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Introduction

In this paper and its sequels [31], [32], we study periods of automorphic forms
on quaternionic Shimura varieties. Specifically, the periods that we focus on are the
Petersson inner products of Hilbert modular forms and of their Jacquet—Langlands
lifts to quaternionic Shimura varieties. This subject was pioneered by Shimura, who
proved many results on algebraicity of ratios of Petersson inner products and made
a precise general conjecture ([70] Conjecture 5.10) that predicts a large number of
algebraic relations in the Q-algebra generated by such periods. Shimura’s conjecture
was proved by Harris [22] under a technical hypothesis on the local components of
the corresponding automorphic representation. This hypothesis was relaxed partly
by Yoshida [80], who also used these period relations to prove a refined conjecture
of Shimura ([70] Conj. 5.12, [T1] Conj. 9.3) on the factorization of Petersson inner
products into fundamental periods up to algebraic factors. In later papers [24]
[25], Harris has considered the question of generalizing such period relations to the
setting of unitary Shimura varieties. Specialized to the case of hermitian spaces
of dimension two, these latter results provide more precise information about the
fields of rationality of quadratic period ratios of quaternionic modular forms.

In this series of papers, we will study the corresponding integrality questions.
The simplest interesting case is the period ratio

(f, f)
(9,9)

where f is a usual modular form of (even) weight 2k (for GLg over Q) and trivial
central character, and g is its lift to a Shimura curve corresponding to an indefinite
quaternion algebra, also defined over Q. The forms f and g here are assumed to
be newforms and to be suitably integrally normalized. In this case, there is a very
precise rationality result due to Harris and Kudla [26] which asserts that the ratio
above lies in the field generated by the Hecke eigenvalues of f. As for the more
refined integrality question, one knows the following;:

(i) In the special case when the weight 2k equals 2 and f corresponds to an
isogeny class of elliptic curves, it is shown in [60], §2.2.1 that the period ratio
above equals (up to Eisenstein primes) an explicit product of Tamagawa numbers,
which in turn are related to level-lowering congruences satisfied by the form f. This
suggests that such period ratios contain rather deep arithmetic information. The
proof in this case follows by combining three geometric ingredients:

e The work of Ribet on level-lowering [64] and its extension due to Ribet and
Takahashi [65], which depend on a study of the geometry of Shimura curves,
especially a description of their bad reduction and of the component groups of
the Néron models of their Jacobians.
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e The Tate conjecture for products of curves over number fields, which was proved
by Faltings [15], and which implies that modular elliptic curves are equipped
with a uniformization map X — F, with X being a Shimura curve.

o A study of the Manin constant for the map X — E, following [52], [13], [1].

(ii) In the more general case of weight 2k > 2, such geometric arguments are not
available. One of the main obstructions is that the Tate conjecture is unknown for
products of Kuga—Sato varieties. Instead, one may try to use purely automorphic
techniques. This is the strategy employed in [60], where we showed (using the theta
correspondence and results from Iwasawa theory) that for f and g of arbitrary even
weight, the ratio (f, f)/(g,g) is integral outside of an explicit finite set of small
primes, and further that it is always divisible by primes at which the form f satisfies
certain level-lowering congruences. The converse divisibility and the more precise
relation to Tamagawa numbers is also expected to hold in general, but seems harder
to prove. This is one problem that we hope to eventually address by the methods
of this paper.

Let us now elaborate a bit on the relation of this problem to the Tate conjecture.
As described above, the case of weight two forms for GLy over Q is relatively
simple since one knows by Faltings that the Tate conjecture holds for a product
of curves. This implies that there exists an algebraic cycle on the product X; x
X5, where X; and X5 are modular and Shimura curves respectively, that at the
level of cohomology, identifies the f and g-isotypic components of the “motives”
H'(X;) and H'(X3) respectively. The rationality of the period ratio {f, f)/{g,g)
is then a simple consequence of the fact that such a cycle induces an isomorphism
of the Hodge—de Rham structures [23] attached to f and g¢. For forms of higher
weight, the Jacquet—Langlands correspondence can similarly be used to produce
Tate classes on a product Wi x Wy where Wy and Wy are Kuga—Sato varieties
fibered over X; and X, respectively. However, we are far from understanding
the Tate (or even Hodge) conjecture in this case. The case of Hilbert modular
forms considered in this paper seems even harder: in the simplest setting, namely
for forms of parallel weight two and trivial central character, the Tate conjecture
predicts the existence of algebraic cycles on products of the form X x (X3 x X5),
where X, X7 and X5 are suitably chosen quaternionic Shimura varieties such that
dim(X) = dim(X;) + dim(X3). Again, these cycles should induce isomorphisms of
Hodge-de Rham structures H*(X )y ~ H*(X;)n ® H*(X2)n that in turn should
imply the predicted period relations up to rationality. (Here the subscript II denotes
the II;-isotypic component for a fixed automorphic representation IT = I ® Ily.)
This point of view—at least the factorization of Hodge structures—occurs explicitly
in the work of Oda ([586], [67]). It is worth remarking here that the Tate and Hodge
conjectures are only expected to hold rationally in general and not integrally, and
thus by themselves do not predict any statements about integrality of period ratios.
Nevertheless, the discussion above on period ratios suggests that in the setting of
arithmetic automorphic forms on Shimura varieties, such integral relations do hold
and that their proofs lie much deeper than those of the corresponding rational
relations.

With this background, we will outline the main results of this paper. Let F'
be a totally real number field with [F' : Q] = d, ring of integers Op, class number
hr and discriminant Dp. Let II = ®,1II, be an irreducible cuspidal automorphic
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representation of GLo(Ap) of weight (k,r) = (k1,...,kq,7), conductor O and cen-
tral character {r;. We assume that k) = ko = -+ = kg = r (mod 2) and all the
k; > 1. Thus II is the automorphic representation associated with a classical Hilbert
modular form. (Note that we allow forms of partial or parallel weight one.)

For simplicity we will assume that at all finite places v where II, is ramified,
it is either a special representation with square-free conductor (i.e., an unramified
twist of the Steinberg representation) or a ramified principal series representation
Ind(x1 ® x2) with x; unramified and y» ramified. We can thus factor the conductor
N of IT as

M =N - Nps
where 91 is the (square-free) product of the conductors at places where II, is special
and 91, is the product of the conductors at places where II, is ramified principal
series.

Let K1 be the number field generated by the Hecke eigenvalues of II and Og,
the ring of integers of K1;. We set Nip := NN, ky := max k; and

Let X denote the set of all places of F' and ¥, and g, the subsets of infinite
and finite places respectively. Let X1 be the set of places v of F' at which II, is
discrete series. Thus, Y11 equals the union of X1 o and X fn, where

EH,OO :EHHEOO:{UGEOQ kv Zz}a
Yi6n = X0 N Ean = {v € gy ¢ ord, (M) > 0}.

For any quaternion algebra B over F', let ¥ 5 denote the set of places of F' at which
B is ramified. Also set

EB,oo =X NYs,
YB,fin = 2B N Xfin.

Henceforth we suppose that ¥ C Xy, so that by Jacquet—Langlands [35], IT
transfers to an automorphic representation Iz of B*(A). To such a pair (B,1I),
we will attach in §I.4] below a canonical quadratic period invariant

¢gs(Il) € C*/R*.

This period invariant is essentially (i.e., up to some factors coming from normaliza-
tions of measures) equal to the Petersson inner product of a normalized eigenform
fp in IIp. Here we use the assumption that 9 is square-free to first fix fg up to
a scalar. The scalar is then fixed by requiring that fp correspond to an integrally
normalized section of a suitable automorphic vector bundle on the Shimura variety
associated with the algebraic group B*.

The goal of this paper and its sequels is to study the relations between the
invariants ¢p(II) for fixed II as B varies over all quaternion algebras in Y. The
following conjecture is a more precise version of [61] Conjecture 4.2 and provides
an integral refinement of Shimura’s conjecture on algebraic period relations. The
reader may consult §4 of [61] for a discussion of the motivation behind this formu-
lation. To state the conjecture, let L(s,II, ad) denote the adjoint (finite) L-function
attached to IT and let A(s,II,ad) denote the corresponding completed L-function
that includes the I'-factors at the infinite places. Let us recall the following invari-
ant of II, which has played a crucial role in the study of congruences of modular
forms (see [29], [30], [77]):
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(I.1) A(ID) := A(1,11, ad).
CONJECTURE A. There exists a function
c(ll) : B = CX/R*, v ¢, (1),
such that:
(i) ¢p(TI) lies in R (mod R™) if v is a finite place, and
(ii) for all B with ¥p C Xy, we have
A(ID)
[Les, co()

REMARK 1. It is easy to see that, if it exists, the function ¢(II) is uniquely
determined as long as |Xr| > 3. Also, as the notation suggests, the invariants ¢, (IT)
are not invariants of the local representation II, but rather are really invariants of
the global representation II.

qp(Il) = (in C*/R™).

REMARK 2. The conjecture should be viewed as describing period relations
between the quadratic periods gg(II) as B varies. Indeed, the number of B with
Y5 C X is 2P11=1 but the conjecture predicts that the corresponding invariants
gp(II) can all be described using only ||+ 1 invariants, namely the L-value A(II)
and the additional invariants ¢, (IT), which are |2g| in number.

REMARK 3. For B = My(F), the conjecture simply predicts that
avy(p)(II) = A(II)  in C*/R™.

This piece of the conjecture is known to be true. Indeed, it follows from the fact
that the integral normalization of fz in the split case coincides with the g-expansion
normalization (see [11], §5), combined with the well known relation between the
Petersson inner product of a Whittaker normalized form f € II and the value of
the adjoint L-function at s = 1. (See Prop. for instance.)

It is natural to ask for an independent description of the invariants c,(II).
Before discussing this, we recall the notion of FEisenstein primes for II. To any
finite place A of K1y, one can associate (by [69], [9], [12], [67], [5], [76], [73], [37];
see also []) an irreducible two dimensional Galois representation

PN - Gal(@/F) — GLQ(KI‘L)\)
that is characterized up to isomorphism by the requirement that
tr prr,x (Frob,) = a, (II)

for any finite place v of F' that is prime to M-N\, with a, (IT) being the eigenvalue of
the Hecke operator T}, acting on a new-vector in IL,. Choose a model for pry  that
takes values in GLa(Ogy, 2) and denote by pr » the semisimplification of the mod
A reduction of prr y. The isomorphism class of prr  is independent of the choice of
model of pr x. Let Fy = Ok, /A be the residue field at A. The prime ) is said to
be Eisenstein for II if

PILN * Gal(@/F) — GLQ(F)\)

is (absolutely) reducible, and non-Eisenstein otherwise.
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Let N(II)g;s be the product of the NA as A va~ries over all the Eisenstein primes
for TI. (There are only finitely many such.) Let R denote the ring

R := R[1/N(I)gis] = Og[1/N ()N (I)ss).

The following conjecture characterizes the invariants ¢, (II) for finite places v
up to Eisenstein primes, relating them to level-lowering congruences for II. (It is
obviously conditional on the truth of Conjecture [Al See also [59].)

CONJECTURE B. Suppose that v belongs to X gan. Then c,(II) mod R* has
a representative in Ky N R. Moreover, if A is a non-Fisenstein prime for 11 with
(A, N(IT)) = 1, then vx(cy(II)) equals the largest integer n such that pr; x mod A" is
unramified at v.

At the infinite places v, one might hope to have similarly a description of the
invariants ¢, (II) purely in terms of the compatible system prr 5 of two-dimensional
Galois representations attached to II. In principle, to such a system one should
be able to attach a motive defined over F', and the ¢,(II) should be related to
periods of this motive taken with respect to suitable integral structures on the de
Rham and Betti realizations. In practice, the only case in which one can make an
unconditional definition is when II satisfies the following conditions:

(a) II is of parallel weight 2, that is k = (2,...,2).

(b) Either d(= [F : Q]) is odd or ¥ s, is nonempty.

If 1T satisfies both (@) and (B above, it is known (using [5]) that one can associate
to IT an abelian variety A over F' (or more precisely, an isogeny class of abelian
varieties) such that

dim(A) = [K1r : QJ;

Endr(A) ® Q D Ki;

A has good reduction outside I;

For any prime A of Ky lying over a rational prime ¢, the representation pry » is
isomorphic to the representation of Gal(Q/F) on Hclt(A@, Qr) ®ryeo, K.

In this isogeny class, we may pick an abelian variety A such that Endp(A) D Ok, .
Then one can make a precise conjecture for ¢,(II) for v € ¥ in terms of the
periods of A. Here, we will be content to state this conjecture in the case Ky = Q,
namely when A is an elliptic curve over F. Let A denote the Néron model of A
over Rp := Op[1/N(I1)]. Then £ := H°(A, Q}‘l/RF) is an invertible Rp-module.
This module can be trivialized by picking a large enough number field K O F and
extending scalars to the ring Rx := Ok [1/N(II)]. Pick a generator w for L&g, Rk
viewed as an Rx-module. Let v/ be any archimedean place of K extending v, and
denote by o, : FF — R the real embedding of F' corresponding to v. The class of
the integral
1

Ta_ o Way A\ Wy
(27TZ)2 /A®UUC
in C*/ R* can be checked to be independent of the choices above.

CONJECTURE C. Suppose that K11 = Q so that A is an elliptic curve. Then

1 - i
¢ (I) = W/A@)%val Ny in C*/R*.
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REMARK 4. One expects that the invariants ¢, (II) are transcendental for any
infinite place v. Note that if A is the base change of an elliptic curve defined over a
smaller totally real field F’ (in which case II is the base change of a Hilbert modular
form for F’), then there are obvious algebraic relations between the ¢, (II). It would
be interesting to formulate a converse to this: namely, can one give a criterion for
IT to be a base change purely in terms of the Q-algebra generated by the invariants
¢, (I1)?

REMARK 5. It would also be interesting to formulate the conjectures above
without inverting N(II). There are lots of obvious difficulties with primes that are
small with respect to the weight as well as with integral models at primes of bad
reduction. In [32], we will extend the conjectures above in the case F' = Q to
include primes of bad reduction at which the local component of the automorphic
representation Il is ramified principal series. The only Shimura varieties that occur
then are Shimura curves and those associated with definite quaternion algebras over
Q. The geometric difficulties with primes of bad reduction can be dealt with in this
case “by hand”.

The goal of this first paper is to reformulate Conjecture [Al in terms of a new
conjecture (Conjecture[Dlbelow) on the arithmetic properties of a theta lift between
quaternionic Shimura varieties. This reformulation has many advantages since the
arithmetic of theta lifts can be studied via a range of automorphic techniques includ-
ing the Rallis inner product formula and period integrals along tori. Moreover, the
constructions involved seem to be useful in attacking several other related problems
involving algebraic cycles. We will briefly discuss two such applications below.

Now we outline the main construction. Let By, Bs and B be three quaternion
algebras unramified outside of X1 such that B = Bj - By in the Brauer group of F.
There is then, up to isometry, a unique skew-hermitian B-space (V, (-, -)) such that

GUp(V)? ~ (By x By)/F*.

Here GUpg(V)? denotes the identity component of the group of quaternionic unitary
similitudes of V. For computational purposes, we will need an explicit construction
of such a space V. For this, we pick a CM extension F/F with

E=F+Fi, il=ueFX,
such that E embeds in By and Bs. Fix embeddings
FE — Bl, E — B2

and write
By = E+ FEj1, By=FE+ Ejs,
where j? = J; and j3 = J, lie in F. Then there is an embedding of E in B such
that
B=E+Ej =/

where J = J1J5. Let V = By ®p Bs, viewed as a right E-vector space. In Chapter
below, we show that V' can naturally be equipped with a right B-action extending
the action of E, as well as a B-skew Hermitian form (-, -) such that the quaternionic
unitary similitude group GUpg (V)" admits the description above.

Let W be a one-dimensional B-space equipped with the standard B-hermitian

form so that
GUp(W) = B*.
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We wish to study the theta lift
0 : A(GUR(W)) — A(GUR(V)?),

where A(G) denotes the space of cuspidal automorphic forms on G(A). The pair
(Up(W),Up(V)) is an example of a classical reductive dual pair. For our appli-
cations we need to work with the corresponding similitude groups. In order to
construct the theta lift, one needs to first construct (local) splittings of the meta-
plectic cover over the subgroup

{(g,h) € GUR(V)? x GUB(W) : v(g) = v(h)},

that satisfy the product formula. (Here v denotes the similitude character.) For
quaternionic unitary similitude groups, this does not seem to be covered in the
existing literature. This problem is handled in the appendices under the assumption
that u, J; and Js are chosen such that for every finite place v of F, at least one of
u, Ji, Jo and J is locally a square. (See Remark [7] below.)

The splittings being chosen, the correspondence © above can be defined and
studied. For any quaternion algebra B’ with Y g C Xy, we let mp/ denote the
unitary representation associated with IIg/. Thus

g =g @ |lvp |2,

where vg/ denotes the reduced norm on B’. In Chapter ] we prove the following
theorem regarding © (in the case B # My(F')), which gives an explicit realization
of the Jacquet—Langlands correspondence, extending the work of Shimizu [68].

THEOREM 1.
@(7‘(’3) Zﬂ'Bl IXT(BQ'

REMARK 6. Up to this point in the paper, we make no restrictions on F' or
II. However from Chapter Bl onwards (and thus in the rest of the introduction), we
assume for simplicity the following:

e MNis prime to 29 /g, where D /g denotes the different of F//Q.

These assumptions simplify some of the local computations in Chapters [l and 6]
and could be relaxed with more work.

While Theorem [ is an abstract representation theoretic statement, for our
purposes we need to study a more explicit theta lift. The Weil representation
used to define the theta lift above is realized on a certain Schwartz space S(X).
In Chapter B we pick an explicit canonical Schwartz function ¢ € S(X) with the
property that 6,(fg) is a scalar multiple of fp, X fp,. Thus

0o(fB) = a(Bi, B2) - (fB, % [B,)

for some scalar a(B7, Bo) € C*. The scalar «(B1, Bs) depends not just on By and
B> but also on the other choices made above. However, we will omit these other
dependencies in the notation.

That «a(Bj, Bs) is nonzero follows from the following explicit version of the
Rallis inner product formula, proved in Chapter [6l (The assumption B # My (F)
in the statement below is made since the proof in the case B = My(F') would be
somewhat different. See for instance §6 of [16]. Note that this case corresponds to
the original setting of Shimuzu [68], and is not needed in this paper.)
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THEOREM 2. Suppose By # Ba, or equivalently, B # Ma(F). Then

\a(B1, Bo)* - (B, fB.) - (fBs: fB2) = C - ([, f) - (fB, [B):

where C is an explicit constant (see Thm. 6.32) and f is a Whittaker normalized
form in I1 (as in Remark B]).

The arithmetic properties of «(B, Ba) are of key importance. As such, the
choice of measures needed to define the invariants gp(IT) requires us to work with
a slight modification of «(By, Bs), denoted a(B1, Bs), as described in §7.21 We are
especially interested in questions of integrality of a(By, Be) for which we may work
one prime at a time. Thus we fix a prime ¢ not dividing N(II) and then choose
all the data (for example, E, Ji, J2, ) to be suitably adapted to £. The choices
are described in detail in §7.11 Finally, we come to main conjecture of this paper,
which is motivated by combining Theorem [2 with Conj. [Al

CONJECTURE D. Suppose that By # By and Xp, N Xp, N Y = I, that is By
and Bs have no infinite places of ramification in common. Then
(i) By, By) lies in Q.
(ii) a(B1, Ba) is integral at all primes above £.
(i) If in addition By and Bg have no finite places of ramification in common,
then a(By, Ba) is a unit at all primes above £.

While not immediately apparent, Conjecture [Dl implies Conjecture [Al Indeed,
in §7.2] we show the following.

THEOREM 3. Suppose that Conjecture [Dl is true for all £ in some set of primes
=. Then Conjecture [Al holds with R replaced by R[1/¢ : { & E]. Consequently, if
Congecture [Dl is true for all €4 N(IT), then Conjecture [Al is true.

At this point, the reader may feel a bit underwhelmed since all we seem to have
done is reformulate Conjecture [A]lin terms of another conjecture that is not visibly
easier. However, we believe that Conjecture [D| provides the correct perspective
to attack these fine integrality questions about period ratios, for several reasons.
Firstly, it does not require an a priori definition of the invariants ¢,. Second, it
fits into the philosophy that theta lifts have excellent arithmetic properties and is
amenable to attack by automorphic methods of various kinds. Lastly, it is usually
a very hard problem (in Iwasawa theory, say) to prove divisibilities; on the other
hand, if a quantity is expected to be a unit, then this might be easier to show, for
instance using congruences. Part (iii) of Conjecture[D] which states that a(By, B2)
is often a unit, has hidden in it a large number of divisibilities that would be
very hard to show directly, but that might be more accessible when approached in
this way. This is the approach taken in the sequels [31] and [32] where we study
Conjecture [D| and give various applications to periods.

As mentioned earlier, the constructions discussed above also have concrete ap-
plications to problems about algebraic cycles. We mention two of these:

— In [33], we study the Bloch-Beilinson conjecture for Rankin—Selberg L-
functions L(fg, X, s), where f is a modular form of weight k and y is a Hecke
character of an imaginary quadratic field E of infinity type (k’,0) with k" > k. The
simplest case is when (k, k') = (2,2). In this case we give an explicit construction
of cycles corresponding to the vanishing of the L-function and prove a relation be-
tween the p-adic logarithms of such cycles and values of p-adic L-functions. (All
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previous constructions of cycles for such L-functions ([19], [55], [3]) only work in
the case k > k’.) The key input from this paper is the embedding

GUp(V)? = GUE(V), V :=Resp/p(V),

which provides a morphism of Shimura varieties that can be used to construct the
relevant cycle.

— In [34] we consider the Tate conjecture for products X; x X where X; and
X, are the Shimura varieties associated with two quaternion algebras B; and Bs
over a totally real field F' that have identical ramification at the infinite places of F'.
As explained earlier, the Jacquet—Langlands correspondence gives rise to natural
Tate classes on X7 X X5 and the Tate conjecture predicts the existence of algebraic
cycles on the product giving rise to these Tate classes. While we cannot as yet
show the existence of such cycles, we are able to at least give an unconditional
construction of the corresponding Hodge classes, and show moreover that these are
compatible with all the Tate classes, i.e., are close to being absolutely Hodge. These
Hodge classes are constructed not by comparing periods but rather by finding a
morphism

X1 xXo—= X

into an auxiliary Shimura variety X and constructing Hodge classes on X that
restrict nontrivially to X; x Xs. The relation with the current paper is that X; X
X5 and X may be viewed as the Shimura varieties associated with certain skew-
hermitian B spaces, with B = By - Bs.

Finally, we give a brief outline of the contents of each chapter. In Chapter [[l we
recall the theory of automorphic vector bundles on quaternionic Shimura varieties
and define the canonical quadratic period invariants ¢g(II). In Chapter 2 we
give the key constructions involving quaternionic skew-hermitian forms. Chapter
[B] discusses the general theory of the theta correspondence as well as the special
case of quaternionic dual pairs, while Chapter [l establishes the general form of the
Rallis inner product formula in our situation and proves that the theta lift we are
considering agrees with the Jacquet—Langlands correspondence. In Chapter B we
pick explicit Schwartz functions, which are then used in Chapter [l to compute the
precise form of the Rallis inner product formula in our setting. In Chapter [ we
first discuss all the choices involved in formulating the main conjecture, Conjecture
above, and then show that it implies Conjecture [Al Appendix [Al is strictly not
necessary but is useful in motivating some constructions in Chapter [l The results
from Appendix [Bl on metaplectic covers of symplectic similitude groups are used in
the computations in Appendix[Cl Appendices [Cl and [D] are invoked in Chapters [3,
[ and B and contain the construction of the relevant splittings, on which more is
said in the remark below.

REMARK 7. The problem of constructing the required splittings and checking
various compatibilities involving them turns out to be rather nontrivial and occupies
the lengthy Appendices[Cland [Dl For isometry groups, these can be handled using
the doubling method as in Kudla [40], §4]. This gives a collection of splittings (one
for each place v)

SKudla,v * UB(V)(FU) X UB(W)(FU) — (C(l)
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that satisfy the product formula:

H SKudla,v (7) =1

for v € Ug(V)(F) x Ug(W)(F). The problem is really to extend these splittings
to the groups

{(g,h) € GUR(V)*(F,) x GUR(W)(F,) : v(g) = v(h)}

in such a way that they still satisfy the product formula. A similar problem for
the dual pairs consisting of the unitary similitude groups of a hermitian E-space V
and a skew-hermitian F-space W can be solved using the fact that V @ g W can
be considered as a skew-hermitian E-space, and the group

{(g,h) € GUR(V) x GUR(W) : v(g) = v(h)}

(almost) embeds in Ug(V ® g W). This fails when working with B-spaces since
B is non-commutative and the tensor product construction is not available. To
circumvent this problem, we first construct by hand, splittings

sy : {(g,h) € GU(V)Y(F,) x GU(W)(F,) : v(g) = v(h)} — C™M)

in Appendix [Cland check that they satisfy several natural properties including the
product formula (Proposition [C.44]). This suffices to construct the theta lift ©.
In order to prove the Rallis inner product formula, we need to check a further
compatibility between our splittings s, and the splittings Skudia,v, in the context
of the doubling method. This is accomplished in Lemma in Appendix
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CHAPTER 1

Quaternionic Shimura Varieties

1.1. Shimura varieties

1.1.1. Shimura varieties and canonical models. We recall quickly the
general theory of Shimura varieties and their canonical models [10]. Let S :=
Resc/r G, denote the Deligne torus. There is an equivalence of categories

R-Hodge structures <— R-vector spaces with an algebraic action of S,

described as follows. Suppose that V' is an R-vector space equipped with a pure
Hodge structure of weight n. Thus we have a decomposition of V¢ :=V ®g C:

Vo= v,

ptg=n
where VP4 = Var. Define an action h of C* on V¢ by
h(z)v=2"Pz"% for veVPi.

Since h(z) commutes with complex conjugation, it is obtained by extension of
scalars from an automorphism of V' defined over R. This gives a map on real points
h:S(R) = C* — GL(V)(R), that comes from an algebraic map S — GL(V).

A Shimura datum is a pair (G, X) consisting of a reductive algebraic group G
over Q and a G(R)-conjugacy class X of homomorphisms h : S — Gy satisfying the
following conditions:

(i) For h in X, the Hodge structure on the Lie algebra g of Gg given by Adoh
is of type (0,0) 4+ (—1,1) + (1, —1). (In particular, the restriction of such an
h to Gy, r C S is central.)
(ii) For h in X, Ad h(i) is a Cartan involution on G2, where G4 is the adjoint
group of G.
(iii) G4 has no factor defined over Q whose real points form a compact group.

These conditions imply that X has the natural structure of a disjoint union of
Hermitian symmetric domains. The group G(R) acts on X on the left by

(g-h)(z) =g -h(z)-g "

To agree with our geometric intuition, we will sometimes write 73, (or simply 7) for
hin X.

Let A and Ay denote respectively the ring of adeles and finite adeles of Q.
Let K be an open compact subgroup of G(Ay). The Shimura variety associated to
(G, X, K) is the quotient

Shic (G, X) = GQ\X x G(Ay)/K.

11
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For C small enough, this has the natural structure of a smooth variety over C. The
inverse limit

Sh(G, X) = limg Sh(G, X)

is a pro-algebraic variety that has a canonical model over a number field F(G, X),
the reflex field of the Shimura datum (G, X). In particular, each Shi (G, X) has a
canonical model over E(G, X).

We recall the definition of E(G,X). This field is defined to be the field of
definition of the conjugacy class of co-characters

tn 2 Goc = Sc — G,

where the first map is z — (z,1) and the second is the one induced by h. Let us
say more precisely what this means. For any subfield k of C , let M (k) denote the
set of G(k)-conjugacy classes of homomorphisms G, — Gj. Let Q denote the
algebraic closure of Q in C. Then the inclusion Q — C gives a bijection between
M(Q) and M(C), and thus a natural action of Gal(Q/Q) on M(C). The reflex
field E(G, X) C C is then the fixed field of the subgroup

{0 € Gal(Q/Q) : oMx = Mx}
where Mx is the conjugacy class of uy for any h € X.

1.1.2. Automorphic vector bundles. We recall the basics of the theory of
automorphic vector bundles following [20], [21], [17]. First, to any p : Gy.c — Gc
as above one can associate a filtration Filt(u) of Repe(Ge). This is the functor
which assigns to every complex representation (V] p) of G¢ the filtered vector space
(V, F,) where F}, is the filtration on V' corresponding to p o y; that is, FJV =
®i>pV,i, where V! is the subspace of V' on which G,,(C) acts via z — 2z*. In
particular, one obtains a filtration on g¢ via the adjoint representation of G(C).
Let P, be the subgroup of G¢ that preserves the filtration F), in every representation
(V,p). Then P, is a parabolic subgroup of G¢ that contains the image of p and
has Lie algebra F 3 gc. The unipotent radical R, P, of P, has Lie algebra F, ; gc and
is the subgroup that acts as the identity on Gr,, (V') in every representation (V, p).
The centralizer Z(u) of pin G is a Levi subgroup of P, isomorphic to P, /R, P,.
Thus the composite map

e Gm,(C - Pp - P/L/RUP,LL

is a central homomorphism. Then Filt(u) equals Filt(x') if and only if P, = P,
and fi = .

Let X denote the compact dual Hermitian symmetric space to X. As a set,
it may be defined as the set of filtrations of Repq(G¢) that are G(C)-conjugate to
Filt(pp). Equivalently, it may be described as the set of equivalence classes [(P, u1)]
of pairs where P is a parabolic in G¢ and g : Gy, ,c — P is a co-character such
that (P, p) is G(C)-conjugate to (P, , un) for some (and therefore every) h € X.
Here we say that (P, u) is equivalent to (P, u') if P = P’ and ji = /. Note that
if (P, ) is conjugate to (P, '), then fi = p/. Indeed, if g=(P, u)g = (P, 1t'), then
g € Ng.(P) = P. Write g = fu, with ¢ € Z(u) and v € R, P, we see that

po=g" pg =u"tpu,

so that ¢/ = fi as claimed. Thus in a given conjugacy class of pairs (P, u), the
homomorphism [ is determined entirely by P. Conversely, for any pair (P, ) in
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the conjugacy class of (P, , ptn), the parabolic P must equal P, so that 4 determines
P. Tt follows from this discussion that the natural map

GEC)x X =X, (g.[(P.w)]) = [g(P.p)g™"]

makes X into a homogeneous space for G(C) and the choice of any basepoint [(P, y1)]
gives a bijection G(C)/P ~ X. Further, there is a unique way to make X into a
complex algebraic variety such that this map is an isomorphism of complex varieties
for any choice of base point. Moreover, the map

g:MX_>Xv uH[(PHaM)]

is surjective and X has the natural structure of a variety over E(G, X) such that the
map ¢ is Aut(C/E(G, X))-equivariant. When we wish to emphasize the rational
structure of X, we will write X¢ instead of X.

There is a natural embedding (the Borel embedding)

B:X = X, hw[(Py,un),

where henceforth we write P, for P,,. Let Y be a Ge-vector bundle on X. The
action of G(C) on X extends the G(R) action on X. Thus V := V|x is a G(R)-vector
bundle on X. For an open compact subgroup K of G(Ay), define

Ve = GQ\V x G(Ay)/K,
which we view as fibered over Sh (G, X 2 In order that this define a vector bundle
on Shi (G, X), we need to assume that V satisfies the following condition:
(1.1) The action of G¢ on V factors through G¢.

Here G¢ = G/Zs, where Z; is the largest subtorus of the center Zg of G that is
split over R but that has no subtorus split over Q. Assuming (L], for sufficiently
small K, Vi is a vector bundle on Shi (G, X). If V is defined over E D E(G,X),
then Vi has a canonical model over E as well.

REMARK 1.1.1. The reader may keep in mind the following example which
occurs in this paper. Let G = Resp/g GLa, with F' a totally real field. Then
Zg = Resp)g Gy and Z, = ker(Np/q : Zg — Gmn).

We now recall the relation between sections of the bundle Vi and automorphic
forms on G(A). This requires the choice of a base point h € X. Let K} be the
stabilizer in G(R) of h. Let €, denote the Lie algebra of K} and consider the
decomposition of g¢ with respect to the action of Adoh:

gc=p, ©tcDp,.

Here p; = gEl’l, P, = gé’_l and €, ¢c = g%o for the Hodge decomposition on g¢
induced by Adoh. Thus pf correspond to the holomorphic and antiholomorphic
tangent spaces of X at h. Then Py is the parabolic subgroup of G(C) with Lie
algebra €, c @ p, . The choice of h gives identifications X = G(R)/K;, X =
G(C)/ Py, and the Borel embedding is given by the natural map

GR)/K, — G(C)/Py,.
Let V}, denote the fiber of V at h; equivalently this is the fiber of the bundle V

at B(h) € X. This comes equipped with a natural action of K}, denoted py, - Let
ep, denote the map

G(A) — Sth(G>X) = G(Q)\X X G(Af)/lcv g= (goo>gf) = [(goo(h)7gf)]'
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Then there is a canonical isomorphism
en(Vie) = G(A) X Vp,
via which sections of Vi can be identified with suitable functions from G(A) into
V). This gives a canonical injective map
Lifty, : T (Shi(G, X), V) = C*(G(Q)\G(A) /K, V)

whose image is the subspace A(G, K, V, h) consisting of ¢ € C*(G(Q)\G(A)/K, V)
satisfying:

(i) ¢(gk) = pv, (k) ~'p(g), for g € G(A) and k € Ky;

(i) Y-o=0forall Y €p,;

(iii) ¢ is slowly increasing, Kj-finite and Z(gc)-finite, where Z(gc) is the center

of the universal enveloping algebra of gc.

Let us make explicit the map Lifty. Fix some 7 = 75, € X and let s be a section
of V. For any gy € G(Ay), there is a canonical identification
Vr ~ VIC,[T,gf]

where [, g7] denotes the class of (7, gs) in Shi(G, X). Let ¢ = (oo, g7) € G(A) =
G(R) x G(Ay). The section s gives an element $([gooT, g7]) € Vy..-. However, the
element g., induces an isomorphism

tg *Vr 2 Vg r

oo

The map Lifty,(s) : G(A) — V; is then defined by sending
gty 5((900T, 91)-

REMARK 1.1.2. The subgroup P of G¢ acts on the fiber Vg(h) at the point
B(h). This gives an equivalence of categories

Gc-vector bundles on X <— complex representations of Pj.

The functor in the opposite direction sends a representation (V,p) of P, to the
vector bundle

Ge %, V = (Ge x V) /{(gp,v) ~ (9,p(p)v), p € Pn},

which fibers over G¢/ Py, in the obvious way. Sections of this vector bundle can be
identified with functions

f:G(C) =V, [flgp)=p(p) " flg)-

ExAMPLE 1.1.3. This example will serve to normalize our conventions. Let
G = GLy g and X the G(R)-conjugacy class containing

. b
ho 'S — G, a—|—bz»—><ab a).

Identify X with h*, the union of the upper and lower half planes; hq is identified
with the point i. Then E(G,X) = Q and X =~ Py = G/ P, where P is the Borel
subgroup (of upper triangular matrices) stabilizing oo, for the standard action of
G on P'. We will fix the isomorphism X ~ IP’}@ such that the map

bt — X & X
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is the identity map. For £ = r mod 2, let f/kvr be the homogeneous G¢-bundle on
X¢ corresponding to the character

*

Xkt Pc— CX, (“ d) > d¥ det(-)" 7"

of Pc. Note that abstractly lv/;w ~ O(k) though the G¢-action depends on r as
well. For any h € X, we write py, , for the corresponding representation of Kj. The
representation py . of Kp, = R* - SO2(R) is the character given by

ik cosf sinf
z- kg e Ko = . .
0 ’ 0 (— sinf cosf

For more general h, the character p , is given by composing the above character
with the isomorphism Kj, ~ K}, given by x — a 'z« for any a € G(R) such that
ahga™! = h. The corresponding automorphic line bundle Vy . i is defined over Q.
Its dual Vkv, rx is the usual bundle of modular forms of weight & and level K. We
can make this more explicit as follows.

Let V = ﬂ*(vkr) The connected hermitian space hT carries a natural family
of (polarized) elliptic curves, the fiber over 7 € h* being the elliptic curve A, =
C/(Zt + Z). Let w be the sheaf of relative one-forms; it is a line bundle on h*
and there is a canonical isomorphism B*V,X Slpr =V ~ w¥. This gives a canonical
trivialization Trivy, : V) ~ C for all h € h*, namely the map sending dz®* to
1, where z is the coordinate on C = Lie(A,). Thus any section ¢ of VIXT_,C on
Shi(G, X)) gives rise (via Trivy o Lift,) to a function ’

on:GLy(A) = C, hep™,

such that @n(gr) = py (k)" en(g) for all k € Kj,. In particular, for z - kg € Kp,,
we have

Pnol(g- 2 ko) = Pno(g) - 2"~ e'*?.
Finally, there is a unique modular form f of weight k£ on hT such that for all h € b,
we have

0n(9) = (G900 (1))5 (9o ) ~F det(goo) T,

where g = go(9xgoo) With gg € G(Q), gk € K and goo € G(R)". (Here G(R)™"
denotes the topological identity component of G(R); moreover, as is the usual

convention, we set j(v,z) = cz +d for y = Z Z )

ExaMPLE 1.1.4. Let G = B*, where B is a non-split indefinite quaternion
algebra over Q. Then E(G,X) = Q and X is a form of P!; in fact it is a Severi—
Brauer variety associated to the class of B in the Brauer group of Q. The variety
X (over C) carries the line bundles O(k) but only for k even do these descend to
line bundles over Q. Indeed, the canonical bundle on X has degree —2, so O(-2)
descends. On the other hand, O(1) does not descend since if it did, by Riemann—
Roch it would admit a section whose zero locus is a rational point. Nevertheless,
for any o € Aut(C/Q), the line bundle £ := O(1) on X¢ satisfies 0*L ~ L, so its
field of definition is Q.
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1.1.3. Integral models. We assume in this section that the Shimura variety
(G, X) is of abelian type. Let O denote the ring of integers of E(G,X) and A | ¢
a prime of 0. We assume that we are given a reductive group Go over Z such
that Go = G. Let G = Gy z, and Ky = G(Z;). Then K, is a hyperspecial (maximal
compact) subgroup of G(Q,). Suppose that K is an open compact subgroup of
G(Ay) of the form K, - K¥, with K, as above and K* a subgroup of G(A?), where
Afc denotes the ring of finite adeles with trivial component at ¢. Then Shi (G, X)
admits a natural integral model S A(G, X) over O(y), the localization of O at the
prime A. More precisely, if one fixes Ky and allows KC¢ to vary, then Kisin [38] shows
that the projective system lim Shy, ke (G, X)) admits a canonical model Sk, »(G, X)
over Oy, which is characterized by a certain extension property. We will also need
integral models of automorphic vector bundles on Shx (G, X). In the abelian case,
these are constructed in the paper of Lovering [49], and we now summarize the
relevant results.

Recall that the compact dual X is naturally defined over E(G, X). In addition,
X has a natural model ¥ over O(») whose A-valued points for any Oy)-algebra A
are in bijection with equivalence classes of pairs (P, u) consisting of a parabolic
subgroup P of Gy 4 and a cocharacter p : Gy, 4 — P, where (P,u) ~ (P, p') if
P =P and i = i/. The data needed to define integral models of automorphic
vector bundles consists of the following:

— A finite extension L of E(G, X) and a G'.-equivariant vector bundle V on X,
The corresponding automorphic vector bundle Vi on Shi (G, X) has a canonical
model over L.

— A prime X of Op; we write X for the induced prime of O as well.

— A Gy-equivariant vector bundle Vy on Xo L. extending the G -equivariant
vector bundle V on X.

To this data, one can associate (by the results of [49]) in a functorial way a
vector bundle Vi » over Sk A (G, X) ®0,», OL,(n) which extends Vic. Likewise, if one
fixes Ky and varies K, one gets a vector bundle Vi, » over S, A (G, X)®0, OL,\)-
If f: f/i — f/f is a map of Gp-equivariant vector bundles over §€@L7m, there are
natural associated maps fi : V,lcy)\ — V,QC’)\ and fi, : Vzlcg,)\ — V;%M\-

1.1.3.1. Models over Op[+]. These are also constructed in [49] and we sum-

marize the results. Suppose that we are given a reductive group G, over Z[%] such

that Go o = G and that K is of the form [[, C;, where ICy = Go(Z;) for all £ not
dividing N, so that Cy is hyperspecial for such ¢. Then the integral models of
Shi (G, X) for varying ¢ (not dividing N) patch together to give a canonical model
S;C,@[%](G, X) over (9[%]

The compact dual X has a natural model X over O[%] as well. Suppose that
we are given moreover:

— A finite extension L of E(G, X) and a Gz-equivariant vector bundle V on
Xr.

— A Gy-equivariant vector bundle V on fo MESE extending the G-equivariant

)
. . N
vector bundle V on Xp.

Then the integral models Vi  (as A varies over the primes of Oy, not dividing

N) patch together to give an integral model Vic,0, L] over Orl%]-
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1.2. Automorphic vector bundles on quaternionic Shimura varieties

In this section, we review the connection between automorphic forms on the
multiplicative group of a quaternion algebra over a totally real field and sections
of automorphic vector bundles on the corresponding Shimura variety. We will also
define canonical metrics on such bundles.

REMARK 1.2.1. Everything in this section goes through verbatim even in the
case that the quaternion algebra B is totally definite, even though this does not
strictly speaking give a Shimura variety in the sense of §L.11

Let F be a totally real field and B a quaternion algebra over F'. Let G denote
the Q-algebraic group Resp/q(B*). Thus for any Q-algebra R, the R-valued points
of Gp are given by

Gu(R) = (B@g R)*.
Let ¥p denote the set of places of F' at which B is ramified.
We fix for the moment some choice of isomorphisms

(12) B®F,0R2M2(R), for 0 € Yoo \ Xp;
(1.3) B®r, R~H, for 0 € ¥ 0o,

(5 2): =oc)

of My(C). (Later we will fix these isomorphisms more carefully.) The choice of
isomorphisms above gives us identifications

Ge®)~ [] GL:R)x [] ®H

TEX N\ 0EXB,

where H is the subalgebra

and
Gp(C)~ ] GL2(C).
TEY

Let X g be the Gg(R)-conjugacy class of homomorphisms S — Gp g containing

z, ifo€eX N\ Ep;

ho:S— Gpr, ho IZHhO,m ho.o(2) = {1 ifoeX
- R B,0os

where we identify C with a subring of My(R) (see the remark below). Denote by
X5 the corresponding compact dual hermitian symmetric space. The choice of
isomorphisms (L2) and (3] above gives rise to an identification Xp = (PL)?2 and
Xp = (h*)98, with dp being the number of infinite places of F' where B is split.

REMARK 1.2.2. (Choices) We embed C in M3(R) by identifying a + bi with the
matrix
a b
-b a)’
In addition, we identify the homomorphism

S = Glog, a-+bira+bi= (_"b Z)
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with the element ¢ € . Note that this is opposite to the usual choice made by
Shimura. Shimura would identify ¢ € h with the map

, (a —b>
a+bi— .
b a

1.2.1. Hermitian forms. For o € ¥ \ X, let V,, g denote the vector space
R? of column vectors viewed as a left Ma(R)-module. Let h: C* = S(R) — (B®p,
R)* = GL3(R) = GL(V, ) be any homomorphism that is GLa(R)-conjugate to
ho,o- Then we can write
(1.4) Voc=Vor®eC=V, Y@V, ",

where the decomposition on the right corresponds to the C-subspaces on which
h(z) ® 1 acts as 1 ® z and 1 ® Z respectively. The bilinear form

. (0 -1
(1.5) (z,y) = @ (1 WE
on V, g is almost GLq(R)-invariant:

(92, 9y) = det(g) - (z,9).
Further, it satisfies the following conditions:
() (2.9) = —(v.2).
(i) (h(i)z, h(i)y) = (z,y).
(iii) The form (z, h(i)y) is symmetric. (This follows formally from (i) and (ii).)
Further, it is positive definite if & is GL2(R)*-conjugate to ho. (Otherwise it
is negative definite.)

REMARK 1.2.3. Let 7 be the unique point on the complex upper half plane

fixed by K. The bilinear form above equals 52\, where A, is the Weil pairing on

27
H,(A,) given in the ordered basis {7, 1}.
The composite map
Vor = Vo ®@r C— V"

is an R-linear isomorphism; via this isomorphism one gets a skew-smmetric bilinear
—-1,0 o ) . . . .
formon V", which is the negative of the imaginary part of a (necessarily unique)

hermitian form Hy, on V, ;" defined by identifying V" with V, p and setting
Hy(z,y) = (2, h(i)y) —i(z,y) = (z,1y) — i(x,y).

REMARK 1.2.4. The form Hy, is linear in the first variable and conjugate linear
in the second variable. If we denote the form ([CH) above by B, then Hj agrees
with the form 2 - By;) of Appendix [A] where:

(1.6) Bh(i) (v,w) = B(C('Ua h(i)w).

If b is GLg(R)T-conjugate to hg, the form Hj, is positive definite on account of
condition (iii) above. Note that
(1.7) Hp(z,2z) = (x,h(i)x).

The subgroup Kj preserves the decomposition (L4) and the form Hj, is Kj-
invariant up to a scalar. In fact, for Kk € K}, we have

Hy(kx, ky) = det(k) Hp(z,y).
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Moreover, the natural action of GL2(R) on V, ¢ takes V;_;} ¥ isomorphically onto

Vﬂjgl~’;L) (recall g - h = ghg™!') and we have

Hgn(gz, 9y) = (g2, (gh(i)g~")gy) — i(gz, gy) = det(g) [(z, h(i)y) — i(x,y)]
= det(g)Hn(z,y).

We note also that det(V,. c) carries a natural bilinear form induced from the C-

)

linear extension of (-,-). We equip det(V, ¢) with the positive definite Hermitian
form

(18) Hdet(xay) = (CIT,Q),
where the complex conjugation is with respect to the natural real structure coming
from det(V, ). This hermitian form satisfies

Haer(g, gy) = det(9)” - Haet(,y)
for all g € GL2(R). Equivalently, one can first extend (-,-) to a C-bilinear form on
Ve, convert it to a Hermitian form H on V¢ by H(x,y) = (z,7) and then let Hget
be the induced hermitian form on det(V¢). Explicitly,
H(vl,wl) H(’Ul,’wg)]
H(?)g, wl) H(’Ug, ’LUQ)

= det {(”1@1) (“1’“_’2)} .

Hyet(v1 A vz, w1 Aws) = det {

(vg,w1)  (v2,W2)

For 0 € ¥ o, let V, ¢ denote the C-vector space C? of column vectors viewed
as a left My(C)-module. The form

. (0 -1
(z,y) = ‘”(1 0 )Y
is almost GLy(C)-invariant:

(92, 9y) = det(g) - (z,y).
Let L be the R-linear operator

L(x) = (_01 é) z.

The operator L is the analog in this case of the operator w — h(i)w in (L6) and
the operator  — h(i)z in (7)) above. Define a hermitian form H on V, ¢ by
(1.9) H(z,y) = (z, Ly) = 'zy.

Note that L commutes with the left action of H, hence the form H is H*-invariant
up to a scalar, which is also obvious from the formula above. More precisely, for
g € H*, we have

H(gx, gy) = v(9)H(z,y)
where v is the reduced norm. As before, we also get an induced Hermitian form
Hget, on det(V, ¢), which satisfies
Haet (92, 9y) = v(9)*Haer(, y)
for g € H*.
For any o € X, let p, 1, denote the representation

Voor = Sym*(Vyc) @ det(Vyc) 7
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r—k
of GLy(C), viewed as a sub-representation of Vfg ® det(V,c) 2 . Note that the
central character of py  » is 2 — 2".

REMARK 1.2.5. For 0 € ¥p o the hermitian form H of (I9) induces a pos-

itive definite hermitian metric on Symk(Va,@) as follows. Let V = V,c. The
symmetrization map

1
V®k—>V®k, U1®...®vkp—)HZv0(1)®"'®vo(k)
occBy

factors through Sym” (V) and gives an injection
(1.10) s: Sym*(V) < V&k

which is a section of the natural map V& — Sym*(V). The hermitian form H
induces naturally a hermitian form on V®* (the tensor product form) and then
by restriction a hermitian form on Symk(V). It is easy to check that this gives a
positive definite hermitian form on Sym*(V'). Combining this with the metric on
det(V;.c), we get a positive definite hermitian metric on V; y , for all 0 € ¥p .

1.2.2. Hermitian metrics on automorphic vector bundles. Let (k,r) be
a multi-index of integers with k& = (k,)sex., such that
k, =r (mod2) foralloeX,.

We assume that k, > 1 if B is split at ¢ and that k, > 0 if B is ramified at o.
Let pgr = Qo pPo i, r b the representation of Gg(C) on

Vir = Q) Vo,
[oa

This gives rise to a G g(C)-homogeneous vector bundle VPM on Xp:

= XB X VEW?

Vo

k,r
where the Gg(C) action is:

g (z,v) = (gz,9v).
By restriction one gets a G g(R)-homogeneous vector bundle V,, ~on Xp. Further,

the latter admits a unique G'g(R)-equivariant sub-bundle V , corresponding to the
K},-subrepresentation py 5 on

V= @ (V") @ det(V, c)* ) Vo -

TEX oN\2XRB 0€EYXB,

Here we consider (V(;,i ’0)®k° as a subspace of Symk" »,c via the composite map
(V, ) ®ke — VEE — Sym*V, c.

Let X g denote the connected component of Xz containing hg. Note that for
h € Xg, the Kj-representation above carries a natural positive definite hermitian
metric (-, ), obtained from the hermitian metrics in (), (L) and (T3] above.
(See also Remark [[LZ5 above.) This gives a metric on V , that is almost Gp(R)"-
equivariant; in fact, one has

{92, 9Y) g1 = [IV(9II" (z, y)n
for g € Gg(R)" and z,y € Vj . n, where || - || denotes the idelic norm. Now consider
the vector bundle V. v+ X Gp(As) on X x Gg(Ay). We equip this with the
- B
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hermitian metric that assigns to the fiber Vi ., x {gs} over (h,gr) € X3 x Gp(Ay)
the metric defined above on Vj ., multiplied by the factor ||v(gf)||". Recall that

Shi (G, Xp) = Gp(Q\Xp x Gp(Af)/K = Gp(@Q\X; x G(As)/K
and
Virk = Gp(Q)\Ver x Gp(Af)/K = Gp(Q) " \Vir x+ x Ga(Af)/K,
where Gp(Q)T = Gp(R)T N Gp(Q).
PROPOSITION 1.2.6. The metric on VEW\Xg x Gp(Ay) above descends to a

(positive definite hermitian) metric on the vector bundle Vi i over Shx(Gp, Xp).

PROOF. Let (h,gy) and (R, g}) be two elements of X xGp(Ay) whose classes
in Shic(Gp, Xp) are equal. Then there exist elements v € Gg(Q)* and k € K such
that

(W', g%) = v(h,gp)k = (7 - h,v49¢5).
Here v is 7y viewed as an element of Gg(Af). We need to check that the bijection
Virn X {95} = Viern x{g5} = Virqyn x {1955}
given by (v, gy) — (yv,vgsk) is metric preserving. But

(o, yoo)yen - I Crpgem) " = T o) (or,v2)n - v 17 (g

0EY o
= (v, v2)n - [ (gp)Il"
using the product formula and the fact that ||v(x)|| = 1. O

We will need to work with the dual vector bundle V,X - This is motivated by
observing that in the case of GL2(Q), the bundle V,, corresponds to the relative
homology of the universal elliptic curve and the sub-bundle Vj , corresponds to
its relative Lie algebra. The line bundle of usual modular forms corresponds to
the bundle of relative differentials, which is why we need to replace Vi, by its
dual. We begin by making the following completely elementary remark, which we
nevertheless state carefully to avoid any confusion.

REMARK 1.2.7. If p is a representation of a group G on a finite-dimensional
complex vector space V, then pV is defined by

p'(9)(L) =Lop(g™")
for L € V¥V = Hom(V,C) and g € G. Thus for the tautological pairing
(,): VY xV —=C, (Lwv)=L(v),
we have

(p" (g7 "L, v) = (L, p(g)v).

Suppose V is equipped with a non-degenerate hermitian pairing (-, -) that is linear
in the first variable and conjugate linear in the second variable, and such that

{gv, gw) = x(g) (v, w)
for some character x : G — C*. Since (-, -) is non-degenerate, it induces a conjugate
linear isomorphism
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Composing the inverse of this isomorphism with the canonical isomorphism V ~
VVV gives a conjugate linear isomorphism VV ~ (VY)Y which one may view as a
hermitian form on V. (There is some choice here, but it is fixed by requiring the
form to be linear in the first variable.) Explicitly this isomorphism sends L,, to the
linear functional eval,, € (VV)V, so that for any L € V'V, we have

(L, Ly) = L(w).
Note that
9Lw(v) = Lu(g~ ') = (g7 v, w) = x(9) ™" (v, gw) = x(9) " Lguw (v),
so that gL, = x(9) ' Lgw. For any L € V'V, we have
B -1
(9L, gLw) = (9L, x(9) ' Lguw) = x(9) (9L, Lgu)

—

=X(9) (9L)(gw) = x(g)  L{w)
= @71<L,Lw>,
so for any L1, Ly € V'V, we have (gL1,gL2) = @_1<L1,L2>.

From the remark above, it is clear that for z,y € VY, and g € Gp(R)", we
have -

{92, 9y)gn = V(I ™"z, y)n-
Thus we take on Vgﬂ“\xg x Gp(Ay) the metric which on V)Y, x {gr} is [[v(gs)[| 7"
times the induced metric on V), ;. This descends to a positive definite hermitian

metric ((,-)) on V), x. (See Prop. [LZ6 above.)
1.2.3. Petersson norms and scalar valued forms.

DEFINITION 1.2.8. A holomorphic automorphic form of weight (k,r) and level
K on Gpg is a holomorphic section s of the bundle Vg’r’,c on Shi(Gp,Xp). Let

K 2 K be any open compact subgroup of G'g(A ;) such that {(s(x), s(z))) descends to
a function on Shg (G, Xp). Then the Petersson norm of the section s (normalized

with respect to K) is defined to be the integral

(5, ) = /S R R

where dju, is the measure on Shg (G g, Xp) defined in §6.1.21

REMARK 1.2.9. Definition [[LZ8 above has the advantage that it does not de-
pend on any choice of base point. In practice though, one usually needs to pick
a base point to make any computation at all, and so we shall now discuss the
translation between these two points of view.

Pick a base point h € Xg. Via the isomorphism Lifty,, the space of holo-
morphic automorphic forms s as above is identified with the space of functions
A(Gp, K, Vgr, h). An element

F:Gp(Q)\Gp(A)/K — Vﬁvmh
in A(Gp, K, Vﬁvﬂn7 h) satisfies in particular the condition

(1.11) F(gkp) = p\émh(nh)*lF(g), for all kp, € Kj,.
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Henceforth we will fix a character £ of F*\A} which satisfies
£(2 - 200) = N(200)" - £(2)

for z € Af, 200 € AFOO, and assume that the section s satisfies the following
invariance under the center Zg, (Af) = A

(1.12) s(z-a) =£&(a) - s(x).

This enables us to take K containing the maximal open compact subgroup of
Zay(Ay), and implies that the corresponding function F' above satisfies the fol-
lowing invariance property: for o € Ay = Zg, (A), we have

F(g-a)=¢(a)- F(g)
and
(F(g-a),F(g-a)) = llal* - (F(g), F(g)).

PROPOSITION 1.2.10. Suppose Lifty(s) = F. Let Koy denote any mazimal com-
pact subgroup of Gg(Ay) containing KC. Then

<<S,S>>]€ = 2‘200\2}3' ~hp - [K:o : K:] . <F, F>h,

where

(F,F)) = /[G (F(@) Fl@)n- Iv(o)] do

Here and henceforth we write [Gg] for Gp(Q)Zg, (A)\Gp(A). Also, dg denotes
the standard measure on [Gp] which is defined in §6.1.21

PRrROOF. Recall that if ¢ = (90, g5), we have

where we view s[(geo - h, gr)] as an element in Vi, . Let

GB( )+ = {g € GB( ) 9= (gOO7gf)7 Joo € GB(R)+}
Now for g € Gp(A)™, we have

(F'(9), F(9))n = Iv(go) I"(5[(go0 - B, 91)]5 8[(goe = By 1)) g
= [[v(goo) I"[[V(g ) I - ((5[(g00 = 1y 1)1 8[(g0 h 901
= [[v()I"(5[(goo - Py 9£)]; 5[(goo - 11y g1)]))-

Since F and s are left Gp(Q)-invariant and Gg(A) = Gp(Q)Gp(A)T, the equal-
ity above holds for all ¢ € Gp(A). The proposition follows from this and the
comparison of measures in Lemma |

Next, we simplify further to scalar valued forms. For x = (zgeie”)aegoc €
(C*)4, let ry, be the element of K; C G(R) defined by:

ho(25€97), if 0 € Yoo \ Tp;
Rh,o = ; .
- Rl (2,€), if 0 € ¥p o,

where for 0 € ¥p o, we let hl, be some embedding of C* in (B ®p, R)*. (The
discussion below thus depends on the choice of such an k], for all 0 € ¥p ; for
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the moment the exact choice is unimportant but later in Chapter [7] we shall make
the choice more precise.) The equation (m) can be rewritten as

gﬁh H Z H ® pak:g,r o’ 7“9 ))F(g)

0EY 0ES N\ B 0EYB, o

For 0 € ¥ \ X, let v, 1, be any nonzero vector in the one-dimensional C-vector
space

(Vo 10)®ke @ det(V, c)® 2",

g,
so that

rezk: 0o

(1.13) Po ko r(Fho) * Vok, =2 Vo ky -

Note that v, may also be characterized as the unique vector (up to scaling)
in V1, , that satisfies (LI3) for all kK € (C*)4. For o € Lp o, we likewise let
Vok, € Vo i, r be any nonzero vector such that the condition (II3)) is satisfied for
all kK € (C*)9. Such a vector is again well-defined up to scaling.

Set vy = Roes. Vo,k, € Vi,rn Define

¢r(9) = (F(9), vx)-
Then ¢r(g) satisfies

(1.14) or(grn) = [] zhe™ % - or(g)
[eLSPIPSS
and
(1.15) br(ag) = £(@)or(g), for a € Za, (A) = AY.

ProOPOSITION 1.2.11. The map F +— ¢ is injective.

Proor. This follows immediately from the fact that Vj , , is irreducible as a
module over G = [[,cx, (B ®Fy R)*. Indeed, given any w € Vi1, there exist
elements x; € G and «; € C such that

w =Y a;p(ki)vg,
i
where p denotes the natural action of G on Vy ;. Then

Zaz p(ki)vg) Zaz 'F(g),ve)
= Zai gﬁz Zal(bF g’k‘:z

Thus if ¢ is identically zero, then so is F. |

We will now compare (F, F') to {(¢p, ¢r), where

CRRIDES ¢r(9)or(9) - V(g™ dg.

[GB]

We use the following well known lemma.
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LEMMA 1.2.12. Let K be a compact Lie group and V a (finite dimensional)
irreducible complex representation of K. Let (-,-) be a nonzero K-invariant her-
mitian form onV (such a form is unique up to scalar multiples) and denote also by
(+,-) the induced hermitian form on VV. Then for all vi,v2 € V and Ly,Ls € V'V,
we have

v TN a1 1
/K (0 )L, o) R ) = s

where dk is Haar measure normalized to have total volume 1.

- (vi,v2) (L1, La),

REMARK 1.2.13. Tt is immediate to check that if the form (-,-) on V is scaled
by a € C*, then the form (-,-) on V'V is scaled by @', so the right hand side is
independent of the choice of (-, ).

ProrosSITION 1.2.14.
rank Vg,

= o

{bF, dF).

Proor. Let Kg denote the maximal compact subgroup of Kj,. Since V) is
an irreducible representation of K 2, using Lemma [.2.12] we get

(br, oF) = or(9)or(g) - lv(g)l" dg

[GB]

= [ [ or@ar@) o)l dgan
K? J[GB]
N R I

[GB]
- / / (F(or), o) Fgr= 1), 0m) - [1v(9) | " dg dis
K JIGgB]

- / / (0" (%) F(g), ) PV (R E(g)s 0n) - ()|l dr dg
[Gp] /K
1

= v e [ (Fl@) Flolulio) " do. .

1.3. Rational and integral structures

As in the introduction, let II = ®,1II, be an irreducible cuspidal automorphic
representation of GL2 (A ) corresponding to a Hilbert modular form of weight (k, r),
character £ and conductor 9t = Ny - Nps. Thus the character &y satisfies

€n(2 - 200) = N(200)" - €mi(2)

for z € Af and 2 € A;OO. We also let m = ®,m, denote the corresponding unitary
representation:

=T ® | det(-)]| /2.

Recall that 311 denotes the set of all places v of F' at which II, is discrete series.
Let B be any quaternion algebra over F' such that ¥ C Xy, where ¥p denotes
the set of places v of F' where B is ramified. By the Jacquet—Langlands corre-
spondence, there exists a unique irreducible (cuspidal) automorphic representation
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IIp ~ ®,1lp, of Gg(A) such that IIg , ~II, for allv & Xp. Let kg = (kp.s)oes.,
be defined by:

(1.16)

[ ko, if B is split at o,
B ke — 2, if B is ramified at o.

We say then that IIp has weight (kg,r) at infinity.
Choose a maximal order Op in B. Recall that we have assumed that the
conductor 91 of II satisfies

N =N, - Ny

where 91 is divisible exactly by those primes at which II, is discrete series and 91,
is divisible exactly by those primes at which II, is ramified principal series. Let 0p
be the (finite part of the) discriminant of B, so that 95 divides 915. Then there is
a unique integral ideal g in Op such that

N =N 0B,

and we may choose and fix an Eichler order Og(Mp) in Op of level Np. We will
also fix an orientation of this order at the places dividing 5. By this, we mean a
ring homomorphism

o: OB(‘JIB) — Op/mps.

This choice determines an open compact subgroup K = [[, £, of Gg(Ay), namely
Ke = H'u| ¢ KCv where for any finite place v of F', we have

K, = ker [Ov : ((93(913) Rop ORU)X — (Opyv/‘ﬁpSOF,v)X] .

Here o, is the natural map induced by the orientation o. For all rational primes
¢ such that (¢, N(II)) = 1, the subgroup K, is a hyperspecial maximal compact
subgroup of Gp(Qy).

Now, we will assume that B is not totally definite, relegating the case of totally
definite B to Remark [[L33]at the end of this section. Let £ be such that (¢, N(II)) =
1. Then for each prime A of E(Gp, Xp) dividing such an ¢, one has (see §L.1.3]) an
associated canonical integral model Sk x = SicA(Gp, XB) of Shi(Gp, Xp) defined
over Op(Gp,xp),(0):-

We will now fix more carefully the isomorphism

(1.17) ¢p:BegR~ [ M®)x ][] H
TEX o N\IB UEZB,OO

Note that the vector bundles previously denoted by VormK and Vi . »x actually
depend on the choice of ¢p. In this section alone, we will be pedantic and write
yos ~c and VZBBT,C to indicate the dependence on ¢5. Let L C Q be a number

Pkp> _
field that contains the images of all embeddings o of F' in Q and such that for all
such o, we have

B ®F,o' L~ MQ(L)
Then L contains E(Gp,Xp). We pick the isomorphism ¢p above such that B
maps into [[, .y, Ma(L). This data defines an L-rational structure ([20], [53]) on
the automorphic vector bundle Vj}i i on Shic(Gp, X ) associated to the G g(R)-

homogeneous vector bundles ka’; as well as the sub-bundles V;f 5 ric- To define

,T
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integral models of these vector bundles, we first pick a rational prime ¢ prime to
N(II) and insist that the isomorphism ¢p satisfy

(1.18) ¢p(0p) C HMQ(OL’(Z)),

so that ¢p gives an isomorphism

(119) OB ®z OL7(5) >~ H OB ®(9F15 OL,(Z) >~ HM2(0L7(Z)).

For later use, we will need the following lemma.

LEMMA 1.3.1. Let ¢p and ¢'g be two isomorphisms satisfying the requirements
above. Then there exists an element

te [T cL.®x J[ B n][GL2AOL )

TEX o \2B 0EYB, o o
such that ¢ and ¢’z are conjugate by t.

PROOF. We can work one embedding at a time. First suppose 0 € Y \ Xp.
Then we have a diagram as below for ¢ and a similar one for ¢/,

B®p, R —2 5 My(R)

J

[
OB ®0,.,0 Oy (6) — Ma(Or, (1))

[
OB @00 O (1) — M2(Oy, (1))

where Lo := LNR. The map in the middle is an isomorphism of Azumaya algebras
over the semi-local ring Oy, (¢, so the Skolem-Noether theorem applies ([39] Chap.
II1, 5.2.3 ) and there exists t € GL2(Oy,,(¢)) such that ¢ and ¢’z are conjugate by
t. The proof in the case 0 € ¥ o proceeds along similar lines. We first note that
OB ®0p,0 OLg, (e is free of rank four over Or, (s) and pick a basis b1, ..., by for this
OL,,ry-module. Then (b1,...,bq) is a basis both for B®p , R as an R-vector space
and for Op ®o,,, Or (¢ as an Of, (p-module. From this it follows that

(B®F,o R)N (OB ®0r,0 OL, 1)) = O ®0r.0 OL, (1)
Thus there is a diagram as above:

Bop,R—2

-

Op ROp,o OLo,(Z) — MQ(OLM)) NH

[
Op ®0p.0 Or,(0) —— Ma(Op, ()

Moreover, A := Op®0y,6 OL,,¢) is an Azumaya algebra over Oy () (by [39] Chap.
111, 5.1.1 ) since for every maximal ideal m of Oy, (¢), the algebra A/mA ~ My (kn) is
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central simple over ky, := Op, (s)/m. Thus the map in the middle of the diagram is
an isomorphism of Azumaya algebras over Op, (r), and the Skolem—Noether theorem
applies as before. O

We now return to our discussion of integral models. Using the discussion in
LT3 we will see that the choice of Eichler order Op(Mp) and the isomorphism
¢p defines for all primes X of L with A" | A | £ natural integral models for the

bundles VZZSB,T,IC and Vggmc over Sk a ®Orap, x50 Or, (- Indeed, the choice
of the Eichler order Op(91p) determines a reductive group Gy over Z,) such that
Go,o = G'B; namely for any Z)-algebra A, we have
Go(A) = (Op(MpB) @ A)™.

Further, the map ¢p induces an isomorphism
(1.20) Go ® OL,(E) = H GLQ/OL,(e)'

o€EY
This gives an integral model over Oy, (4 for the compact dual symmetric space
and the vector bundle T@B,w Via the identification (L20) above, the integral model
Xo 1.0y for the compact dual is simply the conjugacy class of the parabolic subgroup

P = H B x H GLy/0,

[ASPINRNNZ! TEXB 0o

* *
B— {(o *)} C GLyjo, -

Thus f@L’(Z) is isomorphic to Haezoo\EB ]P%)Lm, the isomorphism depending on
the choice of ¢p. Let L, = O%,(z) with the obvious left action of GL2(Op ().

Then the integral models of the vector bundles IV/%B o and YJEB’T over £0L, () are

of Go ® O, (¢), where

the vector bundles IV)Z)EBB 0.0 and Vg ;T,OLM corresponding respectively to the
representations
r—kB.o

® Sym*> (L) @ det(Ly)

oEY o
and X

r—kB o
Il s.r @ Sym™7(L,) @ det(L,) >
TEX oN\XB UGEB,OC

of P. (Recall that xj, has been defined in Eg. [[I3]) Finally we apply the

B

discussion in §I.T.3] to get corresponding canonical integral models of V;Z; i and

B
VE;BMC (and their duals) over Sk x ®Op(ap Xm0 Or,(\)-
For all finite places v of F' at which B is split, we will fix an isomorphism

(1.21) iy : BQ F, ~ May(F,)
such that for all but finitely many v, we have
(122) iv . (’)B(‘JIB) ® OF,U ~ MQ(OF’U).

Let A be a large enough finite set of places of F' such that

e A contains all the infinite places, and all the finite places v at which II, is
ramified.



1.3. RATIONAL AND INTEGRAL STRUCTURES 29

e For all v ¢ A, the condition (T.22]) holds.

For all finite places v not in A, we get (using i,) an identification
(123) K:v ~ GLQ(OF’U)7 'H; ~ Hv

where #H, and H, denote the spherical Hecke algebras on B, and GLy(F3) con-
structed using the maximal compact subgroups K, and GL2(Op,) respectively.

Let
Hy=QH, Ha=Q) H.
VEA VEA

Note that H/, acts naturally on the space of sections of (V,fBT,C)V and we have
Ep,T

an identification H/y ~ Ha. Also Ha acts on ®;€AHU‘ Let ¢ = Qugapy be a

new-vector in the space ®;€ Ally, so that ¢ is an eigenvector for the action of Ha.

Let App denote the corresponding character of Ha.

PROPOSITION 1.3.2. There exists up to scaling a unique non-zero section sg of
the bundle (V,‘f;r’,c)v which satisfies the following conditions:

(i) s is an eigenvector for the action of H\ and Hl\ acts on it by An, via the
identification Hy ~ Ha above.

(i) s satisfies (LI2) for & = &n.

PROOF. Let s be any section of (V,?:}T’,C)V. Pick some point h € Xp. Let
F,j = Lifty(s) and set ¢5;, = ¢F, ,, notations as in the previous section. By
strong multiplicity one, the assignment s — ¢, 5, gives a bijection of the space of

sections of (V; BB)TJC)V on which #H/y acts by An with the space of functions

¢:Gp(Q\GB(A)/K—C

that satisfy (LI4) and (LI5) and on which #/\ acts by Ap. By the Jacquet—
Langlands correspondence and the uniqueness of newforms [6], this latter space is
one-dimensional, generated by a nonzero element ¢. If sp is such that ¢, 5 = ¢,
then sp is our required section. (Il

Let us enlarge L if necessary so that Eyp C L where Ey is the field generated
by the Hecke eigenvalues of II. By [22] Prop. 2.2.4, the section sp of Prop. [[3.2]
can be chosen to be L-rational. Further, for A’ | A | £ as above, the integral model

of (VEE,T,K)V over Sk i RO g xp) O,y defines an Oy, (y)-lattice My in

H°(Shx(Gp, XB) /1L, (szr,;c)v)-

Fixing ¢, choose sp (by suitably scaling) such that for all X | A | £, it is a
generator for the rank one Oy, (y)-lattice My N Lsp. We will say that the section
sp is f-normalized.

REMARK 1.3.3. In this remark we deal with the case of totally definite B.
Pick ¢p satisfying ([LI8), (II9) above with an appropriate choice of L. Then

Xp = {ho}, and sections s of (V,f;r,,c)v are identified with functions

F:GpQ\Ge(A)/K =V = Q) Vs,

oEY
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satisfying the appropriate invariance property under the right action of Gg(R). Now
Vi .~ admits a natural L-rational structure as well as a natural Or, (y)-submodule:

r—kp o
Vigr O Vi (L) = @) Sym* 7 L? @ det(L?) =
€Y o
r—kB.o
O Vi (O ) = Q) Sym* 707 ) @ det(OF () 2
0EY

The same holds for VXB’T as well; this gives an L-rational structure and an Oy, (y)-

integral structure on the space of sections of (V;f ;h )", namely we take sections s
which on Gg(Ay) take values in VgB,T(L) and DEVB,T(OL,(Z)) respectively. We pick
isomorphisms %, as above and Prop. continues to hold. Finally, we pick sp to
be ¢-normalized with respect to the integral structure provided by VgB,r(OL,(l))'

Finally, for the convenience of the reader, we summarize the discussion in this
section in the following proposition which makes clear all the choices involved.

PROPOSITION 1.3.4. Suppose that the following data has been chosen:
(i) A mazimal order Op in B.
ii) An FEichler order Og(Mp) C Op.
ii) An orientation o : Op(MNg) = Op/MNys.
) A number field L C Q containing o(F) for all embeddings o : F — Q C C,
and containing the field generated by the Hecke eigenvalues of 11.
(v) An isomorphism

¢p:BeR~ [ M@®)x [] H

OEX oN\2XB UEEB,OO

(
<'%

(iv

such that
¢p(Op) C HM2(0L7(€))~

(vi) For all finite places v of F at which B is split, an isomorphism
iy : BQ F, ~ Ma(F,)
such that for almost all v, i, induces an isomorphism
Op(MNp) @ Opy = M2(Op,).
The data of () to () determines an open compact subgroup K of Gp(Ay) and a

canonical section sp of the vector bundle (V,flf 1) that satisfies the conditions (i)

and (@) of Prop. 32 Moreover, sp can be chosen such that it is well defined up
to multiplication by an £-adic unit.

In the next section, we shall define a canonical quadratic period invariant using
the section sp. The key point will be to show that this period invariant is (up to
{-adic units) independent of the choices made in the proposition above.

1.4. Canonical quadratic period invariants

We can now define the canonical quadratic period invariants attached to IT and
state the main conjecture relating these invariants. Let B be a quaternion algebra
such that ¥p C Y. As in the introduction, let R be the ring Og[1/N(II)]. For

any rational prime ¢ prime to N(II), we define an invariant ¢g(IL,¢) € (CX/R(XE)
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as follows. Let K O K be the open compact subgroup of G B(Ayf) defined by
K =TI, K, with

Ky =(Op(MNB) @0, Op,) ™.
Choosing a section sp as above that is £-normalized, define

qB(H,g) = <<$B, SB>>,€ c CX/R(XZ),
to be the Petersson norm of the section sg as in Defn. [L2.8

PROPOSITION 1.4.1. The invariant qg(I1,£¢) is well defined, in that as an el-
ement of (CX/R(XK), it does not depend on the choices of the number field L, the
pair (Op(MNp),0) consisting of the Fichler order Op(Np) and the orientation o :
Op(MNp) = Or /Ny, the isomorphism (LIT) satisfying (LI8), (LI9) above and
the collection of isomorphisms (L21).

Proor. We will give the argument in the case when B is not totally definite.
In the case of a totally definite B, a similar (but simpler) argument can be given
which we leave to the reader.

Independence of the choice of L is clear since we can always replace L by a
larger field without changing the choice of sp. Implicitly in the arguments below
we may need to make such a field extension and we do this without comment. Let
us first show that fixed choices of other data, there is no dependence on the choice
of isomorphisms (I2I)). Indeed, for all but finitely many v, the isomorphisms 4,
must satisfy (L22). Let {i/,} be a different set of choices. Then for all but finitely
many v, the isomorphisms i, and ¢/, must differ by conjugation by an element of
K. For such v, the identifications H! ~ H, given by i, and i, are the same. This
implies that the same choice of sp can be used if {i,} is replaced by {i’} and the
norm ((sg, sB))z is unchanged.

Next let us look at the dependence on the choice of isomorphism ¢p in (I7),
for fixed choices of other data. Let ¢z be a different choice of isomorphism satisfying
(ILI8). By Lemma[L31] the isomorphisms ¢p and ¢/5 differ by conjugation by an
element

te [[ GL2(OL ) N Il cr.m®x ][] v~
o OEX o N\2pB 0EXB, 0
Then there is a natural morphism of integral models
ng(é) = giu)

which is just given by the (left) action of ¢ on the fibers. This induces an iso-
morphism between the integral models of the corresponding automorphic vector
bundles that is also given by the action of ¢ on the fibers. (Keep in mind that the
G(Q)-actions on the fibers are different, and differ by conjugation by ¢, so the left
action of ¢ on the fibers is indeed a map of bundles.) Thus if sp is an f-normalized
section of (Vg;r,}c)vv then sz := ¢ - sp is an ¢-normalized section of (ng,r,}c)v'
Then the inner products (sp,sp))i and (s’z, ) differ by a power of [|v(t)|l,
which is a unit at ¢.

Finally, we consider dependence on the choice of the pair (Op(9Mp),0). Let
(Op(Mp)’, o) be another such pair and let ¢y (respectively 4,) denote our choices
of isomorphism (LI7) satisfying ([LI8) (respectively the isomorphisms ([21]) sat-
isfying ([22) for all but finitely many v). Let us suppose first that the pair
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(Op(Mp)’, o) is conjugate to (Op(Np),0) by an element in B>, say Op(Ng) =
b=10p(Mp)b and o' (x) = o(brb~!). By what we have shown so far we may assume
that
Gp () = p(bab1), i (w) = iy (babL).

The open compact subgroup K’ of Gg(A[) determined by the pair (Op(9g)’, o)
satisfies I’ = b~1KCb. Let us write b = by - by where b, and by denote the infinite
and finite components of b respectively, viewed as elements in Gg(A). There is a
natural isomorphism of Shimura varieties

Shic(Gp, X5) = GE(Q\X5 x Gp(Ap)/K &

R

Gp(Q\Xp x G(Ay)/K!
= Shyx/(GB, XB),
given by
(h,g5) = (h, gsby).
Further, there is a natural isomorphism

002, )Y = Ga@\V2,)Y x Ga(h)/K 2 Ga@\OFP,)Y x Galh)/K

¢/
= (Vk:,r,IC’)V’

covering &, given by

(1.24) (v, 97) = (¢B(D) - v, gsby).
Note that if 7 is an element in Gg(Q) then
v (v,97) = (@) - v,795) = (¢B(0)dB(Y) - v, 795f)
= (¢B(7)¢B() - v,v95bs) =7 (6B(b) - v, gsby),

so that the assignment in (I.24]) does descend to equivalence classes for the G'5(Q)-
action. Note also that g is the map on automorphic vector bundles corresponding
to a morphism of vector bundles that extend to the integral models, since these
integral models are defined using the triples (Og(9g), 0, ¢5) and (Og(Ng)’, o, d%)

respectively. Thus éb is an isomorphism at the level of integral models, and so we
may assume that s = &(sp). But then we see from the definition of the metrics

on the vector bundles (V,f;h,c)v and (V,f:’r’,c,)v and the product formula that

(5, sB)ier = v (o) 177 - ()77 - (5B, sB) & = (5B, 5B) -
In general, it may not be true that the pairs (Op(Mp),0) and (Op(Np)’, o) are
conjugate by an element of B*. Nevertheless, we can always find an element
By € B*(Ay) such that

OpMp) = B;'0sNp)By, o (x) = o(BraB; ).
Let b be an element of B* approximating 3y = (3,) at ¢ so that
OpMp) @ Zyy = (b"'Op(MNp)b) ® Zy).
Then we may assume that
Pp(r) = ¢p(bab™"), i, (x) = in(Bozy ).

The open compact subgroup K’ satisfies K’ = B;lK,Bf. We now run through the
same argument as above, defining

&l(hgp)] = [(hgsBp)l, &l(v,97)] = [(65(b) - v, 9:B7)]-
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The result follows from observing that ||v(bso)]| - ||¥(By)l|, while not necesarily 1, is

still an element in R(XZ). O

Finally, we define an invariant ¢ (II) € C*/R* such that the class of ¢p(II) in
(CX/R(XZ) equals qp(I1, £). Let us pick the isomorphism ¢p, the number field L and
the maximal order Op in B such that

¢5(0p) C [[Ma(O1).

Choose a pair (Op(Mg),0) consisting of an Eichler order and an orientation. The
constructions in §I.3] can be copied verbatim to give integral models for everything
in sight over OL[ﬁ]‘ (See §I.T3l) By enlarging L if need be, we can pick a
section sp that is f-normalized at all rational primes that are prime to N(II). Then
we set

qs(l) := (sB,sB)
for such a choice of sg. This is an element of C* that maps to ¢g(II, £) under the

natural map C* — (CX/R(XE) for all ¢ such that (¢, N(II)) = 1. Since the map

/R = [ C*/R,
(€.N (1)=1

is injective, the class of ¢p(II) in C*/R* is well defined. This defines the invariants
needed in the formulation of Conjecture [A] of the introduction.






CHAPTER 2

Unitary and Quaternionic Unitary Groups

In §2.71 we review the general theory of hermitian and skew-hermitian forms
over local fields and number fields. In §2.2] we describe the construction of a certain
skew-hermitian space over a quaternion algebra (over a number field), which plays
an important role throughout the paper, while in §2.3] we review the connection
between this construction and the failure of the Hasse principle for quaternionic
skew-hermitian forms.

2.1. Hermitian and skew-hermitian spaces

2.1.1. Hermitian spaces. Let F' be a field of characteristic zero and F a qua-
dratic extension of F', possibly split. Let V be a right E-vector space of dimension
n (i.e., a free E-module of rank n), equipped with a Hermitian form

(,): VXV E,

Such a form is linear in one variable and antilinear in the other, and we fix any one
convention at this point. For example, if (-,-) is antilinear in the first variable and
linear in the second, then:

(va, v'8) = a?(v,0)B,  (,0) = (', 0",

where p denotes the nontrivial involution of E/F.
To such a V, one associates the following invariants: dim(V) = n and disc(V) €
F*/Ng,pE*, where

disc(V) = (=1)""=D/2 det ((v;,v;)),

with {v;} an E-basis for V. Since (-,-) is Hermitian, disc(V) lies in F* and its
class in F* /Np,p E* is independent of the choice of basis.

Let GU(V) denote the unitary similitude group of V. (Occasionally, we will
write GUg (V) for clarity.) This is an algebraic group over F' such that for any
F-algebra R, we have

GU(V)(R) :={g € GL(V®R) : (gv,gv") = v(g)(v,?) for all v, v(g) € R*}.

If E = FxF, then GU(V) ~ GL,, xGL;. If E'is a field, the various possibilities
for GU(V) are discussed below.

2.1.1.1. p-adic local fields. Let F be p-adic. As a Hermitian space, V is deter-
mined up to isomorphism by its dimension and discriminant. Further, given any
choice of dimension and discriminant, there is a space V with these as its invariants.
If dim(V) is odd, the group GU(V) is (up to isomorphism) independent of disc(V)
and is quasi-split. If dim(V) is even, there are two posibilities for GU(V) up to
isomorphism and GU(V) is quasi-split if and only if disc(V) = 1.

35
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2.1.1.2. Archimedean fields. Let F = R and E = C. Then the form (-,-) can
be put into the diagonal form (1,...,1,—1,...,—1) which is called the signature
of V ; we say V is of type (p,q) if the number of 1s is p and the number of —1s
is ¢. Hermitian spaces are classified up to isomorphism by their signature (which
determines both the dimension and discrminant) and we write GU(p,q) for the
associated group. The only isomorphisms between these groups are GU(p,q) ~
GU(q,p)-

2.1.1.3. Number fields. Let E/F be a quadratic extension of number fields. If V
is a Hermitian F-space, then for each place v of F', one gets a local space V,, which
is a Hermitian space for F,/F, and such that for almost all v, the discriminant
of V,, is 1. The Hasse principle says that V is determined up to isomorphism
by this collection of local spaces. Conversely, suppose we are given for each place
v a local space V,, (of some fixed dimension n) such that almost all of the local
discriminants are equal to 1. The collection of local discriminants gives an element
of AL/Ng / rAZ. Such a collection of local spaces comes from a global space if
and only if this element lies in the image of F*, i.e., is trivial in the quotient
Ay /F*Ng,pAj;, which has order 2.

2.1.2. Skew-Hermitian spaces. Let E/F be a quadratic extension as in the
beginning of the previous section. Skew-hermitian F-spaces are defined similarly
to hermitian spaces but with the condition

(v,0") = = (v, v)*.

We can go back and forth between hermitian and skew-hermitian spaces simply
by multiplying the form by an element in E* of trace zero. Indeed, pick a trace
zero element i € EX. If (-,-) is skew-hermitian form on V, the product (-,-)" :=
i-(,-) is hermitian. The group GU(V) is the same for both (-,-) and (-,-)’. Thus
the classification of skew-hermitian forms (and the corresponding groups) can be
deduced from the hermitian case.

2.1.3. Quaternionic hermitian spaces. Let F be a field and B a quaternion
algebra over F. Let a — a* denote the main involution on B. A B-Hermitian space
is a right B-space V equipped with a B-valued form

(w):VxV =B
satisfying
(va,v'B) = a*(v,v") 3, (v,0) = (V' v)¥,
for v,v' € V and o, 3 € B.
Let GU(V) denote the unitary similitude group of V. (Sometimes, we write

GUpg(V) for clarity.) This is an algebraic group over F' such that for any F-algebra
R, we have

GU(V)(R) :=={g € GL(V® R) : (gv,gv") = v(g){v,v") for all v,v", v(g) € R*}.

If B is split, there is a unique such space V of any given dimension n over B.
The corresponding group GU(V) is identified with GSp(2n). If B is nonsplit, the
classification of such spaces over p-adic fields and number fields is recalled below.

2.1.3.1. p-adic fields. If F is a p-adic field, there is a unique such space of any
given dimension, up to isometry. The corresponding group is the unique nontrivial
inner form of GSp(2n).
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2.1.3.2. Archimedean fields. If F' = R, such spaces are classified by dimension
and signature. If the signature is of type (p,¢q), the associated group is denoted
GSp(p, q). The only isomorphisms between these are GSp(p, ¢) ~ GSp(q, p).

2.1.3.3. Global fields. The Hasse principle holds in this case, so a global B-
hermitian space is determined up to isometry by the collection of corresponding
local B,-Hermitian spaces. Conversely, given any collection of B,-hermitian spaces,
there is a (unique) B-Hermitian space that gives rise to this local collection up to
isometry.

2.1.4. Quaternionic skew-hermitian spaces. These are defined similarly
to B-hermitian spaces but with the condition

(v,0") = =V, v)*.

To such a space V is associated the invariant det(V) € F*/(F*)? as follows. Pick
a B-basis {v;} for V and set

det(V) = vp((vi,vj)).

Here vp denotes the reduced norm. (Often, we will omit the subscript B when
the choice of quaternion algebra is clear.) The group GU(V) is defined similarly
as above. It is however not connected as an algebraic group. We now recall the
classification of such spaces and the associated groups. Note that if B is split, we can
associate to V a quadratic space V1 over F of dimension 2n (where n = dimp(V))
and GU(V) ~ GO(V'T).

2.1.4.1. p-adic fields. Let F be p-adic. If B is split, V is determined by dim(V),
det(V) and the Hasse invariant of V1. If B is nonsplit, V is determined by dim(V)
and det(V).

2.1.4.2. Archimedean fields. If F = R and B is split, V is determined by the
signature of VT. The group GU(V) is isomorphic to GO(p, q) where (p,q) is the
signature. If B is nonsplit, V is determined just by n = dimp(V). The group
GU(V) is isomorphic to GO*(2n). If F = C, then B must be split and there is a
unique skew-hermitian space of any given dimension. Then GU(V) ~ GO(2n,C).

2.1.4.3. Global fields. Let F be a number field. If B is split, then the classifica-
tion reduces to that for quadratic spaces via the assignment V — V1. In this case,
the Hasse principle holds. If B is nonsplit, then the Hasse principle does not hold.
Let X be the set of places v where B is ramified and let s = |[Xp|. The space
V' gives rise to a collection of local spaces and up to isometry there are exactly
2572 global B-skew-hermitian spaces that give rise to the same set of local spaces.
Conversely a collection of local B,-skew-hermitian spaces V, arises from a global
B-skew-hermitian space V' if and only if there exists a global element d € F'* such
that det(V,,) = d in F.*/(F.})? for all v and for almost all v, the Hasse invariant of
V)l is trivial.

2.2. The key constructions

In this section, we assume that B; and By are two quaternion algebras over a
number field F' and E/F is a quadratic extension that embeds in both B; and Bs.
We will fix embeddings £ < B; and ' — Bs. Via these embeddings, By and Bs
are hermitian spaces over E. Let 7; and v; be respectively the reduced trace and
norm on B;. We think of By and By as right E-vector spaces, the Hermitian form
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being described below. Write
Bi,=E+Ejy=E+jiE, By=FE+Ejo=F+jFE,
where 71 (j1) = 72(j2) = 0. We write pr; for the projection B; — E onto the “first
coordinate” and *; for the main involution on B;. Then B; is a right Hermitian
E-space, the form being given by:
(@, 9); = pri(z™y).

If x =a+jb, y=c+ j;d, then

(z,y)i = (a+jib,c +jid); = a’c — J;b’d,
where J; := —v;(j;) = j?. This form satisfies the relations

(za,yB); = a’(z,y):B, for «a,B€E,
and

(z,9)i = (y,2)7-

We note that B acts naturally on B; by left multiplication, and this action is
FE-linear. Further,

for all @ € B;. Thus B/ embeds naturally in GUg(B;). In fact,
FX\(BY x B¥) ~ GUg(B,),
where £ acts on B; by right multiplication, and we think of F'* as a subgroup of
B x E* via A — (A71 ).
Consider the (right) E-vector space
V.= B1 XRE BQ.
REMARK 2.2.1. If x € By, y € Be, a € E, then by definition,
(zRy)a=rza®y =1 ya.

The E-vector space V is equipped with a natural Hermitian form given by the
tensor product (-, )1 ® (-, -)2. We fix a nonzero element i € F of trace 0, and define
('7 ) on V by
(2.2) () i=1- ()1 @ ()2
Clearly, (-, ) satisfies

(za,yp) = o’ (z,y)B, for o,f€E,

(I7 y) = _(y7 l,)p.
Thus (-, ) is an E-skew-Hermitian form on V.
It will be useful to write down the form (-,-) explicitly in terms of coordinates
with respect to a suitable E-basis. We pick the following (orthogonal) basis:

(23) e =1®1, e :=j1 ®1, e;:=1® jo, es = j1 ®jo.
In this basis,
(e1a + exb + egc + esd, e1a’ + exd’ + e3c’ + eqd')
=i-[a’d — J1b°V — Jocld + JyJodPd].
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There is a natural map
GUg(B1) x GUg(B3) — GUg(V),

given by the actions of GUg(B) and GUg(B3) on the first and second component
respectively of V = By ® g Bs. The kernel of this map is

7 = {([)\1,0[1], [)\2,0(2]) HP VNS FX,Oéi S EX,)\1>\20z10[2 = 1}

Let B := Bj - By be the product in the Brauer group over F'. Then E embeds in B
as well, and we will fix an embedding £ — B. We may write

B=E + Ej
where 7(j) = 0 and J := —v(j) = j? satisfies
J=JiJs.

Here 7 and v are respectively the reduced trace and reduced norm on B. We define
a right action of B on V (extending the right E-action on V) by setting

(2.4) (Iol)-j = J1®je
(2.5) Giel)-j = Lh(1®j)
(2.6) 1®j2)-j = Jiiol)
(2.7) (1 ®j2)-j = JSl(l®1)

and requiring the right action by j on V' to be conjugate E-linear. (It is straightfor-
ward to check that this gives an action.) Then V is a free rank-2 right B-module.
For example, a basis for V' as a right B-module is given either by

{I®1,ji®1}
or

{1®1,1®ja}.
Further, one checks that (equivalently)
(2.8) (@j,y) = (i)
(2.9) (=3 uj)” = —J(=,y)

for all z,y € V.
We will now show that there is a B-valued skew-Hermitian form (-, -) on V such
that

pro <'7 > = ('a )
Indeed, define

(210) (9) = (2,) = 7 -5+ (33,0)
It may be checked (using (28)) and ([29])) that
(2.11) (ra,yB) = a™(z,y)B,

for all &, 3 € B. For future reference, we write down the matrix of inner products
<ei, ej>.
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<'a > €1 €9 €3 €4
€] i 0 0 ij

€y 0| —-Jii| —ij 0
es | 0| —ij | —Ji]| O
es | ij 0 0 |Ji
From the table, we see that det(V) = v(—Jyu) = 1 in F*/(F*)2.

Notice that B;* and B3 act on V by left multiplication on the first and second

factor of V' = B; ® g By respectively. These actions are (right) E-linear and in fact
(right) B-linear as is easily checked using (2.4]) through 2.7). Further, it follows

from (210, 22), and (2I0) that
(2.13) (- x, 0 y) = vi(ag)(z,y)

for a; € B. Clearly, the actions of By and B3 commute, hence one gets an
embedding

(2.14) F*\(BJ x BY) < GUg(V),

the quaternionic unitary group of the B-skew-Hermitian form (-,-). (Here we think
of F* as embedded antidiagonally in B;* x By via A = (A7, )\).) Then (214
gives an isomorphism

FX\(By x By)~GUg(V)",
where GUg(V)? denotes the identity component of GUg(V). Further, one has a
commutative diagram

FX\(B} x BY) = GUpR(V)°

[ |

Z\(GUg(B1) x GUg(B3)) —— GUg(V)
where the vertical map
FX\(B{® x By') = Z\(GUg(B1) x GUg(By))
is
[b1, ba] = [[(b1,1)], [(b2, )],
and the vertical map GUg(V)? < GUg(V) is just the natural inclusion.

Let V = Resg/p(V), that is V is just V' thought of as an F-space, with non-
degenerate symplectic form

{(v1,v2)) := §t1“E/F(U1,U2)-
Let
X=Fe ® Fey® Fesd Fey CV.

Since X is maximal isotropic for ((-,-)), there exists a unique maximal isotropic
subspace Y in V, such that V=X@ Y. Let (e],...,e}) be an F-basis for Y that is

dual to (ey,...,e4). We can identify this basis precisely: letting i2 = u € F*, we
have

* . * 1 . * 1 . * 1 .
(2.15) e; = _eil, ey = —ﬂegl, el = —feggl, €1 = 7-edd.
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2.2.1. The unitary group Ug(V) at infinite places. This section will not
be relevant in this paper. We simply record for future use the isomorphism class
of the unitary group Ug(V) at the infinite places v assuming that F,, = R and
FE, = C. The skew-hermitian form is given by

i-[a?a’ — J1b°Y — JocPc + JdPd')
Thus we have the following table which summarizes the relation between the ram-
ification of By and Bs at v and the isomorphism class of Ug(V).

B1, By J1, Jo Ug(V)
split, split J1>0,J2 >0 U(2,2
ramified, split J1 <0,J2 >0 | U(2,

split, ramified J1>0,J2 <0 | U(
ramified, ramified | J; < 0,J3 <0 | U(

2.3. The failure of the Hasse principle

The constructions above illustrate the failure of the Hasse principle for skew-
hermitian B-spaces. Indeed, let us fix a B and consider pairs (Bj, Bz) such that
Yp, N X, = Yo, where Xy is some fixed set of places not intersecting ¥p. Let
E/F be a quadratic extension that is nonsplit at all the places in ¥ 5 U 3. Then
FE embeds in B,B1,Bs, so the constructions from the previous section apply. The
various spaces V obtained by taking different choices of B; and By are all locally
isometric, since all of them have det(V) = 1 and the Hasse invariant of V| is
independent of V for v ¢ ¥p. Since interchanging B; and Bj gives an isometric
global space, the number of different global spaces obtained in this way (up to
isometry) is exactly 2572, where s = |Yp|.

Conversely, suppose that we are given a quaternion division algebra B and a
collection of local B,-skew-hermitian spaces V, such that det(V,) =1 for all v and
the Hasse invariant of V,| (for v ¢ X ) is 1 for all but finitely many v. Then there
are up to isometry 25~2 different global skew-hermitian spaces that give rise to this
collection of local spaces, and all of them may be obtained by the construction
above, by suitably choosing B, By and i.






CHAPTER 3

Weil Representations

In this chapter, we recall some basic properties of metaplectic groups and Weil
representations. The material in this chapter is standard, but we include it for
the convenience of the reader. We also consider splittings over some quaternionic
unitary similitude groups, but the actual construction will be deferred to Appendix

[c

3.1. Preliminaries

3.1.1. Weil indices. Let F' be a local field of characteristic not 2 and fix a
non-trivial additive character 1 of F'. For a non-degenerate symmetric F-bilinear
form ¢, we let vr(v o q) € ug denote the Weil index associated to the character of
second degree = — (q(z,x)) (see [75], [63, Appendix]). When ¢(z,y) = zy for
x,y € F, we write yp(¢) := yr (¢ 0 q). Put

vr(a, ) = ’Li((a%)
for a € F*, where (av))(x) := ¢(az) for x € F. Then we have
vr(ab®, ) = vr(a, ),
vr(ab, ) = yr(a,¥) e, ) - (a,b)F,
vr(a, b)) = VF( ¥) - (a,b)r,
vr(a,)? ( La)r,
vr(a,v)* =

¥)” =

)

vr(¥)? = ( )7

ON

for a,b € F* (see [63] p. 367]). Here (-,-)r is the quadratic Hilbert symbol of F.
Let ¢ be a non-degenerate symmetric F-bilinear form. Let detq € F*/(F*)?2

and hp(g) € {£1} denote the determinant and the Hasse invariant of ¢g. For
example, when

q(xay) = airiyi + -+ A TmYm,
for x = (x1,...,2m), ¥y = (Y1,..-,Ym) € F™, then
det g = H a;, hr(q) = H (@i, a;)F.
1<i<m 1<i<j<m

Moreover, we have

(3.1) Ve oq) =vr(¥)™ - yr(detq, ) - hr(q)
(see [63] pp. 367-368]).

43



44 3. WEIL REPRESENTATIONS

3.1.2. Leray invariants. Let V be a 2n-dimensional F-vector space with
a non-degenerate symplectic form {-,-) : Vx V — F. For maximal isotropic
subspaces Y, Y, Y’ of V, the Leray invariant ¢(Y,Y’,Y”) is a non-degenerate
symmetric F-bilinear form defined as follows. (See also Definitions 2.4 and 2.10 of
63.)

Suppose first that Y, Y’, Y’ are pairwise transverse. Let Py be the maximal
parabolic subgroup of Sp(V) stabilizing Y and let Ny be its unipotent radical. By
Lemma 2.3 of [63], there exists a unique g € Ny such that Y'g = Y”. We write

g= (1 ?) , b€ Hom(Y',Y)

with respect to the complete polarization V =Y’ 4+ Y. Then ¢ = ¢(Y,Y’,Y”) is a
symmetric bilinear form on Y’ defined by

(@', y') = (', y'b).
In general, we consider a symplectic space Vg := R+ /R, where
R:=(YNY)+ (Y NY")+ (Y'NY),
and maximal isotropic subspaces
Yg:= (YNRY)/R, Yg:= (Y NRY/R, Yg:= (Y NnRY)/R
of Vg. By Lemma 2.9 of [63], Ygr, Y, Y are pairwise transverse. We put
oY, Y, Y") = g(Ya, Y, Y}).
By Theorem 2.11 of [63], we have
q(Yg,Y'g, Y"g) = q(Y,Y', Y")
for g € Sp(V).

3.2. Weil representation for metaplectic groups

3.2.1. Heisenberg group, Heisenberg representations. Let F' be a local
field of characteristic not 2. For simplicity, we assume that F' is non-archimedean.
Let V be a finite dimensional F-vector space equipped with a non-degenerate
symplectic form
() : VXV —F.
The Heisenberg group H(V) is defined by
HV)=VaF

as a set, with group law
1
(1}1721) . (’UQ,ZQ) = <Ul + v9,21 + 22 + 5«1]1,112») .

The center of H(V) is F'.

Let 1 be a nontrivial additive character of F'. Then by the Stone—von Neumann
theorem, H (V) admits a unique (up to isomorphism) irreducible representation py
on which F acts via 1. This representation can be realized as follows. Fix a
complete polarization

V=XaY,
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i.e., X and Y are maximal isotropic subspaces of V. We construct a character ¢y
of HY) =Y & F by setting
Py (y,z) = ¥(2).
Define
Sy = TIndjy(y) y.
i.e. Sy is the space of functions f: H(V) — C satisfying
(i) f(g0) = ¥x(9)f(0) for g € H(Y), v € H(V).
(if) f is smooth i.e. there exists an open compact subgroup (a lattice |) L in V
such that
f@l)=f(v) forallte LCVcCH(V).
Then H(V) acts on Sy on the right naturally. We can identify Sy with S(X), the
Schwartz space of locally constant functions with compact support on X, via the
restriction of functions to X.

3.2.2. Metaplectic group. Let Sp(V) be the symplectic group of V. Fol-
lowing Weil, we let Sp(V) act on V on the right. Recall that Sp(V) acts on H(V)
by

(0,2)7 = (vg, ).
Let é;)(V) be the unique non-trivial 2-fold central extension of Sp(V). The
metaplectic group Mp(V) is a central extension
1 — C' — Mp(V) — Sp(V) — 1
defined by -
Mp(V) := Sp(V) x (413 C.

LEMMA 3.2.1. Any automorphism of Mp(V) which lifts the identity map of
Sp(V) and which restricts to the identity map of C' must be the identity map of
Mp(V).

PRrROOF. Let p : Mp(V) — Sp(V) be the projection. Let f : Mp(V) — Mp(V)
be such an automorphism. Since p(f(g))-p(g)~! =1 for g € Mp(V), there exists a
character x : Mp(V) — C! such that f(g)-g~* = k(g). Since f(z) = z for z € C!,

K is trivial on C!, and hence induces a character of Sp(V). Since [Sp(V), Sp(V)] =
Sp(V), this character must be trivial. O

One can realize Mp(V) explicitly as follows. Put

1 _
2y(91,92) = 7F(§¢ 0q(Y,Yg, ', Ya1))

for g1, g2 € Sp(V). By Theorem 4.1 of [63], zy is a 2-cocycle valued in 8th roots of
unity (called the Leray cocycle), and the group

Mp(V)y := Sp(V) x C!
with group law
(91.21) - (92, 22) = (9192, 2122 - 2v(91, 92))
is isomorphic to Mp(V). Moreover, by Lemma [B.2T] this isomorphism is canonical.
If there is no confusion, we identify Mp(V)y with Mp(V). We also remark that
there is a 2-cocycle valued in {1} realizing Mp(V) (called the Ranga Rao cocycle;

see [63, Theorem 5.3]), but the Leray cocycle is more convenient for our purposes
(see e.g. Lemma [B.1.] below).
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Let V=X @Y’ be another complete polarization.
LEMMA 3.2.2. We have

2v/(91,92) = Mg192)Mg1) " Ag2) " - 2v(91, 92),
where X : Sp(V) — C! is given by

Mg) = (50 (Y, ¥'g ™ W) 450 (Y, V', Yg).
In particular, the bijection
Mp(V)y — Mp(V)y/
(9,2) — (9,2 - Mg))
is an isomorphism.

PROOF. See Lemma 4.2 of [40]. O

Suppose that V = V; & V,, where each V; is a non-degenerate symplectic
subspace. One can lift the natural embedding Sp(V;) x Sp(V2) — Sp(V) to a
homomorphism

Mp(V1) x Mp(Vz) — Mp(V).
IfV;, =X, @Y, is a complete polarization and
X=X18X3, Y=Y;dYy,
then this homomorphism is given by
Mp(V1)y, x Mp(V3)y, — Mp(V)y,
((91,21), (g2, 22)) = (9192, 2122)
i.e., we have

2y, (91, 91) - 2v,(92, 95) = 2v(9192, 9193)

for g;,9; € Sp(V;) (see Theorem 4.1 of [63]).
Let L be a self-dual lattice in V and let K be the stabiliser of L in Sp(V). If
the residual characteristic of F' is not 2, then there exists a splitting

Mp(V) .

-

K ——Sp((V)

Moreover, if the residue field of F' has at least four elements, then [K, K] = K (see
Lemma 11.1 of [54]), and hence such a splitting is unique. In the next section, we
shall describe this splitting by using the Schrodinger model.

3.2.3. Weil representation, Schrédinger model. Recall that py is the
unique (up to isomorphism) irreducible smooth representation of H (V) with central
character ¥. Let S be the underlying space of p,. The Weil representation wy, of
Mp(V) on S is a smooth representation characterized by the following properties:
o pulh?) = wy(g) " py(h)wy(g) for all A€ H(V) and g € Mp(V).

e wy(z) =2z-idg for all z € C!.
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One can realize wy, explicitly as follows. We regard V = F?" as the space of row
vectors. Fix a complete polarization V. = X@Y. Choose a basis ey, ...,en,€],... e}
of V such that

X=Fe +: ---+Fe,, Y=Fel+- - -+Fe, <<ei,e;>>:(sij-

Then we have

o) = {g e cLan(r) [o (L, )= ()}

The Weil representation wy of Mp(V)y on the Schwartz space S(X) is given as
follows:
w¢(< ),z)gp = z-|detal'/? - p(za)

e

wy (( ) 2 ) pla w(y)w(xty) dy.

Fn

for p € S(X), x € X = F", a0 € GL(X) = GL,,(F )bEHom(XY)éMn(F)With
' =b, and z € C'. More generally, for (g,z) € Mp(V)y with g = (24) € Sp(V),
we have

wy (9, 2) ()
1 1
=z /Fn/kcr( )1/) <§(a:a,acb) + (zb, yc) + E(yc7 yd)) e(za + ye) dug(y),

where (z,y) = x'y for row vectors z,y € F™, and the measure duy(y) on F™/ker(c)
is normalized so that this operator is unitary (see [42] Proposition 2.3]). In partic-
ular, if det ¢ # 0, then wy (g, 1) (z) is equal to

[ v (Gleaat) + by + 5o ) elwa ) dug)

~detel 0 (G (oa.00))

< / y ((xb, y—za) + 3y — a,yetd - mc—ld)) o) diy ()

—detel 0 (o sfacd )

< [ (o= ac @) + Gove D) o) dg)

— et v (pac'e)) [ v (=ate) + 50D ) o) dug()
— | dete[~1/2 g (%(macl,x)) / ¥ (—(xtcl,y) + e, y)) oly) dy,

where dy is the self-dual Haar measure on F™ with respect to the pairing ¥ o (-, ).
If the residual characteristic of F is not 2, let K be the stabilizer of the self-dual
lattice
oe; +---+o0e, +oej + -+ oej,.
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Then the splitting K — Mp(V)y is given as follows. Assume that 1 is of order
zero. Let ¢° € S(X) be the characteristic function of oe; + - - - + oe,, = o™. Since
the residual characteristic of F' is not 2, we see that

wy (k, )" = ¢°

a ]-n b 1n
() () e ()

where ¢ € GL,(0) and b € M, (0). Since these elements generate K, there exists a
function sy : K — C! such that

for

wy(k, )" = sy(k) ™' - ¢° forall k€ K.
Thus we obtain
ay(ky, k2) = sy(kika)sy (k1) sy (ko) ™"
for k1, ko € K, so that the map k — (k, sy(k)) is the desired splitting.
3.2.4. Change of models. Suppose V = X’ @ Y’ is another polarization of
V. Then likewise the representation p, can be realized on Sy ~ S(X'). We will

need an explicit isomorphism between these representations of H(V). At the level
of the induced representations, this is given by the map

Syr = Sy, f'=f
s =[S @0 w0ty = [ ) iy

YAY/\Y
For now, we will take any Haar measure on Y to define this. We will fix this

more carefully later. Let us now write down this isomorphism in terms of Schwartz
spaces.

LEMMA 3.2.3. Suppose that ¢ € S(X) and ¢’ € S(X') correspond to f € Sy
and f' € Sy respectively. Then we have

1 1
(32 o= [ o (3 - S o @
YAY/\Y
where ' = 2’ (x,y) € X' and y' =y (z,y) € Y are given by 2’ +y =z +y e V.
ProoOF. Let ¢’ € S(X'). Let (2' +y,2) € H(V). We write this as:
1
@02 = (o 50 ) @0)
Thus if f’ € Sy, corresponds to ¢, then
1
P i) =0 (5= 3ah) - @)
We can rewrite this as: (with v =2’ + /)
1
2

P, = (3= o)) @)
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Thus f’ corresponds to f € Sy given by

fornz)= [P0 ) d

1
:/ f! <I+y+yo,Z+§<<yo,I>>) dyo.
YAY/\Y

Thus
o(z) = (a? + yo7 (wo, !E>>) dyo

yO> ) (il? + Yo, O) dyO

/W{,\Y ( ;xﬂloa >>+%<<yo,:v>>) ' () dyo. O

Thus we obtain an H(V)-equivariant isomorphism S(X’) & S(X) defined by
the partial Fourier transform (B.2)). Using the characterization of the Weil repre-
sentation of Mp(V), one sees that this isomorphism is also Mp(V)-equivariant.

The isomorphism S(X’) 2 §(X) is in fact a partial Fourier transform. To see
this, we assume for simplicity that there exists a basis ej,...,e,,e],...,e), of V

such that

||
%
)
=
—
%
/—\
l\')l»—l

X=Fe +- -+ Fe,, X' =Fe +---+ Fey+Fej ,+ -+ Fe},
Y = Fej+---+ Fe}, Y = Fej +-- -+ Fej + Feyy1 + -+ Fe,,

and ((e;,e})) = d;j, where & = dim(Y N'Y’). In particular, we have Y NY" =
Fej+---+ Fej. Let ¢ € S(X) and ¢’ € S(X') be as in (3:7). We also regard ¢’ as
a function on F" via the basis ey, ..., ex, €5, ,...,e;. Write z +y = 2’ + 3" with
zeX yeVY, 2 eX,y €Y. If we write

T=mri€1+ -+ Tuen, Y=yi€] + -+ yney,
with z;,y; € F, then

/
€T :xlel+...+1~kek+yk+1ez+1+...+yne:‘“

v =yl + -+ yrep + Tpr1€p41 + 0+ Tney,
and

<<£L’,y>> =x1Yy1 + -+ TpYn,
(a" Y ) =211 + -+ ThYk — Thg1Yht1 — ** — TnYn.

Hence we have
1 / / / /
o) = [ w (G~ ) ¢ dy

= kw (—Tht1Ukd1 — = Tn¥n) O (15 oo, Thy Ykt 1s - - 2 Yn) AYt1 - -+ Y.
Fn—
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3.2.5. Over global fields. In this section, let F' be a number field with ring
of adeles A. Let V be a symplectic space over F. The global metaplectic group
Mp(V)4 is defined as follows.

Fix a lattice L in V. For each finite place v, let K, be the stabilizer of L,
in Sp(V,). For almost all v, L, is self-dual and there exists a unique splitting
K, — Mp(V,), in which case we identify K, with its image in Mp(V,).

For a finite set S of places of F' including all archimedean places, we define a
central extension

1— C' — Mp(V)s — [] Sp(V,) — 1
vES
by

Mp(V)g := (H Mp(VU)> / {(zv) € H ct| H 2y = 1} .

veS veES veS
Put K% := [[,¢s Ko It S C S are sufficiently large, the splitting K, < Mp(V,)
induces an embedding

Mp(V)s x K% < Mp(V)g x K3
Then Mp(V), is defined by

Mp(V), := lim (Mp(V)s x K°).
S

There exists a unique splitting

Mp(V)a

.

Sp(V)(F) — Sp(V)(A)

given as follows. Fix a complete polarization V = X @ Y over F. Recall that
the metaplectic group Mp(V,) = Sp(V,) x C! is determined by the 2-cocycle zy, .
Moreover, for almost all v, there exists a function sy, : K, — C! such that

zy, (k1, ko) = sy, (kik2)sy, (k1) 'sy, (ko)™
for ki, ke € K,,.

LEMMA 3.2.4. Let v € Sp(V)(F). Then we have
sy, (7) =1

for almost all v.

PrOOF. By the Bruhat decomposition, we may write v = p;wps with some
1

where a; € GL,,(F) and b; € M,,(F). By Theorem 4.1 of [63], we have

2y, (P1,9) = 2v,(9,p2) = 1
for all v and g € Sp(V,), so that

(pleQa 1) = (p17 1) : (’LU, 1) : (p27 1) in Mp(V’U)
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On the other hand, for almost all v, we have p; € K, and

wy, (pi, 1)) = ¢, wy, (w, 1)) = ¢,

where 1, is a non-trivial character of F,, of order zero and ¢! is the characteristic
function of o}. Thus we obtain

wi, (1, 1)) = wys, (p1, Dy, (w, Dwy, (p2, 1)) = )

for almost all v. O

For v € Sp(V)(F'), let (v,1) be the element in [, Mp(V,) such that (v, 1), =
(v,1) for all v. By Lemma[3.2.4] we have (v,1), € K, for almost all v. Hence, if S
is a sufficiently large finite set of places of F, then (,1) maps to an element (v)
in Mp(V)g x K?.

LEMMA 3.2.5. The map
i: Sp(V)(F) — Mp(V)4
is a homomorphism.

PROOF. Let 71,72 € Sp(V)(F'). For each v, we have

(’Yla 1)1) : (72) 1)1) = (7172a 2Y, (’Yla 72)) in MP(VU)
Choose a finite set S of places of F' such that

V1,72 € Ko, sy, (1) = sv,(72) = sy, (1172) = 1
for v ¢ S. Then we have
zy,(1,72) =1

for v ¢ S. Moreover, by the product formula for the Weil index, we have

H ZY’U (ry1772) = 1
vES
Hence the image of (71,1) - (72,1) in Mp(V)s x K is equal to i(y172). O
Fix a non-trivial additive character ¢ of A/F. We have the global Weil repre-

sentation wy of Mp(V)a on the Schwartz space S(X(A)). For each ¢ € S(X(4)),
the associated theta function on Mp(V), is defined by

O,(9) == > wy(g)p(x).
xeX

Then ©,, is a left Sp(V)(F)-invariant slowly increasing smooth function on Mp(V)a,.

3.3. Reductive dual pairs

In this section, we consider the reductive dual pair (GU(V), GU(W)), where
V' is a skew-Hermitian right B-space of dimension two and W is a Hermitian left
B-space of dimension one.
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3.3.1. Reductive dual pairs; examples. Recall that in §2.21 we have con-
structed the 2-dimensional skew-Hermitian right B-space V = By @ g By with the
skew-Hermitian form (-,-) : V x V' — B. Let W = B be the 1-dimensional Hermit-
ian left B-space with the Hermitian form (-,-) : W x W — B defined by

(z,y) = xy™.
These forms satisfy that
(va,v'B) = a*(v,v") 3 (W' v) = —(v,v")*
(aw, Bu') = a(w,w’) 3" (W', w) = (w,w')*

for v,v' € V, w,w’ € W and o, 3 € B. We let GL(V) act on V on the left and let
GL(W) act on W on the right. Let GU(V) and GU(W) be the quaternionic unitary
similitude groups of V and W with the similitude characters v : GU(V) — F* and
v: GU(W) — F* respectively:

GU(V) :={g € GL(V) | (gv, gv") = v(g) - (v,0') for all v,v" € V'},

GU(W) :={g € GL(W) | (wg,w'g) = v(g) - (w,w’) for all w,w" € W}.
Let U(V) := kerv and U(W) := kerv be the unitary groups of V' and W respec-
tively.

Put
V=V W

Then V is an F-space equipped with a symplectic form

() = 5 trage () © 9.

If we identify Resp,/p(V) with V via the map v — v ® 1, then the associated
symplectic form on V is given by

1 1

(0= §t1°B/F<'7 )= B tre/r (),

where (-,-) = pro (-, ) is the associated E-skew-Hermitian form. We let GL(V') x
GL(W) act on V on the right:

(v@w)-(g,h) =g 'v®wh.
This gives a natural homomorphism
G(U(V) x U(W)) — Sp(V),
where
G(U(V) x UW)) :={(g,h) € GU(V) x GUW) |v(g) = v(h)}.
3.3.2. Splittings. Recall that
V=eF+eE+e3FE + ey FE.
Let V =X+ Y be the complete polarization given by
X =Fe, + Fey + Fez + Fey, Y = Fe] + Fej+ Fe; + Fej.
We first suppose that ' is a local field. In Appendix [C] we define a function
5: G(UV) x UW))? — C?

such that

2v(91,92) = s(g192)s(g1) " "s(g2) "1,
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so that the map
L GUV) x UW))? — Mp(V)y
g+—(g.s(9))

is a homomorphism. Thus we have a commutative diagram
Mp(V)
|
G(U(V) x UW))? —— Sp(V)
If V=X +Y is another complete polarization, we choose gy € Sp(V) such that
Y’ = Ygo and define a function
s G(U(V) x UW))? — C*
by
s'(9) = s(9) - 2v(90,995 1) - 2¢(9. 95 ")
= 5(9) - 2v(90990 ', 90) " - 2v(90, 9).

By Lemma B:2:2] we have

2y (g1, 92) = §'(9192)8" (1) "8 (92) ",

so that the map
G(U(V) x U(W))? — Mp(V)yr
9—(9,5'(9))

is a homomorphism.
We next suppose that F' is a number field. For each place v of F', we have
defined a function

sv 1 G(U(V,) x UW,))° — C
with associated homomorphism
tw 2 G(U(Vo) x U(Wy))® — Mp(Vs).
LEMMA 3.3.1. The homomorphisms i, induce a homomorphism
L2 GU(V) x UW))*(A) — Mp(V)4.
Moreover, the diagram

G(U(V) x UMW) (F)—— G(U(V) x U(W))°(A)

L b

Sp(V)(F) : Mp(V)a

15 commutative.

PRrROOF. Recall that, for almost all v, K, is the maximal compact subgroup
of Sp(V,) and sy, : K, — C! is the function which defines the splitting K, <
Mp(V,). Put

K, := G(U(V,) x UW,))’ N K,.
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Then K, is a maximal compact subgroup of G(U(V,) x U(W,))? for almost all v.
By Lemma [CZ3 we have
solk, = sv, |k,
for almost all v. Hence, for g = (g,) € G(U(V)x U(W))°(A), the element (1,(g,)) €
[T, Mp(V,) maps to an element ¢(g) in Mp(V)g x K if S is sufficiently large. This
proves the first assertion.
Let v € G(U(V) x U(W))°(F). By Proposition [C.Z4 we have

Hsv(y) =1.

Hence, if S is sufficiently large, the image of (1,(7)) in Mp(V)s x K* is equal to
that of (y,1). This proves the second assertion. O

3.3.3. Weil representation for the above reductive dual pair. If F' is
local, we get the Weil representation wy, o ¢ of G(U(V) x U(W))? on S(X), where
wy is the Weil representation of Mp(V)y and ¢ : G(U(V) x U(W))? — Mp(V)y
is the above homomorphism. Similarly, if F' is global, we get the global Weil
representation wy, 0 of G(U(V) x U(W))%(A) on S(X(A)). If there is no confusion,
we suppress ¢ from the notation.



CHAPTER 4

The Rallis Inner Product formula and the
Jacquet—Langlands Correspondence

In this chapter, we generalize the result of Shimizu [68] and realize the Jacquet—
Langlands correspondence from B* to B;* X B as theta lifts, where B, By, By are
quaternion algebras over a number field F' such that B # Ms(F) and B = By - By in
the Brauer group. More precisely, we consider the quaternionic unitary similitude
groups

GU(V)? = (B x BY)/F*, GU(W)=B*,
where V' is the skew-hermitian B-space given in §2.2] and W is the hermitian B-
space given in §8.3.11 Then we have a Weil representation of G(U(V) x U(W))°(A)
on the Schwartz space S(X(A)), where X is the maximal isotropic subspace of the
symplectic F-space V=V @5 W given in §2.21 For any irreducible unitary auto-
morphic representation 7w of B*(A), we can define a space O(ng) of automorphic
forms on By (A) x By (A) with an equivariant surjective map

5 ® S(X(A)) — O(7B),
f@e—0,(f)

where 0, (f) is the theta lift of f, i.e. the integral of f against the theta function
associated to ¢. The main result of this section (Proposition 23] says that if the

Jacquet-Langlands transfers 7p,, 7, of 75 to By (A), By (A) exist, then

@(FB):WBI|Z|7TBQ.

In fact, this easily follows from the local theta correspondence for unramified rep-
resentations and the strong multiplicity one theorem, once we know that ©(wp) is
non-zero.

To prove the non-vanishing of ©(wg), we will compute the inner product
(0,(f),0,(f)) for f € mp and ¢ € S(X(A)) by using a see-saw diagram

GU(WD) G(U(V) x U(V)),
G(U(W) x U(W)) GU(V)

where WH = W @ W is the B-space equipped with a hermitian form
((@,2"), (y,9)) = (@,y) — (2",9/).

Indeed, by the associated see-saw identity, we have

(05(1):05(f)) = (Bpne(f @ Hlauw), 1)
= (Opop(D)|cumw)xumw), f @ ),

55
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where

p®peSEXD);

XH=X@o X is a maximal isotropic subspace of VP =VaV,
Oo05(f @ f) is the theta lift of f ® f to G(U(V) x U(V))(A);
fo95(1) is the theta lift of the constant function 1 to GU(WD)(A).

On the other hand, WH always has a complete polarization W5 = WV @ W2,
where

WY ={(z,—x) |z e W}, W2 ={(z,z)|zecW}
Since VV = V @ WV is also a maximal isotropic subspace of V5 =V @5 WH, we
have a partial Fourier transform

S(X7(A)) — S(VV(4)),

which relates the two models of the Weil representation. By the Poisson summation
formula, the two associated theta distributions on the Schwartz spaces are the same,
and in particular, we have
Oowip(1) = 05(1),

where ¢ € S(VV(A)) is the image of ¢ ® ¢ under the partial Fourier transform.
However, the Siegel-Weil formula says that 6;(1) is equal to the Siegel Eisenstein
series on GU(WUY)(A) associated to ¢. Combining this with the doubling method,
we obtain the Rallis inner product formula (Proposition [4.4.2])

<9@(f),9@(f)>:2~L G ”‘d 11 2

vES
where
e S is a sufficiently large finite set of places of F;
e 7 is the Jacquet-Langlands transfer of mp to GLa(A);
e L%(s,m, ad) is the partial adjoint L-function of 7;

¢5(s) is the partial Dedekind zeta function of F;
e 7, is the local zeta integral.

Thus, we may reduce the non-vanishing of ©(wg) to that of Z,, which will be
proved in Lemma [£.3.3]

4.1. Setup

Let F be a number field and B a quaternion algebra over F. As in Appendix
Dl we consider the following spaces:

V = By ®g Bs is the 2-dimensional right skew-hermitian B-space.
W = B is the 1-dimensional left hermitian B-space.

WY =W @ W is the 2-dimensional left hermitian B-space.
V=V ®p W is the 8dimensional symplectic F-space.

VH =V @ WH = V@V is the 16-dimensional F-space.
WH = WY @ W2 is the complete polarization over B.
V=X®Y is the complete polarization over F.

V, =X &Y/ is the complete polarization over F,.

VH = VV @ V2 is the complete polarization over F.

VY = X5 @ YV is the complete polarization over F.

VD = X/P @ Y'H is the complete polarization over F,.
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We have a natural map
L GUW) x U(W)) — GUWY)

and a see-saw diagram

G(UW) x U(W)) GU(V)

4.1.1. Partial Fourier transform. Fix a non-trivial character ¥ = ®,1,, of
A/F. Recall that eq,..., ey is a basis of X over F. For each place v of F, this basis
and the self-dual measure on F, with respect to 1, define a Haar measure dz, on
Xy. Then the product measure dz = [[, dz, is the Tamagawa measure on X(A).
We define a hermitian inner product (-,-) on S(X(A)) by

(@1,p2) = /X(A) o1(x)pa(x) dz.

Recall that VB = VV ¢ V& = XP @ YU, We define a partial Fourier transform
S(XT(A)) — S(VI(A))
pr—¢
by

s = [ () o))

where we write u +v =z +y with u € VV(A), v € VA(A), 2 € XF(A), y € YT(A),
and dv is the Tamagawa measure.

LeMMA 4.1.1 ([48, p. 182, (13)]). If ¢ = 1 ® @2 € S(XT(A)) with ¢; €
S(X(A)), then we have

$(0) = (1, p2).

PrOOF. We include a proof for convenience. Since V& NYE = Y2, we have

o= [ et (5 () — o)) av

We write
v = (vo,v0), u=(ug,—ug), Uo=To+Yo
with vy, zp € X(A) and yo € Y(A), so that
x = (vo + x0,v0 — %0), Y = (Yo, —¥0)-

‘We have

{z,y) = (vo + 7o, y0)) — {vo — o, —¥0)) = 2{(v0, v0),
{(u, v)) = 2{(uo, vo)) = 2{(yo,vo)),
and hence
P = [ plo-+ 0,00 = 20) (20 o)) oo,
X(4)
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where dvg is the Tamagawa measure on X(A). In particular, we have
$(0) = / (v, vg) dvg. |
X(A)

For each place v of F', we define a hermitian inner product (-,-) on S(X,) with
respect to the Haar measure dz, on X, given above. Fix a Haar measure on X
and define a hermitian inner product (-,-) on S(X))) similarly. For ¢’ € S(X)), we
define its partial Fourier transform ¢ € S(X,) by

o= [ e (5000 - )

!

where we write x +y =2’ + ¢y withz € X, y € Y, 2’ € X, ¢/ € Y/, and we
normalize a Haar measure dy so that

(1, p2) = (1, #5)
holds for ¢!, ¢} € S(X!) and their partial Fourier transforms @1, 92 € S(X,).

4.1.2. Weil representations. Fix a place v of F' and suppress the subscript
v from the notation. In Appendices[C] [D] we have defined the maps

e 5:G(U(V) x UWHD)) — C' such that zya = 953,
e 5:GU(V)? x GU(W) — C! such that zy = s,
o s/ : GU(V)? x GU(W) — C! such that 2y, = 9s’.
Let wy and wg be the Weil representations of Mp(V) and Mp(VY) with respect to
1), respectively. Composing these with 3, s, s’, we obtain:
e a representation wE of G(U(V) x UWP)) on S(VV),
e a representation wy of G(U(V)? x U(W)) on S(X),
e a representation wy, of G(U(V)? x U(W)) on S(X').
By §D.4] the partial Fourier transform

S(VV) = S(xXH) = §(X) ® S(X)
induces an isomorphism

wE o(id ®¢) = wy ® Wy

as representations of G(U(V)? x U(W) x U(W)). By definition, the partial Fourier
transform S(X') 2 §(X) is G(U(V)? x U(W))-equivariant.

4.2. The Jacquet—Langlands—Shimizu correspondence

Let F' be a number field and B a quaternion algebra over F'. We assume that
B is division. Set

G =GUW), H = GU(V), HY = GU((V)°,
G =U(W), H, =U(V), HY =U(V)°.
Recall that G = B* and
1 — F* - BX x Bf — H* — 1,

where By and Bs are quaternion algebras over F' such that By - By = B in the
Brauer group and i(2) = (z,271).
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Put (A%)" = v(G(A)) Nw(H°(A)),
G(A)" ={g e G(A)|v(g) € (A)"},
HO(A)* = {h e H'(A)|v(h) € (A*)"}.

For each place v of F', we define (F.*)", Gif, (H?)" similarly. We have (F)T = F.*
if v is either finite or complex. If v is real, then we have
(F)" =

v

R* if By, By, B2, are split,
RY otherwise.

We have (A7) = [,(F;)*, G(A)" = [T, G, and HO(A)* = [T, (HO)*.

Let 7 be an irreducible unitary cuspidal automorphic representation of GLa(A).
We assume that its Jacquet-Langlands transfers np, mp,, 7p, to B*(A), By (A),
B (A) exist. We regard mp and mp, K mp, as irreducible unitary automorphic
representations of G(A) and H°(A) respectively.

We define a theta distribution © : S(X(A)) — C by

()= Y x)
zeX(F)
for ¢ € S(X(A)). Let » € S(X(A)) and f € mp. For h € H°(A)*, choose
g € G(A)T such that v(g) = v(h) and put

(4.1) 00(f)(R) = / O(wy(919h)0) f(gr9) dgs.

G1(F)\G1(4)

Here dg; =[], dg1,, is the Tamagawa measure on G1(A) and we may assume that
the volume of a hyperspecial maximal compact subgroup of G, with respect to
dg1., is 1 for almost all v. Note that vol(G1(F)\G1(A)) = 1. Using Eichler’s norm
theorem, one can see that 0,(f)(vh) = 6,(f)(h) for v € H°(F) n H°(A)™ and
h € H°(A)*. Since H°(A) = H°(F)H°(A)", 6,(f) defines an automorphic form
on H°(A). Let ©(rp) be the automorphic representation of H°(A) generated by
0,(f) for all ¢ € S(X(A)) and f € 7p.

LEMMA 4.2.1. The automorphic representation ©(mwp) is cuspidal.

PROOF. If both B; and B, are division, then H° is anisotropic modulo center
and the assertion is obvious. Hence we may assume that either By or Bs is split.
Then there exists a complete polarization V = X @Y over B. As in §C.3] we regard
V as a left B-space. Choosing a basis v,v* of V such that X = Bv, Y = Bv*,
(v, v*) = 1, we may write

H= {h € GLy(B) ’h <_1 1> = u(h) - (_1 1) }

n(b) = (1 11)) cH

for b € F. It remains to show that
| enmoya=o
F\A

for all ¢ € S(X(A)) and f € 7p.

Put
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Let V= XEBY be another complete polarization over F given by X = W @5 X
and Y = W®gY, where we regard W as a right B-space. As in [40 §5], we define a
Weil representation @, of G1(A) x Hy(A) with respect to ¢ on S(X(A)) = S(W(A)).
Note that

Gy (91)¢(2) = (g7 'x),
@y (n(b))P(x) = ¥(5(z, 2)b)(x)
for g € SW(A)), z € W(A), g1 € G1(A), and b € A. Let ¢ € S(W(A)) be the
partial Fourier transform of ¢ € S (X(A)). Then we have

)-
Owy(g)p) = x(8) Y @u(8)d(z)
zeW (F)

for g € G1(A) x HY(A) with some character x of G1(A) x HY(A) trivial on Gy (F) x
HY(F). One can see that x(g1) = x(n(b)) = 1 for g1 € G1(A) and b € A. Since W
is anisotropic, we have

/F ) b

/ / > b (@, 2)b)ay(g1)¢(x) f(g1) dgr db
F\A JG1(F)\G1(A)

z€W (F)

_ / 4(91)2(0)f(g1) den
G1(F)\G1(A)

— 5(0) / f(g1) don.
G1(F)\G1(A)

Since 7 is cuspidal, the restriction of 75 to G1(A) is orthogonal to the trivial
representation of G1(A), so that this integral vanishes. This completes the proof.
O

LEMMA 4.2.2. The automorphic representation ©(mwg) is non-zero.

The proof of this lemma will be given in §4.4] below.

PrOPOSITION 4.2.3. We have

O(rp) =7p, Kmp,.

PROOF. Since ©(wp) is cuspidal and non-zero, the assertion follows from the
local theta correspondence for unramified representations and the strong multiplic-
ity one theorem. O

4.3. The doubling method
4.3.1. Degenerate principal series representations. Set
GY =guwt), GY =umwh).

Choosing a basis w,w* of W5 such that WV = Bw, W% = Bw*, (w,w*) = 1,
we may write

° = {g € GLa(B) ‘g (1 1) tg" = u(g) (1 1) }
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Let P and P; be the Siegel parabolic subgroups of GH and G given by

P‘{(a V.(;*)l) €G-

and P, = PN G'1:I respectively. Let p and dp, denote the modulus characters of
P(A) and Py (A) respectively. We have

() o)) = @

and 5P1 = (5p‘p1(A). Put
1
d(v) :== ( 1/> epr

for v € F*. We fix a maximal compact subgroup K of GP(A) such that GP(A) =
P(A)K and GT(A) = P (A)K,, where K1 = K NGP(A).

For s € C, we consider a degenerate principal series representation Z(s) :=
IndIGDD (5;/3) of GY(A) consisting of smooth functions F on GP(A) which satisfy

We define a degenerate principal series representation Z;(s) := Indgl1D ((5“;/1 3) of
GT(A) similarly. Then the restriction Z(s) — Z;(s) to GT(A) as functions is a
Glm (A)-equivariant isomorphism. For each place v of F, we define degenerate prin-
cipal series representations Z,(s) and Z; ,,(s) of G5’ and G'EU similarly.

For ¢ € S(VV(A)), we define F, € Z(%) by

Folg) = w(g)| 72 - (wg (d(v(9)")g9)#)(0).

One can see that the map ¢ +— F, is G(U(V) x U(W5))(A)-equivariant, where
GU(V)(A) acts trivially on Z(3).

aEBX,I/GFX}

4.3.2. Eisenstein series. For a holomorphic section Fs of Z(s), we define an
Eisenstein series F(F,) on GZ(A) by (the meromorphic continuation of)

E(g,]:s): Z ]:s(’yg)'

YeP(F)\GE(F)
For a holomorphic section Fj s of Z;(s), we define an Eisenstein series E(F s)
on GP(A) similarly. If F, is a holomorphic section of Z(s), then Fslgoy is a
holomorphic section of Z;(s) and E(]-"S)|GID(A) = E(]:5|G113(A)). By [79, Theorem
3.1], E(Fs) is holomorphic at s = % In particular, the map

E:Z(1) — AGD)

1 is GY(A)-equivariant, where A(GD) is the space of

ls=1

given by E(F) := E(F;)|,—1
automorphic forms on GP(A) and F, is the holomorphic section of Z(s) such that
]—"% = F and F;|k is independent of s.



62 4. RALLIS INNER PRODUCT FORMULA AND JACQUET-LANGLANDS

4.3.3. Doubling zeta integrals. Let (-,-) be the invariant hermitian inner
product on wp given by

(1 fo) = / £1(9)T2() dg
Za(A)G(F)\G(A)

for f1, fo € mp. Here Zg is the center of G and dg is the Tamagawa measure
on Zg(A)\G(A). Note that vol(Zg(A)G(F)\G(A)) = 2. Fix an isomorphism
Tp = ®,Tp,y. For each place v of F, we choose an invariant hermitian inner

product (-,-) on mp,, so that (f1, fo) = [[,{f1,0;, f2,0) and (fi 4, f2,,) = 1 for almost
all v for f1 = @y f10, f2 = @y fo,0 € TB. Set

G =GUW) xUW)) ={(g1,92) € G x G|v(g1) = v(g2)}-

Then the doubling zeta integral of Piatetski-Shapiro and Rallis [58] is given by

Z(Fur fr1 o) = / E(ugr. g2), F) (o) Fo (g2) dig

Z(A)G(FN\G(4)

for a holomorphic section F, of Z(s) and f1, f» € np. Here Z is the center of GY and
dg is the Tamagawa measure on Z(A)\G(A). Note that vol(Z(A)G(F)\G(A)) = 2.
For each place v of F, put

Z(-Fs,v; fl,v; fZ,U) - A ]:s,v(b(gl,va 1))<7TB,v(gl,v)f1,va f2,v> dgl,v

for a holomorphic section F; , of Z,(s) and f1,4, fan € 7. Note that, for fixed
fiv and fa,, this integral depends only on the holomorphic section fS’U‘GID of

Il’v(S).
LEMMA 4.3.1. We have
L5(s+ %, 7, ad)

Z(Fs, fr, f2) = (S(s+3)¢5(25 + 1

) : H Z(]:s,vafl,vaflv)
veS

for a holomorphic section Fy = @y Fs o of Z(s) and fi = @y f1.v, f2 = Qv fan € TB.
Here S is a sufficiently large finite set of places of F.

PROOF. The assertion follows from the doubling method [58]. Indeed, as in
[58], 22| §6.2], we unfold the Eisenstein series E(i(g1,92),Fs) and see that only
the open G-orbit P\PG in P\G" contributes to the integral Z(F;, f1, f2). Hence

we have

Z(Fus fu. fo) = / Fululgn, 92)) 1 (91)Fa(gn) de.

Z(A)GA (FI\G(A)

where G* = {(g,9) | g € G}. We have Fi(i(g1,92)) = Fs(t(g3 "91,1)) for (g1, 92) €
G. Writing g = ¢go and ¢’ = g;lgl, we have

Z(For fur fo) = / / Fo(lg' 1)) f1(99)) Falg) dg dg’
G1(A) JZg(A)G(F)\G(A)
— / Fululg V) ms(d) fro f2) do!
G1(A)
- H Z(Fs,v; fl,va f2,v)~
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By [58], we have

 L(s+ %,m,ad)

G5+ 3)G(2s+ 1)

for almost all v. This completes the proof. |

Z(‘FS-,IM fl,v; fZ,U)

4.3.4. Local zeta integrals.

LEMMA 4.3.2. The integral Z(F,, f1.v, f2.0) is absolutely convergent for F, €
Iv(%) and fl,va f2,v S TBw-

PrROOF. If B, is split, then the lemma is proved in [16, Lemma 6.5]. If B, is
division, then G , is compact and the assertion is obvious. O

LEMMA 4.3.3. There ezist ¢, € S(VY) and f1,4, fo,0 € TB,» such that
Z(]:prflﬂn f27v) 7é 0.

PROOF. If B, is split, then the lemma is proved in [16l Lemma 6.6]. Assume
that B, is division. As in [43], Theorem 3.2.2], [45] Proposition 7.2.1], one can see
that there exist F, € IU(%) and fi 4, fa € mp,w such that Z(Fy, fiv, fon) # 0.
On the other hand, by [78] Theorems 1.2, 9.2], the map

S(VY) — T14(3)
Yy > Fop,

O
Gl,'u

is surjective . This yields the lemma. |

If ¢, is the partial Fourier transform of @1 , ® @2, € S(XUD) with ¢;, € S(X,),
then we have

(42) Z(]:«pv,fl,v;flv) - /G <w¢(gl,v)@1,v7@2,v><7TB,v(gl,v)f1,vaf2,v> dgl,'w

This will be used later to explicate the Rallis inner product formula.

4.4. The Rallis inner product formula

4.4.1. Theta integrals. Recall that G(U(V)xU(WD))(A) acts on S(VV(A))
via the Weil representation wE. We define a GT'(A)-equivariant and H; (A)-invariant
map

I:S(VV(A)) — A(GT)
as follows. Here A(GT) is the space of automorphic forms on G (A).
Let © : S(VV(A)) — C be the theta distribution given by

Op)= > o)

z€VV (F)
for p € S(VV(A)). Let dhy be the Haar measure on Hj(A) such that
vol(Hy (F)\H1(A)) = 1.

First we assume that either By or B, is split. Then the integral

(4.3) t/ O(w (g1h1)p) dhy
Hy(F)\Hi(4)
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may not be convergent. Following Yamana [79] §2], we choose a place v € ¥ and a
‘regularizing element’ 2y in the Bernstein center of H; , or the universal enveloping
algebra of the complexified Lie algebra of H; ,. Then the integral

g1, p) = / 0wl (g:1m) (20 - ) dy
Hy(F)\H:1(A)

is absolutely convergent for all g; € GP(A) and ¢ € S(VV(A)), and defines an
automorphic form on GP(A). Note that I(g1,¢) = @3) if the right-hand side is
absolutely convergent for all g;. In particular, I(g;, ¢) does not depend on choice of
v and zp. Next we assume that both By and By are division. Then H; (F)\H1(A)
is compact. For ¢ € S(VV(A)), we define an automorphic form I(¢) on G (A) by

g1 ) = / 0w (gih) (20 - ) dha,
Hi(F)\H1(A)

where we write zg for the identity operator for uniformity.
Similarly, we define a G (A)-equivariant and HY(A)-invariant map

I°: S(VV(A)) — A(GD)

Io(gla@) = G(wE(glh?)(ZO : @))dh?’

/H?(F)\H?(A)
where dh! is the Tamagawa measure on HY(A). Note that vol(HY(F)\H{(A)) = 2.

LEMMA 4.4.1. We have
I°=2.1.

PrOOF. The lemma follows from [41], Proposition 4.2] with slight modifica-
tions. We include a proof for convenience. For each place v ¢ Xp, we consider
the space Hompo (S(VY),C) with the natural action of HY \Hi.,. Let V| and

(WE)T be the 4-dimensional quadratic F,-space and the 4-dimensional symplectic
F,-space associated to V, and W respectively. Since dim V| > %dim(WE)T, we
have Hompy, ,(S(VY),sgn,) = {0} by [62 p. 399], where sgn,, is the non-trivial
character of HY ,\Hy ,. Hence Hy, acts trivially on Hompo (S(VY),C). On the
other hand, we have HY, = H, for all v € ¥p. Hence Hl(A) acts trivially on
Hompo(4)(S(VV(A)), C), so that

I(g1,0) = IO(gl,wE(hl)w) dhy

/H?(A)m (F)\H1(4)
=/ (g1, ¢) dhy

HY(A)Hy (F)\H1 (&)

: 10(91790)7

DN | =

where dhy is the Haar measure on H?(A)\H;(A) such that
vol(HY (A)Hy (F)\H (A)) = . O
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4.4.2. The Siegel-Weil formula. The Siegel-Weil formula [79, Theorem
3.4] due to Yamana says that I(p) = E(]—},)|G15(A) for ¢ € S(VV(A)). Hence, by
Lemma [£.4.1] we have

(4.4) I°(p) =2 E(Fy)| 60 )

for p € S(VV(A)).

4.4.3. The Rallis inner product formula. Recall that 7p is the Jacquet—
Langlands transfer to B*(A) of an irreducible unitary cuspidal automorphic repre-
sentation m of GL2(A). Recall also that we have fixed an isomorphism 7p & ®,7p 4
and an invariant hermitian inner product (-,-) on 7, as in §4.3.3] This inner prod-
uct is used in the definition of the integral Z(F,,, fi,v, fo,n) (see @2)). Let Zgo
be the center of H® and dh® the Tamagawa measure on Z%(A)\H"(A). Note that
vol(Z o (A)HO(F)\H°(A)) = 4.

PROPOSITION 4.4.2. Let ¢ = ®,p, € S(VV(A)) be the partial Fourier trans-
Jorm of p1 ® @2 € S(XD(A)) with p; = @upiw € S(X(A)). Let fi = @y fr0, f2 =
®ufan € mp. Then we have

/ Oor (f1)(hY) - O, (f2) (RO) dR°
Z g0 (A HO(F)\ HO(A)
L%(1, 7, ad
=2 W . H Z(fapvafl,vafZ,v)-

veS
Here S is a sufficiently large finite set of places of F.
PROOF. Put (F*)* = FXn(A*)*,
GF)T =GF)NGA)T,
HY(FY" = HY(F)n HY(A)*.
Set C = (AX)2(F*)™\(A*)T. Then the similitude characters induce isomorphisms
Za(A)G1(A)G(F)T\G(A)T =,
Zngo(A)HO () HO(F) N\ HO(A)* = C.

Fix cross sections ¢ — g. and ¢ — h. of G(A)* — C and H°(A) — C respectively.
Since

G(A)=Z(A)-G(F)-(G1 x G1)(A) - {(ges 9c) | c € C},
we have

Z(]:Lp,suflaf2)

:2// / E(1(919¢: 929¢), Fo,s) f1(919¢) f2(929.) dg1 dgo de,
CJG1(F)\G1(A) JG1(F)\G1(A)

where dg1, dgs are the Tamagawa measures on G1(A) and dc is the Haar measure
on C such that vol(C) = 1. For each ¢ € C, put ¢, = wE(L(gc,gc),hc)go. Since
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E(gt(ge; gc): Fp) = E(g, Fy,), we have
‘F<P5f17f2

= 2// / E(u(g1,92), Fo.) f1(919¢) f2(929¢) dgr dga de
G1(F)\G1 (&) JG1 (F)\G1 (4)
= / / / I°(u(g1,92), ) f1(919¢) f2(929¢) dgy dga de
¢ Ja (PG (a) J i (F)\G1(A)

-/ / / O (u(g1, ) 20 )
cJa i) Jan (PG (a) JHY(F)\HY (4)
X f1(919¢) f2(929¢:) dh dgi dgo de

:// / / O(wy (1(g1, 92)hT)pe) * 20
¢ JHY(F)\H(A) J G1(F)\G1(A) JG1(F)\G1(A)

X f1(919¢) f2(929¢) dgr dgo dh] de
by the Siegel-Weil formula ([@4]). On the other hand, we have

O(wy (t(g1, 92)h)pe) = O(wy(g19chIhe)o1) - O(wy(g2gehhe)p2).

Hence we have

/ / @(WE(L(91792)71(1))<PC) * 20 - [1(919¢) f2(929¢) dg1 dga
(F)O\G1(A) JG1(F)\G1(A)

= (00 (F)(Bhe) - 0 () () ) + 201

By LemmaL2.T] the function h? — 0, (f1)(h{he) - 04, (f2)(h{h,) is integrable over
HY(F)\HY(A), so that

/ (00, (1) B0) - B ()RR ) e 20
HY(F)\H?(A)

-/ B, (1) (hhe) - By (F2) (HO) B
HY(F)\H{(A)

and hence
2ot = | [ 0os )0 -0y () R e
HY(F)\H}(A)
Since H°(A) = Zgo(A) - H(F) - HY(A) - {h.|c € C}, this integral is equal to

. O, (F1)(H) - B (F2) (RO) RO,

2 /ZH0<A>H°(F>\H°(A>
Now the assertion follows from this and Lemma [£3.1] O
Now Lemma follows from Proposition and Lemma 3.3



CHAPTER 5

Schwartz Functions

Recall that, in Chapter @ we have defined the theta lift 6,(fg) for an auto-
morphic form fp € mp and a Schwartz function ¢ € S(X(A)). For our applications,
we will study arithmetic properties of 6,(fg) for some particular choice of fp and
. The purpose of this chapter is to choose ¢. Note that fp will be chosen in §6l
below.

More precisely, we will pick a decomposable Schwartz function ¢ = ®,,¢,, where
vy € S(X,) depends not only on the representation 7p , but also on some auxiliary
data as described in §5.5 below. We require that ¢, satisfies some equivariance
properties, but it is not easy to give a direct definition since the Weil representa-
tion on S(X,) is complicated. On the other hand, if we take a different maximal
isotropic subspace X/, of the symplectic F,-space V,, as in §5.2 below, then the Weil
representation on S(X!) has a simple description (see §5.3). In particular, it is easy
to find a Schwartz function ¢] € S(X!) with the required properties (see §5.6)).
Since we have a partial Fourier transform (which is explicated in §5.4] below)

S(X,) — S(Xu),

which relates the two models of the Weil representation, we can define ¢, as the
image of /. We also compute ¢, explicitly in §5.7] for the sequel [31] of this paper.

5.1. Notation

Let F' be a number field. Let o be the integer ring of ' and 9 the different of
F over Q. Let D be the discriminant of F'. For each finite place v of F, let o, be
the integer ring of F,, p, = w,0, the maximal ideal of 0,, w, a uniformizer of o,,
and ¢, the cardinality of the residue field 0, /p,. Let d, be the non-negative integer
such that ? ®, 0, = @w?0,. Then we have |D| = [loes,, qdv.

Let 19 = ®4%0., be the non-trivial character of Ag/Q given by

o Yooo(x) = 2™V for z € R,

o Yop(x) = e 2™VI for x € Q,.

Let ¥ = ®,%, be the non-trivial character of A/F defined by 1 = v o trp/q.
We call ¢ the standard additive character of A/F. If v is a real place of F, then
Vo) = 2™V =17 for z € F,. If v is a complex place of F, then 1, (z) = 2™V~ 1(@+2)
for x € F,, where ¥ is the complex conjugate of x. If v is a finite place of F, then
1, is trivial on w, %o, but non-trivial on w,; % ~1e,. For each place v of F, we
define a Fourier transform
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by
d(a) = /F B0 () dy,

where dy is the self-dual Haar measure on F,, with respect to ,,.

Let V = B; ®g Bs be the 2-dimensional right skew-hermitian B-space given in
§22 and W = B the 1-dimensional left hermitian B-space given in §3.311 Recall
that

E =F+ Fi, B =FE+ Ej, By, = E + Ej, By = E + Ejs,
U:iQ, J:j27 lej%7 J2:j§7
where J = J1J2. Let V=V ®p W be the 8-dimensional symplectic F-space. We
identify V with Resg,p (V') via the map v — v ® 1. In §2.2 we chose a complete
polarization V=X@Y over F. Let eq,...,e4 and €7, ..., e} be the bases of X and

Y, respectively, given by ([2.3), 2.I5).

5.2. Complete polarizations

In Appendix [C] we also choose a complete polarization V,, = X @ Y/, over F,
for each place v of F. Note that in picking the polarization, we use the assumption
that for any place v of F', at least one of u, J, Ji, Jo is a square in F,,. In this
section, we recall the choice of this polarization. Later, we will pick a Schwartz
function on X! and then transfer it to a Schwartz function on X, by a partial
Fourier transform. From now on, we fix a place v of F' and suppress the subscript
v from the notation.

5.2.1. The case u € (F*)2. Choose t € F'* such that u = t*. We define an
isomorphism i : B — My(F) of quaternion F-algebras by

s = (") =" ) w=(, ) w=(,, ).

Put
1 1, , 1, 1., " 1. L., *
e=-+ =1, € =]+ 1,

2 T o Ty ¢ T

so that

i(e)—(é 8) i(e’)—(g é) i(e”)—G 8) i(e*)—<8 (1))

Let W' := eW be the 2-dimensional F-space associated to W equipped with a
non-degenerate symplectic form (-, )T defined by

(52) <$>y>* = <‘/L.7y>]L e
for #,y € W1. Then the restriction to W7 induces a natural isomorphism GU(W)
GSp(WT). We have

o~

<e7 e>T = <e/,el>1— = 05 <e7 e/>T = 17

e =[]

for o € B. We take a complete polarization W = X @ Y given by
X =Fe, Y =F¢.

and
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Similarly, let V1 := Ve be the 4-dimensional F-space associated to V equipped

with a non-degenerate symmetric bilinear form (-, -)T defined by
1
(5.3) 5 (@) = (my)t-e”

for x,y € V1. Then the restriction to VT induces a natural isomorphism GU(V')
GO(VT). We take a complete polarization V = X’ @ Y’ given by

X=VigX, Y=VieY
We identify X’ with VT via the map v — v ® e. Put

1 1 1
-9 _ t * * _ * T Ak
Vi eje = e + tey, \2) tele 2te1+ 2e1,
2 tJ * * 1 * 1 _|_1 *
vy = 2e0e = ey — tJy€3, V) = —ege’ = ——ey + —€5,
2 2 2 152 27t 2 2tJq 22
(5.4) 1 1
12 * * / *
Vy=——ege = ———e —e3, Vi, = —2ee = —Jiez —tJes,
3 tJ12 2] 3+2J13 3 2 1€3 3
1T, 1 1 ,
vi=——ee = ———ey4 — —€j, v, =2ee =ey4 —tJej.
A 2] 24 4 * 4
Then vi,...,vq and vj,..., v} are bases of X’ and Y’ respectively, such that

(vi, vi) = dij-

We may identify the quadratic space VT with the space My (F) equipped with
a non-degenerate symmetric bilinear form
(5.5) tr(zy”) = T1ya — T2y3 — T3y2 + Tay1

for x = (§132), y = (4t 4?). Indeed, the basis vi,..., vy of VT gives rise to an
isomorphism VT 2 My(F) of quadratic spaces by

(L0 (01 (00 (00
Vi 00/ Y27 o o) V3 1 0/ Y47\ o 1)

Under this identification, we have
(11V=V'il(al)*, a2v=ig(a2)~v
for a; € B; and v € VT 2 My(F), where i; : By — My(F) and iy : By — My(F)
are isomorphisms of quaternion F-algebras given by
a—bt —(c—dt)
—Ji(c+dt) a+bt )’

a+bt — 5y (¢ + dt)
—2tJ (¢ — dt) a— bt '

iy (a+ bi+ cjy + dijy) = <
(5.6)
ig(a + bi + cy + dijs) = <

5.2.2. The case J € (F*)?. Choose t € F'* such that J = t2. We define an
isomorphism i : B — My (F) of quaternion F-algebras by

sn =1 ) w=(, ). w=(" ) w-(, )

Put

1+1. , 1, 1., ,, 1.+1.. .
e=-+—j, e=-i——ij, &' =—i4+—ij, ef==-——
J o' T Y 2 " 2 2 )



70 5. SCHWARTZ FUNCTIONS

so that

0= (3 ) 1= D) w=( Y. w3 2

Let W := eW be the 2-dimensional F-space associated to W equipped with a
non-degenerate symplectic form (-,-)T defined by (5.2). We have

(e,e)l = (e, e\ T =0, (ee =1,

e =[]

for o € B. We take a complete polarization W' = X @ Y given by
X =Fe, Y =F¢.

and

Similarly, let V1 := Ve be the 4-dimensional F-space associated to V equipped
with a non-degenerate symmetric bilinear form (-, )T defined by (G.3)). We take a
complete polarization V= X' @ Y’ given by

X=vVigXx, Y=VigY
We identify X’ with V1 via the map v — v ® e. Put

vi=e ezle —|——1e4 f/*:ge e =ef +tek
! ! o gt Lot ! 4
1 t 1
-~ 1" * * ~ 3k *
Vo =ee = —e —e v, = —2e1e” = —eq + —ey,
2 1 581~ 5% 2 1 1T T
Vi3 =e 1e +J1e v — ey =€l + —e
V3 = ee = — —eg3, Vi = e = ,
R R e Y 2
J1 t 2 1 1
~ " * * ~ % *
Vi =exe = ——ej+ -e;, Vi = —ege" = —ey — —e3.
T 2 2 27 1T Jt e
Then vi,...,v4 and Vvj,...,V} are bases of X' and Y’, respectively, such that

(vi, vi) = 5.

We need to use two coordinate systems given as follows:
5.2.2.1. The case (i). We fix s € F* and define bases vy, ...,v4 and vi,..., v}
of X’ and Y’, respectively, such that {(v;,v})) = d;; by

1. 1

(5 8) Vi =Vi, V2=V2, V3= gv?ﬂ Vy = gv4a
vi =V, vy =V, vVvi=sVi Vi=sV].

We may identify the quadratic space VT with the space B; equipped with a
non-degenerate symmetric bilinear form

1

~1 tr, /r(zy”).
Indeed, since
1 J J
<{,—1,‘~,1>T = %a <{’2a{’2>1- = _55 <{’3a{’3>1- = _%7 <{’47{}4>T = ?1)
and (v;,v;)T = 0if i # j, the basis v1,...,V4 of VT gives rise to an isomorphism

V1 = B, of quadratic spaces by

Vi, Vo l, vy i, V4 jp.
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Under this identification, we have
: *
a1v=q1-V, av=v-iya)

for a; € B; and v € VI = By, where iy : By — B is an isomorphism of quaternion
F-algebras given by

. . tpr,
(5.9) i2(a+ Bj2) = a” + J_l.]l
for a, 8 € E.
5.2.2.2. The case (i). Assume that J; € (F*)2. We choose t; € F* such that
J1 = t2 and define bases vi,...,v4 and vi,...,v} of X’ and Y’, respectively, such
that (v, v})) = d;; by
1 1 1 t 1
V1=V + EVS =5 + Eez + 583 + 57 &4
. . 1, t1, ot
vo =Vva+ VeT g% T g + 2, % 7 3%
B 1. 1, t1, t .t .
V3:V2—EV4 561 o 2 E 3—594,
1. 1 . 1 1 tq
A Evl - tl_uV3 = %61 - %92 - %93 + %847
(5'10) N 1., t1_, 1 t t .,
Vi=gVit Vs = 591 + 592 + ges T 58
L 1o, ti_, 1 1 t1
Vo = §V2 —+ 5V4 = —581 —+ 2—t192 — %93 + %947
N 1., ti_, 1 1 t1 1
V3 = §V2 — 5V4 = —581 TR —eo + %eg + EEZL,
s U, hu_., uw , hu , tu "
Vi= Vit 5 Vs T 50 7‘32—271‘334‘?94

We may identify the quadratic space VT with the space My(F) equipped with
the non-degenerate symmetric bilinear form (55). Indeed, the basis vi,..., vy of
VT gives rise to an isomorphism V1 22 My (F) of quadratic spaces by

(10 (01 (00 (00
Vi 00/ Y27 o o) V3 1 0/ Y47\ o 1)

Under this identification, we have
a1v=i1(a1) -V, 02V2V~i2(0’.2)*

for a; € B; and v € Vi MQ(F), where i1 : B; — MQ(F) and ip : By — MQ(F)
are isomorphisms of quaternion F-algebras given by

. e e t, b—dt
t1(a+bl+CJ1+d1J1)=< atel 1)

u(b+dty) a—cty

a—c— —u(b—l—d%)
(b— d -) a+cf '

(5.11)
is(a + bi+ cjp + dijs) = (
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5.2.3. The case J; € (F*)? or Jy € (F*)2. We only consider the case
J1 € (F*)?; we switch the roles of By and By in the other case. Choose t € F*
such that J; = t2. We define isomorphisms i; : By — My (F) and i : By — B of
quaternion F-algebras by

(5.12)
. 1 . . 2 . . t e —2t
=" ) ww=(, %) =" ). wan=(u ).
2 2
and
. S B.
(5.13) ia(a + Bj2) = a+ 7
for a,f € E. Put
_1 + = * *_’_t*—l '_i i
V= 291 2t92, Vo =€ €y = uell tuegl.

Then v,v* is a basis of V over B such that

(v,v)y =(v* v*) =0, (v,v*)=1
Moreover, we have

(o v a; v =[v v (o)
for a; € B;. Here we identify is(aw) with the scalar matrix is(az) - 12 in Ma(B).
Let V' :=V, regarded as a left B-space via o+ 2’ := (z - a*)’, where for an element
x € V, we write 2’ for the corresponding element in V’. We have a natural skew-

hermitian form (-,-)’ on V' defined by (z’,y") = (z,y). Let GL(V’) act on V' on
the right. We may identify GU(V) with GU(V"’) via the isomorphism

GL(V) — GL(V").
g— [m’ (g7t x)’]

Under this identification, we have

v oy . 1k v/
oy e = e ()
for a; € B;. We take a complete polarization V' = X’ @Y’ given by
X' =B-v, Y =B-(v".

Similarly, let W’ := W, regarded as a right B-space via ©’ -« := (a* - 2)’. We have
a natural hermitian form (-,-)’ on W' defined by (z’,y') = (z,y). Let GL(W’) act
on W’ on the left. We may identify GU(W) with GU(W') via the isomorphism

GL(W) — GL(W").
g— [ (x-g7Y)]

We now consider an F-space V' := W’ ®p V'’ equipped with a non-degenerate
symplectic form
1 *
(o) o= gt () @ 1))
Let GL(V’) act on V' on the right. We identify V with V' via the map x = zQy
x' =y’ ®a'. Then by Lemma[C3.T] we may identify GSp(V) with GSp(V’) via the
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isomorphism
GL(V) — GL(V),
g— X'~ (x-8)]
which induces a commutative diagram
GU(V) x GU(W) —— GSp(V) .
| |
GU(W’) x GU(V') —— GSp(V’)
We take a complete polarization
V=WepX)o W epY).

Under the identification V = V', this gives a complete polarization V = X’ @ Y’,
where

X' =(v-B)y@gW, Y =(*-B)ogW.
We identify X’ with W via the map w — v ®@ w. We fix s € F* and put

v1:v:§e1+%e2, v =v* =e] +tel,
1 . 1 * t * * *xe
Vo = EVI = §e1 — 562’ Vo =—Vi1=—€e1+ geg,
(5.14)
1, 1e—|—te N S L. e*—|—se*
V3= -Vj=— —es, vi=—=v'j=3s -es,
27 J 25 © 25 0 3 J J A
1 .. . J . e S ... S st
vy = —vij=—— —e}, Vvi=-=-V'ij=—e4— —e;3.
YT s J 25 4 2t 3 1T J gy
Then vyq,...,v4 and vi,..., v} are bases of X' and Y’, respectively, such that

(vi, vi) = 045

5.3. Weil representations

Recall that we have the Weil representation wy, of G(U(V)? x U(W)) on S(X)
obtained from the map s : GU(V)? x GU(W) — C! such that zy = ds given in
Appendix This Weil representation is unitary with respect to the hermitian
inner product (-, ) on S(X) given by

(o1, p2) = / o1 (2)2(@) di,

where dz = dxq -+ -dxy for x = z1€1 + -+ + xae4 with the self-dual Haar measure
dx; on F with respect to 1. The map s is defined in terms of another map s’ :
GU(V)? x GU(W) — C! such that 2y, = ds’ given in Appendix [C] based on [40].
Thus we obtain the Weil representation w, of G(U(V)? x U(W)) on S(X’) from
s’ as in [40] §5], [27, §5]. This Weil representation is unitary with respect to the
hermitian inner product (-,-) on S(X') given in terms of certain Haar measure on
X’. In this section, we define this Haar measure on X’ and give explicit formulas
for the Weil representation on S(X').
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5.3.1. The case u € (F*)2. Recall that we identified X’ with V. We take
the self-dual Haar measure on VT with respect to the pairing (z,y) — ¥((x,y)").
More explicitly, this measure is given by

dx:d:z1~-~dx4

for x = vy + -+ + x4v4 € X/, where vy,..., vy is the basis of X’ given by (5.4)
and dx; is the self-dual Haar measure on F' with respect to .

We identity GU(W) = B* with GLy(F') via the isomorphism i given by (G&.1]).
Then U(W) 2 SLy(F) acts on S(X') by

oo (" 41) ¢t@) = laPptas), aeF*,
ao (1 }) w0 =0 (3060l wlo) be P,

ooy 7)o = [ etwvi-tenan
This action extends to an action of G(U(V)? x U(W)) by
wy(g,h) = wy(g-d(v)™") o L(h) = L(h) o wy (d(v) ™" - g)
for g € GU(W) = GLy(F) and h € GU(V)? = GO(VT)? such that v(g) = v(h) =:
v, where d(v) = (! ) and
L(h)p(z) = [v| " p(h™ ).

5.3.2. The case J € (F*)2. Recall that we identified X’ with VT. We take
the self-dual Haar measure on VT with respect to the pairing (x,y) — ({x,y)T).
More explicitly, according the coordinate system, this measure is given as follows:

(i)

qu
dr = |—=|dxy---dx
152 1 4
for z = xyvy + -+ + 24vy € X/, where vq,...,vy is the basis of X’ given by

(BER) and dz; is the self-dual Haar measure on F' with respect to 1.
(i)
dr =dxy---dzxy
for x = xyvy + -+ + 24vy € X/, where vq,...,vy is the basis of X’ given by
(BI0) and dz; is the self-dual Haar measure on F' with respect to 1.
We identity GU(W) = B* with GLy(F') via the isomorphism i given by (B&.7]).
Then U(W) = SLy(F) acts on S(X') by

o we P,
ao (1) wla) = (G0t ) ot be F,
oo (1 7)o@ =m [ etwpui-tea)as

where

)1 if By is split,
VB = —1 if Bj is ramified.
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This action extends to an action of G(U(V)? x U(W)) by
wy(g,h) = wy(g - d(v)™") o L(h) = L(h) o wy (d(v) ™" - g)
for g € GU(W) = GLy(F) and h € GU(V)? =2 GO(VT)? such that v(g) = v(h) =:
v, where d(v) = (! ) and
L(h)p(x) = |v| " p(h ™ a).

5.3.3. The case J; € (F*)? or J, € (F*)% We only consider the case
J1 € (F*)?; we switch the roles of B; and B in the other case. Recall that we
identified X’ with W. We take the self-dual Haar measure on W with respect to
the pairing (z,y) — 1/J(% trg/r(z,y)). More explicitly, this measure is given by

J

dor = |—
s2u

dl‘l d{E4

for x = x1vy + -+ + x4vy € X/, where vy, ..., vy is the basis of X’ given by (£5.14)
and dx; is the self-dual Haar measure on F' with respect to .
We identity GU(V)? 2 (B} x B,')/F* with the group

o ool )

via the map (o, az) — i1(a)iz(ae), where i3 and iz are the isomorphisms given
by (512), (5I3). Then U(V)? acts on S(X’) via the identification U(V)? = U(V’)?
followed by the Weil representation of U(V")? on S(W’ ®p X') given in [40] §5].
Hence U(V)? acts on S(X') by

{g € GLy(B)

oo () o) = @ (a7 a), we B,
ao (3 1) o0 = (~gpio)) wlo) be F,
wy { e =ve [ o (5 terle.)) dy,

(1 ) etor =0 [ ot (<5 mmsntnn)

where
1 if B is split,
7B 1 if B is ramified.

This action extends to an action of G(U(V)? x U(W)) by
wy(g,h) = wy(h-d(v)™ ") o R(g) = R(g) owy(d(v)™* - h)

for g € GU(W) and h € GU(V)? such that v(g) = v(h) =: v, where d(v) = (! )
and

R(g)p(z) = [v|p(zg).

5.4. Partial Fourier transforms

Recall that the partial Fourier transform ¢ € S(X) of ¢’ € S(X') is given by

o= [ @ (0D (o)) drepn ),
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where for x € X and y € Y, we write z + y = 2’ + ¢/ with 2’ = 2/(z,y) € X’ and
Yy =9 (z,y) €Y', and we take the Haar measure py /vy on Y/Y MY’ so that the
map
SX) — 8(X)
¢ —

respects the hermitian inner products (given in terms of the Haar measures on X
and X’ given in §5.3). By construction, this partial Fourier transform is a unitary
equivalence between the Weil representations of G(U(V)? x U(W)) on S(X) and

S(X’). In this section, we explicate the Haar measure py/yny: and the partial
Fourier transform S(X') — S(X).

We write
T=1x1€1 + -+ 1464 €KX, y=uyi1€e] +---+ye; €Y,
o =aivi+ -+ avy e X Yy =yvi++ypvieY,
where vq,...,v4 and vi,..., v} are the bases of X’ and Y’, respectively, given in

§5.20 Let dx;,dy;,dx), dy’; be the self-dual Haar measures on F' with respect to 1.

5.4.1. The case u € (F*)?. Recall that v;, v} are given by (5.4)). Note that
YNY = {0}. We define a Haar measure gy yny: on Y by

_1
dy jyry (y) = [4u| ™2 dyy -+ - dys
for y = y1ef +- - - +yse}. We will see below that the partial Fourier transform with

respect to this Haar measure is an isometry.
If  +y =2+, then we have

1
Ty = 2t(y1 +try), Yy =y —tay,
1
e (yg —t.J ! = tJ

To A (y2 172), Yo = Y2 +tJ172,
1

zhy = Ji(yz — tJows), Y3 = —ﬂ(y?) +tJoxs),
1

xy = —(ys + tJxy), yﬁ;:—ﬁ(%—wml

Namely, putting
a; = t, as = —lf.]l, az = —lf.]z, Ay = tJ, bl = b2 = 1, bg = b4 = —2tJ,

we have ) )
T = 2_6;(% +aiz;), Y= b_l(yl — a;x;),
so that
Ty — Ty = T (2aix'» - %x> — (%x{ - a-x‘)
1J1 (243 7 bzz (3 bz 2 K3 bz [3 1
20,1' 40,1' o, 2

Hence, if ¢'(2') = H§:1 i (zh) with ¢} € S(F) then we have

|4u| H@z l'z
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where
1
eite) = [ ttayn (Gelvt = o) ) do
=150 (5e2) [ ettaro (a2 - ot ) de
bi 2 7 P (3 7 bg (3 b1 (2ad) 7"
Since

! 2@1'
H = 4u,
i=1 ¢
the partial Fourier transform with respect to py /vy’ is an isometry.

5.4.2. The case J € (F*)2

5.4.2.1. The case (i). Recall that v;, v} are given by (B.8)). Note that YNY' =
Fvi+ Fvi. Let py and pyny be the Haar measures on Y and YNY’, respectively,
defined by

duy(y) = dy1 -~ dya,  dpyey (y') = dy, dys

for y = yref +---+yse} and y' =y vi +y3v3. We define a Haar measure gy yny:
onY/YNY by
qu % Hy
As2T | pyny
We will see below that the partial Fourier transform with respect to this Haar
measure is an isometry.

If 2 +y=2a"+7v, then we have

Ky jyny” =

, , 1 1
Ty = X1 + toyg, y1=§ y1+gy4 ;
1 1

ThH =1y — Rz Yy = —5(961 —txy),
:E’—sa:—i—tx p_ 1 —i—Jl
3= 2 J1‘3 ) y3—25 Y2 tys )
’ S J ’ Jl t
554:—7 y2—7y3 ) y4:—8 $2—J—$3 )

so that
Ty — TaYs = T1Y1 + Tays,  T3Ys — Thyy = Tayo + T3Ys.
Also, we have
da'y daly dyb dyy = |J| dxq - - - dag,
daty dy dyy dyty = |J| ™ dys - - dya.
Hence, if ¢'(z') = H?Zl i (x}) with ¢ € S(F), then we have

1
2

UJJ1
o) = |52t ehlaeitas) [ [ eraneitanians + i) dap do
1
UJJ1 2 " R
= ez | P1(@)@h ()¢5 (s) @ (vd).

In particular, the partial Fourier transform with respect to piy,yny: is an isometry.
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5.4.2.2. The case (ii). Recall that v;, v} are given by (5.I0). Note that YNY’ =
Fvi+ Fv}. Let puy and pyny be the Haar measures on Y and YNY’, respectively,
defined by

duy(y) = dy1 -~ dya,  dpyey (y') = dyy dy)
for y = y1ef +---+ysej and ' =y vi +yivi. We define a Haar measure gy ynys
on Y/YNY by
_1 My
pyyayr = [ud|"2 ——.
Hyny’
We will see below that the partial Fourier transform with respect to this Haar
measure is an isometry.
If  +y =2+, then we have

;1 t o1 1 1

r =5 l’1+t1132+—333+t334 s o ni=s it Yt ys+ Sy |,
2 2 t1 t t

.1 1 1

Ty =5 yl——92+ Ys — —Y4 Yo=—- |21 —tixo+ —x3 —twy |,
2 t 2

x'—l —|— 1 P 21+t tx tx

3795 n yz ys ty4 Ys = B 1 122 . 3 4],

oy =22 — tia ti[: +ta ol L h —|—1

1= 5 1 122 f 3 4], y4—2u Y1 ty2 ty3 ty4 )

so that

Ty — Ty — T5Y5 + Tyl = T1y1 + Taye + T3ys + Taya.
Also, we have
dx'y dxy dyb dyy = |uJ|dzy - - - dzg,
daly do’y dyy dyly = [uJ| P dyy - - - dya.

Hence, if ¢/(2') = [[,_, ¢i(2}) with ¢} € S(F), then we have
(@) = [T | o) (=)o () /F /F () @) (b + eyl der iy

1 N N
= [uJ |27 (@) D5 (ys) P35 (y3) s (2).

In particular, the partial Fourier transform with respect to piy yny: is an isometry.

5.4.3. The case J; € (F*)? or Jy € (F*)2. We only consider the case
Jy € (FX)Q; we switch the roles of By and By in the other case. Recall that v;, v;f
are given by (BI4). Note that YNY' = Fvi+ Fv}. Let uy and pyny be the Haar
measures on Y and Y N'Y’, respectively, defined by

dpy(y) = dyy - -dys, dpyay (y') = dyy dys

for y = yref +---+yse} and ¥’ =y vi +y3v3. We define a Haar measure gy ynys
on Y/YNY by
Hy /ynyr = |82U|_EM—Y~
Hyny’
We will see below that the partial Fourier transform with respect to this Haar
measure is an isometry.
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If  +y =2+, then we have

, , 1 1
$1:$1+t$2, y1:§ y1+zy2 ,
1 1
xézyl—zyz, y£:—§(x1—txz),
Ié =s|x4+ 1173 B yé = i(y4 + ty3)a
t 2s
S J 1
3321:—3@4—7593)7 yf;:% (904—?133) ;

so that
UL — THYs = T1y1 + Loy,  TRY3 — TyYy = T3ys + Taa.
Also, we have

dx'y daly dyb dyy = |J| dxy - - - dy,
dzy dx'y dyy dyy = |J| ™ dyy -+ dya.

Hence, if ¢/(z') = H?Zl i(xh) with ¢ € S(F'), then we have

J2 2
o) = || Ahleb(@) [ [ ehlaneileite; + ik dej doy
J2 % / !/ / / / ! / /
= s2u ©1(21)P2(Y2) 5 (25) P4 (Ya)-

In particular, the partial Fourier transform with respect to pry yny- is an isometry.

5.5. Automorphic representations

Suppose that F' is a totally real number field. Let 7p = ®,mp, be an irre-
ducible unitary cuspidal automorphic representation of B*(A) satisfying the fol-
lowing conditions:

e For v € Mgy \ XB fin,
(ur) mp, = Ind(x» ® py) is a principal series representation, where x, and pu, are
unitary unramified; or
(rps) mB.» = Ind(x, ® py) is a principal series representation, where x, is unitary
unramified and p, is unitary ramified; or
(st) mBw = St ® Xy is a twist of the Steinberg representation, where X, is unitary
unramified.
e For v € ¥p fin,
(1d) 7p,» = XxwoV, is a 1-dimensional representation, where y, is unitary unramified.
e For v € Yo N\ YB,cos
(ds) mp., = DSy, is the irreducible unitary (limit of) discrete series representation
of weight k.
o Forv e ¥p o,
(fd) 7p,, = Sym* is the irreducible unitary (k, + 1)-dimensional representation.

We assume that mp, is unramified for all finite places v of F' such that F, is
ramified or of residual characteristic 2. By Proposition [[.T.4] we may assume that
the following conditions (which are relevant to the choice of the polarization V,, =
X! @ Y!) are satisfied:
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o If v ¢ Xp, then J € (FX)? except in the case (ur).

e If v € Xp, then either J; € (F)? or Jy € (F})2

In fact, Proposition [[.T.4] (applied as at the beginning of §7.2} see also Remark
[T 13) enables us to impose more precise ramification conditions as described in the
following table:

| [ =~ | B B,B | E] uw [ F] J | JiJh
ur | ur.p.s. | spl spl, spl spl | squnit | ur int ints
spl sq unit | ram | sq unit sq units
inert | nsq unit | ur * *
ram unif ur sq unit sq units
rps | r.p.s. | spl spl, spl spl | squnit | ur sq unit Sq units
st St spl spl, spl spl | squnit | ur Sq unit Sq units
ram, ram | inert | nsq unit | ur | sq of unif Kok
1d St ram | spl, ram | inert | nsq unit | ur unif sq unit, unif
ram, spl | inert | nsq unit | ur unif unif, sq unit
ds | ds. spl | spl, spl C — R + +,+
ram, ram | C — R + -, =
fd d.s. |ram | spl, ram C - R — +, —
ram, spl C — R — -, +

- All places above 2 fall into the case (ur) with E being split.

- In the case (ur) with E being inert, we need to consider separately the case
J € (F)X)? and the case J; € (F)})? or Jy € (F})2.

- * indicates integers with even valuation.

- s indicates uniformizers such that the ratio Jy/Js is a square unit.

- int : integer, sq unit : square unit, nsq unit : non-square unit

- unif : uniformizer, sq of unif : square of a uniformizer

- + : positive, — : negative

Here m & ®,m, is the Jacquet—Langlands transfer of mg to GL2(A). These condi-

tions will be very useful in the computation of the partial Fourier transform. From

now on, we fix a place v of F' and suppress the subscript v from the notation.

5.6. Schwartz functions on X’

In this section, we pick a Schwartz function ¢’ € S(X') such that (¢, ¢’) =1,
together with maximal compact subgroups K, K1, Ko of B*, BY*, By, respectively.
Also, we study equivariance properties of ¢’ under the action of K and K1 x Ko,
regarded as subgroups of GU(W) = B* and GU(V)? = (B} x By)/F*, respec-
tively.

We need to introduce some notation. For any set A, let 4 denote the charac-
teristic function of A. If F' is non-archimedean, then for any positive integer n, we
define a subalgebra R,, of Ma(F) by

ce w"o} .

R, = { (‘C‘ Z) € Ma(o)

Note that Ry is an Iwahori subalgebra of My(F). If F = R, then we choose an
isomorphism FE = C such that

i

>0,

)
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L 1
ie,i=|ulzv/—1. Put

o _1(o 10y 0 _1/(0 10
0z 2\0x i0y) 0z 2\0x idy

for z = x + yi. For any integer k, we define a character y; of C* by
= ()
a)=|—] .
Xk P

(35 =) -0

5.6.1. The case (ur).
5.6.1.1. The case when E is split and F' is unramified. In this case, we have:

Put

e [ is non-archimedean,
e 1) is of order zero,

o u =t2 for some t € 0%,
o J Ji,Jo € 0.

We define maximal orders op,0p,,0p, in B, By, Bs, respectively, by
op =i"'(Ma(0)), op, =i (M2(0)), 0p, =iy (Ma(0)),
where 1,11, 12 are the isomorphisms given by (E1II), (5.6). Put
K=o03 Ki=o0p, Ky=op,.
We take the complete polarization V = X’ @ Y’ and identify X’ with VT 2 My(F)
as in §5.2.01 We define " € S(X') by ¢’ = Iy, (o), i€,
¢'(x) = Lo (21)lo(22) Lo (3) o (24)

for x = x1vy + - - + x4vy, where vy,...,vy is the basis of X’ given by (54]). Then
we have
w,/,(k, (kl’ kQ))SDI = 50/
for k € K, k1 € Ky, k2 € Kg such that v(k) = v(ki)v(kz).
5.6.1.2. The case when E is split and F' is ramified. In this case, we have:

e Fis non-archimedean,

e u =t? for some t € 0%,

o J Ji,Jo € (UX)Q.

Let d be the non-negative integer such that 1 is trivial on %0 but non-trivial on
@~ %"1o. We define maximal orders op,0p,,0p5, in B, By, By, respectively, by

op=1i"((" _a)Ma(o) (" _-a)), om, =i (M2(0)), o5, =iy (Ma(0)),
where 1,11, 1y are the isomorphisms given by (5.1]), (5.6]). Put
K=o03 Ki=o0p, Ky=op,.
We take the complete polarization V = X’ @ Y’ and identify X’ with VT = My(F)
as in §5.2.01 We define ¢’ € S(X') by ¢’ = ¢? - Iy, (0, €.,
¢'(x) = q* -1, (z1)Lo (z2) o (23) 1o (74)

for x = x1vy 4 -+ - + x4v4, where vy,..., vy is the basis of X’ given by (5.4]). Then
we have

ww(kv (kb k2))90/ = 90/
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for k € K, ky € Ky, ko € K3 such that v(k) = v(ki)v(kz).

5.6.1.3. The case when E is inert and J € (F*)2. In this case, we have:
F' is non-archimedean,
¥ is of order zero,
2 € 0%,
u € 0* \ (0%)2,
J = t? for some t € o,
J1 € s%20* for some s € o,
Jo € 0.

We define maximal orders op,0p5,,0p, in B, B, Bs, respectively, by

- 1 L
op =i 1(Ma(0)), op —0+01+0J—1+0% 0B, =iy (0B,),
where 1,1y are the isomorphisms given by (5.7)), (59). Put
K=og, Ki=of, Ky=op,.

We take the complete polarization V = X' ¢ Y’ as in m and identify X’ with
V= B asin §5.2.2.01 We define ¢’ € S(X’) by ¢’ = Lop,, i€,

¥ (‘T) =TI, (Il)ﬂo (IQ)HO (I?))HO («T4)
for x = z1vy + - - + 14Vvy, where vy,..., vy is the basis of X’ given by (E8]). Then
we have
wy (k, (b1, k2))p" = ¢’

for k € K, k1 € K1, ko € K2 such that v(k) = v(ki)v(k )

5.6.1.4. The case when E is inert, and J, € (F*)? or Jy € (F*)?. We only
consider the case J; € (F'*)?; we switch the roles of B; and Bs in the other case.
In this case, we have:

F' is non-archimedean,
1 is of order zero,
2€0%,

u € 0X N (0%)2,

J; = t? for some t € o,
J € s20* for some s € o,
Ja € 0.

We define maximal orders op,0p,,0p, in B, By, Bs, respectively, by

op =o+oi+ol +03, op =i (My(0)), om, =i (on).
where iy, iy are the isomorphisms given by (5.12), (513). Put
K=o0g3 Ki=o0p, Ki=op,.
We take the complete polarization V = X’ @ Y’ and identify X’ with W = B as in
§5.2.31 We define ¢’ € S(X') by ¢’ =1,,, i.e.,
¢'(x) = Lo (21)lo(22)Lo (3) 1o (24)

for x = x1vy + -+ -+ x4y, where vy, ..., vy is the basis of X’ given by (5.14)). Then
we have

wy (k, (k1, k2))¢" = ¢’
for k € K, k1 € K1, ko € K2 such that v(k) = v(k1)

I/(kg).
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5.6.1.5. The case when E is ramified. In this case, we have:

F' is non-archimedean,

¥ is of order zero,

2€0*

u € wo™,

J = t2 for some t € 0*

Ji = t? for some t; € 0,

Jo € (OX)Z.

We define maximal orders op,0p,,0p, in B, B, Bs, respectively, by

op =i "(M2(0)), op, =iy (Ma(0)), 0p, =iy (Ma(0)),

where i, 11,12 are the isomorphisms given by (57), (&11]). Put
K=og, Ki=og, Ky=op,.

We take the complete polarization V = X' @ Y’ as in §5.2.2] and identify X’ with

VT2 M,(F) as in §5.2.2.20 We define ¢’ € S(X') by ¢’ = Iy, (o), i€

@' () = To(z1)To(22) Lo (23)lo(24)

for x = x1vy + -+ -+ x4y, where vy, ..., vy is the basis of X’ given by (.I0). Then
we have

ww(kv (kh kQ))@/ = 90/
for k € K, ky € Ky, ko € K3 such that v(k) = v(ki)v(kz).
5.6.2. The case (rps). In this case, we have:

e [ is non-archimedean,

e 1 is of order zero,

e 2¢coX

o u = t? for some t € 0%

o J Ji,Js € (0%)2

We define maximal orders op,0p,,0p, in B, B1, By and subalgebras op , 05, n,
0B, n of B, By, Ba, respectively, by

op =i~ (Mz(0)), 0p, = i;  (Ma(0)), 0p, =iy (Ma(0)),
0gn =i '(Rn), 0B, n =i H(Rn), 0B, n =iy {(Rn),
where 1,1, 15 are the isomorphisms given by (5.1), (5.6). We define orientations
og:0p, — 0/w"o,
0B, 1 0B, n — 0/w"0,

0B, : 0By, n —> 0/w"0

by
op(i7'(2}%)) = d mod @w"o,
o, (i7'(2})) = d mod @w"o,
o, (i3'(2})) = a mod @"o.
Put

X X X
K=o3, Ki=og,: Ko =o0p,,

_ X X %
,C" - UB,n’ ,Cl,n - oBl,n7 ICQJL - UBg,n'
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We take the complete polarization V = X’ @ Y’ and identify X’ with VT 2 My (F)
as in §5.2.11 For a unitary ramified character u of F* of conductor ¢”, i.e., trivial
on 1+ w0 but non-trivial on 1 4+ @" o (resp. 0*) if n > 1 (resp. if n = 1), we
define ¢’ = ¢}, € S(X') by

nt1 _1
o'(x) =q"% (¢—1)77  Lo(21) o (22) Lo (3) Lo (24) u(a)
for x = x1vy + - - + x4vy, where vy,..., vy is the basis of X' given by (54]). Then
we have
wy (k, (k1, ko))" = (k)™ p(kn) (k) (v (ka))g!
for k € Ky, k1 € K1, ko € Ka,, such that v(k) = v(ki)v(ke), where p is the
character of R (and those of Ky, K1, Ko, via i, i1,12) defined by

(k) = u(d)
for k= (29).

5.6.3. The case (st).
5.6.3.1. The case when By and Bs are split. In this case, we have:

e [ is non-archimedean,

e 1) is of order zero,

e 2co”,

o u =12 for some t € 0%,

o J Ji,Jo € (UX)Z.

We define maximal orders op,0p5,, 05, in B, By, Bs and Iwahori subalgebras J, J1, Jo
of B, By, Bs, respectively, by

0B = iil(MQ(o))a 0B, = il_l(M2(o))7 0B, = iQ_I(MQ(U))a
j:iil(Rl)v 31 :il_l(Rl)a 32 :iQ_I(Rl)7
where 1,11, 12 are the isomorphisms given by (E1I), (5.6). Put
IC:UE’ IC1:0§17 K2:0g2’
=7, I, =737, I, =735

We take the complete polarization V = X' @ Y’ and identify X’ with VT = My(F)
as in §5.2.011 We define ¢’ € S(X’) by

¢ (2) = g% - To(21)To (22) Ty (23) Lo (24)

for x = x1vy + - - + x4vy, where vy,..., vy is the basis of X’ given by (54). Then
we have
ww(kv (kl’ kQ))SDI = 50/

for k € Z, k1 € I1, ko € Iy such that v(k) = v(k1)v(ks).

5.6.3.2. The case when By and Bs are ramified. In this case, we have:
F' is non-archimedean,
¥ is of order zero,
2 € 0%,
u € 0* \ (0%)2,
J = t2 for some t € wo*,
Ji,Js € wo ™.
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We define a maximal order op in B and an Iwahori subalgebra J of B by
op =1'(Ma(0)), T=i"(R),
where i is the isomorphism given by (B.7). Let 0, and 0p, be the unique maximal
orders in By and Bs, respectively. Then we have
0p, =0+ o0i+o0j; +oij;, op, = i;l(oBl),
where i is the isomorphism given by (B.9). Put
K=og, I=3% Ki=og, Ky=op.

Put s = 1. We take the complete polarization V = X' @Y’ as in §5.2.2] and identify
X’ with VT 2 By as in §5.2.201 We define ¢’ € S(X’) by ¢/ = ¢2 Loy, , Ly

¢'(2) = g% - Io(21)Lo(x2) Lo (23) Lo (24)

for x = x1vy + - - + x4vy, where vy,..., vy is the basis of X’ given by (58]). Then
we have

ww(kv (kl’kQ))SDI = 50/
for k € Z, ky € K4, ko € Ko such that I/(k) = V(kl)u(kg).

5.6.4. The case (1d). We only consider the case J; € (F*)?; we switch the
roles of By and Bs in the other case. In this case, we have:

F' is non-archimedean,
¥ is of order zero,

2 € 0%,

u € 0X N (0%)2,

J1 = t? for some t € 0%,
J,Jy € wo*.

We define a maximal order op, in B; and an Iwahori subalgebra J; of B; by
0B, :il_l(M2(o))7 jlzil_l ((lwfl)Rl(lw))’

where iy is the isomorphism given by (512)). Let o5 and o0, be the unique maximal
orders in B and By, respectively. Then we have

op =o0-+oi+oj+oij, op, =i, (0p),
where iy is the isomorphism given by (E13]). Put
K=o}, Ki= of-),l, T, =737, Kg= 02,2.
Put s = 1. We take the complete polarization V = X’ @& Y’ and identify X’ with
W = B as in §5.2.30 We define ¢’ € S(X') by ¢’ = ¢q2 - I,,, i.e.,
¢ (x) = q* - To(e1)Lo(w2) Lo (23) o ()

for x = x1vy + - - - + x4y, where vy,..., vy is the basis of X’ given by (5.14]). Then
we have

ww(kv (kh kQ))@l = 90/
for k € K, k1 € T4, ko € Ky such that v(k) = v(k1)v(ke).

5.6.5. The case (ds).
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5.6.5.1. The case when By and Bs are split. In this case, we have:
F =R,
w(x) — 6271'\/—_19;,
u < 0,
J = t2 for some t € FX,
J1 = s? for some s € F*,
Ja > 0.
Put v = |u|2. We take the complete polarization V = X' & Y’ as in §5.2.2 and
identify X’ with VT = By as in §5.2.2.11 For a non-negative integer k, we define
¢ = ¢ € SX) by

O'(@) = F - (2 — 21i)* - e~ F(eb-ual+oi-ual)

for x = x1vy + -+ - + x4vy, where vy,..., vy is the basis of X’ given by (B.8) and
klu| 2+t
cp = —————.
k 4mk

LEMMA 5.6.1. We have (¢',¢') =1 and
wy (@, (a1, a2))¢" = xi(@) ™ xw(ar) xi(az)e’

for a, a1, as € E* such that v(a) = v(ay)v(az).

PROOF. Recall that the Haar measure on X’ is given by dx = % dzy - --dxy.
We have

u w22 2.2
u (l'g — uz%)ke = (x5 —uxitay—uzy) dry - dzy
1 S
u v\F (20242, .2
— |_|2 <_) (xg + x%)ke (z3+ai+zi+e3) dLL'l - dLL'4
4m? \ Fa

k
241 o0 (e o)
|ul2 2 2k ,—(ri+r3
= Ark+2 ’ (277) / / rie (ri+r3) ridryredry
0 0

|U|ngl Y B
=k / / 7"167(7,1+T2)d7‘1d'r2
m o Jo

juf 341
= kE+1
and hence (¢, ') = 1. If we write z; = 22 + 211 and 22 = x4 + x3i, then
/ _% P\k —ZE (2120 4+2228)
@(m):ck (Zl) o 1 2)

and it is easy to see that

1
wy (7, (o1, a2))@" = xr(o1)xk(a2)¢’

(
for ay, a2 € E* and v = v(ag)v(az). On the other hand, we have

wy (H)¢' (z) = (2 + xli +o 4 ui) o' (z),

0x1 0x4
T/ —1
(09 () = T (uad - 0 — e+ 2D (2),

we(Y) '(x)f_; 38_2_8_2_18_24_8_2 ()
LA A | wdr? Ox3 wdxd O3 L
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where we identity GU(W') =2 B* with GLy(F') via the isomorphism i given by (5.7]).
Thus, noting that

L2_1<5_2_13_2) i_l(fi_l‘i>
32182f T4 83:% uaz% ’ 822325 T4 833421 u@x% ’
we see that
wy (VX —vY)¢ = —V/~1ky'.
This implies that
wy (@, (1,1)¢" = xr(@) 1y’

for a € E' since

= )= () (e )
= exp((v™'X — vY))

if we write o« = a + bi = eV~ 1?. This completes the proof. O

5.6.5.2. The case when By and Bs are ramified. In this case, we have:
F=R,
w(x) — eQW\/jE,
u < 0,
J = t? for some t € F*,
J1 = —s? for some s € F*,
e Jy <O.
Put v = |u|2. We take the complete polarization V = X' & Y’ as in §5.2.2 and
identify X’ with V1 = By as in §5.2.2.11 For a non-negative integer k, we define
¢' = ¢ € S(X') by

¢/(x) — C;% . (xQ — xli)k . 67%(1’%7“@?4'734217“17%)

for x = x1vy + -+ + x4vy, where vy, ..., vy is the basis of X’ given by (E8) and

Ku|z 1
C = W

LEMMA 5.6.2. We have (¢',¢') =1 and
wy(a, (a1, @2))¢" = xrra(@) ™ xr(ar)xi(az)@’
for a, a1, a2 € EX such that v(a) = v(ag)v(az).
PROOF. The proof is the same as that of Lemma [5.6.1] and we omit the details.
Note that, in this case, we have
wy(H)¢' (x) = 2+xi+ —i—xi '(z)
v 14 o ! 8I1 48:64 L4 ’
T/ —1 9 9

wu (0! (x) = T (a3 + uad — #3)! (),
oy L (1o 92 19 9
wy (V)¢'(z) = 2my/—1 (u 83:% 8:1:% + U 31:% 833421 #' (). -
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5.6.6. The case (fd). We only consider the case J; € (F*)?%; we switch the
roles of By and Bs in the other case. In this case, we have:
F =R,
w(x) — 6271'\/—_19;,
u < 0,
Ji =12 for some t € F*,
J = —s2 for some s € FX,
Ja < 0.

Put v = |u|2z. We take the complete polarization V = X’ & Y’ and identify X’ with
W = B as in §5.2.3] For a non-negative integer k, we define ¢’ = ¢} € S(X’) by

N
1 i v
¢ (x)=1¢, ? - (x1 - 062—) e T (@ —gatal—gwl)
u

for x = x1vy + -+ + x4vy, where vy, ..., vy is the basis of X’ given by (EI4) and

k!

Cpk = —5 -
k ﬂ-k|u|§+1

LEMMA 5.6.3. We have (¢',¢') =1 and
wy (o, (a1, a2))9" = xar(@) " xwra(an) xe(az)¢’
for a, a1, as € E* such that v(a) = v(ay)v(az).

PROOF. Recall that the Haar measure on X’ is given by dx = ﬁ dzy - --dxy.
We have

k
1 22— 12} emeai-dedtal-dad gy gy,
lul Jrs u
1 1 k (@24 a2adta?)
== ( —l—l‘) 273 TP dypy v - dxy
™ |u\ U

= . —(ri+r3) ridryre dr
k+2|u| e AL / / 1ary T2 arg
1/ / rlfe*(’”l”2 dry drg
’“|u|2+

4-1’ k+1
Tk |u| 5+ ( )

and hence (@', ') = 1. If we write 23 = x1 + IQ% and 29 = o3 + 3:4%, then
(p/(;[;) = C;% . (Zf)k . e—%(zlzf-i-zQzS)’
and it is easy to see that

1 /

wy (o, (12, a2))¢" = x(@) " xi(a2)¢’
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for a,as € EX and v = v(a)v(az)~t. On the other hand, we have

0 0
wul@¢ () = = (242104 ) ),

wy (X)¢' (x) = L o ua—Q + 3—2 - ui '(x)
LA dry/—1 \ 022 022 ' 922 Ox2 L

1 1
oy (1)@ (x) = /T ( - Job+ad - 1) '@

where we identity GU(V)? = (B} x BJ)/F* with a subgroup of GL2(B) via the
isomorphisms iy, iz given by (512), (BI3]). Thus, noting that

0? 1/ 62 0? 02 1/ 0? 0?
02104 4 (87 B “87) " 92,02 4 (aT B “67) ’
we see that
wy (201X = 27 hY) ' = V=1(k + 2)¢’
This implies that
wy (1, (a, 1))¢" = xp2(@)¢’
for o € E* since

i1 (a) = a 2b\ (1 cosf sinf) (1
i) = bu g )™ 274y ) \—sinf cosé 201
= exp((2v'X — 27 0Y)h)
if we write a = a + bi = eV ~1¢. This completes the proof. ]

5.7. Schwartz functions on X

Let ¢ € S(X) be the partial Fourier transform of the Schwartz function ¢’ €
S(X') given in §5.61 (We also write ¢, and ¢y, for the partial Fourier transforms of
apL and ¢}, respectively, to indicate the dependence on a unitary ramified character
1 in the case (rps) and on a non-negative integer k in the cases (ds), (fd).) Then
we have

(o) =(¢¢') =1L
Also, since the partial Fourier transform is a G(U(V)? x U(W))-equivariant map,
¢ satisfies the same equivariance properties as ¢’. In this section, we compute ¢
explicitly.

We need to introduce more notation. Put k; = 1 and ky; = —J;. We define a
quadratic F-algebra K by

K =F+Fj.
We write
T =e12] + ez =T1€] + Toey + T3€3 + 2464 € X,
zi =0+ Bij € K,
so that )
ap=w1, [1=x4, az=1x3, [o= 71533

Recall that the Weil index vp(¢) is an 8th root of unity such that

[ otarvtat) o =pat [ oy (—%)dw
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for all ¢ € S(F'), where g% is the Fourier transform of ¢ with respect to 1 and dz is
the self-dual Haar measure on F' with respect to . For any non-negative integer
n, let H,(x) denote the Hermite polynomial defined by

Ho(z) = (—1)ner L (e_”2> .

dzm
5.7.1. The case (ur).

5.7.1.1. The case when E is split and F is unramified. We use the notation
of m By the partial Fourier transform given in §5.41] we have ¢(x) =
2(11‘

12|~ 1Hz 1 @i(x;), where
@i 2 @i 2 2a;
bi 77/}(2581)/077/}(1)12(@1) bz -7 LT z) diE

LEMMA 5.7.1. Assume that ¢ is of order zero. Put

I(a,b) = /1/1(@:62 + bx) dx

wi(x;) =

fora,be F.
(i) We have

I, (b) ifa€o,
I(a,b) = B2 _1 b .
V(=g r(av)2a] 721, (5;)  if da ¢ p,

where ayp is the non-trivial character of F' given by (av)(x) = ¥(ax).
(ii) If F = Q2 and 2a € 0™, then we have

I(a,b) =Ty« (2).

PROOF. If a € o, then we have I(a,b) = I,(b) = I,(b). If 2a ¢ p, then we
change the variable z — z + 2% with y € o to get

2
I(a,b):/oqp(a(x—i-Q—ya) +b(m+%))dm
2
:qp(i—a-i-%)/ow(axz—i—xy—i—bx)dx
(Y by

Assume that 4a ¢ p Then we have I(a,b) = @b(gZ)I(a,b) for all y € o, so that
I(a,b) = 0 unless = € 0. If 2 € o, then we have

I(a,b):/ow <a <x—|— %)2—%> d:bzl/}(—%)/ﬂqp(axz)dx

On the other hand, by definition, we have

2
/¢ (a2?) dz = yr(at))|2a| 3 /¢ w( j—a)dw

for all ¢ € S(F'). Hence we have

/o¢<aw2>dw ~artaiza ¢ [ (=5 do = ptanfzal

o

This proves (i).
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Assume that F' = Q9 and 2a € 0*. As above, we have I(a,b) = w(g—g)I(a,b)
for all y € 20, so that I(a,b) = 0 unless 2 € 0. Also, we have

a

I(a,b) = ( >/¢ax

if g € 20. Changing the variable z — x + 1, we have

/¢ax dx—/wax +2azx+a)d /¢ax dx.

Since F' = Qy, 1 is of order zero, and 1(a)? = 9(2a) = 1, we must have (a) = —1.

Hence we have
/ Y(az?) dx =
0

so that I(a,b) = 0 if g € 20. Assume that % € 0*. Since F = Q2, we may write
azy—i—% and % :z—i—% for some y, z € 0. Then we have

I(a,b)z/aqp(a:? (y—i—%) + 2z <y+%> (z—i—%))dw
/ow (%:8 - %x) dx

1

since (x4 1) € o for all z € 0. This proves (ii). O

By Lemma B.7.1] we have

o 2a Ho(%;imi) if 74 € o,
1(f ) = ol 4
oo V(—aw)ie(an) || Ta(bia) i 4 ¢ p,
so that
p1(w1) = (2| - ¥ (%ﬁ) -Io(221),
p2(2) = [2J1] - ¢ (—%Ig) To(2J122),
1 J.
aan) = e(-t) - 2l - (St Lo2aa)
palan) = (t79) - [271% 0 (=502 ) o(2saa)
We have
1 1 1
Y (=tJatp) - yp(tJY) = yr(—2tJ2, 51/)) “yr(2tJ, 51?) '7F(§¢)2

= p(= 1, 59) - (<2002, 200 ) - p(—1, 3)

1
=yr(J1, 51/’) S(2tdy, 1) F-
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Hence we have
1 p
o) = 1r(J1, 50) - (202, T - 2P| 1]

t
X 1) (5(:@ — Ji23 + Jox3 — Jx§)> o (2214 (2J129) o (2 23) o (2] 24)

1 3 . .
=r(J1,59) - (2t 2, 1) F - 12121112 | o] - ey (21) s (22),

where
Ou(z) = (%tNK/F(z)) -HUJFO%(ZKZ)

for z € K.

5.7.1.2. The case when E is split and F is ramified. We use the notation of
§5.6. 1.2 Note that the inverse different 9! is equal to w~%0. By the partial Fourier
transform given in §5.4.1] we have ¢(z) = ¢?|2|7! H?:1 vi(z;), where
2a; a; a; 2a;
bil W (é.’[ﬁ?) /ow (b—é(x;)z - b—zl:tlx;) dz).

pi(z;) =

In particular, we have
1
@i(w:) € Zlq™?, pp=]

for all x; € F', where p is the residual characteristic of F' and p,~ is the group of
p-power roots of unity. If further 2 € 0%, then we have

pi(w;) =1 (%%2) 1, (-%%) = qu Y (%9@2) -1 (zi)

and hence
t
p(x) = qfd P (5(5”% - Jlxg - J2$§ + in)) 1 (1)1 (w2) 1 (23) -1 (24)

= qid : @Hl (Zl)¢52(z2)7
where
- Kt 2
Or(z) =1 ZtrK/F(z ) ) - To-140-15(2)
for z € K.

5.7.1.3. The case when E is inert and J € (F*)%2. We use the notation of
§5.6.1.31 By the partial Fourier transform given in §5.4.2.7] we have

1 - 1
o(x) = |J|2 - T,(z1 + txyg)l, (—5(:101 - t;v4)>
t ~ (] t
x I, <s <x2 + J—1x3>> I, <§ <x2 — J—1x3>>
1 st
= |J|2 - Tp(x1)L,(s22)L, (Tlx3> I, (tx4)

= |J‘§ . ]IO—FU%(zl)HU-‘rO%(SZQ)'
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5.7.1.4. The case when E is inert, and Jy € (F*)? or Jy € (F*)?. We use the
notation of §5.6.1.41 By the partial Fourier transform given in §5.4.3] we have

pla) = U1 Tofa + o)y (o~ t00))
o)1)
= I3 - Lo(@1)a(tz)L (F3) Lo(s24)

1
= |J|2 -H0+0%(21)H0+0%(t22).

x 1

=

5.7.1.5. The case when E is ramified. We use the notation of §5.6.1.51 By the
partial Fourier transform given in §5.4.2.2] we have

1 t «
x I, (— (l‘l +tixo + —x3 + t$4>> 1, (—
2 i1
1
2

~ t
x I, (— (:L‘l +tixo — t—l‘g — t.’L‘4)> I, (
1
t

4 4
X ]Io (Il +tixo + t—l‘3 + tl‘4> ]Iw—lo (Il —ti1xy — t—$3 + t$4>
1 1

Io(ar —t51)o (g