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ABSTRACT. We propose a relationship between the cohomology of arithmetic groups, and
the motivic cohomology of certain (Langlands-)attached motives. The motivic cohomol-
ogy group in question is that related, by Beilinson’s conjecture, to the adjoint L-function at
s = 1. We present evidence for the conjecture using the theory of periods of automorphic
forms, and using analytic torsion.

RESUME. Nous proposons une relation entre la cohomologie des groupes arithmétiques
et la cohomologie motivique de certains motifs attachés. La cohomologie motivique en
question est liée a la fonction L adjointe en s = 1 par la conjecture de Beilinson. Nous
présentons des éléments de confirmation pour la conjecture en utilisant la théorie des péri-
odes des formes automorphes et la torsion analytique.
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1. INTRODUCTION

A remarkable feature of the cohomology H* (T, C) of arithmetic groups T" is their spec-
tral degeneracy: Hecke operators can act in several different degrees with exactly the same
eigenvalues. For an elementary introduction to this phenomenon, see §3]. In some
cases, such as Shimura varieties, it can be explained by the action of a Lefschetz SLo but
in general it is more mysterious.

We shall propose here that this degeneracy arises from a hidden degree-shifting action
of a certain motivic cohomology group on H*(T', Q). This is interesting both as an extra
structure of H*(T', Q), and because it exhibits a way to access the motivic cohomology
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group. We do not know how to define the action directly, but we give a formula for the
action tensored with C, using the archimedean regulator. Our conjecture, then, is that this
action over C respects Q structures.

The conjecture has numerical consequences: it predicts what the “matrix of periods”
for a cohomological automorphic form should look like. We shall verify a small number of
these predictions. This is the main evidence for the conjecture at present; we should note
that we found the verifications somewhat miraculous, as they involve a large amount of
cancellation in “Hodge-linear algebra.” The most novel aspect of our proofs is the use of
analytic torsion to compute cohomological periods even when there are no natural cycles
to integrate over (§9), and it is this technique that gives rise to what seems to us the most
compelling evidence for the conjecture.

It takes a little while to formulate the conjecture: in we will set up notation for
the cohomology of arithmetic groups; as usual it is more convenient to work with adelic
quotients. We formulate the conjecture itself in §1.2] §I.3| discusses the case of tori —
this is just a small reality check. In §I.4] we describe how to extract numerically testable
predictions from the conjecture, some of which we have verified.

1.1. Cohomological representations. Fix a reductive Q-group G, which we always sup-
pose to have no central split torus. Let S be the associated symmetric space; for us, this
will be G/KY, where K is a maximal compact connected subgroup of G := G(R); thus
S need not be connected, but G preserves an orientation on it.

Let A denote the finite adeles of Q and let K < G(Ay) be a level structure, i.e., an
open compact subgroup; we suppose that K factorizes as K = [ [, K,,. We may form the
associated arithmetic manifold

Y(K) = G(Q)\S x G(Af)/K.

If the level structure K is fixed (as in the rest of the introduction) we allow ourselves to
just write Y instead of Y (K).

The cohomology H*(Y, Q) is naturally identified with the direct sum @ H*(T;, Q)
of group cohomologies of various arithmetic subgroups I'; < G(Q), indexed by the con-
nected components of Y. However, it is much more convenient to work with Y'; for ex-
ample, the full Hecke algebra for G acts on the cohomology of Y but may permute the
contributions from various components.

As we recall in (I.1.2) below, the action of the Hecke algebra on H* (Y, C) often ex-
hibits the same eigencharacter in several different cohomological degrees. Our conjecture
will propose the existence of extra endomorphisms of H* (Y, Q) that commute with the
Hecke algebra and explain this phenomenon.

First of all, we want to localize at a given character of the Hecke algebra. For each v not
dividing the level of K, i.e., at which K, is hyperspecial, let x, : #Z(G(Q,), K,) — Q
be a character.

Consider the set of automorphic representations 7 = @, of G(A)E] such that:

- K #0

- T has nonvanishing (g, K )-cohomology.

- For finite places v not dividing the level of K (places for which K, is hyperspecial)
the representation m, is spherical and corresponds to the character x.,.

Here and throughout the paper, we understand automorphic representations not as abstract representations,
but as being realized on subspaces of functions on G(A)/G(Q).
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This is a finite set, which we shall assume to be nonempty, say
I = {m,..., 7}

These automorphic representations are nearly equivalent; we moreover shall assume that:
e Each 7; is cuspidal;
e Each 7; is tempered at co and at one finite place v at which K, is hyperspecial.
Here, the cuspidality assumption is to avoid complications of non-compactness. The
second assumption is simply an unconditional proxy for asserting that 7; belong to a tem-
pered A-packet; temperedness is important for the way we formulate our conjecture. (One
expects that the condition at v implies the condition at oo, cf. [[L6, Conjecture 2A]).
We will be interested in the part of cohomology which transforms according to the
character y, which we will denote by a subscript II:

(1.1.1)  H*Y,Qnu={he H*(Y,Q) : Th = x,(T)hforall T € #(G(Q,), K)
and all places v not dividing the level of K.}

We sometimes abridge H*(Y, Q)1 to Hy;.

In particular, under our assumptions above, H* (Y, C)r; can be computed from the
(g, K% )-cohomology of the ;. The computation of the (g, K, )-cohomology of tempered
representations (see [8, Theorem III.5.1] and also [9} 5.5] for the noncompact case) implies
that

(11.2) dimHj(Y,R)sz:-<_6 )
J—4a
where we understand (Z) =0ifa¢[0,0],
dimY — 46
(1.1.3) §:=rank G —rankKy, ¢:= Im#?

and k = dim H4(Y, R)p. For example, if G = SLy,,, then ¢ = m? and 6 = m — 1.
In words, (T.1.2) asserts that the Hecke eigensystem indexed by IT occurs in every de-
gree j between ¢ and ¢ + &, with multiplicity proportional to (ij).

1.1.1. Galois representations and motives attached to I1. In the situation just described, IT
should conjecturally [[13]] have attached to it a compatible system of Galois representations
pe : Gal(Q/Q) — £G(Q,). Actually all that is important for us is the composition with
the adjoint or the co-adjoint representation of “G:

Adpe: Gal(Q/Q) » GLE®Q,), Ad*p: Gal(Q/Q) —» GLE® Qy),

where g denotes the Lie algebra of the dual group G (considered as a split reductive Q-
group) and § = Hom(g, Q) is its linear dual. In fact, if G is not simply connected the
representation p, requires, for its definition, a modification of the notion of L-group (see
again [[13])); however, no such modification should be required for Ad p, or Ad* p;; see
§4.2]and in particular footnote [5 for more discussion.

We will assume throughout, as is predicted by the Langlands program, that Ad p, and
Ad* p, are Galois representations underlying a Grothendieck motive; this weight zero mo-
tive will be denoted by Ad IT or Ad™ II respectively. Thus, for example, the Galois repre-
sentation on the etale realisation of Ad I is identified with Ad py.

Before we proceed, a brief remark about “adjoint” versus “coadjoint.” The represen-
tations Ad p, and Ad* p, = (Adpy)* are isomorphic if G is semisimple, because of
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the Killing form. Consequently, the associated motives Ad IT and Ad* IT should be iso-
morphic. However, both to handle the reductive case and to be more canonical, we will
distinguish between the two.

1.2. The conjecture. It is expected (cf. (3.2) of [41]]) that the adjoint L-function
L(s,II, Ad¥)

that is to say, the L-function attached to the motive Ad* 11, is holomorphic at s = 1 under
our assumptions (in particular, that G has no central split torus). According to Beilinson’s
conjecture, the value of this L-function is related to a regulator on a certain motivic coho-
mology group attached to Ad™* II. It is this motivic cohomology group that will play the
starring role in our conjecture. We defer to later sections more careful expositions of points
of detail; in particular, what we need of motivic cohomology and Beilinson’s conjectures
is summarized in §E], and discussion of “automorphic versus motivic” L-functions, at least
in the case we need it, is given in §6.4.4]

First, to the real reductive group G = Ggr we shall attach in §3|a canonical C-vector
space ag, such that dim(ag) = J; it can be described in either of the following ways:

- ag is the split component of a fundamental Cartan subalgebra inside Lie(G)c.
- The dual af, := Homc/(ag, C) is the fixed points, on the Lie algebra Lie(T') of
the dual maximal torus, of wyo, where wy is a long Weyl element and o is the

(pinned) action of complex conjugation on G.

We shall construct in an action of the exterior algebra A *a, on the (g, K )-cohomology
of a tempered representation of G(R)). This gives rise to a natural degree-shifting action
of A*a¥ on H*(Y, C)p, with the property that the associated map

(1.2.1) HYY,C)ny ® n'al, = HT(Y,C)n

is an isomorphism. For a more careful discussion see

Next, standard conjectures allow us to attach to a Grothendieck motive M over Q a mo-
tivic cohomology group H', (Mz, Q(j)) (the subscript Z means that these are classes that
“extend to an integral model”; the group H’, should however be independent of integral
model). Then H', (Mz, Q(j)) is a Q-vector space, conjecturally finite dimensional, and is
equipped with a regulator map whose target is the Deligne cohomology Hi, (Mg, R(j)).
We are interested in the case of M = Ad* I, and write for brevity:

(12.2) L:= H'((Ad*TT)z, Q(1)).

In this case (§5.1) the target of the archimedean regulator (tensored with C) is canonically
identified with ag; we get therefore a map

(1.2.3) L®C — ag

which is conjecturally an isomorphism.
Write L* = Hom(L, Q) for the Q-dual and LY, = Hom(L, C). Dualizing (T.2.3), the
map

(1.2.4) at, — L&
is again conjecturally an isomorphism. We are ready to formulate our central

Conjecture 1.2.1. Notation as above: H*(Y, C)yy is the subspace of cohomology associ-
ated to the automorphic form 11, aq is the C-vector space associated to G, and L is, as in
(T.2:2), the motivic cohomology of the adjoint motive associated to IL.
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Then the action of A*af, on H*(Y, C)r1 described above is compatible with ratio-
nal forms, i.e., if an element of af, maps to L*, then its action on cohomology preserves

H*(Y,Q)n c H*(Y,C)p.

In particular, the conjecture means that

There is a natural, graded action of A*L* on H(Y, Q)n, with respect to
which the cohomology is freely generated in degree q.

As we mentioned earlier, this is interesting because it suggests a direct algebraic re-
lationship between motivic cohomology and the cohomology of arithmetic groups. At
present we cannot suggest any mechanism for this connection; it doesn’t seem to be read-
ily related to other heuristics in the Langlands program. The occurrence of algebraic K-
groups of rings of integers in the stable homology of GL,, (see, e.g. [67, p 25]) is likely a
degenerate case of it. For the moment, we must settle for trying to check certain numerical
consequences.

Although it is not the concern of this paper, the conjecture has a p-adic counterpart,
which itself has a rich algebraic structure. As written, the conjecture postulates an action
of L* on H*(Y, Q)r; this action (assuming it exists) is pinned down because we explicitly
construct the action of L¢,. But the conjecture also implies that Ly, = L* ® Q, acts on
the cohomology with p-adic coefficients H* (Y, Q). Conjecturally, the p-adic regulator
gives an isomorphism

(1.2.5) L®Q, — H(Q,Ad* p,y(1)),
where the subscript f denotes the “Bloch-Kato Selmer group,” [6]. This means that there
should be an action of H}(Q, Ad* p,(1))* on H*(Y, Q,)n by degree 1 graded endomor-
phisms. The papers [21] and [75] give two different ways of producing this action. One
advantage of the p-adic analogue of the conjecture is that it is more amenable to computa-
tions, and numerical evidence for its validity will be given in [25].

Finally we were informed by Michael Harris that Alexander Goncharov has also sug-
gested, in private communication, the possibility of a connection between the motivic co-
homology group L7 and the cohomology of the arithmetic group.

1.3. The case of tori. We briefly explicate our constructions in the case of tori. In this
case the conjecture is easy, but this case is helpful for reassurance and to pinpoint where
there need to be duals in the above picture.

Let T be an anisotropic Q-torus. Let a% be the canonical C-vector space attached to
T, as in the discussion preceding (I.2.1). Then a¥. is canonically identified with the dual
of

ar = Lie(S) ® C,
where S is the maximal R-split subtorus of Tr. This identification gives a natural loga-
rithm map
log: T(R) — ar
characterized by the fact that it is trivial on the maximal compact subgroup K, and coin-
cides with the usual logarithm map on the connected component of S(R)).
The associated symmetric space is

Y =T(Q\T(R) x T(Ay)/ KK

Then Y has the structure of a compact abelian Lie group: each component is the quotient
of T(R)°/K$, ~ ar by the image of

A={teT(Q):te T(R)° K},
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which is a discrete cocompact subgroup of T(R)).
As in the general discussion above, there is a natural action of A*a. on the cohomology
of Y. In this case the action of v € A*a¥. is by taking cup product with (). Here,

Q: A*a} —> invariant differential forms on Y’

comes from the identification of the tangent space of T(R)/K, at the identity with ar.
Note that, for v € a, the cohomology class of (v) is rational (i.e., lies in H*(Y, Q)) if
and only if (log(d),v) € Q forall § € A.

On the other hand, as in our prior discussion, to any cohomological representation IT
is associated a motive Ad* II of dimension equal to dim (7). In fact, Ad* II is the Artin
motive whose Galois realization is the (finite image) Galois representation on X, (T) ® Q.
Then H',(Ad*II,Q(1)) = T(Q) ® Q and the subspace of “integral” classes is then
identified with

(1.3.1) HY,((Ad*T)z,Q(1)) = A® Q.

The regulator map H', (Ad* Iz, Q(1)) — ar is just the logarithm map.

Then Conjecture just says: if v € a’, takes Q-values on log(A), then cup product
with Q(v) preserves H*(Y, Q). But this is obvious, because the assumption means that
Q(v) defines a class in H(Y, Q).

1.4. Numerical predictions and evidence for the conjecture. We now turn to describing
our evidence for the conjecture. To do so, we must first extract numerical consequences
from the conjecture; for this we put metrics on everything. It turns out there are plenty of
consequences that can be examined even with minimal knowledge of motivic cohomology.
Throughout this section, we continue with the general setup of §I.1} in particular, all
the cohomological automorphic representations that we consider are tempered cuspidal.
By a metric on a real vector space we mean a positive definite quadratic form; by a
metric on a complex vector space we mean a positive definite Hermitian form. If V is
a vector space with metric (—, —), there are induced metrics on A*V and on V*; these
arise by thinking of a metric as an isomorphism to the (conjugate) dual space, and then by
transport of structure. Explicitly, the induced metric on A™V is given by the formula:

(1.4.1) U A AV, W1 A - A Wy = det (v, w5))

A perfect pairing V' x V' — R of metrized real vector spaces will be said to be a
“metric duality” when there are dual bases for V, V"’ that are simultaneously orthonormal
(equivalently: V' — V'* is isometric, for the induced metric on V*).

If V' is a metrized real vector space and Vg < V is a Q-structure, i.e., the Q-span of an
R-basis for V, then we can speak of the volume of Vg,

(1.4.2) volVg € R*/Q%,

which is, by definition, the covolume of Zvy + ... Zuv,, for any Q-basis {v1,...,v,} for
Vq, with respect to the volume form on Vg defined by the metric. Explicitly

(1.4.3) (vol Vg)? = det((v;,v;)).

We will later allow ourselves to use the same notation even when the form (—, —) is not

positive definite; thus vol Vg could be a purely imaginary complex number. By (T4.1), the
volume of Vq equals the norm of a generator of A"Vq for the induced metric on A"V,
that is to say

(1.4.4) vol Vg = vol A"Vq.
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Fix an invariant bilinear Q-valued form on Lie(G), for which the Lie algebra of K,
is negative definite and the induced form on the quotient is positive definite. This gives
rise to a G-invariant metric on the symmetric space, and thus to a Riemannian metric on
Y. Once this is fixed, H(Y,R)ry and H’ (Y, C)p both get metrics by means of the L?
norm on harmonic forms. (Scaling the metric g — Ag leaves the notion of harmonic form
unchanged; but it scales the metric on H* by A%?~%, where d = dim(Y").)

The Poincaré duality pairing H? (Y, R) x H*(Y,R) — R, where j + j* = dim(Y),
induces a metric duality, in the sense just described. The same conclusions are true for the
induced pairing

(14.5) H}(Y,R) x HY (Y.R) > R

between the II part and the ﬁ—part, where II denotes the contragredient of II; since we are
supposing that II arose from a Q-valued character of the Hecke algebra, we have in fact
Il ~ II.

In §3.5, we explain how to introduce on af, a metric for which the action of A*af, is
“isometric,” i.e., forw € H4(Y,C)ry and v € A'af, we have

(1.4.6) lw - v = llewl - .

This metric on af, depends, of course, on the original choice of invariant form on Lie(G).
It also induces a metric, by duality, on ag.

Note that we also introduce an R-structure on ag — the “twisted real structure”, see
Definition @] — which is compatible with the real structure L ® R < L ® C, and
preserves the real structure H4(Y,R) ¢ H?(Y,C) — see Lemma and Proposition
[5.5.1] Therefore, we get also corresponding statements for real cohomology.

With these preliminaries, we now examine explicit period identities that follow from
our conjecture:

Prediction 1.4.1. Suppose that dim H?(Y,C)yy = 1. Let w be a harmonic q-form on'Y
whose cohomology class generates H1(Y, Q)11. Then

(1.4.7) {w,wy ~ (vol L)

where the volume of L is measured with respect to the metric induced by the inclusion
L < ag, or more precisely the inclusion of L into the twisted real structure on a¢ discussed
above; we have used the notation A ~ B for A/B € Q*.

Note that (1.4.7) is equivalent to

(14.8) @9) (ol L)
¢

where w is now an arbitrary nonzero harmonic g-form belonging to H?(Y, C)ry and y is a
generator for H, (Y, Q)rr.

At first sight, or the equivalent look like they would require a computation
of the motivic cohomology group L to test. However, Beilinson’s conjecture implies a
formula for vol(L) in terms of the adjoint L-function and certain other Hodge-theoretic
invariants. Thus, although not formulated in a way that makes this evident, can be
effectively tested without computation of motivic cohomology.

To assist the reader we say a few words about how Beilinson’s conjecture is used to
compute vol(L) — it is, in fact, used twice. First of all, Beilinson’s conjecture applied to
the adjoint L-function of IT expresses a special value of that L-function as the product of
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(a) acertain period depending only on the underlying Hodge structure, and

(b) aregulator, given by the volume of L above.
In the main text, this fact is expressed by (2.2.9), which will be applied with M the motive
underlying this adjoint L-function — the period from (a) is the “volg F'*” term of (2:2.9),
and the regulator from (b) is the “volg H}ﬂ” of @ Now, to remove term (a) we
use Beilinson’s conjecture a second time (in fact, in this case, the conjecture reduces to
Deligne’s conjecture about critical values). In the examples that we study, there is a second
L-function in the picture, and Deligne’s conjecture shows that its value at a certain critical
point coincides with (a) up to Q*. This rather surprising equality is expressed by (7.2.10)
in the main text. Therefore, by taking the ratio of these two applications of Beilinson’s
conjecture, we obtain a formula for vol(L) purely in terms of L-functions.

Proof. (that Conjecture implies Prediction [1.4.1): Let v generate A°L* (the top

exterior power). The conjecture implies that w’ = w - v gives a nonzero element of
HT* (Y, Q)r, where ¢ + ¢* = dim(Y"). Since (T43) is a metric duality we get
(1.4.9) [w]re - lw']z2 € QF.
By (T.4.6), we have
(1.4.10) /2 = Jllze - Il
Combining (T.4.9) and (T.4.10) yields
(1.4.11) {w,wy - |v| € Q*.
Now ||| is precisely the volume (see (T.4.4)) of L* with respect to the given metric on

ag.; said differently, v||=! is the volume of L for the dual metric on ag. O
The first piece of evidence for the conjecture, informally stated, is a verification of
Prediction m in the following sense (see Theorem m for precise statement):
Evidence for Prediction [1.4.1; Assume Beilinson’s conjecture, as for-
mulated in §2] Assume also the Ichino-Ikeda conjecture on period inte-
grals and the “working hypotheses” on local period integrals, all formu-
lated in
Let (G, H) be as in the “cohomological GGP cases” of either
(PGLy,11xPGL,, > GL,) over Qf} or (PGL,, 11 xPGL,, > GL,,) over
a quadratic imaginary field, or (SO,,4+1 x SO,, © SO,,) over a quadratic
imaginary field.
Then, for w a cohomological form on G, and y the homology class of
the cycle defined by H we have

2
i

o € \/Q(VOIL)_17

In other words, (T.4.8) is always compatible with the period conjectures
of Ichino-Ikeda, up to possibly a factor in 1/Q.

Remark 1. The left-hand side of (T.4.12) is nonzero if and only if both:

(1.4.12)

ZNote that many cases of the Ichino-Ikeda conjecture are already known: we include in our formulation the
GL;, x GLp 41 cases, which were established by Jacquet, Piatetski-Shapiro and Shalika. Also, the working
hypotheses on local period integrals are primarily used to handle archimedean integrals. In view of recent work
there is reason to hope that they should be soon removed.

3In this case, we prove not ([.4:12)) but a slight modification thereof, since the hypothesis dim H4(Y, C)r =
1 is not literally satisfied.
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o the central value of the Rankin—Selberg L-function for II is nonvanishing, where
II is the automorphic representation underlying w.

e (in the SO cases only): there is abstractly a nonzero H(A )-invariant functional on
II (this condition can be rephrased in terms of e-factors, by [81]).

Without getting into details let us say why we found the proof of striking. The
conjecture and Prediction [I.4.1] are phrased in terms of the motivic cohomology group L;
this group is closely related to the adjoint L-function L(s, IT, Ad) at the edge point s = 0
or s = 1. By contrast, the Ichino—Ikeda conjecture involves various Rankin-Selberg type
L-functions, and it is, at first, difficult to see what they have to do with L.

We are saved by the feature that was discussed after (I.4.8). Namely, Beilinson’s con-
jecture for the central values of these Rankin-Selberg type L-functions (which in this case
is due to Deligne) involves many of the same “period invariants” as Beilinson’s conjecture
for the adjoint L-functions at s = 1, leading to various surprising cancellations — it is the
ratio of these two L-functions that recovers vol(L). ﬁ] A further miracle is that all the
factors of 7 (the reader can glance at the Table in §7 to get a sense of how many of them
there are) all cancel with one another. Finally, there are various square classes that occur at
several places in the argument, giving rise to the 1/Q factor. To the extent that we tried to
check it, these square classes indeed cancel, as we would expect; however, we found that
this added so much complexity to the calculations that we decided to omit it entirely.

It may be worth pointing out that in the Ichino-Ikeda conjecture, it is usually the central
L-value that is of most interest, and the adjoint L-value (at s = 1) that appears may be
viewed a “correction factor”. In the analysis above however, the tables are turned and it is
the adjoint L-value at 1 that is of central importance while the central L-value provides the
correction terms in the period identity.

We would also like to acknowledge that there is a substantial body of work on the
cohomological period in degree ¢, for example [58| 39, 154, 153} 122]]. The focus of those
works is the relationship between this period and Deligne’s conjecture, and many of these
papers go much further than we do in verifying what we have simply called “working
hypotheses,” and in evading the issues arising from possibly vanishing central value. Our
work adds nothing in this direction, but our focus is fundamentally different: it sheds light
not on the interaction betwen this period and Deligne’s conjecture, but rather its interaction
with the motivic cohomology group mentioned above. (Closer in spirit to this paper is the
work [[72], where the relationship between periods in different degrees and the adjoint L-
function plays an important role.)

Remark 2. The fact that we obtain no information when the Rankin—Selberg L-function
vanishes at the critical point may seem disturbing at first. However, we do not regard it
as onerous: if one assumes standard expectations about the frequency of non-vanishing
L-values, it should be possible to deduce @]) for all such II — again, up to 4/Q>, and
assuming Beilinson’s conjectures.

Consider, for example, the case of PGL,, over an imaginary quadratic field. For any co-
homological automorphic representation o on PGLo, the equality (T.4.8) can be verified
using known facts about nonvanishing of L-functions. (Note that in this case the evaluation
of the left-hand side in terms of L-functions was already carried out by Waldspurger [81]].)
Now for a given form 73 on PGL3 one expects that there should be a cohomological form
4 on PGL; for which L(3,m3 x 75) # 0; in this case, our result above permits

4See §8 of [[74] for an attempt at understanding this striking coincidence.
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us to deduce the validity of for 3 x ), and thus for 73 (and then also for 3 X 7o
for any 72). We may then proceed inductively in this way to PGL,, for arbitrary n.

Admittedly, such non-vanishing results seem to be beyond current techniques of proof;
nonetheless this reasoning suggests that the result above should be regarded as evidence in
a substantial number of cases.

As for the “working hypotheses” on archimedean period integrals, these do not seem
entirely out of reach; a key breakthrough on nonvanishing has now been made by Sun [68].
We have formulated the hypotheses fairly precisely and we hope that the results of this
paper will give further impetus to studying and proving them.

Next, suppose that dim H4(Y, C); = d > 1. Choose a basis w1, . . . ,wy of harmonic
forms whose classes give a Q-basis for H2(Y, Q)r. Then similar reasoning to the above
gives

(1.4.13) det (wi,w;») ~ (vol L)<

More precisely, if G, G’ are inner forms of one another, we may equip the associated
manifolds Y and Y’ with compatible metrics — i.e., arising from invariant bilinear forms
on Lie(G) and Lie(G’) which induce the same form on Lie(G) ® Q = Lie(G') ® Q.
Assume that there exist automorphic representations IT and IT’ as in corresponding to
(for almost all v) matching characters x,, X/, of the local Hecke algebras. We assume that
all the representations in IT and II” are tempered cuspidal, as before.

Prediction 1.4.2. Suppose, as discussed above, that G, G’ are inner forms of one an-
other, and 11, 11" are nearly-equivalent automorphic representations, contributing to the
cohomology of both’Y andY'. Equip Y, Y’ with compatible metrics, as explained above.
Then )

det ({wi,w;))™ ~ det ((w],w}))*,
where d = dim H(Y, Q)r1, d’ is similarly defined, and the w,w’ are as above a basis for
harmonic forms which give Q-rational bases for cohomology.

Again, this prediction is pleasant because it does not mention motivic cohomology.
The general phenomenon that period matrices for different inner forms are related has
been observed for Shimura varieties where it is closely tied to the Tate conjecture [65],
[I500, [23], [S2]. However, the prediction above suggests that such relationships exist also
outside the Hermitian case. This feature is (to us) rather unexpected (see, however, [14]] for
an example of this in a simple setting). Rather than focus on this, we move on to a more
interesting consequence.

The above examples mentioned only periods in the lowest cohomological degree (q) to
which tempered representations contribute. The conjecture, however, gives control on the
cohomology groups H*(Y, Q)1 in intermediate dimensions ¢ < j < ¢*. In principle, it
allows us to compute the entire “period matrix” of cohomology, i.e., the matrix of pairings
(7i,w;) between a Q-basis 7; for homology and an orthogonal basis w; of harmonic forms,
given a complete knowledge of L. It is difficult, however, to test this directly, for two
reasons:

e it is almost impossible to numerically compute with motivic cohomology, and
e itis hard to exhibit explicit cycles in those dimensions (at least, it is hard to exhibit
cycles that are geometrically or group-theoretically natural).
Here is a case where we can finesse both of these issues. Suppose that £ © F'is a
field extension. Start with an F-algebraic group G; let G be the restriction of scalars
of G from F' to Q, and let G be the restriction of scalars of G xp F to Q. We write
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dr,qr,0E, qr for the quantities defined in but for Gr and G respectively. A
(near-equivalence class of) cohomological automorphic representation(s) Il for G con-
jecturally determines a base change lift Il on Gg. Let Ly, and Ly, be the motivic coho-
mology groups attached to Il 7, I i respectively. We will assume that the archimedean reg-
ulator is an isomorphism on these groups; in particular dim Ly, = dg and dim Ly, = Jp.
Now there is a natural map (dualizing a norm map) Lj;, — Lfj and the induced map

(1.4.14) NP LY e ALY

has image a Q-line inside A" L p.

To get a sense of what this implies, suppose that we can fix a level structure for Gg
such that the associated manifold Y satisfies dim H92 (Yg, C)r, = 1. Then the Q-line
above should, according to the conjecture, give rise to a “distinguished” Q-line Qn <
H= %97 (Yg, Q) — namely, we act on the Q-line H% (Yg, Q)r, using the image of
(T.414). The conjecture also allows us to predict various periods of the cohomology
class ) in terms of L-functions. In some special cases when E/F is quadratic (e.g., when
G = GL,,) this is related to the theory of base change; but when [E : F'] > 2 this seems
to be a new and “exotic” type of base change identity (indeed, in the classical theory, only
quadratic base changes have a nice “period” interpretation). We can generalize this in var-
ious evident ways, e.g. if E/F is Galois we can isolate various subspaces of Ly g indexed
by representations of Gal(E/F'), and make a corresponding story for each one.

Let us turn this discussion into a more precise prediction in one case:

Prediction 1.4.3. Notation as above; suppose that E/F is Galois, with Galois group
Galg/p, and split at all infinite primes. Choose a level structure for Gr and a Galg/p-
invariant level structure for G g, giving arithmetic manifolds Yr and Y respectively. Fix
compatible metrics on Yr and Yg. Suppose again that

diquF(YF,Q)HF = dlquE(YE,Q)HE =1.

Then there exist harmonic representatives wr, Wy, w's for nonzero classes in
bl TV E

Gal
(1.4.15) H?" (Yp, Q)up, H (Y, Q) H7H07 (Y, Q). "
such that
/ 2
(1.4.16) g llwrl® o 57 g

|we]

In the case § = 1, the third space of (I.4.13) is also one-dimensional and wp, w'; and
w; are all determined up to Q*; we can achieve a similar situation in general by a slightly
more careful discussion of w';.

As in (T.4.8), we can translate this to a statement of periods and L? norms. The nice
thing about (I.4.16) is that, like the second prediction, it doesn’t involve any motivic co-
homology.

Proof. Let v be a generator for A% L¥ ... As in (L4.11)) we have

{wp,wr) - |vrla, € Q.

Let vg be the image of vp under (T.4.14) and set wf, = wg - vg. Also ||[vg|q, =
[E : F| x |vp|a,. Taking norms and using we get the result. O
The second piece of evidence for the conjecture is a verification of Prediction [I.4.3] in

the following setting (see §9.5|and also Theorem [9.1.1]for a more general statement):
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Evidence for Prediction (1.4.16) is valid up to /Q* when G is
an inner form of PGLq, F' is a quadratic imaginary field, £ > F'is a

cyclic cubic extension, and (for level structures precisely specified) 1 is
the only non-trivial representation contributing to H*(Yr) and I is the
only non-trivial representation contributing to H*(Yg).

Note that we do this without knowing how to produce any cycles on the nine-manifold Yg
in dimension qg + 0 = 4! Rather we proceed indirectly, using analytic torsion.

In fact, in the text, we prove a stronger result (Theorem @ which relies for its
phrasing on Beilinson’s conjectures.

1.5. Some problems and questions. Here are a few problems that are suggested by the
conjecture:

(i) General local systems: it would be interesting to generalize our discussion beyond
the case of the trivial local system. While the general picture should adapt to that
setting, the verifications described in §I.4]use the specific numerology of Hodge
numbers associated to the trivial local system — it is by no means apparent the
same miraculous cancellations should occur in general.

(ii)) Non-tempered representations: our entire discussion in this paper concerns only
tempered representations, but it seems very likely that the phenomenon continues
in the non-tempered case. For example, that part of the cohomology of Y asso-
ciated with the frivial automorphic representation shows interesting connections
with algebraic K -theory. It seems important to formulate precisely the conjecture
in the general case.

(iii)) Coherent cohomology: a Hecke eigensystem can appear in multiple cohomologi-
cal degrees. For example, this already happens for the modular curve, in the case
of weight one. It would be good to develop a version of the theory of this paper
that applies to that context.

(iv) We have formulated here a conjecture concerning rational cohomology; but, of
course, it would be most desirable to understand the integral story. It is plausible
that this can be done by integrating the current discussion with that of the derived
deformation ring, developed in [21].

1.6. Notation. We gather here some notation that will be consistently used throughout the
paper.

Asin we will often refer to the “volume” of a vector space: if Vq is a rational vec-
tor space, equipped with a real-valued symmetric bilinear form {(—, —) on Vg, we define
volg V' € C*/Q* by the rule

(vol VQ)? = det((v;,v;)),

for a Q-basis vy, . . ., v,. If the form {(—, —) is indefinite, the volume could be imaginary.

G will denote a reductive group over Q; for all the global conjectures we will assume
that G has no central split torus. G denotes the dual group to G, a Complex reductive
Lle group. It is equipped with a p1nn1ng, in particular a “Borus” T < B. We put LG =
G x x Gal(Q/Q), as usual. Now G and LG can be descended to algebraic groups over Z,
using the Chevalley form of G; we will, by a slight abuse of notation, refer to the R-points
of the resulting groups by G(R) and “G(R). We will also write G and LG, for the
corresponding algebraic groups over Spec R.

Note that, at certain points in the paper it will be useful to refer to the “c-group” a
modification of the L-group that (in effect) does not require one to choose square roots
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in normalizing the Langlands correspondence. The definition of this group is recalled in
SA.L2

We denote by G = G(R) the real points of G and by K, a maximal compact subgroup
of G. Set gq = Lie(G) to be the Q-Lie algebra, and set

grR = Lle(G) = 0Q ®R, ER = Lie(Koc),

g=9gr®C, t=tr®C.

We denote by GR the base-change of G from Q to R, and similarly define G¢.
We set

(1.6.1) [G] = G(Q)\G(A)

to be the associated adelic quotient. We will usually use the letter K to denote an open
compact subgroup of G(Ay). For such a K, we have an attached “arithmetic manifold,”

(1.6.2) Y(K) = [G]/KS, - K,

which coincides with the definition given in the introduction.

There are two numerical invariants attached to G and Y (K') which will occur often.
Firstly, the difference 6 = rank(G) — rank(K,) between the ranks of G and its max-
imal compact subgroup. Secondly, the minimal cohomological dimension g in which a
tempered G-representation has nonvanishing (g, KY,)-cohomology; these are related via
2¢+ 6 =dimY(K).

The notation g denotes the complex Lie algebra that is the Lie algebra of G and if R is
any ring we denote by g the Lie algebra of G as an R-group. Also, as above, § denotes
the linear dual of g, i.e.,

a = HomC(a7 C)7

and we similarly define gq to be the Q-dual of gq.

We use the word “cohomological” in a slightly more narrow way than usual. A repre-
sentation of G(R) is cohomological, for us, if it has nontrivial (g, K% )-cohomology. In
other words, we do not allow for the possibility of twisting by a finite dimensional rep-
resentation; any cohomological representation, in this sense, has the same infinitesimal
character as the trivial representation.

IT will usually denote a near-equivalence class of cohomological automorphic repre-
sentations on G, or a variant with a stronger equivalence relation; 7 will usually be an
automorphic representation belonging to this class.

For any automorphic L-function L(s) and any special value sg, we denote by L*(sp)
the leading term of the Taylor expansion of L(s) at s = sg, i.e. L*(sg) = lims_4,(s —
$0) " "L(s), where r is the order of vanishing of the meromorphic function L(s) at s = sq.
Occasionally, when typographically convenient, we will write this instead as L(sg)*.

We often use the notation A ~ B to mean that A = B for some o € Q*. We will
often also encounter situations where (A/B)? € Q*, in which case we write A ~ Jar B.

For fields E' o E, an E-structure on an E’-vector space V' is, by definition, an E-
vector subspace V < V' such that V ® g E/ = V'. If V is a complex vector space we
denote by V the conjugate vector space with the same underlying space and conjugated
scaling. So there is a tautological antilinear map V + V' that we denote by v — 7.

If @ is a nondegenerate quadratic form on a finite-dimensional vector space V', and Q*
a form on the dual space V*, we say that ) and Q* are in duality if @) induces Q* via the
isomorphism V' = V* associated to Q; this is a symmetric relation. The Gram matrices of
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@ and Q* with reference to dual bases are inverse; () and Q* are called “inverse” quadratic
forms by Bourbaki [10, Chapter 9].

The terminology Q-motive will be used to denote a motive with coefficients in Q. This
will be mostly relevant in §8}
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2. MOTIVIC COHOMOLOGY AND BEILINSON’S CONJECTURE

The first part (§2.1) of this section is a recollection of Beilinson’s conjecture and the
theory of motives. The second part (§2.2) is less standard: we use a polarization to put a
metric on Deligne cohomology. The most important result is Lemma [2.2.2] which allows
us to compute volumes of certain motivic cohomology groups in terms of values of L-
functions.

2.1. Beilinson’s conjecture for motives. In this section we recall Beilinson’s conjecture
for motives. For simplicity, we restrict to the case of motives defined over Q and coeffi-
cients in Q, which is the main case we require. The summary below follows for the most
part [33]] §4, which the reader is referred to for more details. (Our notation however is
somewhat different.)

2.1.1. Cycles and correspondences. For k a field, let Var;, denote the category of smooth
projective varieties over k. For any variety Y € Vary, let CH? (Y)q denote the Q-
vector space given by the group of algebraic cycles of codimension j on ¥ modulo ra-
tional equivalence, tensored with Q. If we replace rational equivalence by homological or
numerical equivalence, the corresponding Q-vector spaces will be denoted CH{lom(Y)Q
and CHZ,.(Y)q respectively. If 27 € CH’(Y)q and 25 € CHF(Y)q, there is a

num

well defined intersection product 25 - 23 € CH/*¥(Y)q. This makes CH*(Y)q :=
@?;ﬂa(y) CH’(Y)q into a graded commutative Q-algebra with multiplication given by the
intersection product.

If X,Y € Vary, a correspondence on X x Y is an element of CH*(X x Y')q. Corre-
spondences may be composed as follows: if X,Y, Z € Vary, and 27 € CH*(X x Y)q,

% € CH*(Y x Z)q, then

20 20 = pi3x (P12(20) - p53(25)),

where p1o : X XY XZ - X xY,pog : X XY xZ —>lY><Zandp13 X XY XxZ > XxZ
denote the natural projections. Note that if 27 € CH? (X x Y)q and 2 € CH*(Y x Z)q,
then 2% o 24 € CH/F—4im(Y)(x 5 7)q.
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2.1.2. Chow motives. Let .4}, ;o denote the category of Chow motives over k. An object
in .#); rat consists of a triple M = (X, p,r) where X is a smooth projective variety over k
of dimension d say, p is an idempotent in CHd(X x X)q (i.e,pop=p)andr e Zis an
integer. Formally, the category of Chow motives is obtained by starting with the category
of effective motives (i.e., pairs (X, p) with p idempotent) and inverting the Tate motive

Q(_l) = (Plv {0} x Pl)’
Informally, the reader should think of (X, p,r) as first projecting X according to p, and
then “Tate-twisting” by . In this optic, we have Q(—1) = (spec(k),id, —1).
The morphisms in .} ¢ are described thus: for N = (Y, ¢, s) another object of .#

(2.1.1) Hom (M, N) = go CHI™Y+"=s(X « ¥)q op.
Q

Note that this convention is opposite to Deligne [[17]], who uses “cohomological” motives;
this amounts to the opposite of the above category.

Let Ax be the diagonal on X x X. We denote (X, Ax,r) by the symbol hX(r),
and if further » = 0 we denote this simply by hX. We then get a covariant functor
h : Vary — A} vat by sending f : X — Y to the graph of f on X x Y. The dual motive
MY of M is defined by

MY = (X,p',d—r),
where p — p' is the involution induced by interchanging the two components of X x X.
(Caution: the realizations of M " are closely related to but not exactly the duals of the
realizations of M. See below.) The category .#} admits a symmetric monoidal
tensor structure defined by

(X,p,r)®(Y,q,8) = (X xY,pxq,r+5).

The commutativity and associativity constraints M @ N ~ N ® M and (M ® N) ®
P ~ M ® (N ® P) are induced by the obvious isomorphisms X x Y ~ Y x X and
(XxY)xZ ~Xx(Y xZ).If k — K is a field extension, there is a natural base-change
functor .#), — #}, denoted either M — M @y k' or M — M.

There is also a notion of restriction of scalars along a finite field extension for Chow
motives; we warn that it does not correspond to restriction of scalars of the underlying
variety. See [17, Example 0.1.1].

2.1.3. Cohomology. For any subring A of R, we use A(j) to denote (27i)’ A = C. We
will need various cohomology theories on Varg: Betti cohomology Hf;, (Xc, Q(j)), alge-
braic de Rham cohomology Hy (X, j), f-adic cohomology H, gt(Xd, Q¢(j)), the Deligne
cohomology HY,(Xr,R(j)) and motivic cohomology H’, (X, Q(j)).

These are all rwisted Poincaré duality theories in the sense of Bloch and Ogus [7]; see
e.g. [34, Examples 6.7, 6.9, 6.10] and §1,2 of [[19]. Moreover, they all admit a cup-product
in cohomology such that the cycle class map is compatible with the product structure.

Any such theory H* may be extended to .#q ot as follows. First, for motives of the
form h X (r) set

H'(hX(r),j) == H""(X,j +1).
If f € Hom(hX (r), hY (s)), define
P H(hY (s), ) — HI(hX (1), )

by
(@) = mx s (cl(f) v m§(a)),
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where mx and 7wy denote the projections from X x Y onto X and Y respectively. Then
for M = (X, p,r), define

2.1.2) H'(M,j) = p*H'(hX(r), ).

If H" is a geometric cohomology theory (such as Hp, Hig or H (Mg)), then it satis-
fies usual Poincaré duality and we have canonical isomorphisms

(2.1.3) H (M) ~ (H(M))".
2.1.4. Comparison isomorphisms and periods. We continue to suppose that M is an object
of %Q,rat .
There are comparison isomorphisms
(2.1.4) compg g : H3(Mc, Q) ® C ~ Hip (M) ® C.
(2.1.5) compg o, : Hi(Mc, Q) ® Qr ~ Hy, (Mg, Qo).

Let ¢ and cgr denote the involutions given by 1 ® ¢ on the left and right of 2.1.4)
respectively, where ¢ denotes complex conjugation. Then via compg 4g, we have ([17,
Proposition 1.4])

(2.1.6) Fy - cB = car

where, if M = hX is the motive of a variety X, then Fi, denotes the involution on
HE (X e, Q) induced by the action of complex conjugation on the topological space X (C);
this definition passes to Hj (Mg, Q) via (Z.1.2). Note that F, is complex-linear, whereas
cp and cqr are complex antilinear. We will often denote cg by the usual complex conju-
gation sign, i.e.,
v = cp(v).

More generally, we can go through the same discussion with Q(j) coefficients: replac-
ing M by its Tate twist we obtain the comparison isomorphisms
(2.1.7) compg g : Hg(Mc, Q(j)) ® C ~ Hag (M, j)®C
We denote by 6(M,,j) the determinant of the comparison map compg 45 taken with
respect to the natural Q-structures Hg = Hj(Mc, Q(j)) and Har = Hir (M, 7). This
may be viewed as an element in C*/Q*. The equation (2.1.6) needs to be modified
slightly; while cp and cqr are still defined as the complex conjugations with reference
to the real structures defined by ([2.1.7), one twists F, by (—1)7 to take into account the
complex conjugation on Q(j).

The Q-vector space Hy (M, Q(5)) is in a natural way the underlying vector space of
a rational Hodge structure, pure of weight w = i — 2j; as usual we denote by F* Hyg
the associated Hodge filtration on Hg ® C = Hgr ® C. Thus Hg ® C = ®p1 q— H??
and F, : H?? ~ H?P is a complex-linear isomorphism. We denote by H% the +1
eigenspaces for the action of Fi,.

We suppose now that (M, 4, j) satisfies the following additional condition:

(2.1.8) If w is even, then F, acts on H*/2%/2 a5 a scalar ¢ = +1.
Let
L) e, if w is odd;
b wT_l F %s, if wis even.

Set F* = FP* Hyp and HE, = Har/F7. Then

dim Hy = dim Hiy
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and the Deligne period c*(M, i, 7) is defined to be the determinant of the composite map

compg 4R
—_—

Hf®C— Hp®C Hr®C— HL®C

with respect to the Q-structures H% and H diR, viewed as an element of C*/Q*. Note
that this is defined only under the assumption of (2.1.8).

2.1.5. Cohomology of Mw. Suppose M = hX, and let A be a subring of the complex
numbers, containing Q and stable by conjugation. Complex conjugation induces an in-
volution ¢ of X (C). This involution is covered by an involution of the constant sheaf A,
which induces complex conjugation on each fiber, and by an involution of the de Rham
complex % (C)’ sending a differential form w to t*w. Accordingly we obtain conjugate-
linear involutions on de Rham cohomology tensored with C, as well as on each step of the
Hodge filtration; on Betti cohomology with A coefficients, and (since the involutions are
compatible under the map A — Q()J((C)) also Deligne cohomology with A coefficients.

In each case, the fixed points will be denoted, following Beilinson, by the notation
H;" (XRr,—). Compare [2, p. 2037]. This notation extends, as before, to general motives
M.

Thus, for example,

Hi (Mg, A) = Hi(Mc, A)F°®,
is the subspace fixed by Fi,cg, where Fi;, is “acting on the topological space M¢” (at least
when M = hX) and cp is acting on the coefficients.

On the other hand,

Hig(Mr) = Higr(M) @ R
is simply the (real) de Rham cohomology of the associated real algebraic variety (or mo-
tive). Similarly, F" H (Mg) is the nth step of the Hodge filtration on the above space.
Observe, then, that F"" Hir (Mg ) has a natural Q-structure.

2.1.6. The fundamental exact sequences and Q-structures. Forn = % + 1 there are canon-
ical isomorphisms (see [2} §3.2])

Hy (Mg, R(n)) ~ Hy(Mg, C)/(Hi (Mg, R(n)) + F"Hix(Mg))
~ H(Mg,R(n —1))/F"Hi (M),

In the second equation, we regard F™ H' (Mg) as a subspace of Hj (Mg, R(n — 1)) via
the composite

(2.1.9) Fno1 : F"Hig(Mg) — Hi(Mg,C) == Hi(Mg,R(n —1))

where the latter map is the projection along C = R(n) @ R(n — 1).
This gives rise to two fundamental exact sequences:

2.1.10) 0 — F"Hig(Mg) 5" Hiy(Mg, R(n — 1)) — H5 (Mg, R(n)) — 0,
and
@11y } 4 4

0 — H(Mr,R(n)) > Hip(Mr)/F"Hig (Mr) — Hy (Mg, R(n)) — 0,

These exact sequences can be used to put (different) Q-structures on the R-vector space
det H,M (Mg, R(n)) using the canonical Q-structures on the left two terms of each se-
quence. The first, denoted %Z(M,i,n) will be the Q-structure obtained from (2.1.10),
namely using the Q-structures det Hj (Mg, Q(n — 1)) and det(F™H’x (M)). The sec-
ond, denoted 2% (M, i,n) will be the Q-structure obtained from (2.1.1T), namely using



18 KARTIK PRASANNA AND AKSHAY VENKATESH

the Q-structures det(Hg (M )/F™) and det Hj; (Mg, Q(n)). These Q-structures are re-
lated by

(2.1.12) DR (M,i,n) = (2ny/—1)~4 ALim) L §(M i n) - B(M,i,n),
where d~ (M, i,n) = dim H(Mc, Q(n)) ™. (See [33] (4.9.1).)

2.1.7. L-functions. For M in .Zq .a; and ¢ an integer, the L-function Li(M ,s) is defined
by

(2.1.13) L' (M,s) = [ [Li(M,s),
p

with
L,(M, s) = det(1 — Frob, p_s|Hgt(M67 Qé)lp)_17
where Frob, denotes a geometric Frobenius at p, the superscript I, denotes taking invari-
ants under an inertia subgroup at p and ¢ is any prime not equal to p.
Implicit in this definition is the following conjecture, which we will will assume:

Each factor L;(M ,8)!is in fact a polynomial in p~*, with rational coef-

ficients, independent of the choice of £. Moreover, this factor has no poles

in the plane Re(s) > £.
See [62, C5 and C6] of Serre’s article on local factors, for example. The last statement
is not necessary for Beilinson’s conjecture, but is very useful in handling bad factors; e.g.
it would be necessary in formulating Beilinson’s conjecture for the partial L-function,
which is implicitly what we end up using. In fact, we could get by with the weaker bound
Re(s) > &1,

The Euler product (2.1.13)) converges on some right half plane in C; conjecturally, one

also expects (see [70]) that Li(M , ) admits a meromorphic continuation to all of C that is
analytic as long as either  is odd or the pair (M, 7) satisfies the following condition:

(%) 1 = 2j is even and H(ftj(Ma, Q(4))%1Q/Q — o,
One also expects that L*(M, s) satisfies a functional equation of the form:
(Lop - L)(M,s8) = (e00 - €)' (M, ) - (Lop - L) ""(M Y, 1 — s).
where L, is the archimedean L-factor, and €., € are e-factors; for definitions, we refer to
[69].
2.1.8. Regulators and Beilinson’s conjecture. There are regulator maps
(2.1.14) ro: Hy(M,Q(j) @ R — Hi (Mg, R(j))

which give rise to a morphism of twisted Poincaré duality theories.

Scholl has shown [61, Theorem 1.1.6] that there is a unique way to assign Q-subspaces
H' ' (Mz,Q(n)) € H'J' (M, Q(n)) to each Chow motive over Q, in a way that respects
morphisms, products, and so that H;;l(hXZ, Q(n)) is given by the image of motivic
cohomology of a regular model 2", when one exists (for details, see loc. cit.). We now
present a version of Beilinson’s conjectures relating regulators to L-values.

Conjecture 2.1.1. (Beilinson) Suppose that n > % + 1 and that if n = % + 1 then (M, 1)
satisfies the condition (x) above.
(a) Then
rg: H N (Mz,Q(n) @ R — HLMH (Mg, R(n))

is an isomorphism.
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(b) Further, we have equivalently
(2.1.15) ro (det H ) (Mz,Q(n))) = LH(MY,1—n)* - Z(M,i,n),

(where, for typographical reasons, we have written L(. ..)* instead of L* for the regular-
ized value) and

(2.1.16) ro (det H' ' (Mz,Q(n))) = L'(M,n) - 2% (M, i,n).

We understand the meromorphic continuation of the L-function and its functional equation,
as well as the properties of local Euler factors discussed after Z1.13), to be part of this
conjecture.

Remark 3. We have omitted the description at the central point (conjecture of Bloch and
Beilinson). The point of main interest for us is the near right-of-center point, given by
n = % + 1 (with ¢ even). At this point, the formulation has to be typically modified to
allow for Tate cycles. For the motive that will be of most interest to us (namely the adjoint
motive attached to a tempered automorphic representation) this is unnecessary since this
motive satisfies assumption () in the cases of interest.

However, we will make use of the conjecture at the central point in part of our argu-
ments; there we will simply use Deligne’s formulation [17]. We also note that we implic-
itly assume a version of the Tate conjecture below in order to claim that the adjoint motive
is determined up to isomorphism (in the category of Grothendieck motives, see §2.1.9
§2.1.T1) by its associated Galois representations. (See Appendix [A]and the reference to
[63] therein.)

Remark 4. In Beilinson’s original formulation of this conjecture one postulates the exis-
tence of a Chow motive M, (Beilinson denotes this /°) such that

(2.1.17) H Y (MY) = H'(My,1)
for all geometric cohomology theories H* and all i. Then
L™ (MY,1—s)=L"(My,i+1—s),

so the value L=%(M Y, 1—n)* in 2.1.13)) can be replaced by L(My, i+ 1—n)*. See also
§2.T.12] below.

2.1.9. Pure motives. The category of Chow motives has the disadvantage that it is not
Tannakian. To construct a (conjectural) Tannakian category one needs to modify the mor-
phisms and the commutativity constraint. For any field k, let .#}, hom and .#; num denote
the categories obtained from .#j o by replacing the morphisms in Z.I.1)) by cycles mod-
ulo homological and numerical equivalence respectively. Thus there are natural functors

<ﬂk,rat - %k,hom - fﬂk,num-

Jannsen [35] has shown that .#}; hum is a semisimple abelian category and that numerical
equivalence is the only adequate equivalence relation on algebraic cycles for which this is
the case.

To outline what would be the most ideal state of affairs, we assume the following stan-
dard conjectures on algebraic cycles:

(1) (Kunneth standard conjecture) For any smooth projective variety X, the Kunneth
components of the diagonal (with respect to some Weil cohomology theory) on
X x X are algebraic.

(2) Numerical and homological equivalence coincide on CH* (X)q.
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Then the second functor above is an equivalence of categories, so we can identify .#; hom
and .#); num; this will be the category of pure motives or Grothendieck motives.

To make this category Tannakian, one needs to modify the commutativity constraint as
described in [18] §6, [35]. With this new commutativity constraint, the category of pure
motives is Tannakian ([35] Cor. 2); we denote it .#,. If k = Q, then M — H}(Mc),
M — HJp (M) and M — HZ (Mg) are Tannakian fiber functors.

We say moreover that a motive M is pure of weight w when the cohomology H: ]j_); (M, C)
is concentrated in degree j = w. In this case, we write for short Hg (M, C) for the graded
vector space H};(M, C), which is entirely concentrated in degree w. Note that in general,
a pure motive is not necessarily pure of a fixed weight.

2.1.10. Passage from Chow motives to pure motives. The L-function of a Chow motive
only depends on the associated Grothendieck motive. Therefore, one would like to make
sense of Beilinson’s conjectures directly for Grothendieck motives over Q. As we shall ex-
plain in §2.1.T0] §2.1.T1] this can be done satisfactorily assuming the filtration conjectures;
and this assumption seems to be inevitable in our current state of understanding. While the
discussion that follows is presumably known to experts, we were not able to find it in the
literature.

When we apply Beilinson’s conjecture to Grothendieck motives, we always understand
that the filtration conjectures are assumed. One could remove this, in each fixed instance,
by starting with a Chow motive rather than a Grothendieck motive; however, it is more
natural in our applications to work with Grothendieck motives, see Remark 0]

For any field k, Beilinson conjectures the existence of a descending filtration F'* on
motivic cohomology H', (X, Q(j)) for X in Vary, satisfying the properties (&) through
(&) of [36] Remark 4.5(b):

(1) FPH', (X, Q(5)) = H'4 (X, Q()).

(2) On H*)(X,Q(j)) = CH/(X)q, we have F! = CH’ (X )pom,q-

3) F*is respected by pushforward and pullback for maps f : X — Y.

@) FHY(X,Q(h)) - F*H (X, Q(j2)) € F™HH'L (X, QU1 + j2)-

3) FTHf”(X,Q(j)) =0 forr » 0. For k a number field, F?H', (X, Q(j)) = 0.
(6) There are functorial isomorphisms

Grp(H'y (X, Q(5))) = Bxting, (12" (X)()))-
Here MMy, is a conjectural abelian category of mixed motives containing .#}, hom
as a full subcategory and 1 denotes the trivial motive h(Spec k).
Assuming these conjectures, one also gets a filtration F'* on H', (M, Q(j)) for M €
M vat-
liettus note the following consequence of the above conjectures, a proof of which can
be found in [48], §7.3 Remark 3.bis]:

Proposition 2.1.1. (Beilinson) Assuming the conjectures above on the filtration F°, the
functor My, yar — M nom is essentially surjective. Given M € My, nom, and any two lifts
M and M’ of M to M, rat, there exists an isomorphism M ~ M’ in M, rat that maps to
the identity on M in M}, hom-

Remark 5. In fact, (assuming the filtration conjectures) if £ : M — N is an isomorphism
in M hom, any lift 5 M — N of & to M, rar, is an isomorphism in ///k rat- Indeed,
letn : N — M be the 1som0rph1sm which is inverse to £ and let 7 : N — M be a lift
of 7. Then &7j := o fj € End(N ) maps to the identity in End(N). Now the filtration



AUTOMORPHIC COHOMOLOGY, MOTIVIC COHOMOLOGY, AND THE ADJOINT L-FUNCTION 21

conjectures imply that the kernel of the map End(N) — End( ) is a nilpotent (two-
sided) ideal. It follows from this that 577 is invertible in End( ), which implies that §~
admits a rlght inverse §’ Similarly, 5 is invertible in End (M ) SO § admits a left inverse
", Clearly, & = £”, so £ is an isomorphism.

Corollary 2.1.1. Let M = (X,p,r) in My, hom. For any two lifts M = (X,p,r) and
M' = (X,p',r) of M to My, rat, there exist canonical isomorphisms
Grie(Hly (M, Q(5))) = Gr'p (H, (M, Q(3)))

Proof. Let ¢ be an element in ' ocCHY ™) (X x X')qop giving an isomorphism M ~ M,
covering the identity map on M. Then £ induces maps

& H'y(M',Q(j))) — H'y(M,Q(j)))

that preserve the filtration, given as usual by z — p1 4 (€ - p%(x)). Now & is well defined
up to an element in § o CHY™X) (X x X)homqop=p oF! CHI™() (X X)qo

It follows from property (@) of the filtration that the induced map on Gr™ is independent of
the choice of 5 . O

This corollary allows us to defined graded pieces of motivic cohomology for motives in
M hom- Indeed, for M € M), hom, we lift M to M in ), va, and define

Grip(H'y (M, Q()))) := Gri(Hly (M, Q())))-

The corollary above shows that this is independent of the choice of M up to canonical
isomorphism.

Corollary 2.1.2. Let M = (X,p,7),N = (Y,q,s) € Myhom and § : M — N a
morphism in My, hom. Then & induces canonical maps

¢ : Grip(H (N, Q(j))) — Gr%(Hi/AM, Q(j)))-

Proof. To construct &*, first pick lifts M = (X,p,r) an = (Y,q,s) of M and N
respectively to .} rat. Let € be a lift of € to ¢ o CH* (X x Y) p. The map

& H'y(N,Q(j)) — H' (M, Q(j))

preserves filtrations; by the same argument as in the previous propostiion, the induced map
on graded pieces is independent of the choice of £, and is thus canonical. (I

The following corollary follows immediately from the canonicity of the map £*.

Corollary 2.1.3. (1) Suppose € : M — N and £ : N — P are morphisms in
M hom- Then (€' 0 £)* = &% 0 & on Gr"H', (P, Q(j)).
(2) Suppose that £ : M — N is an isomorphism in M, hom. Then

€1 Gr"H'y (N, Q(5)) — Gr"H's (M, Q(j))

is an isomorphism.



22 KARTIK PRASANNA AND AKSHAY VENKATESH

2.1.11. Beilinson’s conjectures for pure motives. Now we specialize the previous section
to the setting of Beilinson’s conjectures on L-values. The key point is that even though
these conjectures are formulated in terms of motivic cohomology of Chow motives, in
each case it is only a certain graded piece that matters, so the conjectures make sense for
Grothendieck motives as well. Indeed, let us now specialize to £k = Q, and let X be a
variety over Q. Then:

(i) Forn > % + 1, we see from () that
GrH 1 (X, Q(n)) = Hom g (1, "1(X)(n)) = 0
since h**1(X)(n) is pure of weight i + 1 — 2n < —1. Thus in this range we have
HFN(X,Q(n)) = F'H7 (X, Q(n) = Gr' HJ (X, Q(n),
since F* = 0 by (B).
(i) If n = 5 + 1, the conjecture typically also involves
CH"™(X)q/ CH" ™! (X)nom.q = Gr’H (X, Q(n — 1)).

(iii) If n = % we are at the center and the conjecture involves

CH" (X)hom,q = F'HZ' (X, Q(n)) = Gr' HZ (X, Q(n)),
since F? = 0 by ().
To be more precise, in case (i) (which is the case of main interest in this paper), one
needs to work with the subspace of “integral” elements, '} ' (Xz, Q(n)). But as pointed

out earlier, Scholl has defined rational subspaces Hj;l (Mz,Q(n)) for M € AqQ rat that
are invariant under isomorphisms in .Zq ra¢. Consequently, if M € .#q hom, one can lift

M to M in AQ rat and then consider the subspace HZl (]\72, Q(n)), this being indepen-
dent of the choice of M.
2.1.12. The dual motive. One sees now that there are two different notions of the “dual

motive”. On the one hand, if M = (X, p,r) is either a Chow motive or a Grothendieck
motive, we have defined M = (X, p?,d — r) with d = dim(X). Recall that this satisfies

(2.1.18) H™ Y (MY)=H'(M)"

for any (geometric) cohomology theory. On the other hand, assuming the conjectural
framework described above (so that .44, is a Tannakian category), one can attach to
any M in Ao, a motive M* in .4, op, such that

(2.1.19) HY(M*) = H'(M)"

for all 7. By Prop. [2.1.1} one can lift M* to a Chow motive, any two such lifts being
isomorphic but not canonically so. We note the following example: if M = (X, ;,0)
with 7; the Kunneth projector onto A7 (X), then

MY = (X>7T2d7j7d)7
.2\4>i< = (X,’/ng,j,d—j).
and we can take Mo = M = (X,7;,0) (see Remark J4).

Remark 6. The case of most interest in this paper is when M € .#); nom is (pure) of weight
zero so that H*(M) vanishes outside of i = 0. It follows then from (Z.1.18) and @2.1.19)
that M* = M. Further, from (2.1.17) we see that we can choose

My = M* =M,
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so all notions of dual agree in this case. Let us restate Beilinson’s conjecture in this case for
n = 1. Writing simply L instead of L® and Z(M), 2% (M) for #(M,0,1), 2%(M,0,1)
respectively, the conjecture predicts, equivalently:

(2.1.20) ro (det HYy(Mz,Q(1))) = L*(M*,0) - Z(M)
and
(2.1.21) ro (det H'y(Mz,Q(1))) = L(M,1) - 2%(M).

2.2. Polarizations, weak polarizations and volumes. In this section, we examine the
fundamental exact sequence in the presence of a polarization on M. We also
introduce the notion of a weak polarization, which for us will have all the properties of a
polarization except that we replace the usual definiteness assumption by a non-degeneracy
requirement.

2.2.1. Hodge structures. We first discuss these in the context of rational Hodge structures.
A Q-Hodge structure of weight m consists of a finite dimensional Q-vector space V' and
a decomposition

(221) VC = ®p+q=mvp,q’

such that VP4 = V9P, The Hodge filtration on V¢ is given by FiVg := @ .. VP4,

p+g=m
The splitting (2.2.1) can be recovered from the Hodge filtration since VP4 = FPVo n
FiVe.
If M € .#q, the Betti cohomology Hf}' (M) carries a Hodge structure of weight m.
The Hodge structure Q(m) of weight —2m is defined by the cohomology of the motive

Q(m), explicitly:
(2.2.2) V= (@2r/-1)"mQ, VT = V.

In particular, Q(1) should be regarded as the Hodge structure of H1(G,,) (or Ha(P'),
if one wants to only work with projective varieties). Indeed, if we identify

H; 5(G,,,C)~C

by integrating the form %, the resulting identification carries the Betti Q-structure to
(274/—1)Q < C, and the de Rham Q-structure to Q = C.

If V is a Q-Hodge structure then there is an action of C* on V¢, which acts by the
character

(2.2.3) 72— 2PZ9

on VP4, This action preserves V @ R < V.

For the cohomology of motives defined over Q this action extends to a larger group: let
Wr and W denote the Weil groups of R and C respectively. Thus We = C* while Wgr
is the non-split extension

1-C*>Wr—-{)—1
where j2 = —1and j~'zj = z for z € C*. For M € ./q, we extend the action of (2.2.3)
to the real Weil group via
j=1P"9F, on VP4

see 69, §4.4] (we have used an opposite sign convention to match with (2.2.3))).
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2.2.2. Polarizations on Hodge structures. A weak polarization on a pure Q-Hodge struc-
ture V' of weight m will be a non-degenerate bilinear form
Q:VxV-Q
satisfying (here we continue to write ) for the scalar extension to a bilinear form Vg x
Ve — C)
(i) Q(u,v) = (=1)"Q(v,u). Thus Q is (—1)™-symmetric.
(i) QVP, V) = O unless (p.q) = (¢ ).

We mention various equivalent formulations of these conditions. Firstly, since @ is
defined over Q, we have Q(u,v) = Q(@,v). From this it is easy to see that (ii) may be
replaced by (ii’):

(ii") F'V¢ is orthogonal to F'* Vi where i* := m — i + 1.

Since @ is non-degenerate and since F*V and Fi* Ve have complementary dimensions
in Vo, we can also replace (ii’) by (ii”):
(ii”) The orthogonal complement of F'Vc is F'* V.
Now define
S = (27r\/—71)_mQ7
considered as a linear function
S: VRV - Q(—m).
Then condition (ii”) above is exactly equivalent to saying that S gives a morphism of Q-
Hodge structures. Thus we can equivalently define a weak polarization on V' to consist of
a morphism of Q-Hodge structures S as above satisfying S(u ® v) = (—=1)™S(v ® u).
A polarization on a Q-Hodge structure V' is a weak polarization () that satisfies the
following additional positivity condition:
(iii) If uw € VP9, o # 0, then i?~9Q(u,u) > 0. (That i~ 9Q(u, u) lies in R follows
from (i) and the fact that () is defined over Q.)

Let C be the operator on V¢ given by the action of ¢ € C* (see (2.2.3)). Then we can
rewrite (iii) above as Q(Cu, @) > 0. This statement holds for all u € V¢ (and not just on
elements of fixed type (p, ¢)) on account of (ii). Thus condition (iii) is equivalent to:

(iii") The hermitian form (u, v) — Q(Cu, v) is positive definite.
Now C restricts to an R-linear operator on Vg, and the condition (iii’) is equivalent to
(iii”) The R-bilinear form
VR xVr —>R, (u,v)— Q(Cu,v)
is symmetric and positive definite.

2.2.3. Polarizations on motives. A weak polarization on a pure motive M € .#q of
weight m will be a morphism

s: M®M — Q(—m)
that is (—1)™-symmetric and such that the induced map
M — M*(—m)
is an isomorphism. In particular, writing V' = Hg(Mc, C) for the associated Q-Hodge
structure, s induces an isomorphism V' «— V*(—m), which gives a (—1)™-symmetric

bilinear form

Hg(s): VRV — Q(—m),
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commuting with the action of C*.

Thus Hg(s) is a weak polarization of Hodge structures, in the sense of A polar-
ization on M is a weak polarization s such that Hp(s) is a polarization on V.

For the next statement, recall that V' = Hg(Mc, C) is equipped with an involution F,.

Lemma 2.2.1. The (complexification of the) weak polarization Hg(s) : VQV — Q(—m)
is equivariant for cg, Fy and the action of the Hodge S' on V.

Proof. 1t is enough to show these assertions for the morphism V*(—m) — V. But given
any morphism f : M — M’ of objects in .#q the induced morphism on Betti cohomology
commutes with cg, F., and S*. ([

In practice, instead of a weak polarization on M, we can work just with part of the
linear algebraic data given by such a form.
Namely, we give ourselves a nondegenerate symmetric bilinear form

(2.2.4) S:V xV —Q(—m) = (2m)""Q

onV = Hp(Mc, Q) whose complexification S¢ on Vi satisfies:

(a) Sc is invariant by Fi, and C*, i.e., by the action of Wg, and
(b) Sc restricts to a Q-valued form on Hyg (M).

This gives a Hermitian form -, -) on V¢ defined by
(z,y) = S(z,9)

2.2.4. Metrics on Deligne cohomology. We shall now explain how to use a polarization
to equip Deligne cohomology with a quadratic form. In fact, we do not need a polariza-
tion, but simply the linear algebra-data associated to a weak polarization, as in (2.2.4) and
discussion after it.

Recall (for M € .#q) the Beilinson exact sequence:

(225) 0 F"Hig(Mg) 5 Hy(Mg, R(n — 1)) — Hi (Mg, R(n)) — 0,

where i and 1 are integers with i < 2n — 1; and the first map is as in 2.1.9).

Let M be pure of weight ¢ and let V be the Q-Hodge structure H5(Mc, Q). We
suppose, as in the discussion above, we are given the linear algebraic data associated to a
weak polarization, i.e.

S:VxV—-Q(—i)

and we define Q = (271/—1)"S, as before. The distinction between S and @ is that S is
rational valued on de Rham cohomology, and @) is rational valued on Betti cohomology.

Proposition 2.2.1. Let (-, -) denote the bilinear form u,v — Q(u,v) on Hy(Mg,R(n —
1)). Then

(1) The form (-,-) is R-valued.

(2) Suppose that i is even. Then the form (-, -) is symmetric and non-degenerate and so
is its restriction to the subspace 7,1 (F™Hiz (MR)). In particular, it induces by
orthogonal projection a non-degenerate form, also denoted (-, -), on the quotient
H;rl (MR’ R(n)).

(3) Ifi = 2n—2and S arises from a polarization, the form (-, -) on Hyt ' (Mg, R(n))
is symmetric and positive-definite.
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Proof. Qisreal-valued on Hi (Mg, R) and so Q(u, v) = Q(u,v). Letu,v € Hy(Mg, R(n—
1)). Then @ = (—1)"'u and same for v; thus
Q(u,0) = Q(u,v) = Q((~1)""u, (~1)"70) = Q(u, v),
from which we see that (-, -) is R-valued.
Now suppose that i is even. Then @ is symmetric, and so (v, u) = Q(v,u) = Q(u, V) =
Q(u,v) = (u,v). Thus (-, ) is symmetric.
The Hermitian form (u, v) — S(u, ©) is nondegenerate, and so (u,v) — Re Q(u, ) is

a nondegenerate real-valued quadratic form on Vc considered as a real vector space.
Now the inclusion R(n — 1) < C induces an identification (§2.1.5)

(2.2.6) Hiy(Mg,R(n— 1)) = Hy(Mc, C)»=CD" " Fe=(-D"""

_ ygem D T =)

The quadratic form Re Q(u, v) is preserved by cg, and Q(Fou, Foov) = (—1)'Q(u,v);
since ¢ is even, we see that Re Q(u, ) is preserved by Fy,. Therefore, the restriction
of Re Q(u,v) to H5(Mg,R(n — 1)) remains nondegenerate, since this subspace is an
eigenspace for the action of the Klein four-group generated by Fi,, cp, and this group
preserves Re Q(u, D).

The same analysis holds verbatim replacing Vi by VP 4@V %P, and shows that Re Q(u, )

is nondegenerate on (V79 @ Vq’p)cB:(_l)TH’Fx:(_l)nil. Since
ﬁ'n—l(FnHéR(MR)) _ @ (VPig V’IaP)CB:(_l)nil7F00:(_1)n71
pﬁli
the non-degeneracy of (-, -) restricted to 7,1 (F" Hig (Mg)) follows.
Finally, for (3), we note that when ¢ = 2n—2, the orthogonal complement of 7,1 (F" H} (Mg))
is just
(‘/n—l,n—l)(:]3:(—1)”’1,FOO:(—l)"’1
and the restriction of (-, -) to this subspace is positive definite if S is a polarization. ]
2.2.5. Motives of weight zero. The case of most interest to us is when M is of weight 0
and n = 1, ¢ = 0 and we restrict to this case for the rest of this section.
The exact sequence ([2.2.5)), specializedton = 1 and ¢ = 0 is:
(2.2.7) 0 — F'Har(M) ®q R =% HY(Mg,R) — Hb(Mg,R(1)),— 0
_
=H!,(Mz,Q(1))®R
where the equality in the second line is conditional on Beilinson’s conjecture. The map 7
here is given by:
1
7o(z) = i(x +I).
Note that the Weil group Wg acts naturally on Hg(Mc, R) and the fixed set can be de-
scribed in equivalent ways:

Hg(Mc,R)"® = subspace of the (0, 0)-Hodge part of Hg(Mc, C) fixed by F., and cp
= orthogonal complement of 7y (F' Hqr (M) ®q R) inside Hg (Mg, R),
for any weak polarization s on M. Thus (2.2.7) induces an isomorphism

(2.2.8) Hg(Mc,R)"® = HL (Mg, R(1)).
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Proposition implies that, if we are given a weak polarization s on M, then the form
S induces on Hg(Mc, R)"® — H} (Mg, R(1)) a non-degenerate quadratic form; if s
is actually a polarization, this quadratic form is in fact positive definite.

2.2.6. Volumes. We continue to study the setting of a weight 0 motive /. In what follows,
we do not need the full structure of a polarization: all we need is the associated linear-
algebraic data, i.e., S as in equation @, and thus we will just assume M to be so
equipped. Recall that although S is nondegenerate, no definiteness properties are imposed
on 1t.

We can compute the volumes (in the sense of (I.4.2)) of the three Q-vector spaces
appearing in (2.2.7), using the metric arising from S.

The restriction of S¢ to Hg(Mgr,R) = V(I;“”CB is just given by (z,y) — Sc(z,v).
When we pull back this form to F! Hyr (M) ® R via 7, the result is

(0.9) = (55 P20 = H(Soe) + Sol@y) = 1(So(w.) + Solw3)

1 1
= §RQSC($,Z]) = §SC(x7y)

Here we have used that Sc(r,%) € R for z,y € F*Hqr(M) ® R: this is because cp
preserves Hqr (M) ® R (since cg and cqg commute), and so §j € Hqr (M) ® R also.

The next lemma describe some basic results concerning these volumes and their rela-
tions. In particular, up to factors of Q*, the squares of these volumes do not depend on the
choice of S:

Lemma 2.2.2. With notation as above, the square of volg Hg(Mg, Q) lies in Q*, and
the square of volg F* Hqr (M) is, at least up to Q*, independent of the choice of the form
S (subject to S satisfying the conditions (a) and (b) after 2.2.4)).
If we moreover assume Beilinson’s conjecture, as formulated in (2.1.20), we have:
~vols Hp(MRr, Q)
VOIS FlHdR(M) ’

where L* means highest non-vanishing Taylor coefficient; and again all volumes are com-
puted with respect to the form S.)

(2.2.9) volg H',(Mz,Q(1)) ~qx L*(M*,0)

Proof. The first assertion is immediate, since .S is rational-valued on Hg(Mc, Q). We
next prove the assertion concerning volg F' Hqr (M). The form S descends to a perfect
pairing

S: F'Har(M) x Har(M)/F'Har(M) — Q,
and hence a perfect pairing

S :det F'Hyg (M) x det(Har(M)/F°) — Q.
Note also that the complex conjugation cp induces an isomorphism

F'Har(M)® C ~ (Har(M)/F°) ® C.
Choose generators v, v~ for the Q-vector spaces det F'Hyr (M) and det(Hqgr (M)/F°).
If dim F! Hyr (M) = d, the image of v under the natural projection
d d
@ /\ (Har(M) ® C) — /\ (Har(M)/F°® C)

is a generator for the right-hand side, so we have

(2.2.10) ot) =X-v~
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for some scalar A € C* (in fact, in R*) which is obviously independent of the choice of
S. The volume of F'* Hyr (M) is then given by

2.2.11) 2% (volg FlHdR(M))Q = Sc(v,vF) = Sc(vt, p(wt)) =X- ST, v7).
The result follows since S(vt,v™) € Q*.

We finally verify (2.2.9): by (2.1.20) we have:
(2.2.12)  det(Hp(Mw,Q)) - L*(M*,0) ~ det F* Har (M) - det(H',(Mz, Q(1))),

which we should regard as an equality inside

* * *
/\ He(Mr,R) =~ /\"(F'Hir(Mg)) ® /\" Hj (Mg, R(1)).
Computing volumes of both sides of (2.2.12) with respect to the polarization we get (2.2.9).
(]
We remark that the Lemma allows us to define vol F' Hyr (M) up to 4/Q*— namely,
take v/\ where \ is in (Z.2.10) — even without a polarization.

3. FUNDAMENTAL CARTAN AND TEMPERED COHOMOLOGICAL REPRESENTATIONS

In this section, we will associate a canonical C-vector space a¢ to the real reductive
group Grj; its complex-linear dual will be denoted by af.. These vector spaces depend on
Gy only up to isogeny.

Despite the notation, the group Ggr does not need to be the extension of a reductive
group over Q; for this section alone, it can be an arbitrary real reductive group. We denote
by G the real points of Gg. Similarly, in this section alone, we will allow G to denote the
dual group of the real algebraic group, rather than the Q-algebraic group; in other words,

LG = G x Gal(C/R),

rather than the variant with Gal(Q/Q).

We shall then construct an action of A*af, on the cohomology of any tempered, coho-
mological representation of GG, over which this cohomology is freely generated in degree
q. We will always have

(3.0.1) dimaf, = ¢ = rank(GQ) — rank(Ky,),

The short version is that the vector space af, is dual to the Lie algebra of the split part
of a fundamental Cartan algebra, but we want to be a little more canonical (in particular,
define it up to a unique isomorphism).

We will give two definitions of af,. The first in §3.1|is analogous to the definition of
“canonical maximal torus” of a reductive group. The second definition in §3.2] uses the
dual group.

There is a natural real structure on ag, arising from either of the constructions. How-
ever, what will be more important to us is a slightly less apparent real structure, the “twisted
real structure,” which we define in Definition[3.1.2]

In §3.4) we construct the action of A*af, on the (g, Ky )-cohomology of a tempered
representation; in fact we will work with (g, K% )-cohomology, where KY, is the identity
component of K. The book [8]] is a standard reference for (g, Ko,) cohomology.

We follow in this section the convention of allowing g etc. to denote the complexifica-
tions of the Lie algebras and reserving gr or Lie(Gg) for the real Lie algebra. We write
tgr for the Lie algebra of K ; let 8 be the Cartan involution of gg that fixes tg, and pr
the —1 eigenspace for #, with complexification p. Thus g = €@ p. Finally, let Z be the
center of Gr, with Lie algebra 3 and real Lie algebra jr.
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Moreover, let us fix
(3.0.2) Bgr = an invariant, f-invariant, R-valued quadratic form on gg,

with the property that Bgr (X, 6(X)) is negative definite. (Invariant means that it is invari-
ant by inner automorphisms, whereas 6-invariant means Br (6(X),0(Y)) = Br(X,Y).)
For example, if Ggr is semisimple, the Killing form has these properties. Note that such a
form gives rise to a positive definite metric on gr /R, and this normalizes a Riemannian
metric on the locally symmetric space Y (K).

3.1. First construction of af, via fundamental Cartan subalgebra. A fundamental Car-
tan subalgebra of gg is a f-stable Cartan subalgebra whose compact part (the fixed points
of ) is of maximal dimension among all #-stable Cartan subalgebras. These are all con-
jugate, see [82, 2.3.4]. Let ¢ be the dimension of the split part (—1 eigenspace of #) of
a fundamental Cartan subalgebra. Then § = rank(G) — rank(K,). Informally, 0 is the
smallest dimension of any family of tempered representations of G. The integer ¢ depends
only on the inner class of Ggr. For almost simple groups, § = 0 unless Gg is “a complex
group” (i.e. Ggr ~ Resc /RG* where G* is a simple complex reductive group) or Gg is
(up to center and inner twisting) SL,,(n > 3), Ezpm or SO,, 4 where p, ¢ are odd.

Consider triples (a, b, q) that arise thus: Begin with a Cartan subgroup B < K¢, with
Lie algebra bg < tr and complexified Lie algebra b — ¢. Form its centralizer tg =
ar @ bgr inside gr, where ag is the —1 eigenspace for 6; it is a fundamental Cartan
subalgebra with complexification t = a @ b. Pick generic x € 1br and let q be the sum of
all eigenspaces of x on g which have non-negative eigenvalue. Thus q is a Borel subalgebra
and its torus quotient is a @ b.

Proposition 3.1.1. Suppose (a,b,q) and (a/,b',q") arise, as described above, from (b, x)
and (b',2').

Then there then there exists g € Gr(C) such that Ad(g) carries (a,b,q) to (a/, b, q’)
and preserves the real structure on a (i.e., carries ag C a to ay < o). Moreover, any two
such g, g’ induce the same isomorphism a — o’

Note that (a, b, q) and (a, b, q") need not be conjugate under Ggr (R).

Proof. The last (uniqueness) assertion is obvious: g, ¢’ differ by an element of the Borel
subgroup corresponding to ¢, which act as as the identity on its torus quotient.

We thank the referee for suggesting the following proof (much shorter than our original
one): There certainly exists such a g carring q to ', and a@® b to a’ @ b’. It suffices to show
that the map

Ad(g) :a®@b—-ad @b
commutes both with complex conjugation and with the Cartan involution. For this, it
suffices to show that the adjoint action of 6(g) and g also carry (q,a @ b) to (q',a’ ®b’),
for this characterizes them up to the centralizer of a @ b.

But 6(g) takes 6(q) = q to 6(q") = ¢’, and similarly it takes a@® b to a’ @ b’. Also, g
takes q to q’ (all complex conjugations are for the real structure on G) and takes a @ b to
a’ @ b’. Since q is the opposite to q with respect to a @ b, and similarly for q’, we see that
g also takes ¢ to q’ as claimed. O

Therefore, a or ag as above is well-defined up to unique isomorphism; we denote this
common space by ag. More formally,
(3.1.1) ag = lim a,
(a,b,9)
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and we define af, to be its C-linear dual. Visibly as does not depend on the isogeny class
of Gg - it depends only on the Lie algebra Lie(Gr). It is also equipped with a canonical
real structure arising from ag < a.

There is another real structure on a of importance to us. To describe it, the following
Lemma (which we shall prove in §3.1.T) will be useful:

Lemma 3.1.1. With notation as described, let nig € Ko, normalize b and take the par-
abolic subalgebra q N € < ¢ to its opposite, with respect to the Cartan subalgebra b.
Similarly, let ng € Gr(C) normalize a @ b and carry q to its opposite. Then ng and ng
both preserve a, and coincide on it.

It is at least clear that nx preserves a, and the same statement for ng can be proved in
a fashion that is analogous to the proof of Proposition [3.1.1] However, the full statement
seems a bit tricker, which is why we confine the proof to §3.1.1]

Definition 3.1.1. The long Weyl element is the involution of ag = lim 0 ¢ induced by

(a,b,
the common action of ng or nx from the prior Lemma.
The long Weyl element preserves ag R, since wg can be represented by an element of

K. We use it to define a second real structure:

Definition 3.1.2. The twisted real structure a’G,R on ag is the fixed points of the involution
given by -

(X — X) w,
where X — X is the antilinear involution defined by ac R, and w is the long Weyl group
element for ag.

3.1.1. Root systems on b. The following section — whose aim is to prove Lemma -
owes much to an anonymous referee of this paper, whose suggestions greatly simplified
our previous arguments.

Write M for the centralizer of a in G; it is a Levi subgroup. Write m for the (complex)
Lie algebra of M.

It is proved in [20, Proposition 18.2.3]; that the set of roots of b on g form a not neces-
sarily reduced root system inside the dual of ibgr /i(3r M br); we regard the latter as an
inner product space by using the form Bg. (The reference cited uses the Killing form, but
B has all the necessary properties for the argument.)

We will abuse notation slightly and simply say that these roots form a root system

A(g:b) cibg,
with the understanding that their span is only the subspace of ibj; orthogonal to the central
space 3r Nbr < br. Then the roots A( : b) on € or the roots A(m : b) on m form subsys-
tems of A(g : b). The Weyl groups of these root systems will be denoted W¢, Wi, W)y
respectively; these are all regarded as subgroups of Aut(b). We note two useful facts about
this setup:
e Each root of b on g is either a root on £ or a root on m:

(3.1.2) A(g:b) = A(E:b) UA(m:b).

Indeed, for a a root of b on g, the corresponding root subspace g, is preserved
by fc, the complex-linear extension of the Cartan involution for gr, and also by
ad(a). If the fixed space of O on g, is nontrivial, then « lies inside A(¢ : b).
Otherwise f¢ acts as —1 on g, and for Z € a, X € g, we compute

-2, X] = 0(12,X]) = [0(2),0(X)] = [-2, - X] = [2, X].
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so that a centralizes the whole root space; in particular, g, < m. This proves
G1D).

e Each element of W), has a representative ny; € Ggr(C) which normalizes a
and b. For this it is harmless to assume (passing to the derived group) that G is
semisimple, and to consider the case of a root reflection sg for some root 3 €
A(m : b). Now [ is the restriction of some root 5* of a @ b on m, and so w has
a representative w inside the normalizer of a @ b inside M¢c; now w preserves da,
and therefore it preserves b too by consideration of the Killing form. (At the last
step, we note that agr, br are orthogonal to one another under By, which follows
from the fact that they are in different eigenspaces for the Cartan involution.)

Lemma 3.1.2. Suppose that €, €’ are chambers for A(g : b) that lie in a fixed chamber
for A(t : b). (Here, a“chamber” for a root system is a connected component of the
complement of all hyperplanes orthogonal to the roots.) Then there is wy; € Wy, the
Weyl group of A(m : b), such that wy € = €.

Proof. Because of (3.1.2)) a fixed chamber for A(¢ : b) is subdivided by hyperplanes ¢
orthogonal to roots 5 € A(m : b); the corresponding reflection s, € W (m : b) allows one
to move between the two sides of this 7. U

Conclusion of the proof of Lemma We choose a chamber ¢ in ibg for A(g : b)
that is associated to ¢, i.e. for z € % the Borel subalgebra ¢ > b @ a is spanned from
non-negative root spaces of z.

Let wg be the automorphism of b induced by nx (equivalently nl_(l). Let wg be an
element in the Weyl group of A(g : b) such that wg% = —% (this is possible because the
Weyl group W acts simply transitively on chambers).

Then wxwg@ and € both lie in the same positive chamber for A( : b). By Lemma
there is wy; € Wiy such that wy 4 = wrgwag®. Choose a representative njy; €
GRgr(C) for this wys, normalizing a and b. Then n := ng - ny € Gr(C) normalizes
a and b; this element n takes the chamber 4" to —%, and so it takes q to q°°. We may
therefore suppose n = ng. It follows that ng preserves a, and its action on a coincides
with ng. U

3.2. Second construction of a}, via the dual group. Let T < B be the standard maximal
torus and Borel in G. Let W denote the normalizer of T inside G x Gal(C/R), modulo
T. There exists a unique lift wo € LIV of the nontrivial element of Gal(C/R) with the
property that wg sends B to the oppos1te Borel (w.r.t. T) Moreover, we may choose a
representative of wo that lies inside G( ) x Gal(C/R), unique up to T(R) thus the
space Lie(T)“’0 carries a real structure arlslng from the real structure on 7. (Here, and in
what follows, we are using the structure of Gasa split Chevalley group to speak of its R
points, as mentioned in §I.6).

We will show that af, can be identified with Lie(f)“’“, in a fashion that carries the real
structure aaR to the natural real structure on the latter space.

Observe, first of all, that a choice of (a, b, q) as before yields a torus T < Gg with Lie
algebra a @ b, and a Borel subgroup of Gg xgr C containing T, with Lie algebra q; then
we get identifications

(3.2.1) Lie(T) ~ X.(T)®C = X*(T)®C = (a® b)*

We have used the fact that, for any complex torus S, we may identify Lie(S) with X, (S)®
Lie(G,,) and thus with X (S) ® C, choosing the basis for Lie(G,,) that is dual to 42
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If we choose a different triple (a’, b’, ') there exists g € Ggr (C) conjugating (a, b, q) to
(a/,b',q’); the maps (3.2.1)) differ by Ad(g). In particular, we get by virtue of Proposition
a map

A~

(3.2.2) Lie(T) — lim a* = af.
(a,b,9)

A~

Lemma 3.2.1. The map (3.2.2) carries Lie(T)"° isomorphically onto af,, and preserves
real structures. R R
Moreover, the long Weyl group element wg, for T, carrying B to its opposite, preserves

A~

Lie(T)"°, and is carried under this identification to the long Weyl element acting on a,
(see discussion after Lemma3.1.1)).

A~

This justifies using Lie(7")"° as an alternate definition of af..

In the following proof, we will refer to the “standard” antiholomorphic involution on T
or its Lie algebra. The torus T is, by definition, a split torus; as such it has a unique split
R-form, and we refer to the associated antiholomorphic involution as the “standard” one.

~

Proof. Under the identification of (3.2.T) the action of wg on Lie(T') is carried to the action
on X*(T)®C = (a®b)* of an automorphism + of g that belongs to the same outer class
as complex conjugation, and switches ¢ and its opposite ¢°P relative to a @ b. However,
by virtue of the construction of q from an element x € tbr, complex conjugation switches
q and q°P. It follows that v corresponds precisely to the action of complex conjugation ¢
on X*(T) ® C. It readily follows that it acts by —1 on b* and 1 on a*. This shows that
Lie(f’)w0 is carried isomorphically onto af, by (3.2.2).

Now the antiholomorphic involution (¢® (z — z)) on X*(T) ® C = (a @ b)* fixes
precisely aj; ®b% . Transporting to Lie(f) by means of the above identification, we see that
the real structure on (ag ®br)* < (a@®b)* corresponds to the antiholomorphic involution
¢ on Lie(T) which is the composition of wy with the standard antiholomorphic involution.
In particular, restricted to the wp-fixed part, ¢’ reduces to the standard antiholomorphic
involution. This proves the statement about real structures.

For the second claim, we note that wg and wo commute, SO certainly wg preserves

A~

Lie(T')"°; under the identifications of (3.2.1)) w4 corresponds to an element of the Weyl
group of (a @ b) which sends ¢ to the opposite parabolic. This coincides with the long
Weyl element for ai by Lemma[3.1.1] O

3.3. The tempered cohomological parameter. We will next construct a canonical iden-
tification

(3.3.1) af, ~ Lie algebra of the centralizer of p : Wg — LG

where p is the parameter of any tempered cohomological representation for GG; correspond-
ingly we get

(3.3.2) ag ~ fixed points of Ad* p : Wg — GL(g) on g.

where Ad* : LG — GL(§) is the co-adjoint representation.

To see this we must discuss the L-parameter of tempered cohomological representa-
tions:

Write as usual Wg = C* u C*j, where j2 = —1, for the real Weil group. Let
p: Wr — “G be a tempered Langlands parameter whose associated L-packet contains
a representation with nonvanishing (g, K% ) cohomology (with respect to the trivial local
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system, as always in this paper). In particular, the infinitesimal character of this represen-
tation coincides with that of the trivial representation. The infinitesimal character can be
read off from the C* part of the Langlands parameter (see [49] §15.1, Lemma] although
we believe this result to be folklore). Therefore, by examining infinitesimal characters, we
can conjugate p in Gtoa representation pg such that

(3.3.3) polex 1 C* = k@

is given by X (4/2/Z), where ¥ is the canonical cocharacter G,,, — G given by the sum
of all positive coroots. The connected centralizer of pg|cx is then T', so the image of j in

LG must normalize 7' and sends B to B°P. Therefore, po(j) defines the same class as wq
inside “W (notation of §3.2) and therefore

(3.3.4) ag, = Lie algebra of the centralizer of py.

Now p = Ad(g)po for some g € é; since the centralizer of pg is contained in IA“, g is
specified up to right translation by 7', and consequently the induced map

Lie algebra of the centralizer of pg — Lie algebra of the centralizer of p

is independent of the choice of g. Composing with (3.3.4)), we arrive at the desired identi-

fication (3.3.1).

Remark 7. In general, there are multiple possibilities for the conjugacy class of p, i.e.
multiple L-packets of tempered cohomological representations; however, if Gg is simply
connected or adjoint, p is unique up to conjugacy: any two choices of wy differ by an
element ¢ € T, which lies in the fixed space for 7 : z +— 1/2"° on T. Thus we must
verify that every element of the 7-fixed space T7 is of the form x - 7(z) for some x € T,
equivalently that T is connected. If G is simply connected, coroots give an isomorphism
G;, ~ T, and the map a — —woa permutes the coroots; we are reduced to verifying
connectivity of fixed points in the case of 7 the swap on G2, or T trivial on G,,, which are
obvious. The adjoint case is similar, replacing the use of coroots by roots.

3.4. The action of the exterior algebra A*a}, on the cohomology of a tempered rep-
resentation. In this section, we will construct an action of A*a¥, on H*(g, Kgo; II), for
any finite length, tempered, cohomological representation II of G. In this situation, by
“cohomological,” we mean that every constituent of II is cohomological — note that II is
tempered, and thus semisimple.

This action will have the property that the induced map

(3.4.1) H(g, K% 1) @ A/agy, — HO (g, K 10)

is an isomorphism. Here ¢ is the minimal dimension in which the (g, KY,)-cohomology is
nonvanishing; explicitly, we have 2¢ + dimcag = dim Y (K'). The action of A*af, will
commute with the natural action of K., /K% on H*(g, K% 1I).

As a general reference for (g, K% ) cohomology, the reader may refer to [8]. In general,
(9, K%,) cohomology of 7 is computed by a complex with terms Homo (APg/€, 7). How-
ever, for unitary irreducible cohomological 7, all the differentials in this complex vanish
(as proved by Kuga, see [8, Theorem 2.5]); so we may identify the (g, K% ) cohomology
with Homgo (APg/€, 7).

We construct the action first in the simply connected case, and then reduce the general
case to that one.
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3.4.1. The action for Gy simply connected. Here G is connected, as is its maximal com-
pact; and the cohomological, tempered representations are indexed (with notation as in
by choices of a positive chamber % for the root system A(g : b):

We have already explained that such a chamber € gives rise to a Borel subgroup q and
a notion of positive root for A(g : b). Vogan and Zuckerman [[76] attach to ¢ a tempered
cohomological representation 7(%’) characterized by the additional fact that it contains
with multiplicity one the irreducible representation Ve of Ko, = K% with highest weight

1t = the sum of roots associated to root spaces in u N p,

where u is the unipotent radical of q. (See [76, Theorem 2.5]). Moreover, it is known
that Vs is the only irreducible representation of K, that occurs both in 7(%’) and in A*p
(proof and discussion around [76, Corollary 3.7]).

We write V_¢ for the dual representation to Ve ; its lowest weight is then equal to — 4.
Let us fix a highest v™ € Ve and a lowest weight vector v~ in V_g, with weights p« and
— . In what follows, a vector of “weight 1” means that it transforms under the character
pof gn: and a vector “of weight —p”” transforms under that character of q°P n¢, where q°P
is the parabolic subgroup associated to —%. In other words, “weight 1" is a requirement
on how the vector transforms by a Borel subalgebra, not merely a toral subalgebra.

Write W[¥%'] for the Vg-isotypical subspace of an arbitrary K, -representation W, and
W[—%] for the Vig-isotypical subspace. Thus W[%] = Vi ® Hom(Vig, W) and f —
f(v*) gives isomorphisms

(34.2) Hom(Ve, W) = vectors in W of weight p under q N €.

(3.4.3) Hom(V_4, W) = vectors in W of weight — 4 under q°P n ¢.
Let ut be the unipotent radical of ¢°P. From the splitting
(3.4.4) a@unp)®@np)=p,

we get a tensor decomposition of A*p and of A*p*. For the spaces of vectors of weights
wand —p we get

(3.4.5) (A*p) = A*a®det(unp), (A*p*) ™" = A*a* @det(unp)*.

In particular, there is a natural inclusion a* — p* (from (3.4.4)), and then the natural
action of A*a* on A*p* makes the space of weight —u vectors in the latter a free, rank
one module. Note that we may regard A*p* either as a left- or a right- module for A*a*;
the two actions differ by a sign (—1)4°¢ on a*. We will use either version of the action
according to what is convenient.

Thus we have an action of A*a* on

(3.4.6) Hom(V_¢, A*p*) — (A*p*)™* (via f — f(v7)),

given (in the left-hand space) by the rule X f(v™) = X A f(v7).

There is also a contraction action of A*a* on A*p: for X € a*, theruleY — X _Y
is a derivation of A*p with degree —1, which in degree 1 realizes the pairing a* x p — C.
As a reference for contractions, see [[L1, Chapter 3]. This action again makes the space of
weight p vectors a free, rank one module.

The two actions are adjoint:

3.4.7) (X ANA,BY=(A, X _B), Xea* Ae Ar%™p* Be r¥p,
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where the pairing between A*p and A*p* is the usual one (the above equation looks a bit
peculiar — it might seem preferable to replace X A A by A A X on the left — but in order
to do that we would have to use a different pairing, which we prefer not to do).

From
(3.4.8)

H*(8,K%:m(%)) = (A*p* @7(4))” ~ Hom(V_qs, A*p*) ® Hom(Vig, 7(%)),

=Homk,, (A*p,7(%)) ~(Akpk)TH

we have also constructed an action of A*a* on the (g, K% ) cohomology of 7(%’). Again,
it can be considered either as a left action or a right action, the two being related by means
of a sign; we will usually prefer to consider it as a right action.

This action is characterized in the following way: for any f € Homg_ (A*p, 7(%)),
and any vector v of weight p¢ in A*p, and for X € A*a*, we have

(3.4.9) Xf:o— f(X _v).

The left action is related to this via f - X = (—1)3e()(X . f) (X € a*).

To verify (3.4.9), note that the map f factors through Vo < m(%). We may replace
(%) by Ve, regarding f as a Ko-map A*p — Ve, and write f! : V_¢ — A¥p* for
the transpose of f. Now, for v+ € Vi a vector of weight ¢, the evaluation f(v™) is
determined by its pairing with a lowest weight vector v~ € V_¢. We have

W7 X f(T) = (X fv7 v = XAfH 7)o" 5= (1 (07), X ™) = w7, f(XvF)).

In summary, we have a well-defined action of A*af, on the (g, KY, ) cohomology of any
tempered irreducible cohomological representation. (Strictly speaking, we should verify
that our definitions did not depend on the choice of (b, ©). If k € K, conjugates (b, €) to
(b/,%"), then it carries (q, i) to (q’, e ); there is an isomorphism ¢ : 7(%¢) — w(¢”),
and the actions of Ad(k) : A*a ~ A*a’* are compatible with the map on (g, K% ) coho-
mology induced by ¢; thus we get an action of A*af, as claimed.)

Finally, it is convenient to extend the action to representations that are not irreducible,
in the obvious fashion: If II is any tempered representation of finite length, we have

H*(g,K%; 1) = @ Hom(mq, IT) @ H* (g, K5 ; 7a),

the sum being taken over (isomorphism classes of) tempered cohomological representa-
tions 7, ; we define A*af, to act term-wise.

Remark 8. Tt is also possible to construct this action using the realization of tempered
cohomological representations as parabolic induction from a discrete series on M. We
omit the details.

3.4.2. Interaction with automorphisms. We continue to suppose that Gg is semisimple
and simply connected. Suppose that « is an automorphism of Gg that arises from the con-
jugation action of the adjoint form G4, preserving K. If II is a tempered representation
of finite length, then so is its a-twist “II, defined by *II(«(g)) = I(g).

Also « induces an automorphism Y — «(Y") of p; the K, representations p and “p are
intertwined via the inverse map Y +— a~1(Y).

Lemma 3.4.1. Let 11 be tempered cohomological of finite length. The natural map
(3.4.10) Homg  (A*p,II) — Homgk, (A*p, “II),

which sends f to the composite N*p ~ A* (%) 4 oL, commutes the ~*ag, actions on
both spaces.
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Proof. This reduces to the irreducible case. So suppose that 7 = 7(%), where € is a
chamber ¢ c ibg, giving rise to data (a, b, q). Adjusting « by an element of K, we may
suppose that o preserves Ko, and b and the Borel subalgebra ¢ n £ < &.

If W is an irreducible K, -representation of highest weight u, then “W has highest
weight 1 o o~ L. Therefore the representation “7(¢’) contains the K, -representation with
highest weight 1 0 a1, which is associated to the chamber o.(%6’) and the parabolic a(q):

“n(¢) = m((?)).

Now « sends (a, b, q) to (a,b,a(q)). Although it belongs only to G*!(R) it can be
lifted to Gr (C), and so the following diagram commutes:

(3.4.11) aG—2>a

o

ag ——a.

where the vertical arrows refer to the identification of a with ag induced by the triples
(a,b,q) (at top) and (a, b, a(q)) (at bottom).

Note that the map Y > o~ (Y) takes (A*p)"® " — (A*p)* (where the weight spaces
are computed for the usual actions, not the twisted ones). The map (3.4.10) explicitly sends

ftof 1Y e n*p— fla"l(Y));if f on the left factors through highest weight s, then
1

/' on the right factors through highest weight pa~!.
Forv e (A*p)* and X € A*af, we have a(v) € (A*p)He”" and, for f as above,
(Xf) rav > (X [f)(v) = f(X ),
(@(X)f) s av = f(a(X) — a(v) = f(X ~v)
In view of diagram (3.4.11) this proves the statement.
O

3.4.3. Interaction with duality and complex conjugation. Suppose that j + j' = d =
dim(Y (K)). Let I be a tempered cohomological representation of finite length. There is
a natural pairing

(3.4.12) H (g, Ko, IT) x HY (g, Ko, IT) —> det p*
corresponding to
(Ap* @I @ (A7p* @IN) — det p*,
amounting to cup product on the first factors and the duality pairing on the second factors.
Lemma 3.4.2. The pairing (3.4.12) has the following adjointness:
(i X, fo) = (fr, (wX) - f2)
for X € n*af, and w the long Weyl group element (Lemma m)

Proof. This reduces to the irreducible case II = 7(%); its contragredient is 7(—%), pa-
rameterized by the chamber —% associated to (a, b, q°?). We must verify that a¥, acts (up
to sign) self-adjointly for the the cup product

APF[=E] @ ATTp*[E] — det p*
or, what is the same, the map

Hom(V_g, Alp*) ® Hom(Vig, A977p*) — Hom(V_¢ ® Vig, det p*) — det p*
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Suppose f1 € Hom(V_«, A7p*) and fo € Hom(Veg, A9=7p*); their image under the first
map is given by v1 @ vy — f1(v1) A fa(ve). This map factors through the one-dimensional
subspace of invariants on V_¢ ® Ve ; to evaluate it on a generator for that space, we may
as well evaluate it on v~ ® v ™, which has nonzero projection to that space. In other words,
we must prove the adjointness statement for (f1, f2) — f1(v™) A fa(vT). For X € A*a*
we have

(fr- X)) A f2(v7) = L(07) A X A fo(v7) = fi07) A (X f2)(07),

where the sign is as in the statement of the Lemma. However, the identifications of a with
a¢ arising from (a, b, q) and (a, b, q°P) differ by a long Weyl group element, as in Lemma
O

Lemma 3.4.3. Let 11 be a tempered, finite length, cohomological representation, and ob-
serve that the natural real structure on p induces a “complex conjugation” antilinear map
H*(g,Ko, IT) — H*(g, Ko, IT), where, as usual, 11 denotes the representation with the
same underlying vectors but the scalar action modified by complex conjugation.

Then the following diagram commutes:

(3.4.13) H*(g, Koo, II) ® A*af, —— H*(g, Ky, II)

l |

H*(g, Ko, II) ® A*af, — H*(g, Ko, II)
where all vertical maps are complex conjugation; the complex conjugation on af, is that

corresponding to the twisted real structure.

Proof. Again, this reduces to the irreducible case II = 7(%). Fixing an invariant Hermit-
ian form on Vi, we may identify V_¢ with Ve, in such a way that v+ = v~
The following diagram commutes:

(3.4.14) Hompy (V_g, A*p) 225% (A%p)~H

J{sHs lconjugation

Hom g (Vig, n*p) BB ()

where we define S by S(v) = S(v). There is an induced complex conjugation
~*p[—C] - ~*p[€]
—_—— —_——
Homg (Vg , A¥p)QV_« Hompg (Vig, A¥p)Q@Vee

where we tensor S — S with the conjugation on V_«, and then the following diagram is
also commutative:

(3.4.15) AEp[=C] @ A¥a—— A¥p[—F]
J/ (S S)®conj. lconjugation

A p[E]® A*a ~*p[€]

where the conjugation on a* is that which fixes af;.
This gives rise to (3.4.13) — however, just as in the previous Lemma, the identifications
of a with ag induced by (a,b,q) and (a, b, °P) again differ by the long Weyl element,
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and so in (3.4.13) we take the conjugation on ag as being with reference to the rwisted real
structure. O

3.4.4. Construction for general Gr. Let Gr now be an arbitrary reductive group over R.

Let G’ be the simply connected cover of the derived group of Gr, and let Z be the
center of Ggr. Thus there is an isogeny G’ x Zg — Gr. Let ¢, ¥, ag be the various
Lie algebras for G’. Let az be the a-space for Zg; it is naturally identified with the Lie
algebra of a maximal split subtorus. We have

ag =ag Dag.

For any representation IT of G let II’ be its pullback to G'; this is a finite length tempered
representation. There is a natural identification

H*(g,K9; 1) = A*az @ H* (¢, K.,; IT)

Our foregoing discussion has given an action of A*ags on the second factor; and so we get
an action of

Aag @ A*az = AT (ag B az)* = A¥al
on H*(g,K%;1I). Lemma and Lemma continue to hold in this setting.

Observe that the group Ko /K% = myG(R) acts naturally on H* (g, K% ;II). By the
discussion of §3.4.2 this action of a¥, will commute with the action of Ko, /KY,..

3.5. Metrization. Asremarked near (T.4.6) it is very convenient to put a Euclidean metric
on af, in such a way that the induced action on cohomology is isometric.

Let the bilinear form Bgr be as in (3.0.2). With notation as in §3.1} Bg induces a
invariant quadratic form on ag @ bgr, so also on ag and a’r"{. In particular, we get a C-
valued positive definite hermitian form on af. Then:

Lemma 3.5.1. Let X € n*af.. LetII be a finite length cohomological tempered represen-
tation. Let T € H(g, K., 1), where q is the minimal cohomological degree as in (3-4.1);
equip H*(g, Kgo, IT) with the natural hermitian metric (arising from a fixed inner product
on I, and the bilinear form Br). Then

|T- X[ = T[] X]-

Proof. This reduces to the case where Gg is simply connected, and then again to the case
when II = TI(%¥) is irreducible. There it reduces to a similar claim about the weight space
(A*p*)~H, since (with notations as previous) the map Hom (V_¢, A*p*) = (A*p*) ™" of
(3.4.6) is isometric (up to a constant scalar, which depends on the choice of highest weight
vector) for the natural Hermitian forms on both sides. But the corresponding claim about
(A*p*)~H is clear from (3:4.3)), noting that the factors a and (u@® u) N p are orthogonal to
one another under B. (]
The following explicit computation will be useful later:

Lemma 3.5.2. Suppose Gr is one of GL,, Resc/r GLy,, and endow g with the invariant
quadratic form B = tr(X?) or tre/m tr(X?2), where tr is taken with reference to the
standard representation. Then, with reference to the identification (3.2.2)), the form on
a”é)R induced by the dual of B is the restriction of the trace form on § (by which we mean
the sum of the trace forms on the two factors, in the case of Resg/r GLn). A similar
result holds when GR is one of SO,, and Resc/r SOy, except that the form on ag’R is the

restriction of i - (trace form).
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Proof. Write tr for the trace form on g, in each case. As explained in (3.2.1) the choice of
(a, b, q) induces a natural perfect pairing of C-vector spaces

(a®b)® Lie(T) — C,
—
SLie(T)wo

wherein Lie(f“’o) is identified with the dual of a. We want to show that, under this pairing,
the form tr |, is in duality with the form tr|Lie(f)w0. Since a and b are orthogonal with

respect to tr, it is enough to check that the form tr on a® b and tron Lie(f) are in duality.

It is convenient to discuss this in slightly more generality: Note that, if H is a reductive
group over C, the choice of a nondegenerate invariant quadratic form @ on hh = Lie(H)
induces a nondegenerate invariant quadratic form Q on the dual Lie algebra h Indeed,
choose a torus and Borel (T < By ) in H; then Q restricts to a Weyl-invariant form on
the Lie algebra of T'f7, and the identification

Lie(Ty) ~ Lie(T)*,

induced by (T < By) allows us to transport ) to a Weyl-invariant form on Lie(f). This
does not depend on the choice of pair (T < Bpy), because of invariance of Q. Finally
the resulting Weyl-invariant form on Lie(f) extends uniquely to an invariant form on 6

In this language, the question is precisely to compute @, where H = G and @ is the
complexification of tr, i.e. a form on the Lie algebra of G¢.

(i) Gr = GL,,. Here it is clear that {r = tr.
(i) Gr = Resc/r GL,,. Here again tr = tr:
The associated complex group is GL,, x GL,,, and the form there is tr(X;)? +
tr(X2)?2. The dual form on gl,, x gl,, is thus, again, the trace form on GL,, x GL,.
(iii) Gr = SO,,: In this case we have

~

1
(3.5.1) tr = 1 (tr on the dual group.).

We will analyze the cases of SO(2) and SO(3), with the general cases being sim-
ilar:
(a) Consider SO(2), which we realize as the stabilizer of the quadratic form
q(z,y) = xy. The maximal torus is the image of the generating co-character
X :t— ( é t91 ), and (with the standard identifications) {x, x> = 1
t 0
0 t!
note simply by dy the image of the standard generator of Lie(G,,,) under .
Then {dx, dx)«» = 2, and so {dx’,dx")g =
(b) Consider SO(3), which we realize as the stabilizer of the quadratic form
q(z,y) = wy + 22, and a maximal torus is the image of the co-character
X : diag(t,t=1,1). This is dual to the same character x’ as above (now con-
sidered as a character of SLs). We reason just as in (a).
(iv) Resc/r SO,. Here again (3.5.1) holds. To see this, note that the associated com-
plex group is SO,, x SO,,, and the form there is given by tr(X?) + tr(X3); then
the result follows from (iii).

where x’ is the co-character x : ¢ — < ) of the dual SO(2). De-

O
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4. THE MOTIVE OF A COHOMOLOGICAL AUTOMORPHIC REPRESENTATION:
CONJECTURES AND DESCENT OF THE COEFFICIENT FIELD

We briefly formulate a version of the standard conjectures relating cohomological au-
tomorphic forms and motives, taking some care about coefficient fields. A more system-
atic discussion of the general conjectures is presented in Appendix [A} for the moment we
present only what is needed for the main text.

4.1. The example of a fake elliptic curve. To recall why some care is necessary, let us
consider the example of a fake elliptic curve over a number field F': this is, by definition,
an abelian surface A over F' which admits an action of an (indefinite) quaternion algebra
D — Endr(4)® Q.

In any realization H'(A) admits a natural right D-action, and thus, for any rational
prime ¢, one gets a Galois representation

pae: Gal(Q/F) — GLp(H' (Ag, Qv)) ~ (D® Q) *,

where the latter identification depends on a choice of a basis for H* (AG’ Q) over DRQy.
If ¢ is not ramified in D, a choice of splitting D® Q, ~ M>(Qy) converts this to a genuine
two-dimensional representation

pa: Gal(Q/F) — GLa(Qu).

This is expected to correspond to an automorphic form 7 on PGL2(A ) with Hecke
eigenvalues in Q, characterized by the fact that we have an equality

tr(pa,e(Frob,)) = ay(m)

for all but finitely many v; here tr denotes the trace and a, () is the Hecke eigenvalue of
matv.

The correspondence between 7w and A, in this case, has two deficiencies. The first is that
the dual group of PGLy is SLy but the target of the Galois representation is (D ® Qg)*.
The second is that the automorphic form 7 has Q coefficients; but there is no natural
way, in general, to squeeze a motive of rank two with Q-coefficients out of A. One could
get a rank two motive after extending coefficients to some splitting field of D, but this is
somewhat unsatisfactory.

However, although one cannot directly construct a rank two motive attached to p 4 g, it
is possible to construct a rank three motive that is attached to the composition Ad p4 ¢ with
the adjoint representation PGLs — GL3. Namely, construct the motive

4.1.1) M = End} (h(A)),

where Endp denotes endomorphisms that commute with the natural (right) D-action on
h'(A) and the superscript 0 denotes endomorphisms with trace zero. This is a motive over
F of rank three with Q-coefficients, which can be explicitly realized as a sub-motive of
hl(A) ® hi(A)*.

Write g for the Lie algebra of SL; (D); this is a three-dimensional Lie algebra over Q,
and is an inner form of sl;. We have natural conjugacy classes of identifications

Het(Mv Qﬁ) = g®QZ>
HB(MU,CaQ) ~g,

for any infinite place v of F.
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We expect that this phenomenon is quite general. Below we formulate, in a general
setting, the properties that such an “adjoint motive” M attached to a cohomological auto-
morphic form should have.

4.2. The conjectures. It will be useful to formulate our conjectures over a general number
field; thus let F' be a number field, let Gz be a reductive group over F, and let 7 be
an automorphic cohomological tempered representation for Gr. (Recall from that
“cohomological,” for this paper, means cohomological with reference to the trivial local
system.) The definitions that follow will depend only on the near-equivalence class of 7.
We suppose that 7 has coefficient field equal to Q, i.e., the representation 7, has a
Q-structure for almost all v. One can attach to 7 the associated archimedean parameter

Wg, — L@,

for any archimedean place v. The Langlands program also predicts that 7 should give rise
to a Galois representation valued in a slight modification of “G' (see [13])E] Composing
these representation with the adjoint representation of the dual group on its Lie algebra g,
we arrive at representations

(421) Ad pe GF -_—> Aut(ﬁa).

4.2.2) Adp, : Wg, — Aut(§c).

of the Galois group and each archimedean Weil group. With these representations in hand,
we can formulate the appropriate notion of “adjoint motive attached to (the near equiva-
lence class of) 7,” namely,

Definition 4.2.1. An adjoint motive associated to 7 is a weight zero Grothendieck motive
M over F with Q coefficients, equipped with an injection of Q-vector spaces

Lyt HB(Mv,Ca Q) - ﬁa
for every infinite place v, such that:

The image of Hg(M,,c, Q) is the fixed set of an inner twisting of the
standard Galois action on ﬁa. Said differently, v, identifies Hg(M, c)
with an inner form §q.« of 9Q-
423) to - Hp(My,c, Q) > g« < G-
(This inner form may depend on v.) Moreover, for any such v, and for any rational prime
{, we require:
1. The isomorphism

(4.2.4) Hey(Mp, Q) ~ Hp(M,,c, Q) ®q Qr = 8.+ ® Qv ~ §g;
identifies the Galois action on the étale cohomology of M with a representation in
the conjugacy class of Ad py (see @2.1)).
2. The isomorphism
(4.2.5) Hir(M)®q C ~ Hg(M, c,Q)®q C *% §q.+ ®C ~ gc

identifies the action of the Weil group W, on the de Rham cohomology of M with
a representation in the conjugacy class of Ad p,, (see .2.2)).

SHere we draw attention to a slight subtlety: this Galois representation is characterized by the conjugacy
classes of Frobenius, and in some (rather rare) cases this may not characterize it up to global conjugacy. However,
this problem does not occur if the target group is GL,,, and in particular the composition of this representation
with the adjoint is uniquely characterized. It is only this composition which enters into our conjecture.
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3. Each Q-valued bilinear form on gq, invariant by the action of L GQﬁ induces
a weak polarization M x M — Q with the property that, for each v, its Betti
realization Hg (M, c) x Hp(M, c) — Q is identified, under v,,, with the given
bilinear form.E]

We are not entirely sure if every cohomological 7 should have an attached adjoint mo-
tive, because of some slight subtleties about descent of the coefficient field from Q to Q.
However, it seems very likely that the overwhelming majority should admit such attached
adjoint motives, and we will analyze our conjectures carefully only in this case. (One can
handle the general case at the cost of a slight loss of precision, simply extending coeffi-
cients from Q to a large enough number field.)

In Appendix [A] we explain more carefully what the correct conjectures for motives at-
tached to automorphic representations should look like and why, if we suppose that the
Galois representation has centralizer that is as small as possible, these conjectures imply
the existence of an adjoint motive associated to m. Moreover, assuming the Tate conjecture,
this motive is uniquely determined up to isomorphism.

Remark 9. We could have also in principle formulated this conjecture in terms of Chow
motives rather than Grothendieck motives, since as explained in Prop. [2.1.1] - assuming
Beilinson’s filtration conjectures — every Grothendieck motive lifts to a Chow motive which
is well defined up to isomorphism. However, the formulation with Grothendieck motives
is more natural for two reasons:

(1) The category of Grothendieck motives is (conjecturally) semi-simple Tannakian;
the Tannakian formalism is important to the way we formulate the automorphic to
motivic correspondence in Appendix [A] On the other hand, the category of Chow
motives is not even abelian in general. (See the introduction and Cor. 3.5 of [60]
for a discussion of this issue.)

(2) Technically, to define the relevant motivic cohomology group that occurs in our
main conjecture below, one needs to work with a lift to the category of Chow
motives. However, as explained in §2.1.T1] the filtration conjectures imply that
this motivic cohomology group is nevertheless independent of the choice of such
lift, up to canonical isomorphism. Thus all objects involved in the main conjecture
below only depend on the associated Grothendieck motive.

Note that even in the more familiar setting of Shimura varieties, the known constructions of
motives associated to cohomological automorphic forms typically only yield Grothendieck
motives, eg. the case of GLo modular forms of higher weight that is discussed in [59]. Thus
it is psychologically useful to break up the problem of attaching a motive to an automorphic
form into two steps: first, construct a Grothendieck motive, and then lift it to a Chow mo-
tive. In the setting that is of most interest in this paper (non-hermitian symmetric spaces),
neither of these steps is easy since the locally symmetric space has no natural structure of
an algebraic variety.

6Explicitly, this means it is invariant both by inner automorphisms of G and by the pinned outer automor-
phisms arising from the Galois action on the root datum.

TObserve that a Q-valued invariant bilinear form on gq induces also a Q-valued bilinear form on gq, «,
characterized by the fact that their linear extensions to 0 agree.
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5. FORMULATION OF THE MAIN CONJECTURE

Here we combine the ideas of the prior two sections to precisely formulate the main
conjecture. (We have already formulated it in the introduction, but we take the opportu-
nity to write out a version with the assumptions and conjectures identified as clearly as
possible.)

We briefly summarize our setup. We return to the setting of so that G is a reductive
Q-group without central split torus. Now let 7 be the Hecke algebra for K at good places,
i.e., the tensor product of local Hecke algebras at places v at which K is hyperspecial. We
fix a character y : # — Q, and let

H:{Trlw";ﬂ-r}

be the associated set of cohomological automorphic representations which contribute to
cohomology at level K, defined more precisely as in The set II determines x and we
suppress mention of x from our notation.

Just as in our introductory discussion in §T.1| we make the following

Assumption: Every 7; is cuspidal and tempered,

where, as in §I.1] “tempered” is a proxy for “tempered Arthur parameter” and is taken to
mean tempered at c0 and at one unramified place. We define

(5.0.1)  H*(Y(K),Qu = f{aec H*(Y(K),Q) : Ta = x(T)a forall T € #}

and similarly H*(Y (K), C)qy, etc.

Let AdII be the adjoint motive associated to I, in the sense of Definition We
have attached to G a canonical C-vector space af, in Also af, comes with a real
structure, the “twisted real structure” of Definition[3.1.2}

We shall first explain (§5.1I) why the Beilinson regulator on the motivic cohomology
of AdII, with Q(1) coefficients, takes values in (a space canonically identified with) a,,
and indeed in the twisted real structure on this space. Then, after a brief review of coho-
mological automorphic representations (§5.3) we will be able to define an action of ag; on
the cohomology H* (Y (K), C)r1 and then we formulate precisely our conjecture in
Finally, Propositionveriﬁes various basic properties about the action of a, (e.g., it is
self-adjoint relative to Poincaré duality and it preserves real structures).

5.1. The Beilinson regulator. The motive Ad IT has weight zero. The Beilinson regulator
gives

(5.1.1)

HY,(AdTL Q(1)) B2 Hy((AdTT), R)"R — Hp((AdTT)g, C)"r &2 gwe B3 gx

where the last two arrows are isomorphisms of complex vector spaces. Proceeding simi-
larly for the dual motive, we get a map

(5.12) HY,(Ad*TL,Q(1)) — ag,

and, just as in the introduction, we call L the image of @; thus if we accept Beilinson’s
conjecture, L is a Q-structure on ag.

We want to understand how (5.1.1)) interacts with the real structure on a¥. Recall that
we have defined a second “twisted” real structure on af;, in Deﬁnition

Lemma 5.1.1. The map Hg(AdIl)c, R)"® — af, has image equal to the twisted real
structure on a%. In particular; the Beilinson regulator carries H',,(Ad 11, Q(1)) into the
twisted real structure on af..



44 KARTIK PRASANNA AND AKSHAY VENKATESH

Proof. We may as well suppose that identifies the WgR-action with the action pg :
Wgr — Aut(g) arising from py normalized as in (3:3:3). Also, @.2.3) allows us to think
of the “Betti” conjugation cg on Hgr(AdIl) ® C = Hp((AdIl)c) ® C as acting on g.
From (@23) the fixed points of cp are given by gq « ® R and so cp is an inner twist of the
standard antiholomorphic involution. (By “standard antiholomorphic involution” we mean
the involution of g with respect to the Chevalley real form.) Since po(S!) preserves real
Betti cohomology, cg commutes with pg(S?).
Define an antilinear self-map ¢ on g via

UX) = Ad(wg)X,

where X refers to the standard antilinear conjugation, and wg is an element of G (R) that
normalizes 7' and takes B to B°P. Then . also commutes with the action of po(Sh).

The composition tcg is now an inner automorphism of g which commutes with po(S*)
and thus is given by conjugation by an element of T. Thus ¢ and cp act in the same way
on the Lie algebra? of T.

The image of Hg((AdII)c, R)"® €73 g"R is just the fixed points of cg. However,
we have just seen that cg and ¢ act the same way on g"Vr — . The fixed points of ¢ on
gVr ~ ag, give (by Lemma and Deﬁnition the twisted real structure. (]

5.2. Trace forms. Endow gq with any nondegenerate ©Gq-invariant Q-valued quadratic
form B; it gives by scalar extension a complex valued quadratic form on g. The pullback
of this form under
Hp((AdIl)c, Q) ~ 9«

defines (part (3) of Deﬁnition a weak polarization () on Ad II: since gy is an inner
form, the restriction of Bis actually Q-valued on it.

We may form the corresponding Hermitian form Q(x, cgy) on Hg((Ad )¢, C); when
restricted to Hg((AdII)c, C)"® ~ af, this is given by

(5.2.1) (X,Y) € a} x af — B(X,Ad(wg)Y),

where the conjugation is that with reference to gr, and wg is as in Lemma
This form is real-valued when restricted to the twisted real structure, since (writing just
wX for Ad(w)X, etc.):

=~ p— ~ — A —

(5.2.2) B(X,wgY) = B(X,wgY) = Bw;'X,Y) = B(wgX,Y).

and wGﬁ =X, W =Y on the twisted real structure.

We warn the reader that, although real-valued, the form @ need not be positive
definite on the twisted real structure. This corresponds to the fact that the form B gives a
weak polarization on Ad IT but not necessarily a polarization.

5.3. Review of cohomological automorphic forms. For any cohomological automorphic
representation 7 for G, denote by € the natural map

(5.3.1) Q : Homgs (APg/t, ") — p-formson Y (K)
[ S —
Qr (Y (K))
where 7%, as usual, denotes the K -invariants in 7.

Indeed, QP(Y (K)) can be considered as functions on G(F)\ (G(A) x APg/t) /K K
that are linear on each APg/¢-fiber. Explicitly, for X € g/¢ and g € G(A), we can produce
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a tangent vector [g, X] to G(F)gK3, K € Y (K) — namely, the derivative of the curve
G(F)ge'*K K att = 0. This construction extends to X7 A - -+ A X, € APg/E by setting

l9, X0 A=A Xp] =g, Xa] Ao A g, Xy,

which belongs to the pth exterior power of the tangent space at the point g K. The map {2 is
normalized by the requirement that, for f € Homgs (APg/t, 7%) and X; € g/t, we have

(5.3.2) QNg Xa A=A Xp]) = F(Xa A=A Xp)(9)-

As discussed in we may identify H” (g, K%;7") = Homgo (APg/t, n) for
unitary cohomological m. We will freely make use of this identification. In particular, the
map {2 defines a map on cohomology

(5.3.3) Q: HP(g,K%;n%) - H?(Y(K),C).

This map is injective if Y (K) is compact, or if 7 is cuspidal, by [9] 5.5]; in particular, if
we have fixed a Hermitian metric on g/¢ we also get a Hermitian metric on the image, by
taking L2-norms of differential forms. We also put a metric on H? (g, K% ; 7¥) for which

(3.3:3) is isometric.

Moreover, this story is compatible, in the natural way, with complex conjugation: if

T € H?(g,K%; 7K), we have Q(T) = Q(T), where T € H* (g, KY,;7) is defined so that
T (v) = T(v) and the embedding 7 < ( functions on [G]) is obtained by conjugating the
corresponding embedding for . If m and 7 are the same (i.e., they coincide as subrep-
resentations of functions on [G], and so we have an identification 7 ~ 7) we shall say

that T is real if T = T'; in that case Q(T) is a real differential form and defines a class in
HP(Y(K),R).

5.4. Formulation of main conjecture. In the setting at hand, the map €2 induces (see [9])
an isomorphism

(5.4.1) D H* (9. K% 75) 2 H*(Y(K), O
=1

We have previously defined ( an action of A*a}, on each H*(g, K9 ;7/), and we
may transfer this action via {2 to get an action of A*a¥ on H*(Y (K), C)rr.

We now formulate the main conjecture assuming that II satisfies the assumptions formu-
lated at the beginning of the section (in particular, it is tempered). We also need to assume
the existence of an adjoint motive attached to 1I and part (a) of Beilinson’s conjecture
(Conjecture [2.1.T)) as extended to pure motives in §2.1.T1| We will keep these as standing
assumptions for the rest of the article. Observe then that the image of H',(Q, Ad* II(1))
under (5.1.2)) gives a well defined Q-structure on ag. Then we have the following:

Main conjecture: (motivic classes preserve rational automorphic coho-
mology). The induced Q-structure on A*a}, preserves

H*(Y(K),Qu = H*(Y(K),C)n

for the action just defined.
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5.5. Properties of the af, action.

Proposition 5.5.1. The action of A*a¥, on H*(Y (K), C)n just defined has the following
properties:
(i) Fix a bilinear form Br on GR, as in ' it gives rise to a hermitian met-
ric on af, and a Riemannian metric on Y (K) by that discussion. Then if T €
HY(Y (K),C)n is in minimal cohomological degree we have | XT| = | X||T||
for X € n*af.; the hermitian metric on H*(Y (K'), C)1y is that obtained by its
identification with harmonic forms.
(ii) The action of A*af, on H*(Y (K), C)1 satisfies the same adjointness property as
that formulated in Lemma with respect to the Poincaré duality pairing.
(iii) Suppose that the character x of the Hecke algebra is real-valued. Then the twisted
real structure on af, preserves real cohomology H* (Y (K), R)r1.

Proof. The map (5.4.T) is isometric, so property (i) is now immediate from Lemma[3.5.1]
It will be convenient, just for the remainder of the proof, to abuse notation and write 11
for the direct sum @);_, ;.
For property (ii): Regard IT as embedded in functions on G(Q)\G(A), by conjugat-
ing the elements of II. We note, first of all, that for T € H*(g, K% ;TI¥) and T €
H*(g, Kgo,ﬁK) with deg(T") + deg(7") = dim(Y (K)) the pairing Sy(K) QT) A QT

is proportional to the natural pairing H*(g, K% ; 11¥) ® H*(g,Kgo,ﬁK) — (detp)*,
where we integrate IT against II. (The coefficient of proportionality has to do with choices
of measure, and will not matter for us.) This integration pairing identifies IT with TI, thus
giving Il an embedding into the space of functions on [G]; and so the pairing

f O(T) A QTY), T e H*(g. K% I15), T' € H* (g, Kop, 11¥)
Y(K)

is proportional to the natural pairing on H*(g, K% ; TT¥) x H*(g, K% ; I15). Then the
conclusion follows from Lemma 3.4.2
For (iii) note that, by the discussion at the end of §5.3] the following diagram commutes

(5.5.1) H*(g, Koo, IIX) — = H*(Y(K), C)np
iconjugation \Lconjugation

Our claim now follows from Lemma [3.4.3 O

To conclude, we discuss adjointness a little more. The Langlands parameter of the
contragredient IT is obtained from IT by composition with the Chevalley involution, which
we shall denote by Cy: this is a pinned involution of G that acts, on T, as the composition
of inversion and the long Weyl group element. The general conjectures (see Appendix [A)
predict that there exists an identification of motives 0 : AdIl ~ Ad IT which fits into a
commutative diagram

(5.5.2) Hg(AdII, C) =R
| K
B2, 5

Hg(AdII, C
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where C is the composite of Cy with an inner automorphism. We denote also by 0 the
resulting isomorphism H',(Ad*II, Q(1)) — H, (Ad*II, Q(1))).

Lemma 5.5.1. With assumptions as above: The action of H',,(Ad* 1, Q(1))* on H* (Y (K), C)r,
induced by (5.1.2), and the similar action of H',,(Ad* 11, Q(1))* on H*(Y (K), C);, are

adjoint to one another, up to sign, with respect to the Poincaré duality pairing and the
identification of motivic cohomologies induced by 0:

(fi- X1, fa) = =Cfr, Xa - f2),
where X1 € H',(Ad*II,Q(1))* and X, € H',(Ad* IT, Q(1))* correspond under the
identification induced by 0.

Proof. Conjugating the horizontal arrows in (5.5.2) we may suppose that the induced ac-
tions of Wgr on g, top and bottom, both arise from the maps po normalized as in (3.3.3));
since C intertwines these, it must be a conjugate of Cq by 7.

Thus we get:
(5.5.3) H' (Ad*TI,Q(1)) gr €33 ag
| e -
H,(Ad*T1,Q(1))) — " B o,

where w is the long Weyl element on a;, and we used Lemma(or the same statements

transposed to the dual Lie algebra). Our conclusion now follows from the prior adjointness

results (part (ii) of the Proposition). U
This discussion has also shown:

Lemma 5.5.2. If 1T ~ II, then the image of H,(Ad* 11, Q(1)) inside a is stable by w.

6. PERIOD INTEGRALS

6.1. The remainder of the paper is devoted to giving evidence for Prediction As
discussed there, we must analyze quantities of the type (T.4.8) - that is to say, integrals of
cohomology classes on Y (K) against cycles. In this section we will study such integrals
when the cycles come from a sub-locally symmetric space Z(U) defined by a Q-subgroup
H < G. We will relate these integrals to L-functions in two steps:

e Proposition relates the integral of an L2-normalized automorphic cohomol-
ogy class over Z(U) (i.e., the reciprocal of the left-hand side of (T.4.8)) to a more
standard automorphic period integral — that is to say, the integral of a certain auto-
morphic form over [H].

e Then, we rely on standard conjectures and assumptions about periods of automor-
phic forms to express the latter in terms of L-values (Theorem [6.T1.T).

The steps in the section are routine, but one must be careful about factors of 7, normaliza-
tions of metrics, volumes, and so forth. Similar results have been derived by several other
authors in related contexts; for example, see [38) §3].

The pairs (G, H) that we study are a subset of those arising from the Gan-Gross-Prasad
conjecture; we specify them in §6.3] There is no reason not to consider other examples of
periods, but these are convenient for several reasons:

o It is an easily accessible source of examples, but sufficiently broad to involve var-
ious classical groups;
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o There are uniform conjectural statements (after Ichino-Ikeda);
e Although we invoke simply the uniform conjectural statements, there are in fact
many partial results towards them known. ﬂ

Recall our notation A ~ B whenever A/B € Q*.

6.2. Setup on submanifolds. Let H — G be a reductive Q-subgroup.

We write H, G for the R-points, K, for a maximal compact subgroup of G and U, for
a maximal compact subgroup of H. We write (e.g.) dy for the dimension of H and 7
for its rank (for us this means always the geometric rank, i.e. the rank of the C-algebraic
group H¢). We introduce notation for the various Lie algebras:

g = Lie(Gg), € = Lie(Ky)c, p = g/t pe = dim(p),

f) = Lie(Hc), u= Lie(UOO)C, Py = f)/u, PH = dlm(pH)
These are complex vector spaces, but they are all endowed with natural real forms; as
before we denote (e.g) by hgr the natural real form of §, and so forth.
Let U < H(A¢) be a compact open subgroup, and define the analog of Y (K) (see
(T.6.2)) but with G replaced by H and K replaced by U

Z(U) = H(Q)\H(A)/U5,U.

[e]

Fixing an H-invariant orientation on H /U, we get an H(A)-invariant orientation of
H(A)/U, U and thus an orientation of Z(U). (If Z(U) is an orbifold, choose a deeper
level structure U’ < U such that Z(U’) is a manifold; then Z(U’) admits a U /U’-invariant
orientation.) This discussion gives a fundamental class

[Z(U)] € H,,' (2(U), Q)

where we work with Q coefficients, rather than Z coefficients, to take into account the
possibility of orbifold structure.

Let g = (9, 97) € G(A) = G(R) x G(Ay) be such that Ad(g~ ") U U <« Ky, K.
Then also Ad(g;!) carries US, to K. Then the map induced by right multiplication by g,
call it

(6.2.1) v Z(U) =5 Y(K),

is a proper map. Moreover, the action of Uy, /U3, on Z(U) corresponds, under ¢, to its
action on Y (K) via Ad(g;!) : Uy /U — Koo /K.
The image of Z(U) is a py-dimensional cycle on Y (K) and defines a Borel-Moore
homology class
w[Z2(U)] e HY (Y (K), Q).
Our goal will be to compute the pairing of this with classes in H*(Y (K), Q) and inter-
pret the result in terms of “automorphic periods.”

Remark 10. Now the class ¢[Z(U)] can only be paired with compactly supported classes.
The classes that we pair with will be attached to cuspidal automorphic representations.
Therefore, the associated cohomology classes lift, in a canonical way, to compactly sup-
ported cohomology, by [9, Theorem 5.2]; if w is a cuspidal harmonic form, the integral of
t*w over Z(U) coincides with the pairing of this compactly supported class with ¢ [Z(U)].
In other words, in the setting of §I.T} the map

HE(Y(K),C) - H*(Y(K),C)

8For example, in the PGL cases it seems that all the hypotheses of ! are known except (iv), the exact
evaluation of archimedean integrals on the cohomological vector.
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induces an isomorphism when localized at the ideal of the Hecke algebra corresponding
to II. In what follows we will then pair ¢4 [Z (U)] with such cuspidal cohomology classes
without further comment.

6.3. We will study the following cases:

1. Let E = Q(+/—Dg) be an imaginary quadratic field. For (V] ¢) a quadratic space
over E, with dim(V) > 2, set (V',¢') = (V,q) ® (E, 2?), and put

Hg = SO(V) € Gg = SO(V') x SO(V),

with respect to the diagonal embedding. PutH = Resp/q He, G = Resg)q GE.
2. Let E = Q(v/—Dg) be an imaginary quadratic field. For V' a finite-dimensional
E-vector space, set V/ = V @ E and put

Hy = GL(V) € Gg = PGL(V) x PGL(V).

Define H, G by restriction of scalars, as before.
3. Let E = Q. For V a finite-dimensional Q-vector space, set V' = V' @ Q and put

H = GL(V) € G = PGL(V’) x PGL(V).
In this case, we set Hp = H, Gg = G.

These cases correspond to cases of the Gross—Prasad conjecture where the cycle Z(U)
has dimension py equal to the minimal tempered cohomological degree for Y (K), i.e.

1
(6.3.1) PH = §(d(;—dK_(TG_7"K)) < pg —2pH =Tq —TK-

This dimensional condition is satisfied in the cases Uy ¢ X Upy1,q 2 Up 4 and SO, , x
SOp+1,§ 2 SO, 4 only when ¢ = 1; that is why we did not discuss these cases.

The numerical data in the cases we will consider is presented in Table [T, We shall
also need the following lemma, which assures us that the archimedean component of g (as
defined before (6.2.1)) is almost determined:

Lemma 6.3.1. In all examples of §6.3] the fixed point set of (the left action of) Uy,
on G/Ky, is a single orbit of the centralizer of H in G, in particular, the condition
Ad(g:;") Uy < Ky determines go, up to right translation by Ko, and left translation
by this centralizer.

Note that K, /K¢, is nontrivial only in case (3), i.e. the GL cases over Q. In this case,

the induced map

Ad(go_ol) U /Ug, — Koo /K5,
will be an isomorphism; both groups are isomorphic to +1. In particular, right translation
of go by Ko does not affect the image of the embedding Z(U) — Y (K), and indeed
affects the embedding itself only through the action of U, /U, on the source.

The Lenma will mean that, in computations, we may suppose that Ad(g;')H < G
arises from the “standard” inclusion of the real group of type H into the group of type
G. By explicit computations with the standard realizations, we see that this inclusion is
compatible with Cartan involutions. In other words, if 6 is the Cartan involution of G that
fixes Koo, then Ad(g')H is stable by 6 and # induces a Cartan involution of Ad(g;!)H,
fixing Ad(gs) "' Ue.

Proof. In what follows, O,, and U,, mean these compact groups in their standard real-
izations as stabilizers of the forms > zZ on R™ and )] |z;|*> on C". The embeddings
O,, = O, 41 etc. are the standard ones also.
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G H dg/k dyw | dg/x — 2dguy
S0,,(C) x S0,+1(C) | SO,(C) n? non n
PGL,(C) x PGL,,41(C) | GL,(C) | 2n2 +2n— 1| n? on — 1
PGL,(R) x PGL,41(R) | GL,(R) | n®+2n —1 | 2552 n—1

TABLE 1. The cases of the Gross-Prasad family that we will study

Consider, first, case (3) in the numbering at the start of §@ We must compute the fixed
points of O,,_1 acting on pairs of a scaling class of a positive definite quadratic form on
R" !, and a scaling class of a positive definite quadratic form on R™. There is a unique
fixed point on scaling classes of positive definite forms on R"~!. Thus, we are left to
compute the fixed points of O,,_; acting on scaling classes of quadratic forms on R™: A
positive definite quadratic form ¢ on R™ whose scaling class is fixed by O,,_; is actually
fixed by O,,—1 (it is clearly fixed up to sign, and then definiteness makes it fixed). By
considering the action of —Id € O,,_; we see that ¢ = Z;:ll x? + (az,)?. Such forms
constitute a single orbit of the centralizer of GL,,_; (R) within PGL,,(R), which implies
the claimed result.

The remaining cases follow similarly from the computation of the following sets:

Case 2: The fixed points of U,,_; acting on scaling classes of positive definite Hermitian
forms on C™:

As above, any such form is 37" 25| +a|z,,|?; again, these form a single orbit
of the centralizer of GL,,_1 (C) within PGL,,(C), as desired.

Case 1: The fixed points of SO,, acting on SO,,1+1(C)/SO,+1(R).

Suppose SO,, = gSO,,; 19~ for g € SO,,11(C); then SO,, fixes the subspace
gR™! < C"*!; this subspace gives a real structure on C"*! and of course
Z?:ll 22 will be positive definite on this subspace.

For n > 3, the only R-structures of C"*! that are fixed by SO,, are of the form
aR"@® B.R, (a,B8 € C*), and moreover if Y 27 is real and positive definite
on this space, this means it is simply the standard structure R™+!. It follows that
gR"™ = R""! and so g € SO,,;1 as desired. Thus the fixed set mentioned
above reduces to a single point.

For n = 2, there are other real structures fixed by SO,,, namely

{x +ip(x): 2 e R’} OR,

where ¢ € My(R) commutes with SO2. However, for > 2 to be real-valued on
this space we should have ¢ + @7 = 0; the real structure is therefore of the form

{(x +iAy,y —iAz) : (z,9) e R*} ® R,

for some A € R; definiteness of >’ :1:12 means that A2 < 1. This is the image

. L 1 QA o
of the standard real structure by the matrix T\ —ia 1 ) which lies in
SO2(C) < SO3(C) and (obviously) centralizes the commutative group SO5(C).

O

6.4. Setup on automorphic representations and differential forms. We now fix as-
sumptions on the automorphic representations to be studied.

Let Il be as in a (near-equivalence class of) cohomological automorphic represen-
tation(s) for G at level K, satisfying the assumptions formulated there. In particular, we
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may define, as in (5.0.1)), the II-subspace H*(Y (K),Q)n < H*(Y(K), Q) of rational
cohomology.

In fact, we want to impose a stricter condition, namely a multiplicity one condition on
cohomology. This is very convenient: it makes everything defined over Q and forces II to
be a singleton.

6.4.1. The condition in the case of imaginary quadratic base field. In the cases besides
PGL,, x PGL, 11 over Q, we assume that the level structure K has multiplicity one for
I1, in the sense that

(6.4.1) dim HY(Y (K), Q) = 1.

In particular, in this case, there is just one automorphic representation in I contributing
to this cohomology, IT = {r} say; in particular 7 = 7. We ask that 7 be tempered
cuspidal (just as in our prior discussion in §I.T)). In this case, we obtain from 7 a harmonic
differential form

we QY (K))

whose cohomology class generates H?(Y (K'), R)yy. This form is unique up to real scalars.

6.4.2. The case of PGL,, x PGL,, 1 in the case of rational base field. In the remaining
case G = PGL,, x PGL,,+1/q, it is impossible to satisfy (6.4.1)) because of disconnect-
edness issues. We ask instead thaf]

(6.4.2) dim H/(Y(K),Q)i = 1,

where + denotes eigenspaces under Ko, /K3, ~ {+1}. This again means there is just one
automorphic representation IT = {7} contributing to this cohomology (see discussion of
cohomological representations for PGL,, (R) in [45], §3] or [54} §5]); we again require that
m = 7 is tempered cuspidal. In this case, we similarly obtain from 7 harmonic differential
forms

wt e QUY(K))
whose cohomology classes generate H(Y (K), R):.
6.4.3. Rational structures. Under our assumptions above, we discuss rational structures
on the representation.

Fix a character x : Ko, /KS, — {+1}. Both sides of

(6.4.3) Hom(Kw’X)(Aqg/E, 7rK) ~ Hom(Kac’X)(/\qg/E, Teo) ® ﬂ';(
are one-dimensional, and the map T — €(T) of §5.3|identifies this with H%(Y (K), C)X.

™

This cohomology space is one-dimensional, and has a rational structure, namely H?(Y (K), Q)X.

Note that the induced real structure on the left-hand side is simply the natural one
(arising from combining the real structures on g, £ and on 7%, thought of as a space of
complex-valued functions). In what follows we may accordingly refer to an element of
Homx, ,)(A9g/€, 7€) as being “real.”

It also follows, examining the right-hand side of (6.4.3), that the Hecke action on each
75 is by rational scalars, and therefore 7, itself admits a Q-rational structure (arbitrarily
take a K ,-stable vector, and take the rational span of its translates). Our situation has

been rendered particularly simple by our multiplicity one hypothesis — see [77, Lemma

9 For example, for the group PGLg, a tempered cohomological representation contributes two dimensions
to cohomology — an antiholomorphic form and a holomorphic form; these are interchanged by the action of Og,

and so (6:4.2) holds.
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I.1] for a related argument using multiplicity one, and [37] for a more complete discussion
of rationality fields.

6.4.4. L functions. In the situation above, we can consider the L-functions L(m, p, s) at-
tached to a representation p of the dual group of G; here, we will only be concerned with
the standard representation and the adjoint representation. (Here, the standard representa-
tion of the product of two classical groups is simply the tensor product of their standard
representations.)

Let us summarize the state of knowledge concerning meromorphic continuation of these
L-functions (this is simply assumed in Beilinson’s conjectures, but much is known uncon-
ditionally). For the partial L-function — that is to say, the L-function ignoring archimedean
factors and factors at ramified finite places — the situation is as follows:

e In the PGL cases, both standard and adjoint L-functions have meromorphic con-
tinuation in s because of the Rankin-Selberg method [32].
¢ In the SO case, the situation is the same if we impose the assumption that
(*) the form 7 has a transfer 7* to the general linear group GL,,, x GL,,,/
(with (m,m') = (n,n) or (n — 1,n + 1)).
Here we use in addition to the Rankin-Selberg method, the theory of exterior
square L-functions from the Langlands-Shahidi method [64] to handle the adjoint
L-function.

In more detail, (*) demands an automorphic form 7* on the general linear
group whose Hecke eigenvalues at almost all primes coincide with the functorial
transfer of . Assumption (*) has been proved by Arthur in the quasisplit case [[1]]
- the form 7* need not be cuspidal, but it is readily described in terms of cuspidal
constituents. It is currently the focus of substantial work to extend to the general
case (see [38] for parallel work in the case of unitary groups).

In addition (assuming (*) in the orthogonal case) one has definitions of the correspond-
ing local L-factor at all places, and work of Henniart [27, §1.2] and [28]] moreover shows
that the local factors thus defined are, in fact, compatible with the local Langlands corre-
spondence for GL.

In any case, for our main theorems, it is not necessary to assume (*); rather we can
simply use the assumptions that are already made in Beilinson’s conjecture. Namely, the
output of this section involves only the partial L-function omitting ramified finite places
(see Theorem [6.11.1); this manifestly agrees with the “motivic” L-function whenever one
has a motive that matches the L-function at good places, and the assumptions that are part
of Beilinson’s conjecture imply that it admits a meromorphic continuation. We will tran-
sition to the completed motivically normalized L-function (i.e., including ramified finite

factors) after (7.2.4).

6.5. Tamagawa measure versus Riemannian measure. On [G] there are two measures,
one arising from the Riemannian structure and one from the Tamagawa measure. Our
eventual goal is to compare them. For the moment, we explain carefully how to construct
both of them:

For the Riemannian measure, we first fix once and for all the “standard” representation
of G, or rather of an isogenous group G’. Letn : G’ — GL(W) be the following Q-
rational faithful representation: in all cases, we take W to be Resg /Q(V’ @ V), and we
take G’ to be the restriction of scalars of SL(V”) x SL(V') in cases (2) and (3), and G’ = G
in case (1).



AUTOMORPHIC COHOMOLOGY, MOTIVIC COHOMOLOGY, AND THE ADJOINT L-FUNCTION 53
Define the form B on gq via
(6.5.1) B(X,Y) = trace(dn(X).dn(Y)).

This defines a G-invariant Q-valued quadratic form B on the Lie algebra. Note that (the
real-linear extension of) B is invariant by the Cartan involution 6 on ggr, by explicit com-
putation. Moreover B is nondegenerate and negative definite on the associated splitting
tr + ipm, because the standard representation 7 just introduced carries the associated
maximal compact of G’(C) into a unitary group. It follows that B is negative definite on
tr and positive definite on pr. In particular, B defines a Riemannian structure on Y (K).

We will also use the same letter B to denote the corresponding Hermitian form on the
complexification of any of these spaces, e.g. (—,—)p on p ~ g/t is the Hermitian-linear
extension of B from pg to p.

We shall also equip hq < gq with the restriction of the form B, i.e., with the form
arising similarly with the representation n|f. When extended to hgr this coincides with the
pullback of B under Ad(g!) : hbr — gr. since the form B was invariant; therefore the
restricted form is preserved by a Cartan involution fixing Uy, (see remark after Lemma
[6.3.1), and similarly defines a Riemannian structure on Z(U ).

For Tamagawa measure, what one actually needs is a measure on ga,, where Aq is
the adele ring of Q. Choose a volume form on gq:

(6.5.2) wg € det(gg)-

Let 1) be the standard additive character of Aq/Q, whose restriction to R is given by
x +— e>™®_ We choose the 1), -autodual measure on Q, for every place v; from that and
wg we obtain a measure on g, = g ® Q, for every place v, and so also a measure i, on
G(Qu).

By abuse of notation we refer to all the measures p, as “local Tamagawa measures."
They depend on we, but only up to Q*, and their product [ [, s, is independent of we.

We proceed similarly for H, fixing a volume form wy € det(h*), which gives rise to
local Tamagawa measures on H(Q,) and a global Tamagawa measure on H(A).

The last needs a short discussion: Note that in case (2) and (3) the group H has a center
equal to G,,,, and so the product of local measures is formally divergent; however, [ [, (1 —
g, '), is convergent, and whenever we write an integral over H against the measure
T tw, it will appear in combination with a product of ¢ functions that formally contains
the factor ¢(1). We shall therefore understand that this {(1) should be incorporated into
the measure, i.e. {(1) is removed from the expression outside the integral, and the measure
is modified to be [, (1 — ¢, ') ' 1,. We hope this causes no confusion; the expressions
are always formally valid and then literally valid when interpreted in this way.

6.6. Lattices inside Lie algebras. We choose an integral lattice inside g and €:
For g, we simply choose a lattice gz < gq of volume 1 for wg, i.e. {wg,det gz) = 1.
For ¢, Macdonald [44] has specified a class of lattices £;""" — g deriving from a
Chevalley basis. First choose in £ a Chevalley basis associated to the complexification of
the compact real Lie group K5 . This can be done in such a way that the compact form
tr is the R-linear span of the torus elements of +/—1H; (where H; are the torus elements
indexed by simple roots), together with X, + X_,, and i(X,, — X_,,), where « varies over

all positive roots. We take £5"™" to be the integral span of these elements.
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With these definitions, we define discriminants of g, €, p thus:

(6.6.1) disc g := (det gz,det gz )p
(6.6.2) disc £ := (det £;"P", det £5,""*>_p.
disc g
6.6.3 discp := .
6.6.3) sep discf‘
Note that
(6.6.4) disc g = (wa,wa)p'

and that the signs of the discriminants of g, ,p are given by (—1)?%, 1,1 respectively.
Also all these definitions carry over to H: in particular, we define disc pg in a similar
way.

We need:

Lemma 6.6.1. The discriminants of g, ¢, p all belong to Q*.

Proof. For disc(g) this follows from the fact that B is Q-valued. It is enough to prove the
result for £. There we observe that
det tz € (Q>< -7

dg+rK
7 det 5",

where €51V is a Chevalley lattice in € arising from the complexification of KS, . The repre-
sentation 7 defining the bilinear form B gives a representation nc of the Chevalley group
underlying £c; this representation, like all representations of the complexified Chevalley
group, can be defined over Q and so the trace form takes rational values on €51V, as
desired. d

Note that the same reasoning applies to H; thus the discriminants of b, u, py all lie in
Q* too.

6.7. Factorization of measures on G. First let us compute the Riemannian volume of
K. Macdonald [44] shows that, for any top degree invariant differential form v on K¢,
regarded also as a volume form on the Lie algebra in the obvious way, we have

o 27rmi+1 cmpt cmpt
(6.7.1) v-volume of K¢, = H Ti!u(det €Y ~ A - v(det £5"7)
where A = (45 +7K)/2; here the m; are the exponents of the compact Lie group K¢, so
that > m; = (dx — rk)/2. Therefore,

vol(Kg,) := Riemannian volume of K, w.r.t. —Ble ~ Ak - 4/disc().
We can factor det (g ) >~ det(¥%)®det(pg ), and with reference to such a factorization,

©sH

wg = # WK @uwp,

+/| disc g

where wy € det £ is determined (up to sign) by the requirement that {wg, wrx)—p = 1,
and similarly wp € det p} is determined by requiring that {(wp,wp)p = 1. We can regard
wg and wp as differential forms on Ky, and G/K, extending them from the identity
tangent space by invariance; the measures on K., and G/K,, defined by the differential
forms wg and wp coincide with the Riemannian measures (associated to —B|¢ and B|,
respectively).
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This implies that

local Tamagawa measure on G pushed down to G/K¢, vol(K%,)
(6.7.2) - _ -
Riemannian measure on G/Kg, w.r.t. B|, /| disc g

~ Ak -4/discp.

6.8. Tamagawa factors. Let 1y denote the volume of K = G(Ay) with respect to Tam-
agawa measure (more precisely: the product of local Tamagawa measures as in §6.5] over
finite places). Evaluating ¢ is a standard computation, and is particularly straightforward
in the split cases where we use it: There is an L-function A attached to G, with the prop-
erty that its local factor at almost all places is given by %; for example, if G = SL,,,
then Ag = ((2)...¢(n). Then py ~ Ag'. We shall later use the notation

Ag,» = local factor of Ag at the place v.
Let us introduce
(6.8.1) Ag/k = Ag/Ak,

where A = 7(dx+7K)/2 a5 before. We can define similarly Agu.
Now examine the Riemannian measure on Y (K). We write

(6.8.2) Y(K) =] [T\G/KS,

where I = G(Q)\G(A¢)/K and, for i € I with representative g;, we have I'; = G(Q) n
giKg;*. If we choose a fundamental domain F; c G(R), right invariant by K¢, for the
action of T';, then [ [, F;g; K is a fundamental domain in G(A) for the action of G(Q),
and F;g; K maps bijectively to Y (K);, the ith component of Y (K) under (6.8.2). The
global Tamagawa measure of F;g; K equals 1y multiplied by the local Tamagawa measure

of F}; on the other hand, the Riemannian measure of Y (K); is the Riemannian measure of
F;/KS,, and so by (6.7.2) we have

projection of Tamagawa measure to Y (K) 1 .
~ A7 A/disc p.

6.8.3
( ) Riemannian measure on Y (K) G/K
Similarly,

projection of Tamagawa measure to Z(U) 1 -
6.8.4 ~ AL/ d
©84) Riemannian measure on Z(U) H/u N S PH

6.9. Cohomological periods versus automorphic periods. We now carry out the first
step mentioned in §6.1} Our situation and notation on groups, manifolds, automorphic
forms differential forms and measures is as stated in §6.2]— §6.3]

Proposition 6.9.1. Fix 1% € det(py r) with (W%, V% 5 = 1; let vy = Ad(g' )Y the
the corresponding element of APHp:

det(pg) = APipy 25 gpay.

If T € Homgs (AP"g/t, ) lies in a Koo /K, eigenspace and induces the differential
Jorm Q(T) on Y (K), as in (5.3.1), then
2 2
’Sz(U) L*Q(T)‘ ~ (dise p)1/2 A?LI/U ) ’S[H] 9T (vir)dh
QT), AT))w A/ (T(vm),T(vu))

(6.9.1)
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(where we regard the statement as vacuous if T(vy) = 0). Here gT (vy) is the translate
of T(vy) € by g = (9, 95), and {T(vg), T(vy)) is the L*-norm S[G] T (ver)|? with
respect to Tamagawa measure.

On the left-hand side the L?-norm of Q(T) is taken with respect to Riemannian mea-
sureEj] on Y (K) induced by B (thus the subscript R), whereas on the right-hand side
everything is computed with respect to Tamagawa measure.

Proof. We follow the convention that a subscript R will denote a computation with respect
to the Riemannian measure induced by B. Although this measure is defined on the locally
symmetric space Y (K), we will also refer to a “Riemannian” measure on [G]; this is
simply a Haar measure that is normalized to project to the Riemannian measure under

We want to integrate :*Q(T") over Z (U), for which we will first evaluate :*Q(7T') against
a unit length element in the determinant of a tangent space. Take a point in Z(U) repre-
sented by h € H(A), with tangent space T, and consider a positively oriented unit length
element of the top exterior power AY™ 7T, In the notation established after (5.3.1) such
an element is denoted by [h, v%], and its pushforward by ¢ is given by

[hg, Ad(g:." vir] = [hg, v

Consequently, the value of .*Q(7") on this unit length element is given by T'(vgr)(hg).
The integral of (*Q(T") over Z(U) is therefore the same as the integral of T'(vg)(hg)
over Z(U) with respect to Riemannian measure. Note that b — T'(vg)(hg) indeed defines
a function on Z(U): for u € U, writing v/ = Ad(g;!)u, we have T(vy)(hug) =
T(vy)(hg-u') = T(u - vg)(hg), but o preserves vy, because u preserves .
Therefore, when we integrate 2(7") over the cycle representing ¢..[Z(U)] we get

f QT = f 9T (vy)drh €z App+/disc pHJ gT (v )dh.
Z(U) Z(U) [H]

here dg is Riemannian measure on Z(U) and dh is Tamagawa measure, and g = (g, g7)
as before; we also used the fact (discpg)"/? ~ (discpg) 2.

Next we compute the norm of Q(T") with respect to Riemannian volume and compare
it to the Tamagawa-normalized L? norm of T'(vz). Let % be a B-orthogonal basis for
APHpg. For each x € A, if we evaluate (7)) at x (considered at the tangent space of
the identity coset) we get, by definition, T'(z) evaluated at the identity. More generally the
sum

> IT@)P

zeRB

defines a function on [G]/K that is K -invariant, and therefore descends to Y (K); its
value at a point of Y'(K) is the norm of Q(T') at that point. Integrating over Y (K) with

10The reason we use Riemannian measure at all is that it interfaces well with the action of ag (e.g. Proposition

[5.5.1]part ().
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respect to Riemannian norm, we see

L o <Z§a|T(w>l ) drg

SgeY(K) (Xoez I T(@)]?) dry
(T(vu),T(vu))r
|7

(6.9.4) = W<T(VH)’ T(va))r-

(6.9.2) (UT), UT))r

(6.9.3) T(ve), T(ve))r

Here we define
(6.9.5) ITI? = D (T (@), T(@)) 12,
TER

and the L2-norm is now computed with respect to Tamagawa measure on [G]. After
translating (6.8.3) between Riemannian and Tamagawa measure for {T'(vg), T (vy))r,
the result follows from Lemma[6.9.1] below. O

Lemma 6.9.1. Notation as above; in particular (G, H) are as in §6.3|and B is the trace
form defined in ©51). Let T € Homg., (APHg/t, 7") lie in a Koo /KS, eigenspace (nec-
essarily one-dimensional, see §6.4). Let vy be as in Proposition and the norm |T
be as in (6.9.3). Then
T(vn),T(vu)) _ 92T (Vh), 9T (va))
| T, ver)n | T Ve, ve)s
Note that (v, vy yp = 1, by the way it was defined in the statement of Proposition
[6.9.1] but we prefer to write the expression above because it is scaling invariant.

€Q,

Proof. Observe the ratio under consideration is invariant under rescaling the norm either
on source or target of 7', or rescaling T, or rescaling vg. The validity of the statement
depends only on the data

(6.9.6) (G(R) 2 Koo, H(R) 2 Use, g, T, T')
together with the scaling class of the form induced by B on pgr and py. By Lemmal[6.3.1]

it suffices to treat the case when g,, = e, the identity element, and G(R) 5> K, HR) o
Uy is one of the following:

6.9.7)  PGL,(R) x PGL,,1(R) > PO, x PO,,,1, GL,(R) 5 O,,.
(6.9.8) PGL,(C) x PGL,1(C) o PU,, GL,(C) 5 U,.
(6.9.9) 80,141(C) x SO, (C) 80,11 x SO, S0,,(C) > SO,,.

In all cases, O and U refer to the standard orthogonal form xf and the standard Hermitian
form Y |22

In other words, the assertion in question is a purely archimedean one, and we may freely
assume that G, H are the Q-split forms in the first case, and (the restriction of scalars of
the) Q(¢)-split forms in the second and third cases. With these Q-structures, the inclusion
of H into G is Q-rational, the form B remains Q-rational on the Q-Lie algebra, and
moreover the maximal compacts U, Ko, described above are actually defined over Q.
Therefore, pr and also APH pg inherits a Q-structure, and the line Rvy < APHpRg is thus
defined over Q. We may freely replace vy, then, by a Q-rational element v}, € R.vy.

First let us consider the latter two cases: Gr is a “complex group” and so Ko, = KY,.
In this case (see §3.4.1] or the original paper [76]) T factors through a certain K -type
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d © Ty, which occurs with multiplicity one inside AP#p. In particular, (T'(v),T'(v)) is
proportional simply to {(projs(v), projs(v)) . The ratio in question is therefore simply

(dim 5)~ LXOsin: PIOJs Vi) 5
Vi vi)B
It suffices to see that projsvf; is Q-rational. However, the isomorphism class of § is fixed
by outer automorphisms of K, : the highest weight of § is the sum of positive roots, and
the character of § on the center of K, is trivial. It follows that projs, as a self-map of
APHyp_ is actually defined over Q.
In the remaining case (6.9.7), fix a character x : Ko, — {+1}. The subspace

Hom(APHp, 7, ) KeX) « Hom(APHp, 7y0)

transforming under (K, x), remains 1-dimensional (if nonzero). This space consists pre-
cisely of the K,-homomorphisms

APIp — Toolk,, @ X-

In this case there is a unique irreducible K, -representation 6’ © AP p which is common
to APHp and 7o |k, ® x. This & splits into two irreducibles when restricted to K% =
PSO,,11 x PSO,(R); these two irreducibles are switched by K, /KY,, which is just the
outer automorphism group of K%, and each irreducible occurs with multiplicity one inside
Ty (one in each irreducible factor of 7y|sL,, +1 x SL,,)- 1t follows that the projection from
APHp to the ¢’-isotypical component is actually defined over Q, and we can proceed just
as before. 0

6.10. Working hypotheses on period integrals. We now simplify (6.9.1) a little bit fur-
ther using the Ichino-Ikeda conjecture [29]. Note that the original conjectures of Ichino
and Ikeda were formulated only for orthogonal groups, but in fact the analogue of their
conjecture is known to be valid in the GL case (see, e.g. [57, Theorem 18.4.1], although
the result is well-known to experts).

At this point it is convenient, in cases (1) and (2) from §6.3] to work with the E-groups
Hpg, G instead of their restriction of scalars to Q. Recall that we regard £ = Q in the
remaining case.

To normalize Tamagawa measures, we must choose a measure on I, for each place;
we choose these measures so that the volume of A g/E is 1 and so that the measure of the
integer ring of F, is Q-rational for every finite place v, and 1 for almost every place v.
Note that this implies that, for v the archimedean place of E,

(6.10.1) measure on F,, ~ D}E/Q - Lebesgue.

Fix now E-rational invariant differential forms of top degree on Hr and G and use
this to define Tamagawa measures dh and dg on Hg(Ag) = H(Aqg) and Gg(Ag) =
G(Aq), thus on [H] = [Hg] and [Gg] = [G]; these global Tamagawa measures coin-
cide with the ones made using Q-rational differential forms.

We factorize dh and dg as [[dh, and []dg, where dh,,dg,s are local Tamagawa
measures, and the factorization is over places of E rather than places of Q. As before, the
dh.,, dg, depend on the choices of differential form, but they only depend up to Q*, since
le], € Q* for each e € F and each place v.

We will use the following expected properties; not all are presently known, and thus we
regard the currently unproven ones as assumptions. (i) is known in the PGL cases and is
the Ichino-Ikeda conjecture in the orthogonal case; (ii) is known in all cases and it should
be possible to establish (iii) with some effort. Finally (iv) is a problem of special functions.
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(i) (Global integral): Suppose that, with reference to a factorization 7 = ®m,, g1 (vy)
can be factorecE}as ®y ., and factorize also the inner product. Then

2
‘S[H] QT(I/H)dh‘ N 1_[ SH(FW)<h”<p”’ goy>dhv
S[G] |T(VH)|2dg v <@v7(pv> .

where the right-hand side is regularized as a global L-value according to (ii) below.
This is the conjecture of Ichino-Ikeda [29]. Its validity in the PGL case is
folklore, see e.g. [57, Theorem 18.4.1].
(i1) (Local integrals at almost all nonarchimedean places): At almost all nonarchimedean
places v, with local Tamagawa measures dh,,, we have
SH(Fv)<h“<p“’ ¢v>dhv _ AG,'U L(%, Ty p)

.10.2 = .
(6102 N A2, (1,7, Ad)

~
:=LHS, :=RHS,

where the representation p of the L-group of G is that corresponding to the Rankin-
Selberg L-function in the SO cases, and that corresponding to the square of the
Rankin-Selberg L-function in the PGL cases. Also Ag, and Ag , are the local
factors described in §6.8]
This is known in the SO cases by [29, Theorem 1.2] (note that our measure

normalization differs from theirs), and in the PGL cases by [26, §2].

(iii) (Local integrals at the remaining nonarchimedean places) If v is a nonarchimedean
place and 7, admits a QQ-rational structure (as is the case in our setting, see @
then for ¢, in this Q-structure we have

(6.10.3) LHS, € Q

where LHS,, is the left-hand side of (6.10.2).

We believe this should not too difficult to show — on the left hand side, for
example, the ratio W is already a rational-valued function of h,,. However,
we do not know a referénce, and to make the argument carefully would take us too
far afield.

(iv) (Rationality, archimedean places) For v the unique archimedean place of E, let T’
and vy be as in Lemma[6.9.1] The condition we will enunciate depends only on
the same archimedean data as in (6.9.6), and we thus may freely assume (just as
in the discussion following that equation) that g, = e and that (Gr, Hg) have
been put in the standard position of Lemma|6.3.1]

Moreover, if we are in the PGL,, x PGL,; over Q case, assume that T’
transforms under the character of Ko, /KS, ~ {£1} given by z +— z"*!: this is
the only case that will be encountered in our application in §7] and the specific
choice of character arises from numerology discussed in

Finally write @, € my for the archimedean component of the factorizable
vector g, T’ (vy ); this is uniquely defined up to scalar multiple, and the associated
line is characterized purely locally (take the image of vz under a nonzero element
of Homgs (APH g/t, my) and translate by go.).

n our application, we will only have to deal with a factorizable vector, because of the one-dimensionality
of (6:4.3). However, we note for completeness that knowledge of a factorizable Hermitian form on pure tensors
determines the Hermitian form; the Hermitian forms arising from the periods we consider are factorizable by
multiplicity one.
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With these choices of data, we have
LHS,

RHS,

where D was the absolute value of the discriminant of £. (We understand here

that the RHS,,, which involves an archimedean L-factor, is defined via the local
Langlands correspondence for archimedean fields.)

(6.10.4) ~ D/

Aside from the factor DdEH/ 2, this simply states the belief that “in good situa-
tions, the archimedean integral behaves like the nonarchimedean integrals.” This
belief must be applied with caution, see e.g [31] for other examples where this
is expected to be false, but seems reasonable in the instances at hand. The factor
D%H/ ? is necessary to make the conjecture independent of E, because of (6.10.1).
Note the very fact that LHS,, is nonzero is not known in all cases; it has been
proven by B. Sun by a remarkable positivity argument in the GL,, cases [68]].

6.11. Summary. Combining Proposition[6.9.1| with the working hypotheses of §6.10] we
have proved:

Theorem 6.11.1. Let v : Z(U) — Y (K) be, as in a map of arithmetic manifolds
associated to the inclusion H c G and the element g = (g, gy) € G(A), as in
Let 7 be as in §6.4} a cohomological automorphic representation for G, tempered at o
and cuspidal, with ™ = T.
In the PGL,, x PGL,,11/q case let x be the order 2 character of K, described after
(6:104); otherwise we understand x to be trivial. Let

T e Homk,, ,)(A%9/€ 7™)

be nonzero and real, and let QU (T) be the associated differential form on Y (K) (as in

G3.1)).

Assume the working hypothesis on period integrals (§6.10). Then

(SZ(U) L*Q(T))2 ( L(ur)(%,ﬂ;p) >

(6.11.1)

€ Qcyc
Q) e - ¥ | T, Ad)
where (ur) means that we omit factors at finite ramified places, p is the representation of
the L-group occurring in (6.10.2), c?c € QX, cy is a half-integral power of m, and the
subscript R means that we compute the L*-norm with respect to a Riemannian measure
normalized as in §6.3] Explicitly:

cy = (discp . D;if’)l/2 (e @) ,

<AK) A < L.(3,m0) >
A% A%, Lo(1,m,Ad)
Moreover, if L") (%, 7; p) # 0 and there exists a nonzero H(A)-invariant functional

on the space of , it is possible to choose the data (9o, g5) and level structure U in such a
way that the left-hand side of (6.11.1) is also nonzero.

Co

Proof. This follows by putting together Proposition [6.9.1] with the statements of §6.10]
(See §6.4.3|for the rational structures, used for (6.10.3).)

Note that the assumption that 7" was real means that Q(7T') is a real differential form,
and that T'(vy) is a real-valued function on [G]; this allows us to drop absolute value
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signs. We were able to drop the ramified factors using (6.10.3)). The last sentence of the
Theorem follows because for each finite place v of E' and any nonzero ¢, € m,, it is
(under the assumption quoted) possible to choose g, € Gg(E,) with the property that

Sk 0,y Chogo o, Gopu) # 0 (see [81] or [S7)).

7. COMPATIBILITY WITH THE ICHINO-IKEDA CONJECTURE

We now study more carefully the compatibility of our conjecture with the Ichino-Ikeda
conjectures on periods. We work in the following situation:

Let H ¢ G be as discussed in §6.3] Each case involves a field E, which is either
imaginary quadratic Q(v/—Dg) or E = Q.

As in we use (e.g.) Gg for G regarded as an E-group and G for it as a Q-group
and similar notations for Lie algebras: in particular gg is the Lie algebra of G, an E-
vector space, whereas gq = Resgp/q@r is the Q-Lie algebra that is the Lie algebra of
G.

We use other notation as in section §6.4] §6.2]and [6.3} in particular we have a map of
arithmetic manifolds

v: Z(U) > Y(K)
associated to H, G and the element ¢ = (9o, 97) € G(A). The Borel-Moore cycle
1x[Z(U)] defined by H lies in the minimal cohomological dimension for tempered repre-
sentations for G (see (6.3.1) and Table|[I), which we shall now call ¢:

q = pyg = minimal cohomological dimension for tempered representations.

Finally, as in §6.4] we have fixed a near equivalence class II of automorphic representa-
tions; only one representation 7 in IT contributes to cohomology at level K.

7.0.1. The cycle Z(U) and its twisted versions. We have available in all cases the class
t+[Z(U)] in Borel-Moore homology. However in the case G = PGL,, x PGL, 11 we
want to twist it, for reasons that we will now explain:

The point is that the fundamental class of Z(U) is not preserved by the action of
Ux/US, ~ {£1}. Rather, the nontrivial element —1 alters the orientation by a sign
(—1)"*1, as one sees by a direct computation (cf. [45} 5.1.1]. Therefore, t4[Z(U)] trans-
forms as x — 2! under K, /K, ~ {£1}; as such, it can only pair nontrivially with a
cohomology class of this sign. By twisting it, we will produce a class that transforms un-
der the opposite character x — 2. This motivates the precise numerology of the twisting
below:

Fix an auxiliary quadratic character 1) of Aa /Q* which, at oo, gives the sign character
of R*. The function v o det now gives rise to a locally constant function on [H], and thus
a Borel-Moore cycle

[ZU)]y € BR(Z(U),Q)
of top dimension on Z(U). To be precise first choose U’ < U on which 1) is constant, so
that ¢ gives a locally constant function on Z(U’), then push forward the resulting cycle
and multiply by ﬁ, however, this will equal zero unless v was trivial on U to start

with. It will be convenient to write for e € {+1}
[Z(U)], e=(-1)"*
[Z(U)]y, &= (-1)"

The notation is designed so that [Z(U)]¢ has trivial sign under U, /US, if ¢ = 1 and
nontrivial sign if e = —1.

(7.0.1) [Z(U)]F = {
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7.1. Motivic cohomology; traces and metrics and volumes. We assume that there ex-
ists an adjoint motive AdII attached to I, in the sense of Definition By its very
definition, it is equipped with an isomorphism

(7.1.1) Hp(AdIL,C) ~§q.+®C =3.

where gq » is as in Deﬁnition Now we may define the motivic cohomology group
(7.1.2) Ln = HY,(Ad*TI, Q(1)),

as in (T.2.2)). As described in §5.1] the regulator on Ly takes the shape

(7.1.3) Ly — ag

and indeed Lyy lands inside the twisted real structure on ag (see §3.1).

There are two natural metrics which can be used to compute the volume of Ly;. One of
these metrics arises from a bilinear form on the Lie algebra of G, and the other one arises
from a bilinear form on the Lie algebra of the dual group. We will need to pass between
the volumes with respect to these metrics in our later computations, and so we explain now
why they both give the same volume, up to ignorable factors.

As per we can equip Ad IT with a weak polarization whose Betti incarnation is the
standard trace form on g itself. Note that g is a sum of classical Lie algebras; by “standard
trace form,” we mean that we take the form tr(X?) on each factor, where we use the
standard representation of that factor. This is visibly Q-valued on gq. We refer to this as
the “trace weak polarization” and denote it by tr.

This induces a quadratic form (denoted ﬂ"*) on g, by duality, which corresponds to a
weak polarization on Ad* IL. As in we may use this to induce a quadratic real-
valued form on H},((Ad* II)g, R(1)), which we extend to a Hermitian form on

H((Ad*Tgr,R(1))®C.

As in this C-vector space is identified with ﬁWR, and thus with ag. (Here, and
in the remainder of this proof, we understand Wg to act on g by means of the tempered
cohomological parameter, normalized as in §3.3])

Explicitly, this induced Hermitian form on ag is given by

(7.1.4) (X,Y)€eag x ag — tr (X - wY)

where w is the long Weyl group element; we used the computation of the Betti conjugation
in the proof of Lemma[5.1.1]

By its construction the Hermitian form is a real-valued quadratic form when it
is restricted to the twisted real structure a’G’R. This quadratic form need not be positive
definite, since we started only with a “weak” polarization, but this makes little difference
to us. The volume of Ly with reference to fr may be analyzed by means of Lemma
(the failure of positive definiteness means that the volume may be purely imaginary: the
square of the volume is, by definition, the determinant of the Gram matrix). We denote this
volume by volg, (L).

On the other hand there is a different Hermitian form on az, which is positive definite,
and whose interaction with the norm on harmonic forms is easy to understand. Namely,
we have equipped (§@ gq with a Q-rational bilinear form, the trace form for a standard
representation; this form endows Y (K) with a Riemannian metric. Then, by (i) of Propo-
sition ag, acts “isometrically” (in the sense specified there) for the dual of the form
given by

(7.1.5) (X,Y)eag x ag — B(X,Y).
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This form is also real-valued on the twisted real structure (af, p)’, and moreover it defines
a positive definite quadratic form there. It is positive definite because B(X, X) > 0 for
X € p, and this contains (a representative for) ag. To see that it is real-valued, observe that

(7.1.6) B(X,wY) = B(X,wY) = B(w X,Y) = B(wX,Y),
so B(X,Y) € Rif X,Y belong to the twisted real structure; but if ¥ belongs to the
twisted real structure, so does Y.

By Lemma | the quadratic forms given by restriction of fr to ag r C 0, and the
restriction of B to ag R, are in duality with one another (after possibly multiplying tr by
4) thus also their complex-linear extensions tr on af, < g and B on ag are dual to one
another (up to the same possible rescaling). Noting that &r* on "R and {r on g"® are
also dual quadratic forms, it follows that (as quadratic forms on ag) we have an equality
B=10" (up to the same possible rescaling).

We will be interested in

volyy (L) := volume of Ly with respect to (7.1.3).

Choosing a Q-basis x; for L; and with notation as above, we compute:

(7.1.7)
volee (L11)? T2 det B(x;, 75) "EE2 455 (2, 75) = 4F det(w) ™ (25, wT5)
(7.1.8) = (4F det(w)) volg (Ly)?

for some k € Z. Clearly det(w) = =+1; it is possible that det(w) = —1, but in any case
our final results will have factors of 4/ Q> which allow us to neglect this factor.

7.2.  We may state our theorem:

Theorem 7.2.1. Notation as before, so that (H, G) is as in the embedding Z(U) —
Y (K) is set up as in and the cuspidal cohomological automorphic representation 11
isasin
Make the following assumptions:
(a) Beilinson’s conjectures on special values of L-functions (both parts (a) and (b) of
Conjecture2.1.1) extended to pure motives as discussed in §2.1.11]
(b) Exlstence of an adjoint motive attached to 11 (as in Definition@.21), arising from
a G-motive attached to 11 ( Con]ecturen in Appendlx@ |:
(c) Working hypotheses on period integrals (§6.10).

Then, with w,w™* as in 6.4} and cycles [Z(U)]* as in we have

(7.2.1) Wef (volyy L)™',
wh, g N2, 1y
(7.2.2) < <w£,£+;] < <w[ = e\ﬁ volgy Lip)~

where [Z(U)]* is as in (T.0); the pairing {w, 1[Z(U)]) is to be interpreted as in Remark
L0

12The latter conjecture is, roughly speaking, a generalization of requiring the existence of an adjoint motive,
but replacing the adjoint representation of the dual group by all representations at once. However Conjecture
is a little less precise about coefficient fields than the existence of an adjoint motive as in Deﬁnition
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Moreover, in case (T.2.1)): if the central value of the Rankin-Selberg L-function attached
to 11 is nonvanishing and there exists a nonzero H(A)-invariant functional on the space
of 11, it is possible to choose the data (9o, g¢) and level structure U in such a way that
the \/Q factor is nonzero. A similar assertion holds for (T.2.2), where we require the same
conditions both for I1 and its twist T1¥ (see (T.2.3))).

Note that and conform exactly to the prediction of the conjecture — see
(T-4:38) and (T.4.13). In an early draft of this paper, we attempted to eliminate the factor
of /QX as far as possible, and indeed found that (to the extent we computed) the square
classes all appear to cancel — often in a rather interesting way. However, this makes the
computation exceedingly wearisome, and to spare both ourselves and our readers such
pain, we have omitted it from the present version of the paper.

Proof. We will now give the proof of the Theorem, relying however on several computa-
tions that will be carried out in the next section. To treat the two cases uniformally, it will
be convenient to use the following shorthand for this proof only:

- For all cases except PGL,, x PGL, 11 over Q, we put 7 = II. The reader is
advised to concentrate on this case, the modifications for the other case being
straightforward but notationally complicated.

- In the remaining case of PGL,, x PGL,,;1 over Q, we “double” everything. First
of all, factor Il = ¥pqr,, X1 XpaL,,, as an external tensor product of an automor-
phic representation on PGL,, and an automorphic representation on PGL,, 1, as
we may.

Now define a new automorphic representation on PGL,, x PGL,, 11

m — (XpcL, - ¥) ¥ EpcL,,,, nE2Z.
YpaL, XM (XpcL, ., <), else.
be the twist of II by the quadratic character v, i.e., we twist by v o det only on the
even-dimensional factor so that the resulting automorphic representation remains

on PGL.
Now, put

(7.2.3)

=TI
considered as an automorphic representation of (PGL,, x PGLn+1)2. Observe
that the adjoint motive attached to IT¥ is identified with the adjoint motive attached
tolIl; thus L, = L @ L.
Finally replace all the groups G, K, H, Uy, by a product of two copies: thus
G = (PGL,(R) x PGL,;+1(R))?, Hy, = GL,(R) x GL,,(R) and so on.
We have proved in Theorem [6.11.1] that
Lt (3, p)
LGOI (1,7, Ad)’
where p is the representation of the dual group of G described in that theorem. Note
in particular that ¢y € 4/Q*. In the (PGL,, x PGL,,LH)2 case, the same result holds,
replacing by (7.2.2), and now taking p to be the sum of two copies of the tensor
product representations of the two factors.

Now the L-functions defined above are Euler products over unramified places, together
with an archimedean factor, and these agree with the corresponding motivic L-function
arising from the é-motive of m. Moreover, for these motivic L-functions, the factors at
missing (ramified) places are rational and nonvanishing, by the assumptions discussed in

(7.2.4) left-hand side of (7.2.1) ~qx cyce
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(2.1.13). So we can replace L") by the full L-function, which we henceforth understand

to be the motivic L-function obtained from the assumed G-motive attached to 7:
L(z,m;p)

L(1,7,Ad)’

So let us look at the right-hand side of (7.2.1) or (7.2.2), according to which case we

are in. Lemma[2.2.2] applied with tr the trace weak polarization and p an arbitrary weak
polarization on Ad 7, implies

(7.2.5) left-hand side of (7.2.1) ~qx ¢fco

volg, Hp((Ad* 7T)R ,Q)
VOlt} FlHdR(Ad* 7T')
L*(0,7,Ad)
VQX VOlp FlHdR(Adﬂ')
where we also used, at the last step, the fact that vol, F'' Hyg (Ad* 1) ~ Ja vol, F'Hqgr (Ad ),

volumey H'Y(Ad* 7, Q(1)) ~qx L*(0,7,Ad)

beause Adm and Ad™ 7 are abstractly isomorphic and volg F'* is independent, up to
4/ QX%, of the choice of weak polarization S (again, Lemma . Using (7.1.7) and

(7:2:4), we see that proving (7:2.1) or (7.2.2)) is equivalent to verifying

LG OmA) o
L(1,7,Ad) vol, F'Hyr(Ad )

The functional equation means that L*(0, 7, Ad) = v/Aaq 22,3(37:23[/(1 7, Ad), where

Apq € Q* is the conductor of the adjoint L-function; so, substituting the expression for

oo from Theorem [6.11.1} we must check

(7.2.6)

Lo(3.mip) (Br) (Do) LGmip)
(7.2.7) m < > <A2 > 'Volp(FlHdR) € \/6
———
7 Vs

Now computing case-by-case (see Table 2] below):
(7.2.8) o ~Q~ (2mi) ™™, ¥4 ~q~ 1,
where
n(n + 1), if G = PGL,, x PGL,,;1;
n(n+1), ifG=Resgq(PGL, x PGLy41);
o2, ifG = Resp/q(SO2n x SO2,41);
2n(n+1), if G = Resg/q(SO2n41 x SO2,42).

Moreover, (assuming Deligne’s conjecture [17], which is a special case of Beilinson’s
conjecture):

L(3,7:p)

(7.2.10) ol (F Hon (A7) © Q- (2mi)m
with m the same integer as above. Equation @) requires an argument, and is in fact
quite surprising: the numerator is related to the Rankin-Selberg L-function and the denom-
inator to the adjoint L-function, and so it is not apparent they should cancel. This is the
surprising cancellation that we have referred to in the introduction, and we prove it in the
next section.

The final assertion of Theorem [7.2.1] follows immediately from the corresponding as-
sertion in Theorem

(7.2.9) m =
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O
TABLE 2. Collates data about the various cases; repeatedly uses
Yitpi(m 4+ 1—1i) = tm(m + 1)(m + 2). “same” means “same as
the other entry in the same row.” “sym” means “extend by symmetry.”
G SO2y, x SO2n41/c SO2n4+1 % SO2n42/c
Hy SO2n/c SO2n+1/c
(dx +7K) 4n? + 2n 4n® +6n+2
(du + rv) omn? on? + 2n
N (vm) (y/m)™**
N [17= Tc(2i)’Tc(n)lc(2n) [T, Tc(2i)’Tc(n + 1)
A [1- Tc()lc(n) i1 N (2i)
AG,w/A o Pc(2n)/Te(n) =n"" Tcn+1)=n "1
L(1/2, 70, p) ~qx 7~ 3Cn DDA F D ~ g~ SN2 A(nF D)
L*(0, 7o, Ad) ~qx 7= 3=t n’=3n ~qx 73Dt En(nt)
TEeewt ~qe ~qe m Y
2n—2,01, ..., (n,n—2)1, (n—1,n — 1)%, sym. (2n,0),...,(n + 1,n — 1), (n,n)?, sym.
N (2n —1,0),(2n —2,1),..., (0,2n — 1) (2n —1,0), (2n —2,1), ..., (0,2n — 1)
M®N (4n —3,0)', (4n —4,1)2 ..., 3n —1,n —2)" ! (4n —1,0)', (4n —2,1)2,..., (3n,n — )"
(Bn—2,n—1)"tL | (2n — 1,2n — 2)2", sym. (Bn—1,n)"*2, ..., (2n,2n — 1)27+1 sym.
L(s,Resg/q M ® N) (1‘[;‘;11 Fc(57¢+1)iAnfzglrc(37¢+1)i+1)2 ( n o Pe(s—it1)t- §27l+1rc(37i+1)”1)2
Ad(M) see text see text
Ad(N) (2n —1,1—2n)1, (2n — 2,2 — 2n)1, (2n — 3),3 — 2n)2, same
((2n —4), —(2n —4)%, ..., (1, =1)", (0,0)", sym)
G PGL, x PGLy11/c (PGL,, x PGLp41/r)’
Hy GL,/c (GL./r)?
(dx +7K) 2n% +4dn — 2 2n% + 2n
(dv +rv) n’+n n(n — 1) + 2[n/2]
Aw/B, o ki 7727
AG,o (2 Tc(@))Tc(n + 1) (s Pr(1) Tr(n + 1)
Ao (1=, Te(@) [, Tr(9)
Acow/AY Ic(n+1)/Tc(l)? ~7' " Tr(n + 1)?/Tr(1)* ~ 727217
L(1/2, 7, p) ~qQx 7771%"("“)("*2) same
L*(0, 70, Ad) ~gx o 3nnFEn+D same
LL*‘(EO,Q%;prd)) ~Qx a it same
M (n—1,0),(n—2,1),...,(0,n —1) same
N (n,0),(n—1,1),...,(0,n) same
M®N 2n—1,005,2n —2,1)%,..., (n,n — 1)", sym. same
L(s,Resgiq M @ N) (Tc(s) Te(s—1)%- - -Te(s—n+ 1)")? same
(L(s, M@ N)L(s, M' @ N) for E = Q)
Ad(M) (n—1,1—n), . .. (1,—1)" 1, (0,0)" T, sym. same
Ad(N) (n,—n)Y, ..., (1,—=1)™,(0,0)", sym. same
L(s, 11, Ad) ( le To(s + i)t ]_[3;1 Tc(s + i)j”’i)Q same
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8. HODGE LINEAR ALGEBRA RELATED TO THE ICHINO—IKEDA CONJECTURE

In this section, we will prove most brutally (7.2.10) from the prior section. To reca-
pitulate, and unpack some notation, this asserts that, for an automorphic cohomological
representation IT of G as in Theorem|[7.2.1] we have (under Deligne’s conjectures)

(8.0.1)
L(3.11)

o, (7 Hap Ay G = SO0 X SOns1/E or

Nm L(i 1
VQETI)™ 54 g s, G = PGLy x PGLy 41 /E or

L(%,10)2 L(%,1v)?
oL, (FT Har (ADTD)) vol, (F o (AdTD)» & = PGL;, x PGLy11/Q

where m is in , p is a weak polarization on Ad(II) and, in the last equation, v is a
quadratic character as in and I1Y is as in (7.2.3). In all cases the L-function above
is now the Rankin—Selberg L-function.

This will follow (as explained below) from (8.3.3), (8:4.8), (8.6.2), (8.7.1) in the four
cases.

We note that Yoshida [83]] has given an elegant “invariant-theoretic” framework for do-
ing computations of the type that we carry out here. However we will follow a fairly direct
approach, along the lines taken by M. Harris [24]. In any case the main point is similar:
the period invariants described in §8.2]behave quite well under functorial operations. The
ICM address of the second-named author [74, §9] contains a first attempt to describe a
more conceptual interpretation of these calculations.

8.1. Preliminaries. In all the cases, the group G is the product of two classical groups
G = Resp/q(G1 x Ga),

where F is either Q or a quadratic imaginary extension of Q, and G, G, are reductive
FE-groups.

There is a choice of whether we take GG; to be the larger or smaller group. In the case of
PGL,, x PGL,, 1, we take G; = PGL,,, G2 = PGL,, 1. In the cases involving SO,, x
SO,,+1 we take G to be the even orthogonal group, G2 to be the odd orthogonal group and
E the imaginary quadratic field. Then we may factor II into automorphic representations
m;on G;:

II = (71' 1 s 2).

We will often use the abbreviation j = n — 1 in the PGL,, x PGL,, 1 cases.

First of all, let us describe how to construct a Q-motive whose L-function agrees with
the L-function appearing in (8.0.1). We are going to make use of the C-groups to avoid
various choices of twist that are necessary to present the same material with L-groups. See
the Appendix, especially §A.T.2] for a summary of this theory.

The dual groups of the algebraic E-groups 1 and G5, are classical groups, and as such
their C'-groups have a “standard” representation: standard on the dual group factor, and we
fix the G,,, factor so that the weight of the associated motive is given by n — 1 in the PGL,,
cases and k — 2 in the SOy, cases. The reader is referred to Appendix [A.4]for more detail
on these standard representations, and for the computation of the Hodge numbers of all the
relevant motives. The archimedean L-factors in the table can be deduced from the Hodge
numbers by the recipe in [17, §5.3].

Conjecture of §A|states that attached to 71, w9 are systems of motives indexed
by representations of the C'-group; in particular, attached to the “standard representations”
just mentioned, we get motives M (for 1) and N (for m2).
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Here a subtlety arises, similar to that discussed in the morphisms from the motivic
Galois group to the C-group (from Conjecture [A.2.T)) are not necessarily defined over Q.
Thus, in general, we can construct the motives M, N only with Q-czoefﬁcients, rather than
with Q-coefficients. For the moment, however, we suppose they can be realized with Q-
coefficients, and write M and N for the motives with Q-coefficients thus attached to 71 and
mo respectively. This italicized assumption is not necessary: the argument can be adapted
to the general case by using an auxiliary coefficient field; for expositional ease we postpone
this argument to Sec. [8.8]

Proceeding under the italicized assumption for the moment, then, we obtain Q-motives
M and N defined over E, whose L-functions coincide with the L-functions of the standard
representations of 71 and 75, shifted by a factor of one-half of the weight of the motive.
By computing the determinant of the standard representations, we verify

(8.1.1) det(M) ~ Q(—n(n —1)/2) anddet(N) ~ Q(—n(n + 1)/2)
in the PGL cases, and
(8.1.2) det(M) ~ Q(—2n(n—1))* (SOs,) and det(N) ~ Q(—n(2n—1)) (SO2p41)-

where Y is the quadratic character of E that arises from the action on the Dynkin diagram
of SOs,,. These equalities will be used to evaluate period determinants attached to M and
N.

We will need to use the notion of restriction of scalars for motives, as defined in [[17,
Example 0.1.1]. If we write

M = RQSE/Q(M®N)

then we have an equality of L-functions:

(8.1.3) L(s+ 1

2,H) = L(s+r,M) = L(s,M(r)),

where (since II is unitarily normalized) the shift r — % equals half the weight of M. Here

n, if G = PGL,, x PGL,, 41

n, if G = Resg)q(PGL, x PGL,41)
2n — 1, if G = ReSE/Q(SOQ»n X SOQn+1)
2n, if G = Resg/q(SO2n41 X SO2p42).

In the case PGL,, x PGL,, 1 over Q it is also useful to note that
1
L(s+ §’Hw) = L(s +r,M¥) = L(s,M¥(r))

with IT¥ as in (7.2.3) and one can express MY either as M¥ ® N or M ® NV; here, in
all cases, the superscript ) on a motive means that we tensor by the one-dimensional Artin
motive corresponding to . In general twisting by 1 can change the determinant, so that
the twisted motive MY (or N¥) may only correspond to an automorphic form on GL,, (or
GL,,41) rather than PGL,, (or PGL,,;1); however this does not affect the computations
below, and because of M¥ @ N = M ® N¥ we can freely twist whichever factor is most
convenient for the computation.

We will freely use the ¢, ¢, é periods of a motive defined over Q; these are defined in

£.1.4
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To avoid very heavy notation, we shall write:
Zv = F'Hig (Resg/q Ad(M)),
&N = F'Hgg (Resp/q Ad(N)).
These are Q-vector spaces. If the motives in question are equipped with a weak polariza-
tion, we may compute the volumes of %), £y according to this polarization, as in §2.2.6)
However, these volumes can be defined intrinsically, as in the proof of Lemma[2.2.2] Thus
if we write vol(.%)s) without specifying a polarization, we mean the class in C* /4/Q*
defined as in that Lemma.
Also, observe that the adjoint motives for M and M ¥ are canonically identified, so we
do not need to distinguish between .£); and % s+ .

We note that the adjoint motive for ITis identified with Res;/q Ad(M)®Resg,q Ad(N),
and so

(8.1.4) vol(F* H3R (AdTI)) = vol(Z) vol (L),

the equality being of complex numbers up to 4/Q*. Moreover assuming Deligne’s con-
jecture [[17], which is a special case of Beilinson’s conjecture, for the motive M(r), we
have:

L
O.M0)

¢t (M(r))

Now combining (8.1.4), (8:1.3) and (8:1.3)), we see that the sought after relation (8.0.1)

reduces to a relation between ¢t (M(r)), vol(Zar), vol(ZLy ), namely
" (M(r))® :
~ 2 m
ol Zar) vol(Zn) ~var (2m)

in the SO cases (with e = 1) or the PGL over E case (with e = 2), or in the remaining
case:

(8.1.5)

(8.1.6)

ct(M(r))? ct(M¥(r))?
vol( %) vol (L) vol(Lar) vol( L) vV~
We verify these statements case-by-case in (8.3.3), (8.4.8), (8.6.2), (8.7.1) below.

(8.1.7) (2mi)™.

8.2. Period invariants of motives. Our proof of (8.1.6) and will be to write both
sides in terms of certain elementary “period invariants” attached to the motives M and N.
More precisely we attach an invariant 2, € C*/E* to the motive M, any integer p for
which FPHyg (M)/FPT1 Hqg(M) is one-dimensional, and an embedding o : E — C.
Such period invariants have been previously considered by M. Harris [23]].

Here is a general overview of the computations that go into the proofs. Firstly, one has
the period matrices for M, N and M ® N that relate the different rational structures on
the Betti and de Rham realizations of these motives. The Deligne periods c* (M), ¢ (N)
and ¢*(M ® N) are obtained as determinants of certain sub-matrices, corresponding to
eigenspaces for the action of complex conjugation cp on the Betti side and certain pieces
of the Hodge filtration on the de Rham side. On the other hand, the de Rham realization
of the motives that appear here have a particularly simple Hodge filtration; in most cases,
the graded pieces are just one-dimensional. This allows us to define (as mentioned above)
certain additional period invariants 2,,, %, that measure the failure of c¢p to preserve the
rational structure on graded pieces of H (M), respectively Hi, (N). The three ingredi-
ents that we use then are:
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(1) The period matrix of M @ N is the tensor product of the period matrices of M and
N; from this one deduces a formula for ¢ (M ® N) in terms of ¢ (M), ct(N)
and the invariants 2,,, %,.

(2) The realizations of the adjoint motives Ad(M) and Ad(N) may be thought of as
subspaces of the realizations of M @ M and N @ N V. Using this, the volumes
of £y and £y can also be computed in terms of 2, and %,,.

(3) Finally, the determinants of the period matrices of M and /N can be computed in
terms of ¢* (M), 2, and c*(N), %,. On the other hand, these determinants are
essentially powers of 274, so this yields an additional relation.

Putting these three ingredients together yields the desired formulas (8.1.6)) and (8.1.7).

8.2.1. Bases. Let M be a pure motive over Q of weight m and let V' denote the Q-Hodge
structure Hj;(Mc, Q). Let Vo = @,VP™ P be the Hodge decomposition. The Betti-de
Rham comparison isomorphism yields a natural injective map

(8.2.1) VPP FPHIR (M) ® C
which induces an isomorphism
FPH*, (M)
8.2.2 ypm=p ~ _ __dRU__ o C,
o2 P () ©
.. . . m— . FP ¥ (M)
This isomorphism gives a Q-structure on VPP namely that coming from W"W
dR

In what follows, we often use the injective map (8.2.1)) to identify V?""*~P with a subspace
of FPH*%, (M) ® C.

Lemma. Let w, be any element of VPP that is Q-rational for the Q-structure defined
above. Then cqr(wp) = wp. Equivalently, Fy,(wp) = c(wp) = wp.

Proof. The element w,, corresponds via the isomorphism above to an element &, in F? HJ}, (M)
that is well defined up to elements of FP™'H' (M). Let us fix once and for all such an
wj, so that
Np = wp, —@p € FPTHE (M) ® C.

Then

CARWp — Wp = CARTp — Np € FPTTHIL (M) ® C
(since cqr preserves the Hodge filtration). Since cqr preserves the spaces VPP and
VPP injects into Hk (M)/FPTHI (M) ® C, we deduce that cqrw, = wp, as
claimed. O

8.2.2. Motives over E. Now suppose that M is a motive over E; for this subsection, sup-
pose that E' is an imaginary quadratic field.

Let o denote the given embedding of F in C and & the complex conjugate of o. Then
the interaction between the Betti-de Rham comparison isomorphisms and complex conju-
gation is described by the commutativity of the following diagram:

H (M) ®po C— H(M,c)®C =V,

Cde \LFC}O'CB

Hip (M) ®p,s C——/> H(Ms,c) ® C =: Vs
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Here cq4g is complex conjugation on the second factor, cg is complex conjugation on the
second factor, Fr,, denotes the map on H7, induced by complex conjugation on the under-
lying analytic spaces, and ¢, @5 denote the comparison isomorphisms. For @ any element
in H (M), we denote by &7 and &7 the images of @ under ¢, and ¢ respectively.

Note that

Fp : VPO S VIR e : VP4 — VIPandso Fep : VP4 — VL
Now the map
o+ FPHp(M) ® C = @izp V™™
induces an isomorphism
FP Hig (M)
FrrlHY (M)
and likewise with o replaced by &.

Next, we discuss how restriction of scalars interacts with cohomology. If M is any
motive over F, then

(8.2.3) ®C ~ Vpm=P,

(8.24) Hlr(Resp/q(M)) = Hig(M),
viewed as a Q-vector space, and
(8.2.5) H;(ResE/Q(M)) = HE’J(M)(—BHE’&(M).

(See [17, §0.5].)

8.2.3. Standard elements w,w. We return to allowing F to be either Q or a quadratic
imaginary field.

Now, we will use the following notation. For the various M defined over E that we will
consider, let p be any integer such that dim F?/FP*! = 1 and p* the dual integer, so that
p + p* equals the weight m of M.

We denote by

Wp € FPHR (M)
any element that spans the one-dimensional quotient FPH¥; (M)/FPT H*. (M). For
o : E — C an embedding we define

wg € Hy(M,,C)yP?"

the element corresponding to w,, via the isomorphism (8.2.3). If £ = Q we will omit the
o. Observe that

(8.2.6) Fpep(wy) = wy.
Whenever w, and wy,« are defined, we define complex scalars 27 by the rule
1, p<p%
(8.2.7) wy =cp(wy) = Lpwps - 1= (=1)™, p=p*
(=™, p > p*.
Observe that
(8.2.8) 2592%, = (—1)™.

This invariant is compatible with complex conjugation:

Lemma 8.2.1. 0@75 = 27
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Proof. We have for p < p*
Fo(2500) B 07 and  Fo(2707) B (—1)mug

p p¥>
which together imply that 27 27, = (—1)"™; now compare with (8.2.8). O
As a result, we will sometimes write
) _
|27 = 27 - 27,

noting that the right-hand side doesn’t depend on o, and equals 1 if p = p*. In particular,
in the case when E' = Q so that 27 = 27 we have 2, = *1 in middle dimension

p=rp*
8.3. The case of PGL,, x PGL,, 1, over Q. In this case (see Appendix [A.4), the dimen-
sion of each graded piece of the Hodge filtration, for both M and N, equals 1. Recall
that we write j = n — 1 for the weight of M. Therefore, let w;,w;, 0 < 7 < j be the
standard elements attached to M, as in §8.2.3] and 2;, 0 < i < j the associated quadratic
period invariants, as in §8:2.3] The corresponding elements attached to N will be denoted
ni>ﬁi7%i for0<i< .7 + 1

We may form the dual bases &, € Hqr(M ") = Hqr(M)" andwy € Hg(M",C) =
Hg (M, C)V, defined as usual by the rule

(@, @y Y = bap-
Then @) gives a basis for F~?Hqr (M )/F'"PHqr (M) and is associated to the ele-
ment w, € H~P=?" (MY, C) under the isomorphism (8:2:2), but now for M V. Defining
period invariants 2V for MV using this basis, we get
2, = +2px.

Write wp g = wp ®w;" , € Hy(M @MY, C)and @y, 4 = 0p ® @), € Hig(M @ MY).

The subspace F'' H{; (Ad(M)) has as a Q-basis the elements
(8.3.1) Bpgn PHa=j+ 1

Recall, from the proof of Lemma that the square of vol F'* Hqr (Ad M) can be
computed via computing the image of a generator of det F'' Hyr (Ad M) under the com-
plex conjugation map to det(Har/F°Hgr). (See in particular (2.2.11)). In the case at
hand, a generator for det F'! Hyp, is given by

/\ Wp,q = /\ Wp,q;

p+qg=j+1 p+g=j+1

and its complex conjugate is given by

( 11 Q,,Q,,) JAN wp*,q*=< I1 Q,,Qq) N\ G g

ptq=j+1 ptqg=j+1 pt+q=j+1 ptq=j+1

where the last equality is valid in the determinant of H (Ad M)/F°Hgg. Therefore

(8.3.2) vol(Lar) ~ /g [T 2.

Likewise, for N, we get:

(8.3.3) vol(ZLy) ~ o [T 2
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Now M ® N has a unique critical point, namely s = j + 1. We will now compute
square of the period

cF(M®N(j+1))

in the case j = 2t is even; the case j odd is exactly similar.

We first note that since M is attached to a form on PGL,,, F,, acts on H' (M) by +1.
Leteg,...,ef bea Q-basis of Hg(M)" and e, 4, ..., e5, a Q-basis of Hp(M)™; here
+ and — refer to the Fi,,-eigenvalue. Then

_ _ A B
(eg-«-ej €ry1 €)= (Wor W Wap e Wiy) (Cﬁ D?;)

where Ay, By, Car and Dy are of sizes (8 +1) x (¢4 1), (¢4 1) x ¢, ¢t x (¢t + 1) and
t x t respectively. Likewise let ..., f;” be a Q-basis of Hg(N)" and f,,1,..., fo41
a Q-basis of Hg(N)~. Then

(far"'ff Jiv1 foer) = (Mo me M2esr - Nes1) <C§ D]]:[,)

where Ay, By, Cv and Dy all have size (¢ + 1) x (¢t + 1). Note that the ith row of
C)s (resp. of Dyy) is equal to 2; (resp. —2;) times the ith row of Ay, (resp. of Byy).
Likewise the ith row of C (resp. of Dy) is equal to %; (resp. —%;) times the ith row of
Ap (resp. of By).

Let us compute both ¢+ (M®N) in terms of ¢+ (M) and ¢+ (N). Since Hg(M®@N) T =
(Hp(M)* ® Hg(N)") @ (Hg(M)~ ® Hg(N)~) and (with notation F* as in

FinR(M@)N) = @p+q2j+1Q'wp®7)qv

we get ¢ (M ® N) = det(X), where

((6;_ ®f1:)i,k (ei_, ®fk_/)i/,k’) = ((Wp®77q)p,q (Wp’ ®77q’)p’,q’) X,

and the indices i, k,7', k', p,qrange over 0 < ¢ < t,0 < k < t,2t =i = t + 1,
204+12K >t+1,0<p<t0<q¢g<tand (p,q) ranges over pairs such that p’ > ¢
orq > tbutp’ + ¢ < 2t. Note thatif p’ > t then ¢’ < tand 0 < 2t — p’ < t. Likewise,
if ¢ >t thenp’ <tand0 <2t+1—¢ <t Let A}, and B}, be the matrices obtained
from A,; and Bjs by deleting the last row. Using the relations wa;—p, = Q; 1p, (wp) and
Nat+1—q = £y ' Fo (1), we see that

Ay ®Ay By ®By
F(M®N) = artl %q~det< M )
ogxt g og@ ! Ay @Ay —By ® By
=[] 207 [] #¢- det(Ay ® Ay) - det(—2B}; ® By)
o<p<t 0<g<t
~q [ @5 [ % det(An)"F det(An)"H! det(Bi,) T det(Bu)f
o<p<t 0<qg<t

= ] 2 [] 22 (" (M) (M) - e (N) e (N)

o<sp<t 0<qg<t
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Now
/4AI 13A1> (14A1 lgAl )
O(M) = det = 2, - det
an = aa (g D L 2odet (e gy,
B Ay Bu
= n Qp~det(0 _237\})
o<p<t
~Qx H 2, -ct(M)c (M).
0<p<t
Likewise,
(8.3.4) §(N) ~qx [[ %q-ct(N)e (N).

0<q<t
Thus, up to Q* factors, ¢ (M ® N) equals

[T 20t ] % (6(M) 11 gp1> -(5(1\7) I1 ,@q1> ¢ (N)

O<p<t 0<g<t O<p<t 0<g<t

=s()eN)t - [T 207t [ 28tV

o<sp<t 0<gs<t

We will also need the same result when we do not assume that Fy, acts on H'* (M) as +1,
for example if we replace M by M & 1. A similar computation shows:

Proposition 8.3.1. Suppose that x is a quadratic idele character for Q; write sign(x) =
+1 according to whether x is trivial or not on R*. Then

H(MX@N) ~qx S(M)™S(N) - [T 257t [] %" e

o<p<t 0<q<t
Let R*(M, N) be the ratio defined by:

(M ON(j+1))2
vol(F1(Ad(M))) - vol(FY(Ad(N)))"

Since j + 1 = 2¢ + 1 is odd, we have

R*(M,N) :=

E(M@N(j+1)) = (2mi) 2 UHDTank(MON) F (@ N) = (27r)2 U+ G+ F (M@N).

Therefore, the Proposition above, together with the properties of period invariants given in
(8:2:8) and Lemma [8.2.8] and the evaluations (8:3:2) and (8:33) of the volumes of the .¥
subspaces, give

RE(MY,N) ~gx (zm-)(j+1)2(j+2)5(Mw)2t+25(N)2t . H Ry - TEO(N)2,

0<qg<t

By (B:1.1) we have
S(M)? and §(M¥)? € (2ri) 90D . (Q*)? and §(N)% € (2mi)~UFTDE+2) . QX

where the computation for §(M?) comes from [17, Proposition 6.5]. We now get from
(8:3:4) our desired result, namely, if ¢ has sign —1, then

(8.3.5) RE(M,N) - RE(M?,N) ~qx (2mi)0+D0+2),
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8.4. The case PGL,, x PGL, ;1 over imaginary quadratic £. Again M has weight j
and rank j + 1. Just as in the prior case, each graded step of the Hodge filtration has
dimension 1, both for M and for V.

Let &o,...,w; be a E-basis for H} (M), chosen as in §8.2.3| and with associated
invariants 27 as in §8.2.3] Just as at the start of but now keeping track of embeddings,
we form wy € H}(M,,C), and also the dual bases W, ,wy 7, and put

Wp,q =Wp @W;_, € Hig(M® M)
and similarly w, , € H (M, ® M, C).

We may compute the volume of %), in a very similar way to the previous discussion.
In the case at hand, a generator for det F'' HyR is given by

/\ Wp,q A @@p,q ~ /\ (wz,wwg,q) A (v —Dwgm Y _Dwg,q)’
p+g=j+1 p+q=j+1

where we used the isomorphism from (§.2.3) to go from left to right. The complex conju-
gate of the above element is given by

( 11 Qp|2|3q2> /\  (same, replacing p, g by p*, ¢*).

p+g=j+1 p+q=j+1

v

~qx det(Har/F' Har)
Therefore,
(8.4.1) vol(Zr) ~Jar n 12,7

0<p<y

There is an identical expression for the volume of .y, simply replacing j by j + 1 and 2
by Z.

For the remainder of this subsection, we fix an embedding o : E — C, and when we
write 2, % etc. we mean 2°,%°, etc.

We shall now compute the Deligne periods ¢* (Resg/q (M ® N)). Instead of using the
basis consisting of @y, we can work with the w?. Suppose that A is the (j + 1) x (j + 1)
complex matrix defined by

(8.4.2) (eo---ej) = (wg - -wj)- A
Note that this depends on the choice of o, but we fixed one above.
Note that

o a
Fyocp-e; = Fype; and Fyep - w;) = wy .

Thus applying Fo,cp to (8:4.2), we get

(Fpeo- - Fpej) = (wf -~ wf) - A
Likewise, let fo, ..., fj1+1 denote a basis of H};  (N) and let B be the (j + 2) x (j + 2)
complex matrix defined by

(84.3) (fo--fij+1) =g ---nj41) - B,
where (7, . ..,7;j4+1) is a E-basis for H (M). Note that
(8.4.4) Q¢ = Qt_la]’_tﬂ' and btlﬂ'/ = .%glbj_‘_l_t/,i/,

where we repeat that 2, really means 27, with the same choice of ¢ as fixed above.
Now we need to compute the change of basis matrix X between the bases:

(8.4.5) ei®fr + Fplei® fir), 0<i<j0<i'<j+1
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and

(8:4.6) (Po00) (W @), (9o, 05) (V=D @), 0<t+t <
of the complex vector spaces

(Hp(Resg)q(M ®N)) ® C)* ~ Hiz(Respq(M ® N)® C)/F*.
Note that

(0, 05) (W ®@np) = (Wi @0, wf @),
while
(0, %5) (V=D -w @) = V=D(wf @17, —w] @17).

Thus the entries in the (z,4)th column of X corresponding to the elements in (8:4.3) and

at,ibt/y,i/ JFat,ibt/,i/

i(at,ibtz,i/ 7at_’ibt/yi/)

24/—D

Then
1

G+D(G+2)
2

det(X) ~qgx det(Y")
V=D
where Y is the matrix whose entries in the (7, #')th column corresponding to (¢,t') are

at g * bt’,i At g * bt/,i’

(L

—— —1 -1
i by D5 Ryt bjy1-v

As (t,t") vary over all pairs such that ¢ + ¢’ < j, the pairs (t*, (¢')*) := (j —t,j +1—1)
vary over all pairs such that t* + (¢)* > j + 1. Thus
det(Y) = ( I1 Qt—l%’;l> -det(Z),
0<t+t/<j

where up to a permutation of the rows, the matrix Z is just A ® B. Then

1 o ,

+ ~ey — U+) =i ... 91
C (RGSE/Q(M ®N)) Qx — %(j+1)(j+2) QO e@l Qj
By I R, - det(A)Y T2 det(B) T

J

Now we note that (8.1.T)) implies that
J
(8.4.7) det(A)? ~qx (2mi)7UTD . TT 2,
i=0

and in fact that HLO 2, is an element in E of norm 1.

Indeed det(M) is a Tate motive, as observed in (8.1.1); if we denote by Hqr (det M)q
a generator of the canonical Q-line inside its de Rham cohomology, arising from a Q-
rational differential form on G,,,, we may write

Wo AWL A Awj = )\-HdR(detM>Q
for some A\ € E* and computing periods we see that

det(A) ~qgx A*l(gm‘)*j(ﬂl)/z.
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On the other hand, we have wg A w1 A --- Awj = Wg A W1 A -+ A @, and comparing
this element with its complex conjugate we find A = +\ - ]_E:O £; (for an explicit, but
unimportant, choice of sign). This relation determines A up to Q*, and we have
det(A)? ~qx (2m1) TUTDNT2 <o (2mi) TUFDIN 2. N/,
which proves (8.4.7). Likewise, det(B)? ~qx (2mi)~0+DE+2) Hf;(l) %, where again
]_[qu(l) Z; ! is an element of E of norm 1.
We may thereby simplify the expression above to

¢t (Resg)q(M ® N))2 - (2mi)i Ut DG+2+G+1)?(+2)
~qe (257277021 (R AL
~Qx ‘gj|2j|°@jfl|2(jf2) cee X |@j+1|2(j+1)|%j|2j ..
j J+1
~Qx H ‘Qp|2p : H |<%q‘2q-
p=0 q=0
Using (8:4.T)) and the relation
ct (RGSE/Q(M ® N) <] + 1)) _ (27Ti)(j+1)'%mnk Resp/(M®N) | ct (ResE/Q(M ® N))
= 2mi) UV U et (Res g ) (M @ N),
we find at last
¢+ (Resg (M ® N)(j +1))?
VO].(XJW))VOI(XN) VA2
8.5. Polarizations. In the remaining orthogonal cases, the motives M and N over the
imaginary quadratic field E are equipped with (weak) polarizations, as follows from the
discussion in the Appendix; these arise from the (orthogonal or symplectic) duality on the
standard representations used to define M and .
We will make use of these polarizations for our analysis, and thus we summarize here
some useful properties:

We denote by S the weak polarization on M, ie. S : M ® M — Q(—w), with w the
weight of M. As usual, we write
(8.5.1) Q = (2mv/—-1)"8S.

Thus the form @ is Q-valued on Hf(M,, Q) (we shall denote this form by (), and write
Ss = (2my/—1)"*Q, on the same space) whereas the form S is E-valued on Hj (M).
We denote by the same letter .S the weak polarization on V.

These polarizations induce also polarizations on Ad(M), Ad(N), M ® N by transport
of structure, and also on the restriction of scalars from F to Q of any of these motives;
we will again denote these by the same letters, or by (e.g.) S*9 if we want to emphasize
that we are working with the adjoint motive. We denote similarly (e.g.) @49, S29 for the
forms on the o-Betti realizations, just as above.

(8.4.8)

(2mi)UHDE+2),

8.5.1. Polarizations and restriction of scalars. For a moment, let X denote a polarized
motive defined over £ and X := Resg/q X. Then X inherits a polarization from X.
The corresponding bilinear form ) on H;(X) is just the sum of the forms @), and Q5 on
Vo = Hf ,(X) and V5 = HF ,(X) respectively. On the de Rham realization, the form
is just the trace from E to Q of the E-valued form on Hjj (X). Further, the C-antilinear
isomorphism F,cp from V, to V; identifies (), and Q5 with complex conjugates of each
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other. In particular, to compute the form on H i, (X), we may embed H iy (X) in V, for
instance (via ¢,,) and take the trace (from C to R) of the form Q.

8.5.2. The adjoint motive: polarized case. Next, some comments on the adjoint motive.
Let w be the weight of the polarized motive M.

Since Ad(M) € Hom(M, M) ~ M ® MV, and since M~ ~ M (w) via the polariza-
tion, we may view Ad(M) as a sub-motive of M ® M (w). Now
(8.5.2)

Har(Ad(M)) € Hagp(M @ M) = Hqp(M)®* @ Hqr(Q(w)) "=~ Har(M)®?
In this way, we can regard n® 7’ as an element of Har (M ® M) whenn, 7’ € Hqr(M).
Under the above identification the form ) a4 induced on the adjoint corresponds to (27+/— 1)_2“’ Q%®?,
whereas Saq corresponds to S92
Similarly, for o an embedding of E into C, we have
(8.5.3)

Hg(Ad(M),,C) c Hg(M, ® M) ,C) = Hg(M,)®? ® Hz(Q(w), C) ez2 Hg(M,,C)®2,
Under this identification @ o4 corresponds to Q%2 and Saq corresponds to (27+/ 71)2'”5 ®2,

8.5.3. In what follows, we will compute the volume of %, with respect to the polariza-
tion, as described in

In other words, we compute the volume on Q-vector space .Z; with reference to the
quadratic form obtained by pulling back the polarization under the map

given by z — 1(z + ).

If we regard the target above as Hf  (Ad(M),R) @ Hf ,(Ad M, R) the map is given
by 3 (s + Po, 95 + P5). Here ¢, is as in §8.2.2 In other words, the form on %) is
given by

1 _ 1 — 1 _
(7,y) :=tre/r SgAd(i(xU+$”), 5(3/” +y7)) = 5('51“0/11 S?d(xa,ya)ﬁrcm Sad(@7,y7)).

8.5.4. Period invariants, revisited. In this case, the previous discussion of period invari-
ants can be slightly simplified. In We have introduced elements @, € Hqr (M) for
each integer p with dim F?/FP*1 = 1. In the cases with a polarization we can and will
choose the elements w,, to be self-dual, in that

(8.5.4) S(@p, wpx) =1 = Sg(wg,wg*) (p < p*)

whenever both w,,, wy,* are both chosen. (The second equality follows from the first.) The
same quantity then equals (—1)" for p > p*.

If p = p*, which only occurs in even weight w, we cannot guarantee @I); here
Se(wg,wg) = 0(S(@p,@p)) lies in E* and its class mod (E*)? is independent of the
choice of w,,. Define therefore

(855) OédR(M) = S((;Jp,(:)p).
If the weight j is odd, we set aqr(M) = 1. In all cases, this is an element of E* whose

square-class is independent of choices.
We may then evaluate the 27 in terms of the polarization. It follows from that

b U(adR(M))ilsa(wngig)v p=p*.

9o {s(,(w;;,w;), p<p*
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Note that Qg belongs to R* if p # p™*; thus, when @,, are normalized above, we have
27 = 27, and we may simply refer to 2,,. For p = p* we have 27 € o(aqr(M))"'R*.
Finally, if &, &, are both defined, we denote by

Wp,q € Hig(M @ M), wj , € Hg(M ®M"),, C)

the image of &, ® w, and w;, ® w,, respectively, under the identifications of (8.5.2) and

(8:3.3), respectively.

8.6. SO4, x SO9, 41 over E imaginary quadratic. Recall that M is the motive attached
to automorphic form on SOs,, and N the motive attached to the automorphic form on
SO2n+1, and we have fixed polarizations in §8.3

8.6.1. Computation of archimedean L-factors. In this case, the Hodge numbers for Ad M
are somewhat irregular, so we will discuss the archimedean computation by hand. We have
Loo(s,Resp/iq AdN) = (T'c(s +2n — D'Te(s +2n—2)' - Ta(s +3)" 'Te(s +2)" 'Ta(s + 1)")2 Lc(s)™
and
* 1 1 n—1 n—1 n\2 % n
L%(0,Resgiq AdN) = (Tc(2n —1)'Te(2n —2)" - Te(3)" 'Te(2)" 'Te(1)") TE(0)
~ax 2 (=) (243) 4+ 1 (2n—14+2n-2)] _ 7T_2["+Z;:11 i(2n—2i+2n—2i+1)]
_ ﬂ_72[ Py ita Nt i(n—i)] —4n(n—1)(n+1)—n(n+1)

=T .

For Ad M, the Hodge numbers range from (2n—3, —(2n—3)) to (—(2n—3), (2n—3));
the multiplicities are given by
1,1,---,t,t,---,n—1,n—1,nnnn—1n—1

sty bybyt Ly

if n = 2t is even, and by

1, tt+1,--n—1,n—1,n,n,nn—1,n—-1,---t+1,¢t---,1,1,
if n = 2t + 1 is odd. (Here the bar indicates that those terms are skipped.) In the first case,
Loo(s,Respiq Ad M) = (Tc(s + 4t —3)'To(s + 4t —4)' - - Tc(s + 2t + 1) 'Te(s + 2¢)
To(s +2t — 1) Ta(s + 2t — 2)"™ . . To(s + 3)* 'To(s + 2)2 ' Te(s + 1)%)  To(s)*
and
L%(0,Respjq Ad M) = (Tc(4t —3)'T(4t —4)" - Tc(2t + 1) 'Te(2t) "
To(2t — 1)™MTe(2t — 2)™ - Te(3)* 'Te(2)* ' Te (1))’ TE(0)*
~gx 7r—2[2t+(2t71)(2+3)+-“+(t+1)(2t—1+2t—2)+(t71)(2t+1+2t)+-~+1(4t73+4t—4)]
oA 2t 2i- ) 12 ) —2fa NP a2t )23
2 i) =28 ] o~ dn(n=1)(ntb )+ 2n(n—1)
Similarly, if n = 2t + 1, we have:
Leo(s,Respiq Ad M) = (To(s + 4t — 1)'Ta(s + 4t —2)' -+ - Te(s + 2t + 3)" T (s + 2t +2)" -
To(s + 2t + 1) Ta(s + 26) - Ta(s + 3)*To(s + 2)*To(s + 1)) To(s)2
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and
L%(0,Resp/q Ad M) = (Tc(4t — 1)'Tc(4t — 2)" -+ - Te(2t +3)" 'Te(2t +2)"

FC (2t + 1)tl—\c (2t)t+1 . FC (3)2tFC (2)2tFC(1)2t+1)2 F’é (0)2t+1

~ox 71_—2[(2t+1)(O+1)+2t(2+3)+--~+(t+1)(2t)+t(2t+1)+(t—l)(2t+2+2t+3)+~~+1(4t—2+4t—1)]

—2[F ) i(4t—2i+4t—2i+1)+37L 4] _

i=

—2[4 Y2t | i(2t—i)+2 Y28 4]

=T ™

—2[4 2L i(2t+1—i)—2 3L i) _ x

S —2[a P i(n—i) -2 4] _ ﬂf%n(nfl)(nﬂ)+2n(nfl)7

which is the same expression as in the case n = 2t.
Thus, in either case, we have:
(8.6.1)
L*(0, 7o, Ad) = L% (0, Resp/q Ad M) L% (0, Resg/q A N) ~qgx r=§n(n=1)(n+1)+n*-3n

8.6.2. Volume computation. We first compute the volume term for Ad(N). As in the
PGL cases, all the graded pieces of the Hodge filtration for IV are one-dimensional. Let
70, ---,7Non—1 be a basis of H, Q‘R(N ), chosen as before; these define invariants Z,. . .,
Hon—1 aswell asabasis By = (10, ,12n—1) of Hiz (N)®E,-C. (As before, we fix an
embedding o : E — C and when we write 2, Z etc. we mean 27, %7, etc.) To compute
vol(F! Ad(N)), we first write down an explicitly a basis for H; Resp/q Ad(N) ® C.
Here Ad(N) is the n(2n + 1)-dimensional subobject of Hom(N, N) consisting of the
those endomorphisms L satisfying Q(Lx,y) + Q(z, Ly) = 0, where @ is the symplectic
formon N.

A basis for F"H3; (Ad(N)) ®g,» C/F™"! is indexed by unordered pairs (i, j) such
thati + j = m + (2n — 1) and is given by

mi®mnj+n;®@m: i+j=m+(2n—1)}

or more precisely the image of these elements under the identifications of (§8.3.2).

If we replace Ad(N) by Resg/q(Ad(IV)), then we also need to throw in v/—D times
the basis vectors above. The union of the elements above with m > 1 is then a C-basis for
F'H*; (Resg/q Ad(N)) ® C. While it is not a Q-basis of the natural rational structure
on this space, it is a Q-basis of the corresponding graded for the Hodge filtration, so to
compute the volume we may as well work with this basis.

In a similar fashion to our previous computations, we get

Vol(Ln)? ~quye D (B3 s - B AL )
and using Z; Hon—1—; = (—1), that
Vol(Zn) ~qx D™ - &2y O g2

We now turn to Ad(M). Fori = 0,...,n — 2,n,...2n — 2 pick elements @; €
F*HZ, (M) according to the discussion of (8.2.3), obtaining invariants 2; as explained
there.

For the two dimensional space F'" Hj, / Fn™*1 there is no natural basis, so we just pick

any orthogonal basis {0;F |, @ |} for the form S. Let By, = {@;} v {@F |, @ ). Let
+ - +

w |, w, | bethe images of @} |, @, , respectively in H?~1"=1(M). Suppose that

+ _ +
Whp—1 = ‘Qllwnfl + ‘Ql?wnfh

- _ +
W1 = lewnfl + ngwnil.
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Let %) denote the basis {wo, -+ + ,wn—2, W, 1, W1, Wy w2} of Hir(M)®E o
C. As before Ad(M) is the n(2n — 1)-dimensional sub-object of Hom(M, M) consisting
of the those endomorphisms L satisfying

Q(Lz,y) + Q(z, Ly) =0,
where @ is the symmetric form on M.
A basis for F™H¥; (Ad(M)) ®g,, C/F™*! is indexed by unordered pairs (w;,w;),
wi,w; € $Br, such that i + j = m + (2n — 2) with ¢ # j and is given by
{wiQuwj —w;Quw;: i+j=m+ (2n—2)}
again with reference to the isomorphism (8.3.2).

We will compute (vol #)s)? as the determinant of the Gram matrix of the form de-
scribed in ~ The only tricky part is the contribution of terms involving Wﬁfr Let

ot = w, Qi —w ®wy_y,
where j lies in the range n < j < 2n — 2. Consider the 4 x 4-matrix X of inner products
(x,1) where x, y run over the elements x&, /—Dx®. Set
Dy =S, (wi_p,wp 1), 2o = 8o (wn_1,w, 1)
and

A +iB=S,(w 1w, ), ABeR,
Note for example that, using (8.3.2)

1 [ —
(xt,v/—Da™) = 3 (tr SAd(zt /—Dzt) + tr SaAd(a:+,\/—Dm+)) =0,

while )
(xt,27) = 3 (tr SAd(zF 7)) 4 tr S?d(x+,xi)) =2A29;.
and
(zt,v/=Dx7) = % (tr SAd(zt V=Dz7) + tr S2d(z, \/—Dx—)) = 2v/DB2;.
Then
2, A 0 VDB
oot A 2. VDB 0
det(X) = (22;)" - det 0 VDB D2, DA
VDB 0 DA D2_
= (22,)*- D*(2,2_ — A% - B?)%
Note that
2,92 — A% -B? =det(T) = A - det(E),
where
L c@_;,_ A +iB L + + _ _ - 211 2o
I':= (A —iB 9 ) ’ A= Sa(wn—lawn—l)SU(wn—lvwn—l)’ = 0@21 0922

We remark that det(T) lies in R*, Z= = I and A lies in £, hence
det(T')? = AA e Q*.

Combining the above computation with a routine computation of the contribution from

terms not involving w> |, we find

Vol(Lar)? ~(qryr DT (2373 2R 93.2,)° - det(T)2( Y,
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and using 2; 95, _o_; = 1, that
VOl(Lar) ~qx 2y PP 2y 92 L AL det(2) L

Let {eq,...,e2,—1} and {fo, ..., fon—1} be Q-bases for HE’U(M) and H;;,,U(N) re-
spectively. Then ¢ (Resg/q(M ® N)) is the determinant of the change of basis matrix
between

{ei®fi’+FOO(€i®fi')}7 O<i,i’<2n—1,
and
{(¢o, p5)w @n}, {(¢o, vs)V—Dw@n}

where w € By N FTHY (M), ne By 0 FUH(N),0 <t +t' < 2n — 2. We find as
in the previous section that

—2n?

c*(Respiq M ® N) ~qx V—D . £6(2n72)3;(2n74) 272,
Ry R 72 det(E) " - det(A® B),
where A and B are the period matrices given by
(eo €1 -ean1) =PBn A, (fofi - fono1) = %N B.

Computing the Gram matrices of the bases e; and %), with respect to the polarization and
taking determinants, we may compute det(A) and det(B):

det(A)? ~qx A7F- (2mi) 22D det(B) ~qu (2mi) 212D,
o)
det(A® B) = det(A)*" det(B)*" ~q« A™"(2mi) 72 (4n=3),
Finally the center is the point s = 2n — 1 and
¢ ((Respyq M ® N)(2n — 1)) = ¢¥ (Respjq M @ N) - (2mi) ™m0,
Putting all of the above together yields:
c*((Resgyq M ® N)(2n — 1))

(8.6.2) vol(-Zar ) vol(ZLy)

~qx (27i)*" v/ AA VD"
——
€4/QX

8.7. SO2,11 % SO9,42 over E imaginary quadratic. Recall that here N is associated
with SOg,,+1 and M with SOs,, 2. We will be brief for all the computations are very
similar to the prior section, e.g. the term L*(0, Ad N) is the same as in the previous
section, while the formula for L*(0, Ad(M)) is obtained by replacing n by n + 1 in the
formula from the previous section.

The volume computations are also similar: we have

vol(F' Resp/q(AdN)) ~qx Dz -%62"%17(2”72) R

vol(F' Resp/q(Ad M)) ~qx 352”,@;(2”72) 272 A" - det(2),
where A, = are defined similarly.
—2n(n+1 —(2n— _
Ci(RGSE/QM®N) ~Qx '\/—D (n+ )QO_QHQ:L (2 2)"@7131
5>y P 2 det(E) " - det(A® B),
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where A and B are the period matrices as before. Now, computing with Gram matrices as
before shows

det(A)2 ~Q AL, (27m')—2n(2n+2)7 det(B)2 ~Q (2m-)—2n(2n—1)’
SO
det(A® B) = det(A)*" det(B)*" "2 ~qx A" (2mi) "ZnF2)(An=1),
The center is the point s = 2n and
c*((Resgiq M ® N)(2n)) = c* (Respiq M@ N) - (2772')4712(2”4-2)_
Putting all of the above together yields:

c*((ResE/Q M ® N)(2n))
vol(Zar) vol(Zn)

8.8. Motives with coefficients. We return to the issue mentioned on page[68] namely, the
morphism from the motivic Galois group to the C-group of G; or G2 might not be defined
over Q. In this remark we outline a modification of the argument above that accounts for
this possibility. We will explain this in the case G = Resg/q SO(2n) x SO(2n + 1) for
an imaginary quadratic F, the other cases being similar. The reader is referred to [17] Sec.
2 for a survey of motives with coefficients and for the formulation of Deligne’s conjecture
in that setting, which we use below.

Choose a large enough number field K over which the @-motives attached to 7, 7o
are defined, i.e. so that the associated morphisms from the motivic Galois group to the
C-group of G; are defined over K.

We get motives attached to 71 and 7o over E with coefficients in K, denoted My and
N respectively. Attached to IT one has the motive M i = Resp /Q (Mg ® Ni). Then

L(2n—1,Mg)e (K®C), c"(Mg(2n—-1))e(K®C)*/K*,

where all the tensor products are taken over QQ; Deligne’s conjecture states that
L(2n—1,Mkg)
ct(Mg(2n—1))
Let Ad Mk and Ad N be defined as above as sub-motives of Mk ® My (2n — 2) and

of N ® Nk (2n — 1) respectively; by the general formalism of Appendix §A|these are

equipped with polarizations (in the category of motives with K -coefficients)]'”| Then we
can define the volumes

(8.7.1) ~qx (2mi)2 D) /D",

(8.8.1)

eK— (K®C).

vol L, vol £y € (K®C)* /K™,
generalizing in the obvious way the definition in (T.4.2), and
volFngR Ad Mg = vol Ly vol L.
Moreover the computations in Sec. [8.6]can be easily modified to show that the following
variant of (8.6.2) remains valid:
ct (Mg (2n —1))
vol F1Hyr Ad M - (27i)2n?
(One uses that the K -action on Hg (Mg ) and Hg(M g ) commutes with the action of C*
and Wy respectively.)

(8.8.2)

eV (K®Q)*.

Bris plausible that this fails in some PGL cases, but there our proofs never used polarizations and with
minor modifications one proceeds without them.
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Now we have an equality

(8.8.3) L(%,H) _ (20— 1, Mg)

(Rankin-Selberg L-function on the left) which in fact shows that the RHS lies in (Q ®
C)— (K®CQC).
Finally, we note that there is a natural functor

Motives with Q-coefficients — Motives with K -coefficients
denoted X — X g and we have the relation
(Ad H) K = Ad M K

where Ad IT is the conjectural adjoint motive with Q-coefficients attached to I1. The proof
of Lemma shows that the square of the volume volg F'* Hyr (AdTI) (for any weak
polarization .S on Ad II), is (up to Q*) independent of the choice of S. Moreover,

(8.8.4) volg F' Hyr (AdTI) = volg F' Hyr (Ad M)

where the LHS lies in C* /Q*, the RHS in (K ® C)* /K* and the equality must be viewed
as saying the LHS maps to the RHS under the natural map C*/Q* — (K ® C)*/K*.

Putting everything together (i.e. (8.8.1), (8.8.2), (8.8.3) and (8.8.4))) gives

Lz 10 £ (Q®C) VKB Q)"

2
in particular, the square of the left-hand side lies in (Q ® C) n (K ® Q) = Q, as desired.

(8.8.5)

volg F1Hgg (AdTI) - (2mi)27°

9. ACASEWITHO = 3

In this section we offer what is perhaps the most interesting evidence for our conjecture,
in a case where Y (K) is a 9-manifold. Namely, we verify some of the numerical predic-
tions in a cohomological degree that is neither minimal nor maximal. These are degrees in
which we cannot even produce explicit cycles!

What we check is the following: our conjecture relating H3 to H*, H®, H holds, “up
to rotation” (see Theorem[9.1.T]for the precise statement). That theorem is phrased as con-
ditional on Beilinson’s conjectures, but what we actually do is unconditional: we compute
many numerical invariants of the lattices H*, and we only need Beilinson’s conjectures to
compare these computations with our conjecture. We also verify Prediction[I.4.3]uncondi-
tionally (at least up to some factors in 4/ Q). It would be interesting to analyze the square
classes that appear in our argument, in order to eliminate these factors of 4/Q*.

A critical input into our result is the work of M. Lipnowski [42], who combines the
ideas of equivariant analytic torsion with base change.

9.1. Notation and assumptions.

- Let F be an imaginary quadratic field (we will regard it as embedded in C) and
E o F acyclic extension of degree 3; let o be a generator for the Galois group of
E/F, so that

Gal(E/F) = (o) = {1,0,0°}.

We will assume E/F to be unramified, but this is only so we can apply the
work of [42] in the simplest form; the reader can easily verify that the same idea
would apply for E/F unramified at primes above 3, for example, using the refined
theorems later in [42]].
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Choose a non-split quaternion algebra D over F', and let G be the (algebraic)
group (underlying) D* /F*. Let G be the base change of G to F; and let

G = Gg(E® C) = PGL,(C) x PGLy(C) x PGLy(C)

be the archimedean group at oo associated to G g.
We denote by ag . (r) or ar for short the (one-dimensional) complex vector space
attached to the real group Gg(R) (see . Similarly we define ag,®r) =
ag for short, a three-dimensional complex vector space. Note that we may nat-
urally identify
ap >~ a%

where X is the set of embeddings 2 — C extending the given embedding of F'.
Let 7 be an infinite-dimensional automorphic representation for G , cohomolog-
ical at 0o, and let II be the base-change of 7 to Gg.
We suppose that 7 is trivial at each ramified place for D, and with conductor p/(?)
at each prime p that is unramified for D. Putn = Hp pf (®)_ (If one allows the case
where E/F is ramified, we should additionally assume that n is relatively prime
to the discriminant of E/F.)
Let K be the level structure for G of “level I'g(n).” By this we mean Kp =
]_[v K, the product over all finite places v, where

(a) If v is ramified for D, then take K, = O}, F/Fy where Op, < D, is the

maximal order.
(b) If v is unramified for D, fix an isomorphism D, ~ PGLs(F,); then K, is

Z > € PGLy(0,) where the

given by the preimage of the matrices < CCL
valuation of c is at least f(v).
We define similarly K'g to be the level structure for G “of level I'g(n - Og),”
where we choose the isomorphisms in (b) in such a way that K is o-invariant.

Let
Y =Y(Kg), Y =Y (Kr)

be the corresponding arithmetic manifolds for G and G, respectively; thus
Y is nine-dimensional and Y is three-dimensional. Moreover there is a natural
Gal(E/F) = {o)-actionon Y (arising from the o-action on G g, which preserves
the level structure). The inclusion G < G gives rise toamap Y — Y of Y’
into the o-fixed subspace on Y.

We equip Y with the Riemannian metric arising from the standard Riemannian
metric on hyperbolic 3-space H?, and we equip Y with the Riemannian metric
arising from the standard Riemannian metric on H? x H3 x H3.

We suppose that

dim H2,, (Y,C) = 1.

cusp
Here the notation “cusp” should be understood as meaning the contribution of all
infinite-dimensional automorphic representations to cohomology.

(O:122) implies firstly that dim H',, (Y, C) = 1, because of base change, and

cusp
secondly that Y, Y have only one connected component (which is equivalent to
asking that the class numbers of E and F' are odd). It also implies that 7 is the
only nontrivial automorphic representation which contributes to the cohomology
of Y, and similarly II is the only nontrivial automorphic representation which
contributes to the cohomology of Y.
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- Let Lyr be the coadjoint motivic cohomology H', (Ad*II, Q(1)) as in (7.1.2); let
Ly ® C — ag be the Beilinson regulator, as in (7.1.3). We define similarly L,
with its regulator map L, ® C — ap. There is a natural action of (o) ~ Z/3Z on
L1, and an identification

(9.1.3) L. > LY.

Before we give the statement of the theorem, let us comment a little on the assumptions.
Although we do not have any numerical examples, we expect that situations like the above
should be very easy to find given an effective ability to compute H3(Y, C) numerically.
In particular, it is very common (see discussion in [3]]) that the cuspidal cohomology of
Y is one-dimensional. When that is so, we would expect that the cuspidal contribution
to H3(Y, C) also is one-dimensional, comprising solely the base-change forms — in situa-
tions with § > 0, cuspidal cohomology in characteristic zero that does not arise via a lift
from another group is considered to be very rare (see, e.g., [S5] for a sample numerical
investigation).

Before we formulate the theorem, note that Gal(E/F), and thus the real group algebra
R[Gal(E/F)],actson H*(Y (K), C). By a rotation in the group algebra R[Gal(E/F)] ~
R x C we mean an element of the form (1, z) where |z| = 1.

Theorem 9.1.1. With the assumptions above, Prediction (more precisely equation
(T.4.16)) holds up to A/Q*.

Moreover, assume Beilinson’s conjectures, as formulated in Conjecture [2.1.1) and ex-
tended to pure motives in §2.1.T1)| and the existence of a 2-dimensional motive associated
to 7 (so also I1). Let af,, and so also Ly, act on H*(Y (K ), C)ir by means of the action
constructed in §3]

Then there are rotations r; € R[Gal(E/F)], for 1 <14 < 3, such that

(9.1.4) H3(Y(K), Q) - ALY = r H3T(Y(K), Q)n1.

In other words, the main Conjecture holds, up to replacing Q by Q and up to a rota-
tion in R[Gal(E/F)]. (Infact, Q can be replaced by an extension of the form Q(+/a, b*/*)
fora,be QX, and r3 can be taken trivial.)

Here the tempered cohomology contributes in degrees 3 to 6. The groups H* and
H5 are “inaccessible”, because it appears to be very difficult to directly construct rational
cohomology classes of this degree. Our method of proof is in fact quite indirect, going
through analytic torsion.

We need some setup first on metrized lattices (§9.2) and then on Reidemeister torsion
(§9.3). This setup will allow us to check that Prediction[I.4.3]holds in §9.5] The full Theo-
rem above will follow from a more detailed analysis, which we catry out in the remainder
of the section. This final analysis uses many of the results of this paper: it uses the re-
sults of Theorem both over F' and over F, the compatibility with Poincaré duality
(Proposition [5.5.1), and the study of analytic torsion over F' and over E (both usual and
o-equivariant).

9.2. Volumes and functoriality. Some brief remarks about the behavior of volumes under
functoriality: Let V' be a Q-vector space equipped with a metric, i.e., V ® R is equipped
with an inner product. We define its volume as in (T.4.2). Then

V* := Hom(V, Q), Sym"V, A*V
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all obtain metrics; similarly, if V, W are Q-vector spaces with metrics, then V ®W inherits
a metric. We have a natural metrized isomorphism ARV ~ (/\d*kV) * ® (det V'), where
we wrote det(V) = Adm(V)y/,

Fix an isomorphism [ : (V ® R, metric) — (R", Euclidean inner product). If we write
f(V) = Q"¢ for some g € GL,(R), we have vol(V') = det(g). Using this it is easy to
check the following identities:

9.2.1) vol(Vy ® Vi) = (vol V)4im V2 (yol 15)dim 11

(9.2.2) vol(V*) = vol(V) ™%, [[(vol A'V)D" =1 (dimV > 2),
where all equalities are in R*/Q*.

If o is an automorphism of V' with prime order, then we denote by V7 the fixed point
space; we denote by V,, the quotient V' /V?. It will be convenient to abridge

vol? (V) := vol(V7),

the volume of the o-invariants with respect to the induced metric.

Finally, it will be convenient to make the following notation: If V; are a collection of Q-
vector spaces with metrics, indexed by the integers, and only finitely many V; are nonzero,
we denote by

(9.2.3) vol Vi = [ (vol Vi)V,

the alternating product of the volumes. We will often apply this notation when V; is the ith
cohomology group of a Riemannian manifold, equipped with the metric that arises from
its identification with harmonic forms.

9.3. Analytic torsion and equivariant analytic torsion. The theorems of Moscovici-
Stanton and Lipnowski. As a reference on this topic see [15] (for the general case) and
[43] (for the equivariant case); see also [47, 4} 5]]. We briefly summarize the important
points.

Let M be a compact Riemannian manifold, o an automorphism of M of prime order
p, G = (o) the group generated by o. Note that the fixed point set M is automatically
a smooth submanifoldEfl We shall suppose that dim (M) and dim(M?) are both odd. We
may find a G-stable triangulation of M, by [30], and it may be assumed to be regular (see
[[12} Chapter II1]).

If W is a real vector space, let det(1/) be the line (= one-dimensional real vector
space) given by AY™W)TYIf W has a Euclidean metric, then det(W) has a metric too;
this normalizes an element of det(W) up to sign, the element of norm 1. If W, is a finite
complex of real vector spaces, define det W, = ®;(det Wi)(’ly, a one-dimensional real
vector space. (Here, L~ denotes the dual of L, if L is one-dimensional.) There is a natural
isomorphism det W, ~ det H*(W,), where we regard the cohomology as a complex of
vector spaces with zero differential.

In particular, writing C* (M, R) for the cochain complex of M with respect to the fixed
triangulation, we get an isomorphism

(9.3.1) det C*(M,R) ~ det H*(M,R).

1474 see that, note that one can assume the metric to be invariant by averaging under G, and then the expo-
nential map in the neighbourhood of a fixed point provides a linear chart for M ¢ near that point.
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Equip the chain complex C, (M, R) with the metric where the characteristic functions of
cells form an orthonormal basis; give C* (M, R) the dual metric. Equip the cohomology
H*(M,R) with the metric that arises from its identifications with harmonic forms (here,
harmonic forms are endowed with the L? inner product). These metrics induce metrics on
the one-dimensional vector spaces det C* (M, R) and det H* (M, R) respectively.

We define the Reidemeister torsion of M (with reference to the given triangulation) by
comparing these metrics, using the identification (9.3.1):

(9:3.2) RT(M) - |- llex = || - [+

Evaluate the resulting equality on an element ¢ € det C* (M, Q); then ||c| cx is easily seen
to lie in Q*, whereas | c| g+ ~qx vol H*(M, Q), where the right-hand side is defined as
an alternating product as in (9.2.3). Therefore,

(9.3.3) RT(M) ~ vol H*(M, Q).

We also need an equivariant version of the same discussion. The complex of invariants
C*(M,R) has cohomology identified with H*(M,R)?; we get

(9.3.4) det C*(M,R)® ~ det H*(M,R)°.

These too have metrics, induced from C* (M, R) and H*(M, R); we define the “invariant
part” RT? (M) of the Reidemeister torsion via the same rule (9.3.2)), now applied to (9.3.4).
An orthogonal basis for C,. (M, Q)? is obtained by taking all o-invariant cells, and the o-
orbits of cells that are not invariant; we have a similar (dual) basis for C*(M, Q). The
elements of the resulting basis are orthogonal, and their lengths are either 1 or /p, where
p is the order of 0. Writing ; for the number of j-dimensional simplices that are not
invariant, we see vol C7(M, Q) ~ p%i/2. However, modulo 2, Y¢; = Y(~1)ig; =
X(M)—x(M?). Both Euler characteristics are zero (we are dealing with odd-dimensional
manifolds). Proceeding as above, we get

RT? (M) ~ vol H*(M, Q)" .

The main theorem of [15] is an equality between RT and an analytic invariant, the
analytic torsion; the main theorem of [43] is a corresponding equality for RT?. We do not
need to recall these results in full here.

All that is important for us are the following two statements, in the case when M =Y
from (9.1.1), and o is given by the action of a generator of Gal(E/F) on Y

(9.3.5) RT(Y) =1

(9.3.6) RT?(Y) = RT(Y)2

These statements are proved by studying the analytic torsion. The proof of (9.3.3) is
exactly as in [46] or [66] (the stated theorems there do not cover the current case, but the
proof applies in exactly the same way). The idea is, roughly speaking, that the product
decomposition of the universal cover of Y means that every Laplacian eigenvalue occurs
in several cohomological degrees, leading to a mass cancellation in the analytic torsion.

As for (9:3.6), this key relationship is due to Lipnowski [42], §0.2, “Sample Theorem™].
Lipnowski’s results are deduced from the theory of base change: the analytic torsion coun-
terparts of RT(Y") and RT? (V') are defined in terms of a regularized trace of log A, acting
on Y, and possibly twisted by a power of o; however the theory of base change precisely
allows one to relate this to corresponding computations on Y.

15Here are some notes regarding the translation of Lipnowski’s theorem to the form above: Lipnowski works
in a situation with a Galois group (o) of order p and shows that 7, = 7P. Here 7 is exactly RT(Y"), for
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9.4. Volumes of cohomology groups for Y and Y. We gather some preliminary results
related to the volumes of groups H7 (Y, Q) and H’(Y, Q), measured as always with re-
spect to the metric induced by the L2-norm on harmonic forms.

We have

(9.4.1) vol H (Y, Q) = vol H{y(Y, Q) - vol H (Y, Q) siv,

(equality in R*/Q*) by virtue of our assumption that the only cohomological automor-
phic representations at level K are the trivial representation and II: the splitting H® =
Hi @ Hi,, is both orthogonal and defined over Q. Poincaré duality induces a metric

isomorphism H(Y, Q) ~ H'* (Y, Q)*, where i + i* = 9, and thus
vol H (Y, Q) - vol H (Y, Q) ~ 1

and the same result holds for the trivial and II parts individually. We have similar results
for the o-invariant volumes, and also a similar equality for Y:

vol Hi(?, Q) = vol Hfr(?, Q) - vol Hi(?, Q)triv,

We now compute the various volume terms related to the trivial representation.
Observe that

. 1,3 € {0,9};
. evd 17Z € {073}7 : i .
dim H'(V, Qe = § and dim H'(Y, Q)eiv = 1 3,1 € {3,6};
else
’ ’ 0, else.

Explicitly speaking, harmonic representatives for H3(Y, R )i, are obtained from the pull-
backs 7*v under the coordinate projections

94.2) H x H x H — H,

here H is the hyperbolic 3-space, and v the (Riemannian) volume form on it. Moreover,
cup product gives an isomorphism

AN H(Y, Qv ~ H (Y, Q) = H (Y, Q)tuiv-
Lemma 9.4.1.
(94.3) vol H*(Y, Q) triv ~ 1
Proof. 1t is enough to show that
(9:4.4) vol(H* (Y, Q)uriv) VOI(H" (Y, Q)uriv) ~ 1.

because then Poincaré duality gives vol(H%(Y, Q)triv) Vol(H®(Y, Q)triv) ~ 1, and that
gives the Lemma. To verify (9.4.4), take an orthonormal basis wy,ws,ws for harmonic
3-forms spanning H3(Y, R)iv. The norm of each one at every point of Y (K) (where the
norm is that induced by the Riemannian structure) equals 1/4/vol(Y"), where we measure
the volume of Y with respect to the Riemannian measure.

suitable choices of data, but 7, takes some translation: its logarithm is the logarithmic determinant of the de

Rham Laplacian on Y twisted by o. One obtains the same logarithmic determinant if we twist by o* for any

1 <i<p-—1 Addupoverl < ¢ < p — 1 and apply the main theorem of [43] to the representation

of (o) which is the difference of the regular representation and p copies of the trivial representation. We find
o 3

RT(Y) - 7271 = RT? (Y)P; therefore, in our case with p = 3, we find REC(V)” 72 = 75, To conclude

RT(Y)
we apply (033).
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The volume of H3(Y, Q) equals (up to Q*, as usual) equals

fywi Awr Aws §pw Awr Aws

The first equation is just the definition (T.4.3), where the denominator adjusts for the fact
that the w; are not a Q-basis, and, at the last step, we used that w; A wa A w3 is a multiple
of the volume form, and its norm at each point is vol(Y")~3/2,

On the other hand, the volume of H%(Y, Q) equals the L2-norm of 2°Y. with d(vol)

vol(Y)?
the Riemannian volume form, i.e., vol(Y') /2. That proves (9.4.4). O
Lemma 9.4.2.
(9.4.5) vol” H*(Y, Q)uiv ~ vol(Y)2.

As above, the volume of Y is measured with respect to the Riemannian structure —
equivalently, with respect to v.
wiku+7r;k 1/-}—7r§l< v
e volY
To verify this, recall that we have a map ¥ — Y7 (it is possible that this map is not
surjective but it doesn’t matter). Each 7 pulls back to v on Y, and in particular integrates
to vol(Y'). Therefore {5-ws = 3, so ws really does belong to H*(Y, Q). The L*-norm of

ws is given by , /3 - VZT(I?Y)T Therefore, the left hand side of (9.4.3) is

Proof. Notation as in (9.4.2), a generator w3 for H3(Y, Q)7 is given as

(V) vol(Y)
~ vol(y)v/2. ¥ . .
\3_(\,)_/ vol(Y)1/2 vol(Y)1/2
0 _—
3 6

vol(Y)Y? = vol(Y)?,
—

9
where, on the left, we noted in braces the cohomological degree that is giving rise to each
term (one uses Poincaré duality for 6, 9, and recall that these terms are raised to the power
(—1)8, (—1)? respectively). O
9.5. Proof of Prediction In what follows we abbreviate

Hyy := H'(Y, Q)n
for the II-summand of cohomology.
Combining (9.323), (9.3.3), (0.4.1), (0.4.3) and Poincaré duality we get

(9.5.1) vol Hit € 4/Q* -vol H},

where the 4/Q>* comes from the fact that we took the square root of an equality that held
up to Q*. Next, we have

(9.5.2) vol? HE ~ (vol H¥)?

since from RT? (Y") €39 RT(Y)? we get
9.5.3)  vol” H(Y, Q) - vol” H*(Y, Q)uiv ~ (vol H*(V, Q) - vol H*(V, Q)1xiv)”

but Lemma [9.4.2] and the simple fact that vol H*(Y, Q)riv = vol(Y), implies that the
contribution of the trivial representation on left and right cancel.
Expanding (9:3.2)), noting that HJ is o-fixed, and using Poincaré duality, we see

vol” HA\® 1 \!
vol H3 volHL )’
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that is to say
vol” Hi (vol HL)?
II ( - ) _ \/&7
vol Hp
for some ¢’ € Q*. This indeed verifies Prediction up to 4/ Q.

9.6. Computation of vol H;; and vol H}. In this case we know (T.4.8) both over E and
F:

(9.5.4)

9.6.1) vol(Hp)? - vol (L) ~ /a1
(9.6.2) vol(H})? - vol(L¥) ~ \/q2.
for ¢; € Q*.

The computation of the periods of cohomological forms on inner forms of GL(2) in
minimal cohomological degree, in terms of associated L-functions, was in essence done by
Waldspurger [[79, [78]], and (9.6.1), (9.6.2) can be deduced from this computation, together
with a computation along the lines of §8|relating these L-functions to Ly and L.

However, we will now briefly outline how to deduce (9.6.1) and (9.6.2) directly from
some mild variants of Theorem because that Theorem already has done all the ap-
propriate normalizations and Hodge-linear algebra needed to get the result in the desired
form. We will focus on (9.6.2)); all steps of the proof of Theorem [7.2.1] and the variant
we will need below, go through with F' replaced by F or indeed any CM field, and that
will give (9.6.1). Besides this issue of working over F rather than F’, the reason we need
“variants” of Theorem [7.2.1]is to provide enough flexibility to ensure that the L-values
occuring are not zero. One pleasant feature of the current case is that the hypotheses of
§6.10] are all known here.

We apply Theorem [7.2.1 with:

- G the form of SO(3) defined by the reduced norm on the trace-free part of D; in
particular G(F) = D*/F*.
- H c G the SO(2)-subgroup defined by a subfield F < D, quadratic over F, i.e.
we have H(F) = F* /F*,
- The cycle Z(U) will be twisted, as in by a quadratic idele class character
1) of F , trivial on F'.
The twist mentioned was not used in Theorem [7.2.1] but all steps of the proof go through.
The only change is in the nonvanishing criterion in the last paragraph: one must replace
the Rankin-Selberg L-function by its ¢-twist.

It is possible, by Theorem [80, Theorem 4, page 288] and a local argument, given below,

to choose such F', ¢ in such a fashion that:

(@) L(L,BCEr @) # 0, and

(b) for v a place of F' which remains inert in F, the local e-factor ¢, (BC?TF ® )
equals —1 when D is ramified and otherwise 1.

In both cases BCII; means base change (global or local) from F to F. According to the last
paragraph of Theorem [7.2.1] together with the work of Tunnell-Saito 71156, [51] relating
invariant linear forms to e-factors, conditions (a) and (b) imply that the 1/Q ambiguity in
Theorem [7.2.1]is actually nonzero, giving (9.6.2).

Finally, we describe the local argument alluded to above. We will find a pair of distinct
quadratic idele class characters x1, x2 of F, and then construct F, 1) from them, so that
there is an equality of L-functions L(F,v) = L(F, x1)L(F, x2). (Thus, if ; corresponds
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to the quadratic extension F'(+/d;), we take F=F (v/d1ds), and ¥ to correspond to the
quadratic extension F'(/d1, +/d2) over F).

Let T be the set of ramified places for D. Let .S be the set of all places not in 7" where
m is ramified, together with the archimedean places. Let R be the remaining places. Our
requirements (a) and (b) then translate to:

(@ L(3,7x x1)L(5,7m x x2) # 0, and
—1l,veT.
l,ve S]]R.

Let us recall (see e.g. the summary in [71, §1]) that for &£ a local field and o a represen-
tation of PGLy (%), the local epsilon factor £(o, 1, 1/2) = e(0) is independent of additive
character ). Moreover, if ¢ is a principal series, induced from the character o of k*, we
have (o) = «(—1); if o is the Steinberg representation we have () = —1, and for the
unramified quadratic twist of the Steinberg representation have (o) = 1.

If x is a quadratic idele class character of F' that is unramified at 7" and trivial at .S, the
global root number of the y-twist satisfies

T ey = [T

E(ﬂ-) veT vER veT
| —;

(b) ey(m x x1)eu(T X X2)X1X2(—1) = {

:H’UESUT Xv(—=1)=1

In other words, twisting by such a y changes the global root number by a factor (—1)?,
where ¢ is the number of places in 7" where Y is nontrivial.

Choose x; and x2 of this type such that y; and y2 are “opposed” at each place of T’
(i.e. one is trivial and one is the nontrivial quadratic unramified character), and such that
x1 and 2 are both trivial at each place of S. Then

—l,veT

(9.6.3) go(m X x1)eu(m X X2)X1X2(—1) = {1 ve S[IR

The global root numbers of 7 x ; (4 = 1,2) are both given by &(r) - (—1)%, where ¢ is
the number of nontrivial places in 7" for y; or X2 (they have the same parity). Choosing ¢
appropriately we arrange that e(m x x1) = (7 x x2) = 1.

Waldspurger’s result implies that we may now find twists x4, x5 of x1, X2, coinciding
with x1, x2 at all places of T[] S, such that L(3,7 x x};) # 0. The condition
continues to hold for the X}, so we have achieved (a)’ and (b)’ as required.

9.7. Proof of the remainder of Theorem [9.1.1, We must verify (9.1.4) for 1 < ¢ < 3.
Let us compute volumes of everything in sight in terms of the volumes of Ly and L.
First of all,

9.7.1)  vol(H3 ® L%)? ©Z0 vol(13)8 - vol(Lry)~2 B vol (132 B2P vor(md )2,

Also we have (since H 1?-’1 is o-fixed):

(9.7.2) vol” (HE ® L¥)? = vol® (L) vol(H3)? BE vol(L*)? vol (H3)?
vol H3)? . 2
9.7.3) @EVOIHI};‘L B (vol” HE).

We can now deduce the conclusions of the Theorem. First of all,

HY - APL = HY.
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Both sides above are one dimensional Q-vector spaces, so that this can be checked by
comparing volumes, for which we use (9.6.1), Poincaré duality, and the fact that the volume
of A3L} and L coincide (see (T.4.4)). That proves (9.1.4) fori = 3. Fori = 1 we use the
following lemma, applied with L; the image of H ® L}, in H*(Y,R)y, and Lo := H7.

Lemma. Let VR be a three-dimensional real vector space with metric, equipped with an
isometric action of (o) ~ Z/3Z, with dim V§§ = 1. Suppose V1,V, < Vg are two different
Q-structures, both stable under o. If

9.7.4) vol(V7) = vol(V3), vol? (V1) = vol? (V3),

then we have
Vi®Q(Vh) = a(V2 ® Q(Vb))

for a rotation « € R[o]* and some positive b € Q*.

Proof. We have an isomorphism Q[o] ~ Q @ Q[({3] and correspondingly we may split
orthogonally
‘/i = V;‘g @ (‘/i)o-

Since V{7, V5 have the same volume, they are equal. On the other hand, (V7), ® R =
(V1) ® R, and these spaces are both isometric to R[(3] equipped with the standard qua-
dratic form |z + iy|?> = 22 + y2. The images of Vi, V5 in R[(3] must be of the form
a; - Q[¢s] for some a € R[(5]* ~ C*; since the volumes of these spaces coincide in
R*/Q* we get |a;|? = b|ay|? for some b € Q. Therefore Vi ® Q(v/b), Vo ® Q(\/D)
differ by a rotation as claimed. O

In our case we do not have the exact equality of volumes as in (9.7.4), but only equality
up to certain factors in 4/ Q*. Correspondingly, we get L; = a.Ls only after first extending
scalars to a field of the form Q(y/ar, b'/*). This implies the case i = 1 in the theorem.

Finally, the case of i = 2 of the theorem follows from Poincaré duality: take h, h' € H
anda € 2L}, d’ € L¥. Then LemmalS.5.1]implies

(hea,h'-ad"y=<(h-ad ,h)e Q- /g1
where (—, —) is the Poincaré duality pairing on H*(Y, R), and we used (9.6.1)) at the last
step. Therefore, the three-dimensional vector spaces H; - Lf; ® Q and H3, - A% L ® Q are
dual to one another under the Poincaré duality pairing. Since the former space is a rotation
of H 1‘-1[ ® 6 as explained above, we deduce that the latter space is a rotation of H, 15’[ ® Q
This concludes the proof of the theorem.

APPENDIX A. THE MOTIVE OF A COHOMOLOGICAL AUTOMORPHIC
REPRESENTATION

In this appendix, for lack of a sufficiently general reference, we shall formulate the
precise conjectures relating cohomological automorphic representations to motives.

A.1. The notion of a é-motive.

A.1.1. The motivic Galois group. Let F' be a number field. Assuming standard conjec-
tures, the category .#r of Grothendieck motives over F' (with Q-coefficients) is a neutral
Tannakian category, with fiber functor sending the motive M to the Betti cohomology of
M, := M x,,C for an embedding v : F' — C. (See §2.1.9). Fixing such v gives a motivic
Galois group (the automorphisms of this fiber functor), denoted Gy1o¢. It is a pro-algebraic
group over Q; it depends on the choice of v, but we will suppress this dependence in our
notation.
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For any object M of .4, we let G s denote the algebraic group over Q defined sim-
ilarly but with .# replaced by the smallest Tannakian subcategory containing //. Then
G s is of finite type and

(A.l.l) GMot =1(iLIlGM.
M

The natural map
PMe - I'r — GL(H(;(MU? Qﬁ)) = GL(HE(Mv) ®Q€)

factors through G s (Q/). Conjecturally the image of this map is Zariski dense in Gy (Qy)
[163] §3.27 (sic), and we will assume this in our discussion.
The groups G and Goy Sit in exact sequences:

and
1 — Gt = Grot = T — 1

where G(J)\J and G(If/lot denotes the identity components of Gy; and Got respectively. The
group I'r = Gal(F/F) may be viewed as the Tannakian group associated with the Tan-
nakian category of Artin motives over F'.

The Galois representations pas¢ : I'r — Gar(Qy) yields, in the inverse limit, a map

(A.1.2) pe: Tr — Grot(Qe)

with the property that the composite map I'r — Gniot(Qe) — T'r is the identity.

A.1.2. The group ©G. We will use the C-group defined in [13]], see in particular Propo-
sition 5.3.3 therein. Let G = (é x G,)/{E), where ¥ is the order 2 element defined
by (¥5(—1),—1), and X is the co-character of T < G corresponding to the sum of all
positive roots for G. This has the property that the cocharacter  +— (X5 (z), r) from
Gy — G x G, admits a square root when projected to G this square root will be denoted
by w:

(A.1.3) @ : G — G,

so that we may informally write @(z) = (v/z, Xz (V/T)).
We define the C-group as the semidirect product

CG:éXFF

where I' i acts on G in the natural way and on G, trivially. The action of I'» on G factors
through a finite quotient of I'>. We understand “G' to be a pro-algebraic group defined
over Q.

Note that, parallel to the structure of G0t noted above, there is an exact sequence

lﬁéHCGﬂf‘Fﬂl.

Just as for G itself, the complex algebraic groups G ., “G can be descended to algebraic
groups GO, C@ over Z, using the split Chevalley model of G; thus their R-points make
sense for any ring R and, by a slight abuse of notation, we will allow ourselves to write
G(R), °G(R) for these R-points. We also write G, ©Gp for the corresponding R-
algebraic groups.
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A.1.3. G-motives. A G-motive X (over F') will by definition be a homomorphism
(A.1.4) vx i Gyorg — G

commuting with the projections to I'r ,and whose projection to G,,/{+1} ~ G,, gives
the representation associated to the Tate motive Q(—1).

Here the subscripts refer to base extensions of these algebraic groups to Q. The mor-
phisms between G-motives X, Y will be understood to be the elements of G(Q) conju-
gating tx to ty; in particular, the isomorphism class of X depends only on the G(Q)-
conjugacy class of ¢x.

Then X defines a functor (also denoted X) from finite-dimensional © G-representations
over Q to the category of motives over F with coefficients in Q. In fact, this functor is
a more intrinsic presentation of a é—motive, because, after all, the motivic Galois group
depends on a choice of fiber functor to begin with.

Composing ¢ x with pg (see (A1.2)) gives a map

px.0 i Tr 25 Grot(Qr) = Gy g(Qr® Q) “5 “Gg(Qr® Q).

Thus we get a representation px » : IT'r — “Gg(Q,) for each prime X of Q above £, with
the property that the composite of this map with the projection G — I'f is the identity.

Lemma A.1.1 (The Galois representation determines the motive). If px x and py,\ are
conjugate under G(Q,) for some ), then also X,Y are isomorphic — i.e., Lx, vy define

the same G(Q)-conjugacy class of maps.

Proof. If px » and py, are conjugate, then ¢ x and vy, considered as maps of Q,\—algebraic
groups, are conjugate on a Zariski-dense subset of the source (by our assumption that the
image of I'z in Got(Qy) is dense). Thus tx and ¢y are conjugate over Q,\. But then
they are also conjugate over Q. (]

If (p, Vp) is a CG—representation over Q, we write X, for the associated motive, i.e.
the motive with Q coefficients associated to the composite p o v x. There is a tautological
isomorphism

(A.1.5) Hp(X, x, C,Q) ~ V.

A.2. The G motive attached to a cohomological automorphic representation. Now let
F = Q; we will formulate the precise connections between cohomological automorphic
representation for G, and G’-motives.

It is convenient to start with a character y : . — Q of the cohomological Hecke
algebra for Y (K), as in but allowing Q values. Attached to each embedding \ :
Q < C there is a near-equivalence class of cohomological automorphic representation
IT* whose Hecke eigenvalues coincide with \ o .

Attached to y there should be a compatible system of Galois representations to ©G in
the following sense: For each nonarchimedean place A of Q we should have [13 Conjec-
ture 5.3.4] attached a distinguished conjugacy class of maps

(A.2.1) px - Gal(Q/Q) — “G(Q,) A nonarchimedean;

which matches with A o x under the Satake correspondence, (see loc. cit. for details).
The basic conjecture concerning the existence of motives (cf. the discussion at the end
of [40l §2]) is then the following:
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Conjecture A.2.1. Given a cohomology class as above, there exists a G-motive X over Q,
with the property that for each nonarchimedean \ the Galois representation p) attached
to the cohomology class is isomorphic to the Galois representation px x arising from X.

A.3. Descent of the coefficient field for a G-motive. In we have formulated the
conjectures over Q. However if the Hecke character x takes values in a subfield £ c Q it
is of course preferable to work over E. In the current section, we outline how to do this,
i.e. how to descend the coefficient field of a (A?-motive, at the cost of replacing G by an
inner form.

A3.1. Twisting a Galois representation. Let us first recall how to “apply a Galois auto-
morphism to a representation.”

Suppose that H is an algebraic group over Q, and ¢ is an automorphism of Q. We can
define the o-twist H?: if H is defined by various equations f; = 0, then H? is defined by
the equations f7 = 0, and so on; if H is defined over Q there is a canonical isomorphism
H ~ H?. Also o induces a bijection H(Q) — H?(Q) denoted by h — h°.

In particular, given a homomorphism 7 : H — H' of Q-algebraic groups, we obtain a

twisted morphism 77 : H° — (H')?, with the property that 77 (h?) = 7(h)°.

A.3.2. Descent of coefficients for a motive. Let X be a G-motive. For ¢ € Gal(Q/Q),
we can form a new motive X7 by the rule

txe = (tx)°.

Informally, X7 applies o to the coefficients of the system of motives defined by X.

Now let E be a finite extension of Q, and suppose that X° ~ X for all 0 € Gal(Q/E).

In particular, there exists an element g, € G(Q) with the property that

Ad(go)ix = txo.

Explicitly, this means that for g € Gniot(Q) we have Ad(g,)ex(g7) = tx(g)7, so that the
image of Gt (Q) is fixed under z — Ad(g,*)z°.

The element g, is determined up to Q-points of Z(vx ), the centralizer of . x inside GQ.
In particular, if the centralizer of ¢ x coincides with the center of Cala, the rule ¢ — g,
defines a cocycle; its cohomology class lies in

H'(Gal(Q/E), G(Q) modulo center) = H'(E, G modulo center),

where we use the usual notation for Galois cohomology on the right.

This cocycle can be used to descend Ga, Ga and CGa to Q-forms Gy, Gy, ©Gy,
described as the fixed points of z — Ad(g, ')z on the respective (pro)-groups. We may
then descend ¢ x to a morphism

(A.3.1) tx : Griot —> ©Gy  (morphism of E-groups)

Composition with the adjoint representation of ©G, should then yield the adjoint motive
described in Definition 4.2.1]

A 4. Standard representations of the C-group for PGL and SO. According to our
prior discussion, a cohomological form for G gives rise to a G-motive with Q coefficients;
in particular, a representation of G gives rise to a usual motive with Q coefficients. The
Hodge weights of the resulting motive are given by the eigenvalues of the weight cochar-

acter (A.1.3).
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In the remainder of this section, we specify a standard representation of the C'-group in
the cases of interest, namely, G = PGL,, and G = SO,,,. We will compute the Hodge
numbers both for this motive (denoted M) and for the motive associated to the adjoint
representation of ©G (denoted Ad M). We work over an arbitrary number field F'; in the
text, F’ will sometimes be an imaginary quadratic extension of Q.

- G = PGLy,,G = SL, xGp/((—1)"1d,,, —1).
Here

(A4.1) w(x) = (Sym"™! [ﬁ 1 ﬁ] V),

and we define the standard representation of G to be the tensor product of the
character x — ™! on G,,, with the standard representation of SL,,. This extends
to “G, by extending trivially on T'z.

Thus the Hodge numbers of M are

(n—1,0),(n—2,1)...,(1,n —2),(0,n — 1)
each with multiplicity one, and the Hodge numbers of Ad M are
(n—1,—(n—-1)), (n-2,—-(n-2)%*...,(1,-1)"" (0,0,
(-, )"t (=(n=2),n—2)* (—=(n—1),n— 1)
where we wrote the multiplicities as superscripts.

o

- G = 80271,(; = So2n X Gm/(Idna 71)-
Here

= (o o).

where Id; is the identity matrix in one dimension, and we define the standard
representation of G to be the tensor product of the standard representation on
SOs,, and the character z — 22"~2 on G,,,. This extends to “G: first extend it to
O3, x G,,/(1,—1), and then use the map “G — Os,, x G,,/(1, —1) extending
the inclusion of G ; here the map I'r — Os,, should induce the natural action of
I'ron SO0, =G by pinned automorphisms.

Thus the Hodge numbers of M are

(2n—2,001, (2n -3, 1), --- ,(n—1,n—1)%,--- (1,2n — 3)*,(0,2n — 2)*

and the Hodge numbers of Ad(M) (which is of rank n(2n — 1)) range from (2n —
3,—(2n —3)) to (—(2n — 3),(2n — 3)) and admit a pattern that depends on the
parity of n. If n = 2¢, the multiplicities are given by

1315"'ama"’7”717’“715”7”377'7”713”713"'7t37t7"’;1717

where the bar above (¢, ) indicates that those terms are skipped. If n = 2t + 1,
then the multiplicities are

,1,---t,t+1,---n—1,n—1,nnnn—1n—-1,---t+1,¢---,1,1,

where again the bar has the same interpretation as before.
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o

- G =S02,41,G = Sp(2n) x G, /(—1d,, —1).
Here w is given by

wa) = Gyt [V ] ve),

and we define the standard representation of G to be the tensor product of the
standard representation of Sp(2n) and the character z +— 2?"~! on G,,. This
extends to “G, by extending trivially on I'p.

The Hodge numbers of M are

(2n—1,0),(2n —2,1),...,(1,2n — 2),(0,2n — 1),

each with multiplicity one. The Hodge numbers of Ad(M) (which is of rank
n(2n + 1)) range from (2n — 1, —(2n — 1)) to (—(2n — 1), (2n — 1)) and have
multiplicities

1,1,2,2,--- ., n—1,n—1,nn,nn—1n—1,---,2,21,1.
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