and the denom-
inator to the adjoint L-function, and so it is not apparent they should cancel. This is the
surprising cancellation that we have referred to in the introduction, and we prove it in the
next section.

The final assertion of Theorem 7.2.1 follows immediately from the corresponding as-
sertion in Theorem 6.11.1.
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TABLE 2. Collates data about the various cases; repeatedly uses
řm
i“1 ipm ` 1 ´ iq “ 1

6mpm ` 1qpm ` 2q. “same” means “same as
the other entry in the same row.” “sym” means “extend by symmetry.”

G8 SO2n ˆ SO2n`1{C SO2n`1 ˆ SO2n`2{C

H8 SO2n{C SO2n`1{C

pdK ` rKq 4n2
` 2n 4n2

` 6n` 2

pdU ` rU q 2n2 2n2
` 2n

∆K{∆
2
U p

?
πqp2nq p

?
πq2n`2

∆G,8

śn´1
i“1 ΓCp2iq

2ΓCpnqΓCp2nq
śn
i“1 ΓCp2iq

2ΓCpn` 1q

∆H,8

śn´1
i“1 ΓCp2iqΓCpnq

śn
i“1 ΓCp2iq

∆G,8{∆
2
H,8 ΓCp2nq{ΓCpnq “ π´n ΓCpn` 1q “ π´n´1

Lp1{2, π8, ρq „Qˆ π
´ 1

3
p2n´1qp2nqp2n`1q´npn`1q

„Qˆ π
´ 1

3
p2nqp2n`1qp2n`2q´npn`1q

L˚p0, π8,Adq „Qˆ π
´ 8

3
pn´1qnpn`1q`n2´3n

„Qˆ π
´ 4

3
npn`1qp2n`1q`npn`1q

Lp1{2,π8,ρq

L˚p0,π8,Adq
„Qˆ π

´2n2

„Qˆ π
´2npn`1q

M p2n ´ 2, 0q1, . . . , pn, n ´ 2q1, pn ´ 1, n ´ 1q2, sym. p2n, 0q, . . . , pn ` 1, n ´ 1q, pn, nq2, sym.

N p2n ´ 1, 0q, p2n ´ 2, 1q, . . . , p0, 2n ´ 1q p2n ´ 1, 0q, p2n ´ 2, 1q, . . . , p0, 2n ´ 1q

M bN p4n ´ 3, 0q1, p4n ´ 4, 1q2 . . . , p3n ´ 1, n ´ 2qn´1 p4n ´ 1, 0q1, p4n ´ 2, 1q2, . . . , p3n, n ´ 1qn

p3n ´ 2, n ´ 1qn`1, . . . , p2n ´ 1, 2n ´ 2q2n, sym. p3n ´ 1, nqn`2, . . . , p2n, 2n ´ 1q2n`1, sym.

Lps,ResE{QM bNq
´

śn´1
i“1 ΓCps ´ i ` 1qi ¨

ś2n´1
i“n ΓCps ´ i ` 1qi`1

¯2 ´

śn
i“1 ΓCps ´ i ` 1qi ¨

ś2n
i“n`1 ΓCps ´ i ` 1qi`1

¯2

AdpMq see text see text
AdpNq p2n ´ 1, 1 ´ 2nq1, p2n ´ 2, 2 ´ 2nq1, p2n ´ 3q, 3 ´ 2nq2, same

pp2n ´ 4q,´p2n ´ 4qq2, . . . , p1,´1qn, p0, 0qn, symq

G8 PGLn ˆ PGLn`1{C pPGLn ˆ PGLn`1{Rq
2

H8 GLn{C pGLn{Rq
2

pdK ` rKq 2n2
` 4n´ 2 2n2

` 2n

pdU ` rU q n2
` n npn´ 1q ` 2rn{2s

∆K{∆
2
U p

?
πq2n´2 π2n´2rn{2s

∆G,8 p
śn
i“2 ΓCpiqq

2ΓCpn` 1q p
śn
i“2 ΓRpiqq

4ΓRpn` 1q2

∆H,8 p
śn
i“1 ΓCpiqq

śn
i“1 ΓRpiqq

2

∆G,8{∆
2
H,8 ΓCpn` 1q{ΓCp1q

2
„ π1´n ΓRpn` 1q2{ΓRp1q

4
„ π2prn{2s´nq

Lp1{2, π8, ρq „Qˆ π
´ 2

3
npn`1qpn`2q same

L˚p0, π8,Adq „Qˆ π
´ 1

3
npn`1qp2n`1q same

Lp1{2,π8,ρq

L˚p0,π8,Adq
„Qˆ π

´npn`1q same
M pn´ 1, 0q, pn´ 2, 1q, . . . , p0, n´ 1q same
N pn, 0q, pn´ 1, 1q, . . . , p0, nq same

M bN p2n´ 1, 0q1, p2n´ 2, 1q2, . . . , pn, n´ 1qn, sym. same
Lps,ResE{QM bNq pΓCpsq

1ΓCps´ 1q2 ¨ ¨ ¨ΓCps´ n` 1qnq2 same
(Lps,M bNqLps,M 1 bNq forE “ Q)

AdpMq pn´ 1, 1´ nq1, . . . , p1,´1qn´1, p0, 0qn´1, sym. same
AdpNq pn,´nq1, . . . , p1,´1qn, p0, 0qn, sym. same

Lps,Π,Adq
´

śj
i“1 ΓCps` iq

j`1´i
¨
śj`1
i“1 ΓCps` iq

j`2´i
¯2

same
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8. HODGE LINEAR ALGEBRA RELATED TO THE ICHINO–IKEDA CONJECTURE

In this section, we will prove most brutally (7.2.10) from the prior section. To reca-
pitulate, and unpack some notation, this asserts that, for an automorphic cohomological
representation Π of G as in Theorem 7.2.1, we have (under Deligne’s conjectures)
(8.0.1)

a

Qp2πiqm Q

$

’

’

&

’

’

%

Lp 1
2 ,Πq

volppF 1HdRpAd Πqq ,G “ SOn ˆ SOn`1{E or
Lp 1

2 ,Πq
2

volppF 1HdRpAd Πqq ,G “ PGLn ˆ PGLn`1{E or
Lp 1

2 ,Πq
2

volppF 1HdRpAd Πqq

Lp 1
2 ,Π

ψ
q
2

volppF 1HdRpAd Πqq ,G “ PGLn ˆ PGLn`1{Q

where m is in (7.2.9), p is a weak polarization on AdpΠq and, in the last equation, ψ is a
quadratic character as in §7.0.1, and Πψ is as in (7.2.3). In all cases the L-function above
is now the Rankin–Selberg L-function.

This will follow (as explained below) from (8.3.5), (8.4.8), (8.6.2), (8.7.1) in the four
cases.

We note that Yoshida [83] has given an elegant “invariant-theoretic” framework for do-
ing computations of the type that we carry out here. However we will follow a fairly direct
approach, along the lines taken by M. Harris [24]. In any case the main point is similar:
the period invariants described in §8.2 behave quite well under functorial operations. The
ICM address of the second-named author [74, §9] contains a first attempt to describe a
more conceptual interpretation of these calculations.

8.1. Preliminaries. In all the cases, the group G is the product of two classical groups

G “ ResE{QpG1 ˆG2q,

where E is either Q or a quadratic imaginary extension of Q, and G1, G2 are reductive
E-groups.

There is a choice of whether we take G1 to be the larger or smaller group. In the case of
PGLn ˆ PGLn`1, we take G1 “ PGLn, G2 “ PGLn`1. In the cases involving SOn ˆ

SOn`1 we takeG1 to be the even orthogonal group,G2 to be the odd orthogonal group and
E the imaginary quadratic field. Then we may factor Π into automorphic representations
πi on Gi:

Π “ pπ1 b π2q.

We will often use the abbreviation j “ n´ 1 in the PGLn ˆ PGLn`1 cases.
First of all, let us describe how to construct a Q-motive whose L-function agrees with

the L-function appearing in (8.0.1). We are going to make use of the C-groups to avoid
various choices of twist that are necessary to present the same material with L-groups. See
the Appendix, especially §A.1.2, for a summary of this theory.

The dual groups of the algebraic E-groups G1 and G2 are classical groups, and as such
their C-groups have a “standard” representation: standard on the dual group factor, and we
fix the Gm factor so that the weight of the associated motive is given by n´1 in the PGLn
cases and k ´ 2 in the SOk cases. The reader is referred to Appendix A.4 for more detail
on these standard representations, and for the computation of the Hodge numbers of all the
relevant motives. The archimedean L-factors in the table can be deduced from the Hodge
numbers by the recipe in [17, §5.3].

Conjecture A.2.1 of §A states that attached to π1, π2 are systems of motives indexed
by representations of the C-group; in particular, attached to the “standard representations”
just mentioned, we get motives M (for π1) and N (for π2).
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Here a subtlety arises, similar to that discussed in §4.1: the morphisms from the motivic
Galois group to the C-group (from Conjecture A.2.1) are not necessarily defined over Q.
Thus, in general, we can construct the motives M,N only with Q-coefficients, rather than
with Q-coefficients. For the moment, however, we suppose they can be realized with Q-
coefficients, and writeM andN for the motives with Q-coefficients thus attached to π1 and
π2 respectively. This italicized assumption is not necessary: the argument can be adapted
to the general case by using an auxiliary coefficient field; for expositional ease we postpone
this argument to Sec. 8.8.

Proceeding under the italicized assumption for the moment, then, we obtain Q-motives
M andN defined overE, whose L-functions coincide with the L-functions of the standard
representations of π1 and π2, shifted by a factor of one-half of the weight of the motive.
By computing the determinant of the standard representations, we verify

(8.1.1) detpMq » Qp´npn´ 1q{2q and detpNq » Qp´npn` 1q{2q

in the PGL cases, and

(8.1.2) detpMq » Qp´2npn´1qqχ pSO2nq and detpNq » Qp´np2n´1qq pSO2n`1q.

where χ is the quadratic character of E that arises from the action on the Dynkin diagram
of SO2n. These equalities will be used to evaluate period determinants attached to M and
N .

We will need to use the notion of restriction of scalars for motives, as defined in [17,
Example 0.1.1]. If we write

M “ ResE{QpM bNq

then we have an equality of L-functions:

(8.1.3) Lps`
1

2
,Πq “ Lps` r,Mq “ Lps,Mprqq,

where (since Π is unitarily normalized) the shift r ´ 1
2 equals half the weight of M. Here

r “

$

’

’

’

&

’

’

’

%

n, if G “ PGLn ˆ PGLn`1

n, if G “ ResE{QpPGLn ˆ PGLn`1q

2n´ 1, if G “ ResE{QpSO2n ˆ SO2n`1q

2n, if G “ ResE{QpSO2n`1 ˆ SO2n`2q.

In the case PGLn ˆ PGLn`1 over Q it is also useful to note that

Lps`
1

2
,Πψq “ Lps` r,Mψq “ Lps,Mψprqq

with Πψ as in (7.2.3) and one can express Mψ either as Mψ b N or M b Nψ; here, in
all cases, the superscript ψ on a motive means that we tensor by the one-dimensional Artin
motive corresponding to ψ. In general twisting by ψ can change the determinant, so that
the twisted motive Mψ (or Nψ) may only correspond to an automorphic form on GLn (or
GLn`1) rather than PGLn (or PGLn`1); however this does not affect the computations
below, and because of Mψ bN “M bNψ we can freely twist whichever factor is most
convenient for the computation.

We will freely use the c`, c´, δ periods of a motive defined over Q; these are defined in
§2.1.4.
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To avoid very heavy notation, we shall write:

LM “ F 1H0
dRpResE{Q AdpMqq,

LN “ F 1H0
dRpResE{Q AdpNqq.

These are Q-vector spaces. If the motives in question are equipped with a weak polariza-
tion, we may compute the volumes of LM ,LN according to this polarization, as in §2.2.6.
However, these volumes can be defined intrinsically, as in the proof of Lemma 2.2.2. Thus
if we write volpLM q without specifying a polarization, we mean the class in Cˆ{

a

Qˆ

defined as in that Lemma.
Also, observe that the adjoint motives for M and Mψ are canonically identified, so we

do not need to distinguish between LM and LMψ .
We note that the adjoint motive for Π is identified with ResE{Q AdpMq‘ResE{Q AdpNq,

and so

(8.1.4) volpF 1H0
dRpAd Πqq “ volpLM q volpLN q,

the equality being of complex numbers up to
a

Qˆ. Moreover assuming Deligne’s con-
jecture [17], which is a special case of Beilinson’s conjecture, for the motive Mprq, we
have:

(8.1.5)
Lp0,Mprqq

c`pMprqq
P Q.

Now combining (8.1.4), (8.1.3) and (8.1.5), we see that the sought after relation (8.0.1)
reduces to a relation between c`pMprqq, volpLM q, volpLN q, namely

(8.1.6)
c`pMprqqe

volpLM q volpLN q
„?

Qˆ
p2πiqm

in the SO cases (with e “ 1) or the PGL over E case (with e “ 2), or in the remaining
case:

(8.1.7)
c`pMprqq2

volpLM q volpLN q

c`pMψprqq2

volpLM q volpLN q
„?

Qˆ
p2πiqm.

We verify these statements case-by-case in (8.3.5), (8.4.8), (8.6.2), (8.7.1) below.

8.2. Period invariants of motives. Our proof of (8.1.6) and (8.1.7) will be to write both
sides in terms of certain elementary “period invariants” attached to the motives M and N .
More precisely we attach an invariant Qp P Cˆ{Eˆ to the motive M , any integer p for
which F pHdRpMq{F

p`1HdRpMq is one-dimensional, and an embedding σ : E ãÑ C.
Such period invariants have been previously considered by M. Harris [23].

Here is a general overview of the computations that go into the proofs. Firstly, one has
the period matrices for M , N and M b N that relate the different rational structures on
the Betti and de Rham realizations of these motives. The Deligne periods c˘pMq, c˘pNq
and c˘pM b Nq are obtained as determinants of certain sub-matrices, corresponding to
eigenspaces for the action of complex conjugation cB on the Betti side and certain pieces
of the Hodge filtration on the de Rham side. On the other hand, the de Rham realization
of the motives that appear here have a particularly simple Hodge filtration; in most cases,
the graded pieces are just one-dimensional. This allows us to define (as mentioned above)
certain additional period invariants Qp,Rp that measure the failure of cB to preserve the
rational structure on graded pieces of H˚dRpMq, respectively H˚dRpNq. The three ingredi-
ents that we use then are:
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(1) The period matrix ofMbN is the tensor product of the period matrices ofM and
N ; from this one deduces a formula for c˘pM b Nq in terms of c˘pMq, c˘pNq
and the invariants Qp, Rq .

(2) The realizations of the adjoint motives AdpMq and AdpNq may be thought of as
subspaces of the realizations of M bM_ and N bN_. Using this, the volumes
of LM and LN can also be computed in terms of Qp and Rq .

(3) Finally, the determinants of the period matrices of M and N can be computed in
terms of c˘pMq, Qp and c˘pNq, Rp. On the other hand, these determinants are
essentially powers of 2πi, so this yields an additional relation.

Putting these three ingredients together yields the desired formulas (8.1.6) and (8.1.7).

8.2.1. Bases. Let M be a pure motive over Q of weight m and let V denote the Q-Hodge
structure H˚BpMC,Qq. Let VC “ ‘pV p,m´p be the Hodge decomposition. The Betti-de
Rham comparison isomorphism yields a natural injective map

(8.2.1) V p,m´p Ñ F pH˚dRpMq bC

which induces an isomorphism

(8.2.2) V p,m´p »
F pH˚dRpMq

F p`1H˚dRpMq
bC.

This isomorphism gives a Q-structure on V p,m´p, namely that coming from FpH˚dRpMq

Fp`1H˚dRpMq
.

In what follows, we often use the injective map (8.2.1) to identify V p,m´p with a subspace
of F pH˚dRpMq bC.

Lemma. Let ωp be any element of V p,m´p that is Q-rational for the Q-structure defined
above. Then cdRpωpq “ ωp. Equivalently, F8pωpq “ cBpωpq “ ω̄p.

Proof. The element ωp corresponds via the isomorphism above to an element ω̃p inF pHm
dRpMq

that is well defined up to elements of F p`1Hm
dRpMq. Let us fix once and for all such an

ω̃p so that

ηp :“ ωp ´ ω̃p P F
p`1Hm

dRpMq bC.

Then
cdRωp ´ ωp “ cdRηp ´ ηp P F

p`1Hm
dRpMq bC

(since cdR preserves the Hodge filtration). Since cdR preserves the spaces V p,m´p and
V p,m´p injects into Hm

dRpMq{F
p`1Hm

dRpMq b C, we deduce that cdRωp “ ωp, as
claimed. �

8.2.2. Motives over E. Now suppose that M is a motive over E; for this subsection, sup-
pose that E is an imaginary quadratic field.

Let σ denote the given embedding of E in C and σ̄ the complex conjugate of σ. Then
the interaction between the Betti-de Rham comparison isomorphisms and complex conju-
gation is described by the commutativity of the following diagram:

H˚dRpMq bE,σ C
»

ϕσ
//

cdR

��

H˚BpMσ,Cq bC “: Vσ

F8¨cB

��
H˚dRpMq bE,σ̄ C

»

ϕσ̄
// H˚BpMσ̄,Cq bC “: Vσ̄
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Here cdR is complex conjugation on the second factor, cB is complex conjugation on the
second factor, F8 denotes the map on H˚B induced by complex conjugation on the under-
lying analytic spaces, and ϕσ , ϕσ̄ denote the comparison isomorphisms. For ω̃ any element
in H˚dRpMq, we denote by ω̃σ and ω̃σ̄ the images of ω̃ under ϕσ and ϕσ̄ respectively.

Note that

F8 : V p,qσ Ñ V q,pσ̄ , cB : V p,qσ Ñ V q,pσ and so F8cB : V p,qσ Ñ V p,qσ̄ .

Now the map
ϕσ : F pH˚dRpMq bCÑ ‘iěpV

i,m´i
σ

induces an isomorphism

(8.2.3)
F pH˚dRpMq

F p`1H˚dRpMq
bC » V p,m´pσ ,

and likewise with σ replaced by σ̄.
Next, we discuss how restriction of scalars interacts with cohomology. If M is any

motive over E, then

(8.2.4) H˚dRpResE{QpMqq “ H˚dRpMq,

viewed as a Q-vector space, and

(8.2.5) H˚BpResE{QpMqq “ H˚B,σpMq ‘H
˚
B,σ̄pMq.

(See [17, §0.5].)

8.2.3. Standard elements ω̃, ω. We return to allowing E to be either Q or a quadratic
imaginary field.

Now, we will use the following notation. For the various M defined over E that we will
consider, let p be any integer such that dimF p{F p`1 “ 1 and p˚ the dual integer, so that
p` p˚ equals the weight m of M .

We denote by
ω̃p P F

pH˚dRpMq

any element that spans the one-dimensional quotient F pH˚dRpMq{F
p`1H˚dRpMq. For

σ : E ãÑ C an embedding we define

ωσp P HBpMσ,Cq
p,p˚

the element corresponding to ω̃p via the isomorphism (8.2.3). If E “ Q we will omit the
σ. Observe that

(8.2.6) F8cBpω
σ
p q “ ωσ̄p .

Whenever ωp and ωp˚ are defined, we define complex scalars Qσ
p by the rule

(8.2.7) ωσp “ cBpω
σ
p q “ Qσ

pω
σ
p˚ ¨

$

’

&

’

%

1, p ă p˚;

1 “ p´1qm, p “ p˚;

p´1qm, p ą p˚.

Observe that

(8.2.8) Qσ
pQσ

p˚ “ p´1qm.

This invariant is compatible with complex conjugation:

Lemma 8.2.1. Qσ
p “ Qσ̄

p .
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Proof. We have for p ď p˚

F8pQ
σ
pω

σ
p˚q

(8.2.6)
“ ωσ̄p and F8pQ

σ̄
p˚ω

σ̄
p q

(8.2.6)
“ p´1qmωσp˚ ,

which together imply that Qσ
pQσ̄

p˚ “ p´1qm; now compare with (8.2.8). �
As a result, we will sometimes write

|Qp|
2 “ Qσ

p ¨Q
σ̄
p ,

noting that the right-hand side doesn’t depend on σ, and equals 1 if p “ p˚. In particular,
in the case when E “ Q so that Qσ

p “ Qσ̄
p we have Qp “ ˘1 in middle dimension

p “ p˚.

8.3. The case of PGLn ˆ PGLn`1 over Q. In this case (see Appendix A.4), the dimen-
sion of each graded piece of the Hodge filtration, for both M and N , equals 1. Recall
that we write j “ n ´ 1 for the weight of M . Therefore, let ωi, ω̃i, 0 ď i ď j be the
standard elements attached to M , as in §8.2.3, and Qi, 0 ď i ď j the associated quadratic
period invariants, as in §8.2.3. The corresponding elements attached to N will be denoted
ηi, η̃i,Ri for 0 ď i ď j ` 1.

We may form the dual bases ω̃_p P HdRpM
_q “ HdRpMq

_ and ω_p P HBpM
_,Cq “

HBpM,Cq_, defined as usual by the rule

xω̃a, ω̃
_
b y “ δab.

Then ω̃_p gives a basis for F´pHdRpM
_q{F 1´pHdRpM

_q and is associated to the ele-
ment ω_p P H

´p,´p˚pM_,Cq under the isomorphism (8.2.2), but now for M_. Defining
period invariants Q_ for M_ using this basis, we get

Q_
p “ ˘Qp˚ .

Write ωp,q “ ωp b ω
_
j´q P H

0
BpM bM_,Cq and ω̃p,q “ ω̃p b ω̃

_
j´q P H

0
dRpM bM_q.

The subspace F 1H0
dRpAdpMqq has as a Q-basis the elements

(8.3.1) ω̃p,q, p` q ě j ` 1.

Recall, from the proof of Lemma 2.2.2, that the square of volF 1HdRpAdMq can be
computed via computing the image of a generator of detF 1HdRpAdMq under the com-
plex conjugation map to detpHdR{F

0HdRq. (See in particular (2.2.11)). In the case at
hand, a generator for detF 1HdR is given by

ľ

p`qěj`1

ω̃p,q “
ľ

p`qěj`1

ωp,q,

and its complex conjugate is given by
˜

ź

p`qěj`1

QpQq

¸

ľ

p`qěj`1

ωp˚,q˚ “

˜

ź

p`qěj`1

QpQq

¸

ľ

p`qěj`1

ω̃p˚,q˚

where the last equality is valid in the determinant of H0
dRpAdMq{F 0HdR. Therefore

(8.3.2) volpLM q „
?

Qˆ

ź

0ďpďj

Qp
p.

Likewise, for N , we get:

(8.3.3) volpLN q „
?

Qˆ

ź

0ďpďj`1

Rp
p .
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Now M b N has a unique critical point, namely s “ j ` 1. We will now compute
square of the period

c`pM bNpj ` 1qq

in the case j “ 2t is even; the case j odd is exactly similar.
We first note that since M is attached to a form on PGLn, F8 acts on HttpMq by `1.

Let e`0 , . . . , e
`
t be a Q-basis of HBpMq

` and e´t`1, . . . , e
´
2t a Q-basis of HBpMq

´; here
` and ´ refer to the F8-eigenvalue. Then

pe`0 ¨ ¨ ¨ e
`
t e

´
t`1 ¨ ¨ ¨ e

´
2tq “ pω0 ¨ ¨ ¨ωt ω2t ¨ ¨ ¨ωt`1q

ˆ

AM BM
CM DM

˙

where AM , BM , CM and DM are of sizes pt` 1q ˆ pt` 1q, pt` 1q ˆ t, tˆ pt` 1q and
tˆ t respectively. Likewise let f`0 , . . . , f

`
t be a Q-basis of HBpNq

` and f´t`1, . . . , f
´
2t`1

a Q-basis of HBpNq
´. Then

pf`0 ¨ ¨ ¨ f
`
t f´t`1 ¨ ¨ ¨ f

´
2t`1q “ pη0 ¨ ¨ ¨ ηt η2t`1 ¨ ¨ ¨ ηt`1q

ˆ

AN BN
CN DN

˙

where AN , BN , CN and DN all have size pt ` 1q ˆ pt ` 1q. Note that the ith row of
CM (resp. of DM ) is equal to Qi (resp. ´Qi) times the ith row of AM (resp. of BM ).
Likewise the ith row of CN (resp. of DN ) is equal to Ri (resp. ´Ri) times the ith row of
AN (resp. of BN ).

Let us compute both c˘pMbNq in terms of c˘pMq and c˘pNq. SinceHBpMbNq
` “

pHBpMq
` bHBpNq

`q ‘ pHBpMq
´ bHBpNq

´q and (with notation F˘ as in §2.1.4)

F˘HdRpM bNq “ ‘p`qěj`1Q ¨ ωp b ηq,

we get c`pM bNq “ detpXq, where

`

pe`i b f
`
k qi,k pe´i1 b f

´
k1 qi1,k1

˘

“
`

pωp b ηqqp,q pωp1 b ηq1qp1,q1
˘

X,

and the indices i, k, i1, k1, p, q range over 0 ď i ď t, 0 ď k ď t, 2t ě i1 ě t ` 1,
2t` 1 ě k1 ě t` 1, 0 ď p ď t, 0 ď q ď t and pp1, q1q ranges over pairs such that p1 ą t
or q1 ą t but p1 ` q1 ď 2t. Note that if p1 ą t then q1 ď t and 0 ď 2t´ p1 ă t. Likewise,
if q1 ą t, then p1 ď t and 0 ď 2t` 1´ q1 ď t. Let A˚M and B˚M be the matrices obtained
from AM and BM by deleting the last row. Using the relations ω2t´p “ Q´1

p F8pωpq and
η2t`1´q “ R´1

q F8pηqq, we see that

c`pM bNq “
ź

0ďpăt

Qp`1
p

ź

0ďqďt

Rq
q ¨ det

ˆ

AM bAN BM bBN
A˚M bAN ´B˚M bBN

˙

“
ź

0ďpăt

Qp`1
p

ź

0ďqďt

Rq
q ¨ detpAM bAN q ¨ detp´2B˚M bBN q

„Qˆ

ź

0ďpăt

Qp`1
p

ź

0ďqďt

Rq
q ¨ detpAM q

t`1 detpAN q
t`1 detpB˚M q

t`1 detpBN q
t

“
ź

0ďpăt

Qp`1
p

ź

0ďqďt

Rq
q ¨ pc

`pMqc´pMqqt`1 ¨ c`pNqt`1c´pNqt.
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Now

δpMq “ det

ˆ

AM BM
CM DM

˙

“
ź

0ďpăt

Qp ¨ det

ˆ

AM BM
A˚M ´B˚M

˙

“
ź

0ďpăt

Qp ¨ det

ˆ

AM BM
0 ´2B˚M

˙

„Qˆ

ź

0ďpăt

Qp ¨ c
`pMqc´pMq.

Likewise,

(8.3.4) δpNq „Qˆ

ź

0ďqďt

Rq ¨ c
`pNqc´pNq.

Thus, up to Qˆ factors, c`pM bNq equals

ź

0ďpăt

Qp`1
p

ź

0ďqďt

Rq
q ¨

˜

δpMq
ź

0ďpăt

Q´1
p

¸t`1

¨

˜

δpNq
ź

0ďqďt

R´1
q

¸t

¨ c`pNq

“ δpMqt`1δpNqt ¨
ź

0ďpăt

Qp´t
p ¨

ź

0ďqďt

Rq´t
q ¨ c`pNq

We will also need the same result when we do not assume that F8 acts on HttpMq as`1,
for example if we replace M by M b ψ. A similar computation shows:

Proposition 8.3.1. Suppose that χ is a quadratic idele character for Q; write signpχq “
˘1 according to whether χ is trivial or not on R˚. Then

c˘pMχ bNq „Qˆ δpMq
t`1δpNqt ¨

ź

0ďpăt

Qp´t
p ¨

ź

0ďqďt

Rq´t
q ¨ c˘signpχqpNq

Let R˘pM,Nq be the ratio defined by:

R˘pM,Nq :“
c˘pM bNpj ` 1qq2

volpF 1pAdpMqqq ¨ volpF 1pAdpNqqq
.

Since j ` 1 “ 2t` 1 is odd, we have

c˘pMbNpj`1qq “ p2πiq
1
2 pj`1q¨rankpMbNqc¯pMbNq “ p2πiq

1
2 pj`1q2pj`2qc¯pMbNq.

Therefore, the Proposition above, together with the properties of period invariants given in
(8.2.8) and Lemma 8.2.8, and the evaluations (8.3.2) and (8.3.3) of the volumes of the L
subspaces, give

R˘pMψ, Nq „Qˆ p2πiq
pj`1q2pj`2qδpMψq2t`2δpNq2t ¨

ź

0ďqďt

Rq ¨ c
¯signpχqpNq2.

By (8.1.1) we have

δpMq2 and δpMψq2 P p2πiq´jpj`1q ¨ pQˆq2 and δpNq2 P p2πiq´pj`1qpj`2q ¨Qˆ,

where the computation for δpMψq comes from [17, Proposition 6.5]. We now get from
(8.3.4) our desired result, namely, if ψ has sign ´1, then

R˘pM,Nq ¨R˘pMψ, Nq „Qˆ p2πiq
pj`1qpj`2q.(8.3.5)
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8.4. The case PGLn ˆ PGLn`1 over imaginary quadratic E. Again M has weight j
and rank j ` 1. Just as in the prior case, each graded step of the Hodge filtration has
dimension 1, both for M and for N .

Let ω̃0, . . . , ω̃j be a E-basis for H˚dRpMq, chosen as in §8.2.3, and with associated
invariants Qσ

p as in §8.2.3. Just as at the start of §8.3, but now keeping track of embeddings,
we form ωσp P H

˚
BpMσ,Cq, and also the dual bases ω̃_p , ω

_,σ
p , and put

ω̃p,q “ ω̃p b ω̃
_
j´q P H

˚
dRpM bM_q

and similarly ωp,q P H˚BpMσ bM
_
σ ,Cq.

We may compute the volume of LM in a very similar way to the previous discussion.
In the case at hand, a generator for detF 1HdR is given by

ľ

p`qěj`1

ω̃p,q ^
?
´Dω̃p,q „

ľ

p`qěj`1

pωσp,q, ω
σ̄
p,qq ^ p

?
´Dωσp,q,´

?
´Dωσp,qq,

where we used the isomorphism from (8.2.5) to go from left to right. The complex conju-
gate of the above element is given by

˜

ź

p`qěj`1

|Qp|
2|Qq|

2

¸

ľ

p`qěj`1

p same, replacing p, q by p˚, q˚q
looooooooooooooooooooooooomooooooooooooooooooooooooon

„QˆdetpHdR{F 1HdRq

.

Therefore,

(8.4.1) volpLM q „
?

Qˆ

ź

0ďpďj

|Qp|
2p.

There is an identical expression for the volume of LN , simply replacing j by j ` 1 and Q
by R.

For the remainder of this subsection, we fix an embedding σ : E ãÑ C, and when we
write Q,R etc. we mean Qσ,Rσ , etc.

We shall now compute the Deligne periods c˘pResE{QpM bNqq. Instead of using the
basis consisting of ω̃σi , we can work with the ωσi . Suppose that A is the pj ` 1q ˆ pj ` 1q
complex matrix defined by

(8.4.2) pe0 ¨ ¨ ¨ ejq “ pω
σ
0 ¨ ¨ ¨ω

σ
j q ¨A.

Note that this depends on the choice of σ, but we fixed one above.
Note that

F8cB ¨ ei “ F8ei and F8cB ¨ ω
σ
i “ ωσ̄i .

Thus applying F8cB to (8.4.2), we get

pF8e0 ¨ ¨ ¨F8ejq “ pω
σ̄
0 ¨ ¨ ¨ω

σ̄
j q ¨ Ā.

Likewise, let f0, . . . , fj`1 denote a basis of H˚B,σpNq and let B be the pj ` 2q ˆ pj ` 2q
complex matrix defined by

(8.4.3) pf0 ¨ ¨ ¨ fj`1q “ pη
σ
0 ¨ ¨ ¨ η

σ
j`1q ¨B,

where pη0, . . . , ηj`1q is a E-basis for H˚dRpMq. Note that

(8.4.4) at,i “ Q´1
t aj´t,i and bt1,i1 “ R´1

t1 bj`1´t1,i1 ,

where we repeat that Qt really means Qσ
t , with the same choice of σ as fixed above.

Now we need to compute the change of basis matrix X between the bases:

(8.4.5) ei b fi1 ˘ F8pei b fi1q, 0 ď i ď j, 0 ď i1 ď j ` 1
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and

(8.4.6) pϕσ, ϕσ̄qpωt b ηt1q, pϕσ, ϕσ̄qp
?
´Dωt b ηt1q, 0 ď t` t1 ď j

of the complex vector spaces

pHBpResE{QpM bNqq bCq˘ » H˚dRpResE{QpM bNq bCq{F¯.

Note that
pϕσ, ϕσ̄qpωt b ηt1q “ pω

σ
t b η

σ
t1 , ω

σ̄
t b η

σ̄
t1q,

while
pϕσ, ϕσ̄qp

?
´D ¨ ωt b ηt1q “

?
´Dpωσt b η

σ
t1 ,´ω

σ̄
t b η

σ̄
t1q.

Thus the entries in the pi, i1qth column of X corresponding to the elements in (8.4.5) and
(8.4.6) are

¨

˝

at,ibt1,i1`at,ibt1,i1

2
˘pat,ibt1,i1´at,ibt1,i1 q

2
?
´D

˛

‚.

Then

detpXq „Qˆ
1

?
´D

pj`1qpj`2q
2

detpY q

where Y is the matrix whose entries in the pi, i1qth column corresponding to pt, t1q are
¨

˝

at,i ¨ bt1,i

at,i ¨ bt1,i1

˛

‚

(8.4.4)
“

¨

˝

at,i ¨ bt1,i1

Q´1
t R´1

t1 aj´t,i ¨ bj`1´t1,i1

˛

‚.

As pt, t1q vary over all pairs such that t` t1 ď j, the pairs pt˚, pt1q˚q :“ pj ´ t, j ` 1´ t1q
vary over all pairs such that t˚ ` pt1q˚ ě j ` 1. Thus

detpY q “

˜

ź

0ďt`t1ďj

Q´1
t R´1

t1

¸

¨ detpZq,

where up to a permutation of the rows, the matrix Z is just AbB. Then

c˘pResE{QpM bNqq „Qˆ
1

?
´D

1
2 pj`1qpj`2q

¨Q
´pj`1q
0 Q´j

1 ¨ ¨ ¨Q´1
j

¨R
´pj`1q
0 R´j

1 ¨ ¨ ¨R0
j`1 ¨ detpAqj`2 detpBqj`1.

Now we note that (8.1.1) implies that

(8.4.7) detpAq2 „Qˆ p2πiq
´jpj`1q ¨

j
ź

i“0

Qp,

and in fact that
śj
i“0 Qp is an element in E of norm 1.

Indeed detpMq is a Tate motive, as observed in (8.1.1); if we denote by HdRpdetMqQ
a generator of the canonical Q-line inside its de Rham cohomology, arising from a Q-
rational differential form on Gm, we may write

ω̃0 ^ ω̃1 ^ ¨ ¨ ¨ ^ ω̃j “ λ ¨HdRpdetMqQ

for some λ P Eˆ and computing periods we see that

detpAq „Qˆ λ
´1p2πiq´jpj`1q{2.
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On the other hand, we have ω0 ^ ω1 ^ ¨ ¨ ¨ ^ ωj “ ω̃0 ^ ω̃1 ^ ¨ ¨ ¨ ^ ω̃j , and comparing
this element with its complex conjugate we find λ̄ “ ˘λ ¨

śj
i“0 Qj (for an explicit, but

unimportant, choice of sign). This relation determines λ up to Qˆ, and we have

detpAq2 „Qˆ p2πiq
´jpj`1qλ´2 „Qˆ p2πiq

´jpj`1q|λ|´2 ¨ λ̄{λ,

which proves (8.4.7). Likewise, detpBq2 „Qˆ p2πiq
´pj`1qpj`2q

śj`1
q“0 R´1

q , where again
śj`1
q“0 R´1

q is an element of E of norm 1.
We may thereby simplify the expression above to

c˘pResE{QpM bNqq2 ¨ p2πiqjpj`1qpj`2q`pj`1q2pj`2q

„Qˆ

´

Q´j
0 Q2´j

1 . . .Q`j
j

¯

¨

´

R´j´1
0 R´j`1

1 . . .Rj`1
j`1

¯

„Qˆ |Qj |
2j |Qj´1|

2pj´2q ¨ ¨ ¨ ˆ |Rj`1|
2pj`1q|Rj |

2j ¨ ¨ ¨

„Qˆ

j
ź

p“0

|Qp|
2p ¨

j`1
ź

q“0

|Rq|
2q.

Using (8.4.1) and the relation

c`pResE{QpM bNqpj ` 1qq “ p2πiqpj`1q¨ 12 rank ResE{QpMbNq ¨ c`pResE{QpM bNqq

“ p2πiqpj`1q2pj`2qc`pResE{QpM bNq,

we find at last

(8.4.8)
c`pResE{QpM bNqpj ` 1qq2

volpLM qq volpLN q
„?

Qˆ
p2πiqpj`1qpj`2q.

8.5. Polarizations. In the remaining orthogonal cases, the motives M and N over the
imaginary quadratic field E are equipped with (weak) polarizations, as follows from the
discussion in the Appendix; these arise from the (orthogonal or symplectic) duality on the
standard representations used to define M and N .

We will make use of these polarizations for our analysis, and thus we summarize here
some useful properties:

We denote by S the weak polarization on M , i.e. S : M bM Ñ Qp´wq, with w the
weight of M . As usual, we write

(8.5.1) Q “ p2π
?
´1qwS.

Thus the form Q is Q-valued on H˚BpMσ,Qq (we shall denote this form by Qσ , and write
Sσ “ p2π

?
´1q´wQσ on the same space) whereas the form S is E-valued on H˚dRpMq.

We denote by the same letter S the weak polarization on N .
These polarizations induce also polarizations on AdpMq,AdpNq,M bN by transport

of structure, and also on the restriction of scalars from E to Q of any of these motives;
we will again denote these by the same letters, or by (e.g.) SAd if we want to emphasize
that we are working with the adjoint motive. We denote similarly (e.g.) QAd

σ , SAd
σ for the

forms on the σ-Betti realizations, just as above.

8.5.1. Polarizations and restriction of scalars. For a moment, let X denote a polarized
motive defined over E and X :“ ResE{QX . Then X inherits a polarization from X .
The corresponding bilinear form Q on H˚BpXq is just the sum of the forms Qσ and Qσ̄ on
Vσ “ H˚B,σpXq and Vσ̄ “ H˚B,σ̄pXq respectively. On the de Rham realization, the form
is just the trace from E to Q of the E-valued form on H˚dRpXq. Further, the C-antilinear
isomorphism F8cB from Vσ to Vσ̄ identifies Qσ and Qσ̄ with complex conjugates of each
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other. In particular, to compute the form on H˚dRpXq, we may embed H˚dRpXq in Vσ for
instance (via ϕσ) and take the trace (from C to R) of the form Qσ .

8.5.2. The adjoint motive: polarized case. Next, some comments on the adjoint motive.
Let w be the weight of the polarized motive M .

Since AdpMq Ă HompM,Mq »M bM_, and since M_ »Mpwq via the polariza-
tion, we may view AdpMq as a sub-motive of M bMpwq. Now
(8.5.2)

HdRpAdpMqq Ă HdRpM bM_q “ HdRpMq
b2 bHdRpQpwqq

(2.2.2)
» HdRpMq

b2

In this way, we can regard ηbη1 as an element of HdRpM bM_q when η, η1 P HdRpMq.
Under the above identification the formQAd induced on the adjoint corresponds to p2π

?
´1q´2wQb2,

whereas SAd corresponds to Sb2.
Similarly, for σ an embedding of E into C, we have

HBpAdpMqσ,Cq Ă HBpMσ bM
_
σ ,Cq “ HBpMσq

b2 bHBpQpwq,Cq
(2.2.2)
“ HBpMσ,Cq

b2.

(8.5.3)

Under this identificationQAd corresponds toQb2, and SAd corresponds to p2π
?
´1q2wSb2.

8.5.3. In what follows, we will compute the volume of LM with respect to the polariza-
tion, as described in §2.2.6.

In other words, we compute the volume on Q-vector space LM with reference to the
quadratic form obtained by pulling back the polarization under the map

LM Ñ H˚BpResE{Q AdpMq,Rq

given by x ÞÑ 1
2 px` x̄q.

If we regard the target above as H˚B,σpAdpMq,Rq ‘H˚B,σ̄pAdM,Rq the map is given
by 1

2 pϕσ ` ϕσ, ϕσ̄ ` ϕσ̄q. Here ϕσ is as in §8.2.2. In other words, the form on LM is
given by

px, yq :“ trC{R SAd
σ p

1

2
pxσ`xσq,

1

2
pyσ ` yσqq “

1

2
ptrC{R SAd

σ pxσ, yσq`trC{R SAd
σ pxσ, yσqq.

8.5.4. Period invariants, revisited. In this case, the previous discussion of period invari-
ants can be slightly simplified. In §8.2.3 we have introduced elements ω̃p P HdRpMq for
each integer p with dimF p{F p`1 “ 1. In the cases with a polarization we can and will
choose the elements ω̃p to be self-dual, in that

(8.5.4) Spω̃p, ω̃p˚q “ 1 “ Sσpω
σ
p , ω

σ
p˚q pp ă p˚q

whenever both ω̃p, ω̃p˚ are both chosen. (The second equality follows from the first.) The
same quantity then equals p´1qw for p ą p˚.

If p “ p˚, which only occurs in even weight w, we cannot guarantee (8.5.4); here
Sσpω

σ
p , ω

σ
p q “ σpSpω̃p, ω̃pqq lies in Eˆ and its class mod pEˆq2 is independent of the

choice of ω̃p. Define therefore

(8.5.5) αdRpMq “ Spω̃p, ω̃pq.

If the weight j is odd, we set αdRpMq “ 1. In all cases, this is an element of Eˆ whose
square-class is independent of choices.

We may then evaluate the Qσ
p in terms of the polarization. It follows from (8.2.7) that

Qσ
p “

#

Sσpω
σ
p , ω

σ
p q, p ă p˚

σpαdRpMqq
´1Sσpω

σ
p , ω

σ
p q, p “ p˚.
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Note that Qσ
p belongs to Rˆ if p ‰ p˚; thus, when ω̃p are normalized above, we have

Qσ
p “ Qσ̄

p , and we may simply refer to Qp. For p “ p˚ we have Qσ
p P σpαdRpMqq

´1Rˆ.
Finally, if ω̃p, ω̃q are both defined, we denote by

ω̃p,q P H
˚
dRpM bM_q, ωσp,q P HBppM bM_qσ,Cq

the image of ω̃p b ω̃q and ωp b ωq , respectively, under the identifications of (8.5.2) and
(8.5.3), respectively.

8.6. SO2nˆSO2n`1 over E imaginary quadratic. Recall that M is the motive attached
to automorphic form on SO2n, and N the motive attached to the automorphic form on
SO2n`1, and we have fixed polarizations in §8.5.

8.6.1. Computation of archimedean L-factors. In this case, the Hodge numbers for AdM
are somewhat irregular, so we will discuss the archimedean computation by hand. We have

L8ps,ResE{Q AdNq “
`

ΓCps` 2n´ 1q1ΓCps` 2n´ 2q1 ¨ ¨ ¨ΓCps` 3qn´1ΓCps` 2qn´1ΓCps` 1qn
˘2

ΓCpsq
n

and

L˚8p0,ResE{Q AdNq “
`

ΓCp2n´ 1q1ΓCp2n´ 2q1 ¨ ¨ ¨ΓCp3q
n´1ΓCp2q

n´1ΓCp1q
n
˘2

Γ˚Cp0q
n

„Qˆ π
´2rn¨1`pn´1q¨p2`3q`¨¨¨`1¨p2n´1`2n´2qs

“ π´2rn`
řn´1
i“1 ip2n´2i`2n´2i`1qs

“ π´2r
řn
i“1 i`4

řn´1
i“1 ipn´iqs “ π´

4
3
npn´1qpn`1q´npn`1q.

For AdM , the Hodge numbers range from p2n´3,´p2n´3qq to p´p2n´3q, p2n´3qq;
the multiplicities are given by

1, 1, ¨ ¨ ¨ , t, t, ¨ ¨ ¨ , n´ 1, n´ 1, n, n, n, n´ 1, n´ 1, ¨ ¨ ¨ , t, t, ¨ ¨ ¨ , 1, 1,

if n “ 2t is even, and by

1, 1, ¨ ¨ ¨ , t, t` 1, ¨ ¨ ¨n´ 1, n´ 1, n, n, n, n´ 1, n´ 1, ¨ ¨ ¨ t` 1, t, ¨ ¨ ¨ , 1, 1,

if n “ 2t` 1 is odd. (Here the bar indicates that those terms are skipped.) In the first case,

L8ps,ResE{Q AdMq “
`

ΓCps` 4t´ 3q1ΓCps` 4t´ 4q1 ¨ ¨ ¨ΓCps` 2t` 1qt´1ΓCps` 2tqt´1
¨

ΓCps` 2t´ 1qt`1ΓCps` 2t´ 2qt`1
¨ ¨ ¨ΓCps` 3q2t´1ΓCps` 2q2t´1ΓCps` 1q2t

˘2
ΓCpsq

2t

and

L˚8p0,ResE{Q AdMq “
`

ΓCp4t´ 3q1ΓCp4t´ 4q1 ¨ ¨ ¨ΓCp2t` 1qt´1ΓCp2tq
t´1
¨

ΓCp2t´ 1qt`1ΓCp2t´ 2qt`1
¨ ¨ ¨ΓCp3q

2t´1ΓCp2q
2t´1ΓCp1q

2t
˘2

Γ˚Cp0q
2t

„Qˆ π
´2r2t`p2t´1qp2`3q`¨¨¨`pt`1qp2t´1`2t´2q`pt´1qp2t`1`2tq`¨¨¨`1p4t´3`4t´4qs

“ π´2r
ř2t´1
i“1 ip4t´2i´1`4t´2i´2q`

ř2t´1
i“1 is

“ π´2r4
ř2t´1
i“1 ip2t´iq´2

ř2t´1
i“1 is

“ π´2r4
řn´1
i“1 ipn´iq´2

řn´1
i“1 is

“ π´
4
3
npn´1qpn`1q`2npn´1q.

Similarly, if n “ 2t` 1, we have:

L8ps,ResE{Q AdMq “
`

ΓCps` 4t´ 1q1ΓCps` 4t´ 2q1 ¨ ¨ ¨ΓCps` 2t` 3qt´1ΓCps` 2t` 2qt´1
¨

ΓCps` 2t` 1qtΓCps` 2tqt`1
¨ ¨ ¨ΓCps` 3q2tΓCps` 2q2tΓCps` 1q2t`1

˘2
ΓCpsq

2t`1
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and

L˚8p0,ResE{Q AdMq “
`

ΓCp4t´ 1q1ΓCp4t´ 2q1 ¨ ¨ ¨ΓCp2t` 3qt´1ΓCp2t` 2qt´1
¨

ΓCp2t` 1qtΓCp2tq
t`1
¨ ¨ ¨ΓCp3q

2tΓCp2q
2tΓCp1q

2t`1
˘2

Γ˚Cp0q
2t`1

„Qˆ π
´2rp2t`1qp0`1q`2tp2`3q`¨¨¨`pt`1qp2tq`tp2t`1q`pt´1qp2t`2`2t`3q`¨¨¨`1p4t´2`4t´1qs

“ π´2r
ř2t
i“1 ip4t´2i`4t´2i`1q`

ř2t
i“1 is “ π´2r4

ř2t
i“1 ip2t´iq`2

ř2t
i“1 is

“ π´2r4
ř2t
i“1 ip2t`1´iq´2

ř2t
i“1 is “ π´2r4

řn´1
i“1 ipn´iq´2

řn´1
i“1 is

“ π´
4
3
npn´1qpn`1q`2npn´1q,

which is the same expression as in the case n “ 2t.
Thus, in either case, we have:

(8.6.1)
L˚p0, π8,Adq “ L˚8p0,ResE{Q AdMqL˚8p0,ResE{Q AdNq „Qˆ π

´ 8
3npn´1qpn`1q`n2

´3n.

8.6.2. Volume computation. We first compute the volume term for AdpNq. As in the
PGL cases, all the graded pieces of the Hodge filtration for N are one-dimensional. Let
η̃0, . . . , η̃2n´1 be a basis of H˚dRpNq, chosen as before; these define invariants R0,. . .,
R2n´1 as well as a basis BN “ pη0, ¨ ¨ ¨ , η2n´1q ofH˚dRpNqbE,σC. (As before, we fix an
embedding σ : E ãÑ C and when we write Q,R etc. we mean Qσ,Rσ , etc.) To compute
volpF 1 AdpNqq, we first write down an explicitly a basis for H˚dR ResE{Q AdpNq b C.
Here AdpNq is the np2n ` 1q-dimensional subobject of HompN,Nq consisting of the
those endomorphisms L satisfying QpLx, yq ` Qpx, Lyq “ 0, where Q is the symplectic
form on N .

A basis for FmH˚dRpAdpNqq bE,σ C{Fm`1 is indexed by unordered pairs pi, jq such
that i` j “ m` p2n´ 1q and is given by

tηi b ηj ` ηj b ηi : i` j “ m` p2n´ 1qu

or more precisely the image of these elements under the identifications of (8.5.2).
If we replace AdpNq by ResE{QpAdpNqq, then we also need to throw in

?
´D times

the basis vectors above. The union of the elements above with m ě 1 is then a C-basis for
F 1H˚dRpResE{Q AdpNqq b C. While it is not a Q-basis of the natural rational structure
on this space, it is a Q-basis of the corresponding graded for the Hodge filtration, so to
compute the volume we may as well work with this basis.

In a similar fashion to our previous computations, we get

volpLN q
2 „pQˆq2 D

n2

¨
`

R2n
2n´1R

2n´1
2n´2 ¨ ¨ ¨R

n`1
n Rn´1

n´1 ¨ ¨ ¨R
2
2R1

˘2

and using RiR2n´1´i “ p´1q, that

volpLN q „Qˆ D
1
2n

2

¨R´2n
0 R

´p2n´2q
1 ¨ ¨ ¨R´2

n´1.

We now turn to AdpMq. For i “ 0, . . . , n ´ 2, n, . . . 2n ´ 2 pick elements ω̃i P
F iH˚dRpMq according to the discussion of (8.2.3), obtaining invariants Qi as explained
there.

For the two dimensional space FnH˚dR{F
n`1, there is no natural basis, so we just pick

any orthogonal basis tω̃`n´1, ω̃
´
n´1u for the form S. Let B̃M “ tω̃iu Y tω̃

`
n´1, ω̃

´
n´1u. Let

ω`n´1, ω´n´1 be the images of ω̃`n´1, ω̃´n´1 respectively in Hn´1,n´1
σ pMq. Suppose that

ω`n´1 “ Q11ω
`
n´1 `Q12ω

´
n´1,

ω´n´1 “ Q21ω
`
n´1 `Q22ω

´
n´1.
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Let BM denote the basis tω0, ¨ ¨ ¨ , ωn´2, ω
`
n´1, ω

´
n´1, ωn ¨ ¨ ¨ , ω2n´2u ofHdRpMqbE,σ

C. As before AdpMq is the np2n´ 1q-dimensional sub-object of HompM,Mq consisting
of the those endomorphisms L satisfying

QpLx, yq `Qpx, Lyq “ 0,

where Q is the symmetric form on M .
A basis for FmH˚dRpAdpMqq bE,σ C{Fm`1 is indexed by unordered pairs pωi, ωjq,

ωi, ωj P BM , such that i` j “ m` p2n´ 2q with i ‰ j and is given by

tωi b ωj ´ ωj b ωi : i` j “ m` p2n´ 2qu

again with reference to the isomorphism (8.5.2).
We will compute pvol LM q

2 as the determinant of the Gram matrix of the form de-
scribed in §8.5.3. The only tricky part is the contribution of terms involving ω˘n´1. Let

x˘ “ ω˘n´1 b ωj ´ ωj b ω
˘
n´1,

where j lies in the range n ď j ď 2n´ 2. Consider the 4ˆ 4-matrix X of inner products
px, yq where x, y run over the elements x˘,

?
´Dx˘. Set

Q` “ Sσpω
`
n´1, ω

`
n´1q, Q´ “ Sσpω

´
n´1, ω

´
n´1q

and
A` iB “ Sσpω

`
n´1, ω

´
n´1q, A,B P R,

Note for example that, using (8.5.2)

px`,
?
´Dx`q “

1

2

´

tr SAd
σ px`,

?
´Dx`q ` tr SAd

σ px`,
?
´Dx`q

¯

“ 0,

while
px`, x´q “

1

2

´

tr SAd
σ px`, x´q ` tr SAd

σ px`, x´q
¯

“ 2AQj .

and

px`,
?
´Dx´q “

1

2

´

tr SAd
σ px`,

?
´Dx´q ` tr SAd

σ px`,
?
´Dx´q

¯

“ 2
?
DBQj .

Then

detpXq “ p2Qjq
4 ¨ det

¨

˚

˚

˝

Q` A 0
?
DB

A Q´ ´
?
DB 0

0 ´
?
DB DQ` DA

?
DB 0 DA DQ´

˛

‹

‹

‚

“ p2Qjq
4 ¨D2pQ`Q´ ´A2 ´ B2q2.

Note that
Q`Q´ ´A2 ´ B2 “ detpΓq “ ∆ ¨ detpΞq,

where

Γ :“

ˆ

Q` A` iB
A´ iB Q´

˙

, ∆ :“ Sσpω
`
n´1, ω

`
n´1qSσpω

´
n´1, ω

´
n´1q, Ξ :“

ˆ

Q11 Q12

Q21 Q22

˙

.

We remark that detpΓq lies in Rˆ, ΞΞ̄ “ I and ∆ lies in Eˆ, hence

detpΓq2 “ ∆∆̄ P Qˆ.

Combining the above computation with a routine computation of the contribution from
terms not involving ω˘n´1, we find

volpLM q
2 „pQˆq2 D

n2
´n ¨

`

Q2n´2
2n´2 ¨ ¨ ¨Q

n
nQn´2

n´2 ¨ ¨ ¨Q
2
2Q1

˘2
¨ detpΓq2pn´1q,
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and using QiQ2n´2´i “ 1, that

volpLM q „Qˆ Q
´p2n´2q
0 Q

´p2n´4q
1 ¨ ¨ ¨Q´2

n´2 ¨∆
n´1 ¨ detpΞqn´1.

Let te0, . . . , e2n´1u and tf0, . . . , f2n´1u be Q-bases for H˚B,σpMq and H˚B,σpNq re-
spectively. Then c`pResE{QpM b Nqq is the determinant of the change of basis matrix
between

tei b fi1 ` F8pei b fi1qu, 0 ď i, i1 ď 2n´ 1,

and
tpϕσ, ϕσ̄qω b ηu, tpϕσ, ϕσ̄q

?
´Dω b ηu

where ω P BM X F tH˚dRpMq, η P BN X F
t1H˚dRpNq, 0 ď t` t1 ď 2n´ 2. We find as

in the previous section that

c˘pResE{QM bNq „Qˆ
?
´D

´2n2

¨Q
´p2n´2q
0 Q

´p2n´4q
1 ¨ ¨ ¨Q´2

n´2¨

R´2n
0 R

´p2n´2q
1 ¨ ¨ ¨R´2

n´1 ¨ detpΞq´n ¨ detpAbBq,

where A and B are the period matrices given by

pe0 e1 ¨ ¨ ¨ e2n´1q “ BM ¨A, pf0 f1 ¨ ¨ ¨ f2n´1q “ BN ¨B.

Computing the Gram matrices of the bases ei and BM with respect to the polarization and
taking determinants, we may compute detpAq and detpBq:

detpAq2 „Qˆ ∆´1 ¨ p2πiq´2np2n´2q, detpBq2 „Qˆ p2πiq
´2np2n´1q,

so
detpAbBq “ detpAq2n detpBq2n „Qˆ ∆´np2πiq´2n2

p4n´3q.

Finally the center is the point s “ 2n´ 1 and

c˘ppResE{QM bNqp2n´ 1qq “ c¯pResE{QM bNq ¨ p2πiq4n
2
p2n´1q.

Putting all of the above together yields:

(8.6.2)
c`ppResE{QM bNqp2n´ 1qq

volpLM q volpLN q
„Qˆ p2πiq

2n2

¨

a

∆∆̄
loomoon

P
?

Qˆ

¨
?
D
n
.

8.7. SO2n`1 ˆ SO2n`2 over E imaginary quadratic. Recall that here N is associated
with SO2n`1 and M with SO2n`2. We will be brief for all the computations are very
similar to the prior section, e.g. the term L˚p0,AdNq is the same as in the previous
section, while the formula for L˚p0,AdpMqq is obtained by replacing n by n ` 1 in the
formula from the previous section.

The volume computations are also similar: we have

volpF 1 ResE{QpAdNqq „Qˆ D
1
2n

2

¨R´2n
0 R

´p2n´2q
1 ¨ ¨ ¨R´2

n´1.

volpF 1 ResE{QpAdMqq „Qˆ Q´2n
0 Q

´p2n´2q
1 ¨ ¨ ¨Q´2

n´1 ¨∆
n ¨ detpΞqn,

where ∆, Ξ are defined similarly.

c˘pResE{QM bNq „Qˆ
?
´D

´2npn`1q
¨Q´2n

0 Q
´p2n´2q
1 ¨ ¨ ¨Q´2

n´1¨

R´2n
0 R

´p2n´2q
1 ¨ ¨ ¨R´2

n´1 ¨ detpΞq´n ¨ detpAbBq,
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where A and B are the period matrices as before. Now, computing with Gram matrices as
before shows

detpAq2 „Qˆ ∆´1 ¨ p2πiq´2np2n`2q, detpBq2 „Qˆ p2πiq
´2np2n´1q,

so
detpAbBq “ detpAq2n detpBq2n`2 „Qˆ ∆´np2πiq´np2n`2qp4n´1q.

The center is the point s “ 2n and

c˘ppResE{QM bNqp2nqq “ c¯pResE{QM bNq ¨ p2πiq4n
2
p2n`2q.

Putting all of the above together yields:

(8.7.1)
c`ppResE{QM bNqp2nqq

volpLM q volpLN q
„Qˆ p2πiq

2npn`1q ¨
?
D
n
.

8.8. Motives with coefficients. We return to the issue mentioned on page 68, namely, the
morphism from the motivic Galois group to the C-group of G1 or G2 might not be defined
over Q. In this remark we outline a modification of the argument above that accounts for
this possibility. We will explain this in the case G “ ResE{Q SOp2nq ˆ SOp2n ` 1q for
an imaginary quadratic E, the other cases being similar. The reader is referred to [17] Sec.
2 for a survey of motives with coefficients and for the formulation of Deligne’s conjecture
in that setting, which we use below.

Choose a large enough number field K over which the xGi-motives attached to π1, π2

are defined, i.e. so that the associated morphisms from the motivic Galois group to the
C-group of Gi are defined over K.

We get motives attached to π1 and π2 over E with coefficients in K, denoted MK and
NK respectively. Attached to Π one has the motive MK “ ResE{QpMK bNKq. Then

Lp2n´ 1,MKq P pK bCq, c`pMKp2n´ 1qq P pK bCq˚{K˚,

where all the tensor products are taken over Q; Deligne’s conjecture states that

(8.8.1)
Lp2n´ 1,MKq

c`pMKp2n´ 1qq
P K ãÑ pK bCq.

Let AdMK and AdNK be defined as above as sub-motives of MK bMKp2n´2q and
of NK b NKp2n ´ 1q respectively; by the general formalism of Appendix §A these are
equipped with polarizations (in the category of motives with K-coefficients).13 Then we
can define the volumes

vol LM , vol LN P pK bCqˆ{Kˆ,

generalizing in the obvious way the definition in (1.4.2), and

volF 1H0
dR AdMK “ vol LM vol LN .

Moreover the computations in Sec. 8.6 can be easily modified to show that the following
variant of (8.6.2) remains valid:

(8.8.2)
c`pMKp2n´ 1qq

volF 1HdR AdMK ¨ p2πiq2n
2 P

a

pK bQq˚.

(One uses that the K-action on HBpMKq and HBpMKq commutes with the action of Cˆ

and WR respectively.)

13 It is plausible that this fails in some PGL cases, but there our proofs never used polarizations and with
minor modifications one proceeds without them.
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Now we have an equality

(8.8.3) Lp
1

2
,Πq “ Lp2n´ 1,MKq

(Rankin-Selberg L-function on the left) which in fact shows that the RHS lies in pQ b

Cq ãÑ pK bCq.
Finally, we note that there is a natural functor

Motives with Q-coefficients ÞÑ Motives with K-coefficients

denoted X ÞÑ XK and we have the relation

pAd ΠqK » AdMK

where Ad Π is the conjectural adjoint motive with Q-coefficients attached to Π. The proof
of Lemma 2.2.2 shows that the square of the volume volS F

1HdRpAd Πq (for any weak
polarization S on Ad Π), is (up to Qˆ) independent of the choice of S. Moreover,

(8.8.4) volS F
1HdRpAd Πq “ volS F

1HdRpAdMKq

where the LHS lies in Cˆ{Qˆ, the RHS in pKbCq˚{K˚ and the equality must be viewed
as saying the LHS maps to the RHS under the natural map Cˆ{Qˆ Ñ pK b Cq˚{K˚.
Putting everything together (i.e. (8.8.1), (8.8.2), (8.8.3) and (8.8.4)) gives

(8.8.5)
Lp 1

2 ,Πq

volS F 1HdRpAd Πq ¨ p2πiq2n2 P pQbCq X
a

pK bQq˚,

in particular, the square of the left-hand side lies in pQbCq X pK bQq “ Q, as desired.

9. A CASE WITH δ “ 3

In this section we offer what is perhaps the most interesting evidence for our conjecture,
in a case where Y pKq is a 9-manifold. Namely, we verify some of the numerical predic-
tions in a cohomological degree that is neither minimal nor maximal. These are degrees in
which we cannot even produce explicit cycles!

What we check is the following: our conjecture relating H3 to H4, H5, H6 holds, “up
to rotation” (see Theorem 9.1.1 for the precise statement). That theorem is phrased as con-
ditional on Beilinson’s conjectures, but what we actually do is unconditional: we compute
many numerical invariants of the lattices H˚, and we only need Beilinson’s conjectures to
compare these computations with our conjecture. We also verify Prediction 1.4.3 uncondi-
tionally (at least up to some factors in

a

Qˆ). It would be interesting to analyze the square
classes that appear in our argument, in order to eliminate these factors of

a

Qˆ.
A critical input into our result is the work of M. Lipnowski [42], who combines the

ideas of equivariant analytic torsion with base change.

9.1. Notation and assumptions.
- Let F be an imaginary quadratic field (we will regard it as embedded in C) and
E Ą F a cyclic extension of degree 3; let σ be a generator for the Galois group of
E{F , so that

GalpE{F q “ xσy “ t1, σ, σ2u.

We will assume E{F to be unramified, but this is only so we can apply the
work of [42] in the simplest form; the reader can easily verify that the same idea
would apply for E{F unramified at primes above 3, for example, using the refined
theorems later in [42].
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- Choose a non-split quaternion algebra D over F , and let GF be the (algebraic)
group (underlying) Dˆ{Fˆ. Let GE be the base change of G to E; and let

G “ GEpE bCq “ PGL2pCq ˆ PGL2pCq ˆ PGL2pCq

be the archimedean group at8 associated to GE .
- We denote by aGF pRq or aF for short the (one-dimensional) complex vector space

attached to the real group GF pRq (see §3). Similarly we define aGEpRq “

aE for short, a three-dimensional complex vector space. Note that we may nat-
urally identify

aE » aΣ
F

where Σ is the set of embeddings E ãÑ C extending the given embedding of F .
- Let π be an infinite-dimensional automorphic representation for GF , cohomolog-

ical at8, and let Π be the base-change of π to GE .
- We suppose that π is trivial at each ramified place for D, and with conductor pfppq

at each prime p that is unramified forD. Put n “
ś

p p
fppq. (If one allows the case

where E{F is ramified, we should additionally assume that n is relatively prime
to the discriminant of E{F .)

- Let KF be the level structure for GF of “level Γ0pnq.” By this we mean KF “
ś

vKv , the product over all finite places v, where
(a) If v is ramified for D, then take Kv “ O˚DvF

˚
v {F

˚
v where ODv Ă Dv is the

maximal order.
(b) If v is unramified for D, fix an isomorphism Dv » PGL2pFvq; then Kv is

given by the preimage of the matrices
ˆ

a b
c d

˙

P PGL2pOvq where the

valuation of c is at least fpvq.
We define similarly KE to be the level structure for G “of level Γ0pn ¨ OEq,”

where we choose the isomorphisms in (b) in such a way that KE is σ-invariant.
- Let

(9.1.1) Y “ Y pKEq, Y “ Y pKF q

be the corresponding arithmetic manifolds for GE and GF , respectively; thus
Y is nine-dimensional and Y is three-dimensional. Moreover there is a natural
GalpE{F q “ xσy-action on Y (arising from the σ-action on GE , which preserves
the level structure). The inclusion GF ãÑ GE gives rise to a map Y Ñ Y σ of Y
into the σ-fixed subspace on Y .

We equip Y with the Riemannian metric arising from the standard Riemannian
metric on hyperbolic 3-space H3, and we equip Y with the Riemannian metric
arising from the standard Riemannian metric on H3 ˆH3 ˆH3.

- We suppose that

(9.1.2) dimH3
cusppY,Cq “ 1.

Here the notation “cusp” should be understood as meaning the contribution of all
infinite-dimensional automorphic representations to cohomology.

(9.1.2) implies firstly that dimH1
cusppY ,Cq “ 1, because of base change, and

secondly that Y, Y have only one connected component (which is equivalent to
asking that the class numbers of E and F are odd). It also implies that π is the
only nontrivial automorphic representation which contributes to the cohomology
of Y , and similarly Π is the only nontrivial automorphic representation which
contributes to the cohomology of Y .
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- Let LΠ be the coadjoint motivic cohomology H1
M pAd˚Π,Qp1qq as in (7.1.2); let

LΠ b C Ñ aE be the Beilinson regulator, as in (7.1.3). We define similarly Lπ
with its regulator map Lπ bCÑ aF . There is a natural action of xσy » Z{3Z on
LΠ, and an identification

(9.1.3) Lπ
„
Ñ LσΠ.

Before we give the statement of the theorem, let us comment a little on the assumptions.
Although we do not have any numerical examples, we expect that situations like the above
should be very easy to find given an effective ability to compute H3pY,Cq numerically.
In particular, it is very common (see discussion in [3]) that the cuspidal cohomology of
Y is one-dimensional. When that is so, we would expect that the cuspidal contribution
to H3pY,Cq also is one-dimensional, comprising solely the base-change forms – in situa-
tions with δ ą 0, cuspidal cohomology in characteristic zero that does not arise via a lift
from another group is considered to be very rare (see, e.g., [55] for a sample numerical
investigation).

Before we formulate the theorem, note that GalpE{F q, and thus the real group algebra
RrGalpE{F qs, acts onH˚pY pKq,Cq. By a rotation in the group algebra RrGalpE{F qs »
RˆC we mean an element of the form p1, zq where |z| “ 1.

Theorem 9.1.1. With the assumptions above, Prediction 1.4.3 (more precisely equation
(1.4.16)) holds up to

a

Qˆ.
Moreover, assume Beilinson’s conjectures, as formulated in Conjecture 2.1.1 and ex-

tended to pure motives in §2.1.11, and the existence of a 2-dimensional motive associated
to π (so also Π). Let a˚G, and so also L˚Π, act on H˚pY pKq,CqΠ by means of the action
constructed in §3.

Then there are rotations ri P RrGalpE{F qs, for 1 ď i ď 3, such that

(9.1.4) H3pY pKq,QqΠ ¨ ^
iL˚Π “ riH

3`ipY pKq,QqΠ.

In other words, the main Conjecture 1.2.1 holds, up to replacing Q by Q and up to a rota-
tion in RrGalpE{F qs. (In fact, Q can be replaced by an extension of the form Qp

?
a, b1{4q

for a, b P Qˆ, and r3 can be taken trivial.)

Here the tempered cohomology contributes in degrees 3 to 6. The groups H4 and
H5 are “inaccessible”, because it appears to be very difficult to directly construct rational
cohomology classes of this degree. Our method of proof is in fact quite indirect, going
through analytic torsion.

We need some setup first on metrized lattices (§9.2) and then on Reidemeister torsion
(§9.3). This setup will allow us to check that Prediction 1.4.3 holds in §9.5. The full Theo-
rem above will follow from a more detailed analysis, which we carry out in the remainder
of the section. This final analysis uses many of the results of this paper: it uses the re-
sults of Theorem 7.2.1 both over F and over E, the compatibility with Poincaré duality
(Proposition 5.5.1), and the study of analytic torsion over F and over E (both usual and
σ-equivariant).

9.2. Volumes and functoriality. Some brief remarks about the behavior of volumes under
functoriality: Let V be a Q-vector space equipped with a metric, i.e., V bR is equipped
with an inner product. We define its volume as in (1.4.2). Then

V ˚ :“ HompV,Qq, SymkV, ^kV
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all obtain metrics; similarly, if V,W are Q-vector spaces with metrics, then V bW inherits
a metric. We have a natural metrized isomorphism ^kV »

`

^d´kV
˘˚
b pdetV q, where

we wrote detpV q “ ^dimpV qV .
Fix an isomorphism f : pV bR,metricq Ñ pRn,Euclidean inner productq. If we write

fpV q “ Qng for some g P GLnpRq, we have volpV q “ detpgq. Using this it is easy to
check the following identities:

(9.2.1) volpV1 b V2q “ pvolV1q
dimV2pvolV2q

dimV1

(9.2.2) volpV ˚q “ volpV q´1,
ź

i

pvol^iV qp´1qi “ 1 pdimV ě 2q,

where all equalities are in Rˆ{Qˆ.
If σ is an automorphism of V with prime order, then we denote by V σ the fixed point

space; we denote by Vσ the quotient V {V σ . It will be convenient to abridge

volσpV q :“ volpV σq,

the volume of the σ-invariants with respect to the induced metric.
Finally, it will be convenient to make the following notation: If Vi are a collection of Q-

vector spaces with metrics, indexed by the integers, and only finitely many Vi are nonzero,
we denote by

(9.2.3) volV˚ “
ź

pvol Viq
p´1qi ,

the alternating product of the volumes. We will often apply this notation when Vi is the ith
cohomology group of a Riemannian manifold, equipped with the metric that arises from
its identification with harmonic forms.

9.3. Analytic torsion and equivariant analytic torsion. The theorems of Moscovici-
Stanton and Lipnowski. As a reference on this topic see [15] (for the general case) and
[43] (for the equivariant case); see also [47, 4, 5]. We briefly summarize the important
points.

Let M be a compact Riemannian manifold, σ an automorphism of M of prime order
p, G “ xσy the group generated by σ. Note that the fixed point set Mσ is automatically
a smooth submanifold.14 We shall suppose that dimpMq and dimpMσq are both odd. We
may find a G-stable triangulation of M , by [30], and it may be assumed to be regular (see
[12, Chapter III]).

If W is a real vector space, let detpW q be the line (= one-dimensional real vector
space) given by ^dimpW qW . If W has a Euclidean metric, then detpW q has a metric too;
this normalizes an element of detpW q up to sign, the element of norm 1. If W‚ is a finite
complex of real vector spaces, define detW‚ “ bipdetWiq

p´1qi , a one-dimensional real
vector space. (Here, L´1 denotes the dual of L, if L is one-dimensional.) There is a natural
isomorphism detW‚ » detH˚pW‚q, where we regard the cohomology as a complex of
vector spaces with zero differential.

In particular, writing C˚pM,Rq for the cochain complex of M with respect to the fixed
triangulation, we get an isomorphism

(9.3.1) detC˚pM,Rq » detH˚pM,Rq.

14To see that, note that one can assume the metric to be invariant by averaging under G, and then the expo-
nential map in the neighbourhood of a fixed point provides a linear chart for Mσ near that point.
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Equip the chain complex C˚pM,Rq with the metric where the characteristic functions of
cells form an orthonormal basis; give C˚pM,Rq the dual metric. Equip the cohomology
H˚pM,Rq with the metric that arises from its identifications with harmonic forms (here,
harmonic forms are endowed with the L2 inner product). These metrics induce metrics on
the one-dimensional vector spaces detC˚pM,Rq and detH˚pM,Rq respectively.

We define the Reidemeister torsion of M (with reference to the given triangulation) by
comparing these metrics, using the identification (9.3.1):

(9.3.2) RTpMq ¨ } ¨ }C˚ “ } ¨ }H˚ .

Evaluate the resulting equality on an element c P detC˚pM,Qq; then }c}C˚ is easily seen
to lie in Qˆ, whereas }c}H˚ „Qˆ volH˚pM,Qq, where the right-hand side is defined as
an alternating product as in (9.2.3). Therefore,

(9.3.3) RTpMq „ volH˚pM,Qq.

We also need an equivariant version of the same discussion. The complex of invariants
C˚pM,Rqσ has cohomology identified with H˚pM,Rqσ; we get

(9.3.4) detC˚pM,Rqσ » detH˚pM,Rqσ.

These too have metrics, induced from C˚pM,Rq andH˚pM,Rq; we define the “invariant
part” RTσpMq of the Reidemeister torsion via the same rule (9.3.2), now applied to (9.3.4).
An orthogonal basis for C˚pM,Qqσ is obtained by taking all σ-invariant cells, and the σ-
orbits of cells that are not invariant; we have a similar (dual) basis for C˚pM,Qqσ . The
elements of the resulting basis are orthogonal, and their lengths are either 1 or

?
p, where

p is the order of σ. Writing εj for the number of j-dimensional simplices that are not
invariant, we see volCjpM,Qqσ „ pεj{2. However, modulo 2,

ř

εj “
ř

p´1qjεj “
χpMq´χpMσq. Both Euler characteristics are zero (we are dealing with odd-dimensional
manifolds). Proceeding as above, we get

RTσpMq „ volH˚pM,Qqσ.

The main theorem of [15] is an equality between RT and an analytic invariant, the
analytic torsion; the main theorem of [43] is a corresponding equality for RTσ . We do not
need to recall these results in full here.

All that is important for us are the following two statements, in the case when M “ Y
from (9.1.1), and σ is given by the action of a generator of GalpE{F q on Y :

(9.3.5) RTpY q “ 1

(9.3.6) RTσpY q “ RTpY q2.

These statements are proved by studying the analytic torsion. The proof of (9.3.5) is
exactly as in [46] or [66] (the stated theorems there do not cover the current case, but the
proof applies in exactly the same way). The idea is, roughly speaking, that the product
decomposition of the universal cover of Y means that every Laplacian eigenvalue occurs
in several cohomological degrees, leading to a mass cancellation in the analytic torsion.

As for (9.3.6), this key relationship is due to Lipnowski [42, §0.2, “Sample Theorem”].
Lipnowski’s results are deduced from the theory of base change: the analytic torsion coun-
terparts of RTpY q and RTσpY q are defined in terms of a regularized trace of log ∆, acting
on Y , and possibly twisted by a power of σ; however the theory of base change precisely
allows one to relate this to corresponding computations on Y . 15

15Here are some notes regarding the translation of Lipnowski’s theorem to the form above: Lipnowski works
in a situation with a Galois group xσy of order p and shows that τσ “ τp. Here τ is exactly RTpY q, for
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9.4. Volumes of cohomology groups for Y and Ȳ . We gather some preliminary results
related to the volumes of groups HjpY,Qq and HjpY ,Qq, measured as always with re-
spect to the metric induced by the L2-norm on harmonic forms.

We have

(9.4.1) volHipY,Qq “ volHi
ΠpY,Qq ¨ volHipY,Qqtriv,

(equality in Rˆ{Qˆ) by virtue of our assumption that the only cohomological automor-
phic representations at level K are the trivial representation and Π: the splitting Hi “

Hi
Π ‘ Hi

triv is both orthogonal and defined over Q. Poincaré duality induces a metric
isomorphism HipY,Qq » Hi˚pY,Qq˚, where i` i˚ “ 9, and thus

volHipY,Qq ¨ volHi˚pY,Qq „ 1

and the same result holds for the trivial and Π parts individually. We have similar results
for the σ-invariant volumes, and also a similar equality for Y :

volHipY ,Qq “ volHi
πpY ,Qq ¨ volHipY ,Qqtriv,

We now compute the various volume terms related to the trivial representation.
Observe that

dimHipY ,Qqtriv “

#

1, i P t0, 3u;

0, else,
and dimHipY,Qqtriv “

$

’

&

’

%

1, i P t0, 9u;

3, i P t3, 6u;

0, else.

Explicitly speaking, harmonic representatives forH3pY,Rqtriv are obtained from the pull-
backs π˚ν under the coordinate projections

(9.4.2) HˆHˆHÑ H,

here H is the hyperbolic 3-space, and ν the (Riemannian) volume form on it. Moreover,
cup product gives an isomorphism

^3H3pY,Qqtriv » H9pY,Qq “ H9pY,Qqtriv.

Lemma 9.4.1.

(9.4.3) volH˚pY,Qqtriv „ 1

Proof. It is enough to show that

(9.4.4) volpH3pY,Qqtrivq volpH9pY,Qqtrivq „ 1.

because then Poincaré duality gives volpH6pY,Qqtrivq volpH0pY,Qqtrivq „ 1, and that
gives the Lemma. To verify (9.4.4), take an orthonormal basis ω1, ω2, ω3 for harmonic
3-forms spanning H3pY,Rqtriv. The norm of each one at every point of Y pKq (where the
norm is that induced by the Riemannian structure) equals 1{

a

volpY q, where we measure
the volume of Y with respect to the Riemannian measure.

suitable choices of data, but τσ takes some translation: its logarithm is the logarithmic determinant of the de
Rham Laplacian on Y twisted by σ. One obtains the same logarithmic determinant if we twist by σi for any
1 ď i ď p ´ 1. Add up over 1 ď i ď p ´ 1 and apply the main theorem of [43] to the representation
of xσy which is the difference of the regular representation and p copies of the trivial representation. We find

RTpY q ¨ τp´1
σ “ RTσpY qp; therefore, in our case with p “ 3, we find RTσpY q3

RTpY q
“ τ2

σ “ τ6. To conclude

we apply (9.3.5).
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The volume of H3pY,Qq equals (up to Qˆ, as usual) equals
a

detxωi, ωjy
ş

Y
ω1 ^ ω2 ^ ω3

“
1

ş

Y
ω1 ^ ω2 ^ ω3

“
a

volpY q,

The first equation is just the definition (1.4.3), where the denominator adjusts for the fact
that the ωi are not a Q-basis, and, at the last step, we used that ω1 ^ ω2 ^ ω3 is a multiple
of the volume form, and its norm at each point is volpY q´3{2.

On the other hand, the volume of H9pY,Qq equals the L2-norm of dpvolq
volpY q , with dpvolq

the Riemannian volume form, i.e., volpY q´1{2. That proves (9.4.4). �

Lemma 9.4.2.

(9.4.5) volσ H˚pY,Qqtriv „ volpY q2.

As above, the volume of Y is measured with respect to the Riemannian structure –
equivalently, with respect to ν.

Proof. Notation as in (9.4.2), a generator ω3 for H3pY,Qqσtriv is given as π˚1 ν`π
˚
2 ν`π

˚
3 ν

volY
.

To verify this, recall that we have a map Y Ñ Y σ (it is possible that this map is not
surjective but it doesn’t matter). Each π˚i ν pulls back to ν on Y , and in particular integrates
to volpY q. Therefore

ş

Y
ω3 “ 3, so ω3 really does belong to H3pY,Qq. The L2-norm of

ω3 is given by
b

3 ¨ volY
volpY q2

. Therefore, the left hand side of (9.4.5) is

„ volpY q1{2
loooomoooon

0

¨
volpY q

volpY q1{2
loooomoooon

3

¨
volpY q

volpY q1{2
loooomoooon

6

¨ volpY q1{2
loooomoooon

9

“ volpY q2,

where, on the left, we noted in braces the cohomological degree that is giving rise to each
term (one uses Poincaré duality for 6, 9, and recall that these terms are raised to the power
p´1q6, p´1q9 respectively). �

9.5. Proof of Prediction 1.4.3. In what follows we abbreviate

Hi
Π :“ HipY,QqΠ

for the Π-summand of cohomology.
Combining (9.3.3), (9.3.5), (9.4.1), (9.4.3) and Poincaré duality we get

(9.5.1) vol H4
Π P

a

Qˆ ¨ vol H3
Π,

where the
a

Qˆ comes from the fact that we took the square root of an equality that held
up to Qˆ. Next, we have

(9.5.2) volσH˚Π „ pvolH˚π q
2

since from RTσpY q
(9.3.6)
“ RTpY q2 we get

(9.5.3) volσH˚ΠpY,Qq ¨ volσH˚pY,Qqtriv „
`

volH˚π pY ,Qq ¨ volH˚pY ,Qqtriv
˘2

but Lemma 9.4.2, and the simple fact that volH˚pY ,Qqtriv “ volpȲ q, implies that the
contribution of the trivial representation on left and right cancel.

Expanding (9.5.2), noting that H3
Π is σ-fixed, and using Poincaré duality, we see

ˆ

volσH4
Π

volH3
Π

˙2

„

ˆ

1

volH1
π

˙4

,
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that is to say

(9.5.4)
volσH4

Π

`

volH1
π

˘2

volH3
Π

“
a

q1,

for some q1 P Qˆ. This indeed verifies Prediction 1.4.3 up to
a

Qˆ.

9.6. Computation of volH3
Π and volH1

π . In this case we know (1.4.8) both over E and
F :

(9.6.1) volpH3
Πq

2 ¨ volpL˚Πq „
?
q1.

(9.6.2) volpH1
πq

2 ¨ volpL˚πq „
?
q2.

for qi P Qˆ.
The computation of the periods of cohomological forms on inner forms of GLp2q in

minimal cohomological degree, in terms of associated L-functions, was in essence done by
Waldspurger [79, 78], and (9.6.1), (9.6.2) can be deduced from this computation, together
with a computation along the lines of §8 relating these L-functions to LΠ and Lπ .

However, we will now briefly outline how to deduce (9.6.1) and (9.6.2) directly from
some mild variants of Theorem 7.2.1, because that Theorem already has done all the ap-
propriate normalizations and Hodge–linear algebra needed to get the result in the desired
form. We will focus on (9.6.2); all steps of the proof of Theorem 7.2.1, and the variant
we will need below, go through with F replaced by E or indeed any CM field, and that
will give (9.6.1). Besides this issue of working over E rather than F , the reason we need
“variants” of Theorem 7.2.1 is to provide enough flexibility to ensure that the L-values
occuring are not zero. One pleasant feature of the current case is that the hypotheses of
§6.10 are all known here.

We apply Theorem 7.2.1 with:
- G the form of SOp3q defined by the reduced norm on the trace-free part of D; in

particular GpF q “ D˚{F˚.
- H Ă G the SOp2q-subgroup defined by a subfield F̃ Ă D, quadratic over F , i.e.

we have HpF q “ F̃˚{F˚.
- The cycle ZpUq will be twisted, as in §7.0.1, by a quadratic idele class character
ψ of F̃ , trivial on F .

The twist mentioned was not used in Theorem 7.2.1, but all steps of the proof go through.
The only change is in the nonvanishing criterion in the last paragraph: one must replace
the Rankin-Selberg L-function by its ψ-twist.

It is possible, by Theorem [80, Theorem 4, page 288] and a local argument, given below,
to choose such F̃ , ψ in such a fashion that:

(a) Lp 1
2 ,BCF̃Fπ b ψq ‰ 0, and

(b) for v a place of F which remains inert in F̃ , the local ε-factor εvpBCF̃Fπ b ψq
equals ´1 when D is ramified and otherwise 1.

In both cases BCF̃F means base change (global or local) from F to F̃ . According to the last
paragraph of Theorem 7.2.1, together with the work of Tunnell–Saito [71, 56, 51] relating
invariant linear forms to ε-factors, conditions (a) and (b) imply that the

?
Q ambiguity in

Theorem 7.2.1 is actually nonzero, giving (9.6.2).
Finally, we describe the local argument alluded to above. We will find a pair of distinct

quadratic idele class characters χ1, χ2 of F , and then construct F̃ , ψ from them, so that
there is an equality of L-functions LpF̃ , ψq “ LpF, χ1qLpF, χ2q. (Thus, if χi corresponds



92 KARTIK PRASANNA AND AKSHAY VENKATESH

to the quadratic extension F p
?
diq, we take F̃ “ F p

?
d1d2q, and ψ to correspond to the

quadratic extension F p
?
d1,
?
d2q over F̃ ).

Let T be the set of ramified places for D. Let S be the set of all places not in T where
π is ramified, together with the archimedean places. Let R be the remaining places. Our
requirements (a) and (b) then translate to:

(a)’ Lp 1
2 , π ˆ χ1qLp

1
2 , π ˆ χ2q ‰ 0, and

(b)’ εvpπ ˆ χ1qεvpπ ˆ χ2qχ1χ2p´1q “

#

´1, v P T.

1, v P S
š

R.

Let us recall (see e.g. the summary in [71, §1]) that for k a local field and σ a represen-
tation of PGL2pkq, the local epsilon factor εpσ, ψ, 1{2q “ εpσq is independent of additive
character ψ. Moreover, if σ is a principal series, induced from the character α of k˚, we
have εpσq “ αp´1q; if σ is the Steinberg representation we have εpσq “ ´1, and for the
unramified quadratic twist of the Steinberg representation have εpσq “ 1.

If χ is a quadratic idele class character of F that is unramified at T and trivial at S, the
global root number of the χ-twist satisfies

εpπ ˆ χq

εpπq
“

ź

vPT

χvp$vq ¨
ź

vPR

χvp´1q

looooomooooon

“
ś

vPS
š

T χvp´1q“1

“
ź

vPT

χvp$vq.

In other words, twisting by such a χ changes the global root number by a factor p´1qt,
where t is the number of places in T where χ is nontrivial.

Choose χ1 and χ2 of this type such that χ1 and χ2 are “opposed” at each place of T
(i.e. one is trivial and one is the nontrivial quadratic unramified character), and such that
χ1 and χ2 are both trivial at each place of S. Then

(9.6.3) εvpπ ˆ χ1qεvpπ ˆ χ2qχ1χ2p´1q “

#

´1, v P T

1, v P S
š

R

The global root numbers of π ˆ χipi “ 1, 2q are both given by εpπq ¨ p´1qt, where t is
the number of nontrivial places in T for χ1 or χ2 (they have the same parity). Choosing t
appropriately we arrange that εpπ ˆ χ1q “ εpπ ˆ χ2q “ 1.

Waldspurger’s result implies that we may now find twists χ11, χ
1
2 of χ1, χ2, coinciding

with χ1, χ2 at all places of T
š

S, such that Lp 1
2 , π ˆ χ1iq ‰ 0. The condition (9.6.3)

continues to hold for the χ1i, so we have achieved (a)’ and (b)’ as required.

9.7. Proof of the remainder of Theorem 9.1.1. We must verify (9.1.4) for 1 ď i ď 3.
Let us compute volumes of everything in sight in terms of the volumes of LΠ and Lπ .

First of all,

(9.7.1) volpH3
Π b L

˚
Πq

2 (9.2.1)
“ volpH3

Πq
6 ¨ volpLΠq

´2 (9.6.1)
„ volpH3

Πq
2 (9.5.1)
„ volpH4

Πq
2.

Also we have (since H3
Π is σ-fixed):

volσpH3
Π b L

˚
Πq

2 “ volσpL˚Πq
2 volpH3

Πq
2 (9.1.3)
„ volpL˚πq

2 volpH3
Πq

2(9.7.2)

(9.6.2)
„
pvolH3

Πq
2

pvolH1
πq

4

(9.5.4)
„

`

volσH4
Π

˘2
.(9.7.3)

We can now deduce the conclusions of the Theorem. First of all,

H3
Π ¨ ^

3L˚Π “
?
q1H

6
Π.
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Both sides above are one dimensional Q-vector spaces, so that this can be checked by
comparing volumes, for which we use (9.6.1), Poincaré duality, and the fact that the volume
of^3L˚Π andL˚Π coincide (see (1.4.4)). That proves (9.1.4) for i “ 3 . For i “ 1 we use the
following lemma, applied with L1 the image of H3

Π b L
˚
Π in H4pY,RqΠ, and L2 :“ H4

Π.

Lemma. Let VR be a three-dimensional real vector space with metric, equipped with an
isometric action of xσy » Z{3Z, with dimV σR “ 1. Suppose V1, V2 Ă VR are two different
Q-structures, both stable under σ. If

(9.7.4) volpV1q “ volpV2q, volσpV1q “ volσpV2q,

then we have
V1 bQp

?
bq “ αpV2 bQp

?
bqq

for a rotation α P Rrσs˚ and some positive b P Qˆ.

Proof. We have an isomorphism Qrσs » Q ‘ Qrζ3s and correspondingly we may split
orthogonally

Vi “ V σi ‘ pViqσ.

Since V σ1 , V
σ
2 have the same volume, they are equal. On the other hand, pV1qσ b R “

pV2qσ bR, and these spaces are both isometric to Rrζ3s equipped with the standard qua-
dratic form |x ` iy|2 “ x2 ` y2. The images of V1, V2 in Rrζ3s must be of the form
αi ¨ Qrζ3s for some α P Rrζ3s

˚ » Cˆ; since the volumes of these spaces coincide in
Rˆ{Qˆ we get |α1|

2 “ b|α2|
2 for some b P Qˆ. Therefore V1 bQp

?
bq, V2 bQp

?
bq

differ by a rotation as claimed. �
In our case we do not have the exact equality of volumes as in (9.7.4), but only equality

up to certain factors in
a

Qˆ. Correspondingly, we getL1 “ αL2 only after first extending
scalars to a field of the form Qp

?
a1, b

1{4q. This implies the case i “ 1 in the theorem.
Finally, the case of i “ 2 of the theorem follows from Poincaré duality: take h, h1 P H3

Π

and a P ^2L˚Π, a
1 P L˚Π. Then Lemma 5.5.1 implies

xh ¨ a, h1 ¨ a1y “ xh ¨ aa1, h1y P Q ¨
?
q1

where x´,´y is the Poincaré duality pairing on H˚pY,Rq, and we used (9.6.1) at the last
step. Therefore, the three-dimensional vector spacesH3

Π ¨L
˚
ΠbQ andH3

Π ¨^
2L˚ΠbQ are

dual to one another under the Poincaré duality pairing. Since the former space is a rotation
of H4

Π bQ, as explained above, we deduce that the latter space is a rotation of H5
Π bQ.

This concludes the proof of the theorem.

APPENDIX A. THE MOTIVE OF A COHOMOLOGICAL AUTOMORPHIC
REPRESENTATION

In this appendix, for lack of a sufficiently general reference, we shall formulate the
precise conjectures relating cohomological automorphic representations to motives.

A.1. The notion of a pG-motive.

A.1.1. The motivic Galois group. Let F be a number field. Assuming standard conjec-
tures, the category MF of Grothendieck motives over F (with Q-coefficients) is a neutral
Tannakian category, with fiber functor sending the motive M to the Betti cohomology of
Mv :“MˆvC for an embedding v : F ãÑ C. (See §2.1.9). Fixing such v gives a motivic
Galois group (the automorphisms of this fiber functor), denoted GMot. It is a pro-algebraic
group over Q; it depends on the choice of v, but we will suppress this dependence in our
notation.
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For any object M of MF , we let GM denote the algebraic group over Q defined sim-
ilarly but with MF replaced by the smallest Tannakian subcategory containing M . Then
GM is of finite type and

(A.1.1) GMot “ lim
ÐÝ
M

GM .

The natural map

ρM,` : ΓF Ñ GLpH˚etpMv,Q`qq “ GLpH˚BpMvq bQ`q

factors throughGM pQ`q. Conjecturally the image of this map is Zariski dense inGM pQ`q

[63] §3.2? (sic), and we will assume this in our discussion.
The groups GM and GMot sit in exact sequences:

1 Ñ G0
M Ñ GM Ñ ΓM Ñ 1

and
1 Ñ G0

Mot Ñ GMot Ñ ΓF Ñ 1

where G0
M and G0

Mot denotes the identity components of GM and GMot respectively. The
group ΓF “ GalpF {F q may be viewed as the Tannakian group associated with the Tan-
nakian category of Artin motives over F .

The Galois representations ρM,` : ΓF Ñ GM pQ`q yields, in the inverse limit, a map

(A.1.2) ρ` : ΓF Ñ GMotpQ`q

with the property that the composite map ΓF Ñ GMotpQ`q Ñ ΓF is the identity.

A.1.2. The group CG. We will use the C-group defined in [13], see in particular Propo-
sition 5.3.3 therein. Let G̊ “ p pG ˆ Gmq{xΣy, where Σ is the order 2 element defined
by pΣ

pGp´1q,´1q, and Σ
pG is the co-character of pT Ă pG corresponding to the sum of all

positive roots for G. This has the property that the cocharacter x ÞÑ pΣ
pGpxq, xq from

Gm Ñ pGˆGm admits a square root when projected to G̊; this square root will be denoted
by $:

(A.1.3) $ : Gm Ñ G̊,

so that we may informally write $pxq “ p
?
x,Σ

pGp
?
xqq.

We define the C-group as the semidirect product

CG “ G̊¸ ΓF

where ΓF acts on pG in the natural way and on Gm trivially. The action of ΓF on G̊ factors
through a finite quotient of ΓF . We understand CG to be a pro-algebraic group defined
over Q.

Note that, parallel to the structure of GMot noted above, there is an exact sequence

1 Ñ G̊Ñ CGÑ ΓF Ñ 1.

Just as for pG itself, the complex algebraic groups G̊, CG can be descended to algebraic
groups G̊, CG over Z, using the split Chevalley model of pG; thus their R-points make
sense for any ring R and, by a slight abuse of notation, we will allow ourselves to write
G̊pRq, CGpRq for these R-points. We also write G̊R, CGR for the corresponding R-
algebraic groups.
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A.1.3. pG-motives. A pG-motive X (over F ) will by definition be a homomorphism

(A.1.4) ιX : GMot,Q Ñ
CGQ,

commuting with the projections to ΓF ,and whose projection to Gm{t˘1u » Gm gives
the representation associated to the Tate motive Qp´1q.

Here the subscripts refer to base extensions of these algebraic groups to Q. The mor-
phisms between G-motives X,Y will be understood to be the elements of G̊pQq conju-
gating ιX to ιY ; in particular, the isomorphism class of X depends only on the G̊pQq-
conjugacy class of ιX .

Then X defines a functor (also denoted X) from finite-dimensional CG-representations
over Q to the category of motives over F with coefficients in Q. In fact, this functor is
a more intrinsic presentation of a pG-motive, because, after all, the motivic Galois group
depends on a choice of fiber functor to begin with.

Composing ιX with ρ` (see (A.1.2)) gives a map

ρX,` : ΓF
ρ`
ÝÑ GMotpQ`q Ñ GMot,QpQ` bQq

ιX
ÝÝÑ CGQpQ` bQq.

Thus we get a representation ρX,λ : ΓF Ñ
CGQpQλq for each prime λ of Q above `, with

the property that the composite of this map with the projection CGÑ ΓF is the identity.

Lemma A.1.1 (The Galois representation determines the motive). If ρX,λ and ρY,λ are
conjugate under G̊pQλq for some λ, then also X,Y are isomorphic – i.e., ιX , ιY define
the same G̊pQq-conjugacy class of maps.

Proof. If ρX,λ and ρY,λ are conjugate, then ιX and ιY , considered as maps of Qλ-algebraic
groups, are conjugate on a Zariski-dense subset of the source (by our assumption that the
image of ΓF in GMotpQ`q is dense). Thus ιX and ιY are conjugate over Qλ. But then
they are also conjugate over Q. �

If pρ, Vρq is a CG-representation over Q, we write Xρ for the associated motive, i.e.
the motive with Q coefficients associated to the composite ρ ˝ ιX . There is a tautological
isomorphism

(A.1.5) HBpXρ ˆv C,Qq » Vρ.

A.2. The pGmotive attached to a cohomological automorphic representation. Now let
F “ Q; we will formulate the precise connections between cohomological automorphic
representation for G, and pG-motives.

It is convenient to start with a character χ : H Ñ Q of the cohomological Hecke
algebra for Y pKq, as in §1.1 but allowing Q values. Attached to each embedding λ :
Q ãÑ C there is a near-equivalence class of cohomological automorphic representation
Πλ whose Hecke eigenvalues coincide with λ ˝ χ.

Attached to χ there should be a compatible system of Galois representations to CG in
the following sense: For each nonarchimedean place λ of Q we should have [13, Conjec-
ture 5.3.4] attached a distinguished conjugacy class of maps

(A.2.1) ρλ : GalpQ{Qq ÝÑ CGpQλq λ nonarchimedean;

which matches with λ ˝ χ under the Satake correspondence, (see loc. cit. for details).
The basic conjecture concerning the existence of motives (cf. the discussion at the end

of [40, §2]) is then the following:
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Conjecture A.2.1. Given a cohomology class as above, there exists a pG-motiveX over Q,
with the property that for each nonarchimedean λ the Galois representation ρλ attached
to the cohomology class is isomorphic to the Galois representation ρX,λ arising from X .

A.3. Descent of the coefficient field for a pG-motive. In §A.2 we have formulated the
conjectures over Q. However if the Hecke character χ takes values in a subfield E Ă Q it
is of course preferable to work over E. In the current section, we outline how to do this,
i.e. how to descend the coefficient field of a pG-motive, at the cost of replacing pG by an
inner form.

A.3.1. Twisting a Galois representation. Let us first recall how to “apply a Galois auto-
morphism to a representation.”

Suppose that H is an algebraic group over Q, and σ is an automorphism of Q. We can
define the σ-twist Hσ: if H is defined by various equations fi “ 0, then Hσ is defined by
the equations fσi “ 0, and so on; if H is defined over Q there is a canonical isomorphism
H » Hσ . Also σ induces a bijection HpQq Ñ HσpQq denoted by h ÞÑ hσ .

In particular, given a homomorphism π : H Ñ H 1 of Q-algebraic groups, we obtain a
twisted morphism πσ : Hσ Ñ pH 1qσ , with the property that πσphσq “ πphqσ .

A.3.2. Descent of coefficients for a motive. Let X be a pG-motive. For σ P GalpQ{Qq,
we can form a new motive Xσ by the rule

ιXσ “ pιXq
σ.

Informally, Xσ applies σ to the coefficients of the system of motives defined by X .
Now let E be a finite extension of Q, and suppose that Xσ » X for all σ P GalpQ{Eq.

In particular, there exists an element gσ P G̊pQq with the property that

AdpgσqιX “ ιXσ .

Explicitly, this means that for g P GMotpQq we have AdpgσqιXpg
σq “ ιXpgq

σ , so that the
image of GMotpQq is fixed under z ÞÑ Adpg´1

σ qz
σ .

The element gσ is determined up to Q-points of ZpιXq, the centralizer of ιX inside G̊Q.
In particular, if the centralizer of ιX coincides with the center of G̊Q, the rule σ ÞÑ gσ
defines a cocycle; its cohomology class lies in

H1pGalpQ{Eq, G̊pQq modulo centerq “ H1pE, pG modulo centerq,

where we use the usual notation for Galois cohomology on the right.
This cocycle can be used to descend pGQ, G̊Q and CGQ to Q-forms pG˚, G̊˚,

CG˚,
described as the fixed points of z ÞÑ Adpg´1

σ qz
σ on the respective (pro)-groups. We may

then descend ιX to a morphism

(A.3.1) ιX : GMot ÝÑ
CG˚ (morphism of E-groups)

Composition with the adjoint representation of CG˚ should then yield the adjoint motive
described in Definition 4.2.1.

A.4. Standard representations of the C-group for PGL and SO. According to our
prior discussion, a cohomological form for G gives rise to a pG-motive with Q coefficients;
in particular, a representation of CG gives rise to a usual motive with Q coefficients. The
Hodge weights of the resulting motive are given by the eigenvalues of the weight cochar-
acter (A.1.3).
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In the remainder of this section, we specify a standard representation of the C-group in
the cases of interest, namely, G “ PGLn and G “ SOm. We will compute the Hodge
numbers both for this motive (denoted M ) and for the motive associated to the adjoint
representation of CG (denoted AdM ). We work over an arbitrary number field F ; in the
text, F will sometimes be an imaginary quadratic extension of Q.

- G “ PGLn, G̊ “ SLnˆGm{pp´1qn`1Idn,´1q.
Here

(A.4.1) $pxq “ pSymn´1

„?
x

1{
?
x



,
?
xq,

and we define the standard representation of G̊ to be the tensor product of the
character x ÞÑ xn´1 on Gm with the standard representation of SLn. This extends
to CG, by extending trivially on ΓF .

Thus the Hodge numbers of M are

pn´ 1, 0q, pn´ 2, 1q . . . , p1, n´ 2q, p0, n´ 1q

each with multiplicity one, and the Hodge numbers of AdM are

pn´ 1,´pn´ 1qq1, pn´ 2,´pn´ 2qq2 . . . , p1,´1qn´1, p0, 0qn´1,

p´1, 1qn´1 . . . , p´pn´ 2q, n´ 2q2, p´pn´ 1q, n´ 1q1

where we wrote the multiplicities as superscripts.

- G “ SO2n, G̊ “ SO2n ˆGm{pIdn,´1q.
Here

$pxq “

ˆ

Sym2n´2

„?
x

1{
?
x



‘ Id1,
?
x

˙

.

where Id1 is the identity matrix in one dimension, and we define the standard
representation of G̊ to be the tensor product of the standard representation on
SO2n and the character x ÞÑ x2n´2 on Gm. This extends to CG: first extend it to
O2n ˆ Gm{p1,´1q, and then use the map CG Ñ O2n ˆ Gm{p1,´1q extending
the inclusion of G̊; here the map ΓF Ñ O2n should induce the natural action of
ΓF on SO2n “ pG by pinned automorphisms.

Thus the Hodge numbers of M are

p2n´ 2, 0q1, p2n´ 3, 1q1, ¨ ¨ ¨ , pn´ 1, n´ 1q2, ¨ ¨ ¨ , p1, 2n´ 3q1, p0, 2n´ 2q1

and the Hodge numbers of AdpMq (which is of rank np2n´1q) range from p2n´
3,´p2n ´ 3qq to p´p2n ´ 3q, p2n ´ 3qq and admit a pattern that depends on the
parity of n. If n “ 2t, the multiplicities are given by

1, 1, ¨ ¨ ¨ , t, t, ¨ ¨ ¨ , n´ 1, n´ 1, n, n, n, n´ 1, n´ 1, ¨ ¨ ¨ , t, t, ¨ ¨ ¨ , 1, 1,

where the bar above pt, tq indicates that those terms are skipped. If n “ 2t ` 1,
then the multiplicities are

1, 1, ¨ ¨ ¨ , t, t` 1, ¨ ¨ ¨n´ 1, n´ 1, n, n, n, n´ 1, n´ 1, ¨ ¨ ¨ t` 1, t, ¨ ¨ ¨ , 1, 1,

where again the bar has the same interpretation as before.
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- G “ SO2n`1, G̊ “ Spp2nq ˆGm{p´Idn,´1q.
Here $ is given by

$pxq “ pSym2n´1

„?
x

1{
?
x



,
?
xq,

and we define the standard representation of G̊ to be the tensor product of the
standard representation of Spp2nq and the character x ÞÑ x2n´1 on Gm. This
extends to CG, by extending trivially on ΓF .

The Hodge numbers of M are

p2n´ 1, 0q, p2n´ 2, 1q, . . . , p1, 2n´ 2q, p0, 2n´ 1q,

each with multiplicity one. The Hodge numbers of AdpMq (which is of rank
np2n ` 1q) range from p2n ´ 1,´p2n ´ 1qq to p´p2n ´ 1q, p2n ´ 1qq and have
multiplicities

1, 1, 2, 2, ¨ ¨ ¨ , n´ 1, n´ 1, n, n, n, n´ 1, n´ 1, ¨ ¨ ¨ , 2, 2, 1, 1.
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