
Contents

Introduction 1
Acknowledgments 10

Chapter 1. Quaternionic Shimura Varieties 11
1.1. Shimura varieties 11
1.2. Automorphic vector bundles on quaternionic Shimura varieties 17
1.3. Rational and integral structures 25
1.4. Canonical quadratic period invariants 30

Chapter 2. Unitary and Quaternionic Unitary Groups 35
2.1. Hermitian and skew-hermitian spaces 35
2.2. The key constructions 37
2.3. The failure of the Hasse principle 41

Chapter 3. Weil Representations 43
3.1. Preliminaries 43
3.2. Weil representation for metaplectic groups 44
3.3. Reductive dual pairs 51

Chapter 4. The Rallis Inner Product formula and the Jacquet–Langlands
Correspondence 55

4.1. Setup 56
4.2. The Jacquet–Langlands–Shimizu correspondence 58
4.3. The doubling method 60
4.4. The Rallis inner product formula 63

Chapter 5. Schwartz Functions 67
5.1. Notation 67
5.2. Complete polarizations 68
5.3. Weil representations 73
5.4. Partial Fourier transforms 75
5.5. Automorphic representations 79
5.6. Schwartz functions on X′ 80
5.7. Schwartz functions on X 89

Chapter 6. Explicit Form of the Rallis Inner Product Formula 97
6.1. Measures 97
6.2. New vectors 105
6.3. An explicit Rallis inner product formula 107
6.4. Computation of 〈f, f〉 110
6.5. Matrix coefficients of the Weil representation 115

v



vi CONTENTS

6.6. Computation of Zv 120

Chapter 7. The Main Conjecture on the Arithmetic of Theta Lifts 125
7.1. On the choices of u, J1 and J2 125
7.2. The main conjecture 131

Appendix A. Abelian Varieties, Polarizations and Hermitian Forms 143
A.1. Abelian varieties and Hodge structures 143
A.2. Polarizations and hermitian forms 143

Appendix B. Metaplectic Covers of Symplectic Similitude Groups 147
B.1. Setup 147
B.2. Action of outer automorphisms on the 2-cocycle 148
B.3. Metaplectic groups 150
B.4. Change of polarizations 150

Appendix C. Splittings: The Case dimB V = 2 and dimB W = 1 153
C.1. Setup 153
C.2. The case u ∈ (F×)2 or J ∈ (F×)2 155
C.3. The case Ji ∈ (F×)2 178
C.4. The product formula 191

Appendix D. Splittings for the Doubling Method: Quaternionic Unitary
Groups 195

D.1. Setup 195
D.2. Splitting zV� 196
D.3. Splitting zY′� 198
D.4. Splitting zY� 209

Bibliography 211



Introduction

In this paper and its sequels [31], [32], we study periods of automorphic forms
on quaternionic Shimura varieties. Specifically, the periods that we focus on are the
Petersson inner products of Hilbert modular forms and of their Jacquet–Langlands
lifts to quaternionic Shimura varieties. This subject was pioneered by Shimura, who
proved many results on algebraicity of ratios of Petersson inner products and made
a precise general conjecture ([70] Conjecture 5.10) that predicts a large number of
algebraic relations in theQ-algebra generated by such periods. Shimura’s conjecture
was proved by Harris [22] under a technical hypothesis on the local components of
the corresponding automorphic representation. This hypothesis was relaxed partly
by Yoshida [80], who also used these period relations to prove a refined conjecture
of Shimura ([70] Conj. 5.12, [71] Conj. 9.3) on the factorization of Petersson inner
products into fundamental periods up to algebraic factors. In later papers [24]
[25], Harris has considered the question of generalizing such period relations to the
setting of unitary Shimura varieties. Specialized to the case of hermitian spaces
of dimension two, these latter results provide more precise information about the
fields of rationality of quadratic period ratios of quaternionic modular forms.

In this series of papers, we will study the corresponding integrality questions.
The simplest interesting case is the period ratio

〈f, f〉
〈g, g〉

where f is a usual modular form of (even) weight 2k (for GL2 over Q) and trivial
central character, and g is its lift to a Shimura curve corresponding to an indefinite
quaternion algebra, also defined over Q. The forms f and g here are assumed to
be newforms and to be suitably integrally normalized. In this case, there is a very
precise rationality result due to Harris and Kudla [26] which asserts that the ratio
above lies in the field generated by the Hecke eigenvalues of f . As for the more
refined integrality question, one knows the following:

(i) In the special case when the weight 2k equals 2 and f corresponds to an
isogeny class of elliptic curves, it is shown in [60], §2.2.1 that the period ratio
above equals (up to Eisenstein primes) an explicit product of Tamagawa numbers,
which in turn are related to level-lowering congruences satisfied by the form f . This
suggests that such period ratios contain rather deep arithmetic information. The
proof in this case follows by combining three geometric ingredients:

• The work of Ribet on level-lowering [64] and its extension due to Ribet and
Takahashi [65], which depend on a study of the geometry of Shimura curves,
especially a description of their bad reduction and of the component groups of
the Néron models of their Jacobians.
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2 INTRODUCTION

• The Tate conjecture for products of curves over number fields, which was proved
by Faltings [15], and which implies that modular elliptic curves are equipped
with a uniformization map X → E, with X being a Shimura curve.
• A study of the Manin constant for the map X → E, following [52], [13], [1].

(ii) In the more general case of weight 2k > 2, such geometric arguments are not
available. One of the main obstructions is that the Tate conjecture is unknown for
products of Kuga–Sato varieties. Instead, one may try to use purely automorphic
techniques. This is the strategy employed in [60], where we showed (using the theta
correspondence and results from Iwasawa theory) that for f and g of arbitrary even
weight, the ratio 〈f, f〉/〈g, g〉 is integral outside of an explicit finite set of small
primes, and further that it is always divisible by primes at which the form f satisfies
certain level-lowering congruences. The converse divisibility and the more precise
relation to Tamagawa numbers is also expected to hold in general, but seems harder
to prove. This is one problem that we hope to eventually address by the methods
of this paper.

Let us now elaborate a bit on the relation of this problem to the Tate conjecture.
As described above, the case of weight two forms for GL2 over Q is relatively
simple since one knows by Faltings that the Tate conjecture holds for a product
of curves. This implies that there exists an algebraic cycle on the product X1 ×
X2, where X1 and X2 are modular and Shimura curves respectively, that at the
level of cohomology, identifies the f and g-isotypic components of the “motives”
H1(X1) and H1(X2) respectively. The rationality of the period ratio 〈f, f〉/〈g, g〉
is then a simple consequence of the fact that such a cycle induces an isomorphism
of the Hodge–de Rham structures [23] attached to f and g. For forms of higher
weight, the Jacquet–Langlands correspondence can similarly be used to produce
Tate classes on a product W1 × W2 where W1 and W2 are Kuga–Sato varieties
fibered over X1 and X2 respectively. However, we are far from understanding
the Tate (or even Hodge) conjecture in this case. The case of Hilbert modular
forms considered in this paper seems even harder: in the simplest setting, namely
for forms of parallel weight two and trivial central character, the Tate conjecture
predicts the existence of algebraic cycles on products of the form X × (X1 ×X2),
where X, X1 and X2 are suitably chosen quaternionic Shimura varieties such that
dim(X) = dim(X1) + dim(X2). Again, these cycles should induce isomorphisms of
Hodge–de Rham structures H∗(X)Π � H∗(X1)Π ⊗ H∗(X2)Π that in turn should
imply the predicted period relations up to rationality. (Here the subscript Π denotes
the Πf -isotypic component for a fixed automorphic representation Π = Π∞ ⊗Πf .)
This point of view—at least the factorization of Hodge structures—occurs explicitly
in the work of Oda ([56], [57]). It is worth remarking here that the Tate and Hodge
conjectures are only expected to hold rationally in general and not integrally, and
thus by themselves do not predict any statements about integrality of period ratios.
Nevertheless, the discussion above on period ratios suggests that in the setting of
arithmetic automorphic forms on Shimura varieties, such integral relations do hold
and that their proofs lie much deeper than those of the corresponding rational
relations.

With this background, we will outline the main results of this paper. Let F
be a totally real number field with [F : Q] = d, ring of integers OF , class number
hF and discriminant DF . Let Π = ⊗vΠv be an irreducible cuspidal automorphic
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representation of GL2(AF ) of weight (k, r) = (k1, . . . , kd, r), conductor N and cen-
tral character ξΠ. We assume that k1 ≡ k2 ≡ · · · ≡ kd ≡ r (mod 2) and all the
ki ≥ 1. Thus Π is the automorphic representation associated with a classical Hilbert
modular form. (Note that we allow forms of partial or parallel weight one.)

For simplicity we will assume that at all finite places v where Πv is ramified,
it is either a special representation with square-free conductor (i.e., an unramified
twist of the Steinberg representation) or a ramified principal series representation
Ind(χ1⊗χ2) with χ1 unramified and χ2 ramified. We can thus factor the conductor
N of Π as

N = Ns ·Nps

whereNs is the (square-free) product of the conductors at places where Πv is special
and Nps is the product of the conductors at places where Πv is ramified principal
series.

Let KΠ be the number field generated by the Hecke eigenvalues of Π and OKΠ

the ring of integers of KΠ. We set NΠ := NN, kΠ := max ki and

N(Π) := 2 · hF ·DF ·NΠ · kΠ!, R := OQ[1/N(Π)].

Let ΣF denote the set of all places of F and Σ∞ and Σfin the subsets of infinite
and finite places respectively. Let ΣΠ be the set of places v of F at which Πv is
discrete series. Thus, ΣΠ equals the union of ΣΠ,∞ and ΣΠ,fin, where

ΣΠ,∞ := ΣΠ ∩ Σ∞ = {v ∈ Σ∞ : kv ≥ 2},
ΣΠ,fin := ΣΠ ∩ Σfin = {v ∈ Σfin : ordv(Ns) > 0}.

For any quaternion algebra B over F , let ΣB denote the set of places of F at which
B is ramified. Also set

ΣB,∞ := ΣB ∩ Σ∞,

ΣB,fin := ΣB ∩ Σfin.

Henceforth we suppose that ΣB ⊂ ΣΠ, so that by Jacquet–Langlands [35], Π
transfers to an automorphic representation ΠB of B×(A). To such a pair (B,Π),
we will attach in §1.4 below a canonical quadratic period invariant

qB(Π) ∈ C×/R×.

This period invariant is essentially (i.e., up to some factors coming from normaliza-
tions of measures) equal to the Petersson inner product of a normalized eigenform
fB in ΠB. Here we use the assumption that Ns is square-free to first fix fB up to
a scalar. The scalar is then fixed by requiring that fB correspond to an integrally
normalized section of a suitable automorphic vector bundle on the Shimura variety
associated with the algebraic group B×.

The goal of this paper and its sequels is to study the relations between the
invariants qB(Π) for fixed Π as B varies over all quaternion algebras in ΣΠ. The
following conjecture is a more precise version of [61] Conjecture 4.2 and provides
an integral refinement of Shimura’s conjecture on algebraic period relations. The
reader may consult §4 of [61] for a discussion of the motivation behind this formu-
lation. To state the conjecture, let L(s,Π, ad) denote the adjoint (finite) L-function
attached to Π and let Λ(s,Π, ad) denote the corresponding completed L-function
that includes the Γ-factors at the infinite places. Let us recall the following invari-
ant of Π, which has played a crucial role in the study of congruences of modular
forms (see [29], [30], [77]):
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(I.1) Λ(Π) := Λ(1,Π, ad).

Conjecture A. There exists a function

c(Π) : ΣΠ → C×/R×, v �→ cv(Π),

such that:

(i) cv(Π) lies in R (mod R×) if v is a finite place, and
(ii) for all B with ΣB ⊆ ΣΠ, we have

qB(Π) =
Λ(Π)∏

v∈ΣB
cv(Π)

(in C×/R×).

Remark 1. It is easy to see that, if it exists, the function c(Π) is uniquely
determined as long as |ΣΠ| ≥ 3. Also, as the notation suggests, the invariants cv(Π)
are not invariants of the local representation Πv but rather are really invariants of
the global representation Π.

Remark 2. The conjecture should be viewed as describing period relations
between the quadratic periods qB(Π) as B varies. Indeed, the number of B with
ΣB ⊆ ΣΠ is 2|ΣΠ|−1 but the conjecture predicts that the corresponding invariants
qB(Π) can all be described using only |ΣΠ|+1 invariants, namely the L-value Λ(Π)
and the additional invariants cv(Π), which are |ΣΠ| in number.

Remark 3. For B = M2(F ), the conjecture simply predicts that

qM2(F )(Π) = Λ(Π) in C×/R×.

This piece of the conjecture is known to be true. Indeed, it follows from the fact
that the integral normalization of fB in the split case coincides with the q-expansion
normalization (see [11], §5), combined with the well known relation between the
Petersson inner product of a Whittaker normalized form f ∈ Π and the value of
the adjoint L-function at s = 1. (See Prop. 6.3.1 for instance.)

It is natural to ask for an independent description of the invariants cv(Π).
Before discussing this, we recall the notion of Eisenstein primes for Π. To any
finite place λ of KΠ, one can associate (by [69], [9], [12], [67], [5], [76], [73], [37];
see also [4]) an irreducible two dimensional Galois representation

ρΠ,λ : Gal(Q/F )→ GL2(KΠ,λ)

that is characterized up to isomorphism by the requirement that

tr ρΠ,λ(Frobv) = av(Π)

for any finite place v of F that is prime to N·Nλ, with av(Π) being the eigenvalue of
the Hecke operator Tv acting on a new-vector in Πv. Choose a model for ρΠ,λ that
takes values in GL2(OKΠ,λ) and denote by ρ̄Π,λ the semisimplification of the mod
λ reduction of ρΠ,λ. The isomorphism class of ρ̄Π,λ is independent of the choice of
model of ρΠ,λ. Let Fλ = OKΠ

/λ be the residue field at λ. The prime λ is said to
be Eisenstein for Π if

ρ̄Π,λ : Gal(Q/F )→ GL2(Fλ)

is (absolutely) reducible, and non-Eisenstein otherwise.
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Let N(Π)Eis be the product of the Nλ as λ varies over all the Eisenstein primes

for Π. (There are only finitely many such.) Let R̃ denote the ring

R̃ := R[1/N(Π)Eis] = OQ[1/N(Π)N(Π)Eis].

The following conjecture characterizes the invariants cv(Π) for finite places v
up to Eisenstein primes, relating them to level-lowering congruences for Π. (It is
obviously conditional on the truth of Conjecture A. See also [59].)

Conjecture B. Suppose that v belongs to ΣΠ,fin. Then cv(Π) mod R̃× has

a representative in KΠ ∩ R̃. Moreover, if λ is a non-Eisenstein prime for Π with
(λ,N(Π)) = 1, then vλ(cv(Π)) equals the largest integer n such that ρΠ,λ mod λn is
unramified at v.

At the infinite places v, one might hope to have similarly a description of the
invariants cv(Π) purely in terms of the compatible system ρΠ,λ of two-dimensional
Galois representations attached to Π. In principle, to such a system one should
be able to attach a motive defined over F , and the cv(Π) should be related to
periods of this motive taken with respect to suitable integral structures on the de
Rham and Betti realizations. In practice, the only case in which one can make an
unconditional definition is when Π satisfies the following conditions:

(a) Π is of parallel weight 2, that is k = (2, . . . , 2).
(b) Either d(= [F : Q]) is odd or ΣΠ,fin is nonempty.

If Π satisfies both (a) and (b) above, it is known (using [5]) that one can associate
to Π an abelian variety A over F (or more precisely, an isogeny class of abelian
varieties) such that

• dim(A) = [KΠ : Q];
• EndF (A)⊗Q ⊃ KΠ;
• A has good reduction outside N;
• For any prime λ of KΠ lying over a rational prime �, the representation ρΠ,λ is

isomorphic to the representation of Gal(Q/F ) on H1
et(AQ,Q�)⊗KΠ⊗Q�

KΠ,λ.

In this isogeny class, we may pick an abelian variety A such that EndF (A) ⊃ OKΠ
.

Then one can make a precise conjecture for cv(Π) for v ∈ Σ∞ in terms of the
periods of A. Here, we will be content to state this conjecture in the case KΠ = Q,
namely when A is an elliptic curve over F . Let A denote the Néron model of A
over RF := OF [1/N(Π)]. Then L := H0(A,Ω1

A/RF
) is an invertible RF -module.

This module can be trivialized by picking a large enough number field K ⊇ F and
extending scalars to the ring RK := OK [1/N(Π)]. Pick a generator ω for L⊗RF

RK

viewed as an RK-module. Let v′ be any archimedean place of K extending v, and
denote by σv : F → R the real embedding of F corresponding to v. The class of
the integral

1

(2πi)2

∫
A⊗σvC

ωv′ ∧ ω̄v′

in C×/R̃× can be checked to be independent of the choices above.

Conjecture C. Suppose that KΠ = Q so that A is an elliptic curve. Then

cv(Π) =
1

(2πi)2

∫
A⊗σvC

ωv′ ∧ ω̄v′ in C×/R̃×.
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Remark 4. One expects that the invariants cv(Π) are transcendental for any
infinite place v. Note that if A is the base change of an elliptic curve defined over a
smaller totally real field F ′ (in which case Π is the base change of a Hilbert modular
form for F ′), then there are obvious algebraic relations between the cv(Π). It would
be interesting to formulate a converse to this: namely, can one give a criterion for
Π to be a base change purely in terms of the Q-algebra generated by the invariants
cv(Π)?

Remark 5. It would also be interesting to formulate the conjectures above
without inverting N(Π). There are lots of obvious difficulties with primes that are
small with respect to the weight as well as with integral models at primes of bad
reduction. In [32], we will extend the conjectures above in the case F = Q to
include primes of bad reduction at which the local component of the automorphic
representation Π is ramified principal series. The only Shimura varieties that occur
then are Shimura curves and those associated with definite quaternion algebras over
Q. The geometric difficulties with primes of bad reduction can be dealt with in this
case “by hand”.

The goal of this first paper is to reformulate Conjecture A in terms of a new
conjecture (Conjecture D below) on the arithmetic properties of a theta lift between
quaternionic Shimura varieties. This reformulation has many advantages since the
arithmetic of theta lifts can be studied via a range of automorphic techniques includ-
ing the Rallis inner product formula and period integrals along tori. Moreover, the
constructions involved seem to be useful in attacking several other related problems
involving algebraic cycles. We will briefly discuss two such applications below.

Now we outline the main construction. Let B1, B2 and B be three quaternion
algebras unramified outside of ΣΠ such that B = B1 ·B2 in the Brauer group of F .
There is then, up to isometry, a unique skew-hermitian B-space (V, 〈·, ·〉) such that

GUB(V )0 � (B×
1 ×B×

2 )/F×.

Here GUB(V )0 denotes the identity component of the group of quaternionic unitary
similitudes of V . For computational purposes, we will need an explicit construction
of such a space V . For this, we pick a CM extension E/F with

E = F + F i, i2 = u ∈ F×,

such that E embeds in B1 and B2. Fix embeddings

E ↪→ B1, E ↪→ B2

and write
B1 = E + Ej1, B2 = E + Ej2,

where j21 = J1 and j22 = J2 lie in F . Then there is an embedding of E in B such
that

B = E + Ej, j2 = J,

where J = J1J2. Let V = B1 ⊗E B2, viewed as a right E-vector space. In Chapter
2 below, we show that V can naturally be equipped with a right B-action extending
the action of E, as well as a B-skew Hermitian form 〈·, ·〉 such that the quaternionic
unitary similitude group GUB(V )0 admits the description above.

Let W be a one-dimensional B-space equipped with the standard B-hermitian
form so that

GUB(W ) = B×.
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We wish to study the theta lift

Θ : A(GUB(W )) −→ A(GUB(V )0),

where A(G) denotes the space of cuspidal automorphic forms on G(A). The pair
(UB(W ),UB(V )) is an example of a classical reductive dual pair. For our appli-
cations we need to work with the corresponding similitude groups. In order to
construct the theta lift, one needs to first construct (local) splittings of the meta-
plectic cover over the subgroup

{(g, h) ∈ GUB(V )0 ×GUB(W ) : ν(g) = ν(h)},

that satisfy the product formula. (Here ν denotes the similitude character.) For
quaternionic unitary similitude groups, this does not seem to be covered in the
existing literature. This problem is handled in the appendices under the assumption
that u, J1 and J2 are chosen such that for every finite place v of F , at least one of
u, J1, J2 and J is locally a square. (See Remark 7 below.)

The splittings being chosen, the correspondence Θ above can be defined and
studied. For any quaternion algebra B′ with ΣB′ ⊆ ΣΠ, we let πB′ denote the
unitary representation associated with ΠB′ . Thus

πB′ = ΠB′ ⊗ ‖νB′‖−r/2,

where νB′ denotes the reduced norm on B′. In Chapter 4, we prove the following
theorem regarding Θ (in the case B �= M2(F )), which gives an explicit realization
of the Jacquet–Langlands correspondence, extending the work of Shimizu [68].

Theorem 1.

Θ(πB) = πB1
� πB2

.

Remark 6. Up to this point in the paper, we make no restrictions on F or
Π. However from Chapter 5 onwards (and thus in the rest of the introduction), we
assume for simplicity the following:

• N is prime to 2DF/Q, where DF/Q denotes the different of F/Q.

These assumptions simplify some of the local computations in Chapters 5 and 6,
and could be relaxed with more work.

While Theorem 1 is an abstract representation theoretic statement, for our
purposes we need to study a more explicit theta lift. The Weil representation
used to define the theta lift above is realized on a certain Schwartz space S(X).
In Chapter 5, we pick an explicit canonical Schwartz function ϕ ∈ S(X) with the
property that θϕ(fB) is a scalar multiple of fB1

� fB2
. Thus

θϕ(fB) = α(B1, B2) · (fB1
× fB2

),

for some scalar α(B1, B2) ∈ C×. The scalar α(B1, B2) depends not just on B1 and
B2 but also on the other choices made above. However, we will omit these other
dependencies in the notation.

That α(B1, B2) is nonzero follows from the following explicit version of the
Rallis inner product formula, proved in Chapter 6. (The assumption B �= M2(F )
in the statement below is made since the proof in the case B = M2(F ) would be
somewhat different. See for instance §6 of [16]. Note that this case corresponds to
the original setting of Shimuzu [68], and is not needed in this paper.)
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Theorem 2. Suppose B1 �= B2, or equivalently, B �= M2(F ). Then

|α(B1, B2)|2 · 〈fB1
, fB1
〉 · 〈fB2

, fB2
〉 = C · 〈f, f〉 · 〈fB, fB〉,

where C is an explicit constant (see Thm. 6.3.2) and f is a Whittaker normalized
form in Π (as in Remark 3).

The arithmetic properties of α(B1, B2) are of key importance. As such, the
choice of measures needed to define the invariants qB(Π) requires us to work with
a slight modification of α(B1, B2), denoted α(B1, B2), as described in §7.2. We are
especially interested in questions of integrality of α(B1, B2) for which we may work
one prime at a time. Thus we fix a prime � not dividing N(Π) and then choose
all the data (for example, E, J1, J2, ϕ) to be suitably adapted to �. The choices
are described in detail in §7.1. Finally, we come to main conjecture of this paper,
which is motivated by combining Theorem 2 with Conj. A.

Conjecture D. Suppose that B1 �= B2 and ΣB1
∩ ΣB2

∩Σ∞ = ∅, that is B1

and B2 have no infinite places of ramification in common. Then

(i) α(B1, B2) lies in Q
×
.

(ii) α(B1, B2) is integral at all primes above �.
(iii) If in addition B1 and B2 have no finite places of ramification in common,

then α(B1, B2) is a unit at all primes above �.

While not immediately apparent, Conjecture D implies Conjecture A. Indeed,
in §7.2, we show the following.

Theorem 3. Suppose that Conjecture D is true for all � in some set of primes
Ξ. Then Conjecture A holds with R replaced by R[1/� : � �∈ Ξ]. Consequently, if
Conjecture D is true for all � � N(Π), then Conjecture A is true.

At this point, the reader may feel a bit underwhelmed since all we seem to have
done is reformulate Conjecture A in terms of another conjecture that is not visibly
easier. However, we believe that Conjecture D provides the correct perspective
to attack these fine integrality questions about period ratios, for several reasons.
Firstly, it does not require an a priori definition of the invariants cv. Second, it
fits into the philosophy that theta lifts have excellent arithmetic properties and is
amenable to attack by automorphic methods of various kinds. Lastly, it is usually
a very hard problem (in Iwasawa theory, say) to prove divisibilities; on the other
hand, if a quantity is expected to be a unit, then this might be easier to show, for
instance using congruences. Part (iii) of Conjecture D, which states that α(B1, B2)
is often a unit, has hidden in it a large number of divisibilities that would be
very hard to show directly, but that might be more accessible when approached in
this way. This is the approach taken in the sequels [31] and [32] where we study
Conjecture D and give various applications to periods.

As mentioned earlier, the constructions discussed above also have concrete ap-
plications to problems about algebraic cycles. We mention two of these:

– In [33], we study the Bloch–Beilinson conjecture for Rankin–Selberg L-
functions L(fE , χ, s), where f is a modular form of weight k and χ is a Hecke
character of an imaginary quadratic field E of infinity type (k′, 0) with k′ ≥ k. The
simplest case is when (k, k′) = (2, 2). In this case we give an explicit construction
of cycles corresponding to the vanishing of the L-function and prove a relation be-
tween the p-adic logarithms of such cycles and values of p-adic L-functions. (All
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previous constructions of cycles for such L-functions ([19], [55], [3]) only work in
the case k > k′.) The key input from this paper is the embedding

GUB(V )0 → GUE(V), V := ResB/E(V ),

which provides a morphism of Shimura varieties that can be used to construct the
relevant cycle.

– In [34] we consider the Tate conjecture for products X1 ×X2 where X1 and
X2 are the Shimura varieties associated with two quaternion algebras B1 and B2

over a totally real field F that have identical ramification at the infinite places of F .
As explained earlier, the Jacquet–Langlands correspondence gives rise to natural
Tate classes on X1×X2 and the Tate conjecture predicts the existence of algebraic
cycles on the product giving rise to these Tate classes. While we cannot as yet
show the existence of such cycles, we are able to at least give an unconditional
construction of the corresponding Hodge classes, and show moreover that these are
compatible with all the Tate classes, i.e., are close to being absolutely Hodge. These
Hodge classes are constructed not by comparing periods but rather by finding a
morphism

X1 ×X2 → X

into an auxiliary Shimura variety X and constructing Hodge classes on X that
restrict nontrivially to X1 ×X2. The relation with the current paper is that X1 ×
X2 and X may be viewed as the Shimura varieties associated with certain skew-
hermitian B spaces, with B = B1 ·B2.

Finally, we give a brief outline of the contents of each chapter. In Chapter 1 we
recall the theory of automorphic vector bundles on quaternionic Shimura varieties
and define the canonical quadratic period invariants qB(Π). In Chapter 2, we
give the key constructions involving quaternionic skew-hermitian forms. Chapter
3 discusses the general theory of the theta correspondence as well as the special
case of quaternionic dual pairs, while Chapter 4 establishes the general form of the
Rallis inner product formula in our situation and proves that the theta lift we are
considering agrees with the Jacquet–Langlands correspondence. In Chapter 5, we
pick explicit Schwartz functions, which are then used in Chapter 6 to compute the
precise form of the Rallis inner product formula in our setting. In Chapter 7 we
first discuss all the choices involved in formulating the main conjecture, Conjecture
D above, and then show that it implies Conjecture A. Appendix A is strictly not
necessary but is useful in motivating some constructions in Chapter 1. The results
from Appendix B on metaplectic covers of symplectic similitude groups are used in
the computations in Appendix C. Appendices C and D are invoked in Chapters 3,
4 and 5, and contain the construction of the relevant splittings, on which more is
said in the remark below.

Remark 7. The problem of constructing the required splittings and checking
various compatibilities involving them turns out to be rather nontrivial and occupies
the lengthy Appendices C and D. For isometry groups, these can be handled using
the doubling method as in Kudla [40, §4]. This gives a collection of splittings (one
for each place v)

sKudla,v : UB(V )(Fv)×UB(W )(Fv)→ C(1)
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that satisfy the product formula:∏
v

sKudla,v(γ) = 1

for γ ∈ UB(V )(F ) × UB(W )(F ). The problem is really to extend these splittings
to the groups

{(g, h) ∈ GUB(V )0(Fv)×GUB(W )(Fv) : ν(g) = ν(h)}
in such a way that they still satisfy the product formula. A similar problem for
the dual pairs consisting of the unitary similitude groups of a hermitian E-space V
and a skew-hermitian E-space W can be solved using the fact that V ⊗E W can
be considered as a skew-hermitian E-space, and the group

{(g, h) ∈ GUE(V)×GUE(W) : ν(g) = ν(h)}
(almost) embeds in UE(V ⊗E W). This fails when working with B-spaces since
B is non-commutative and the tensor product construction is not available. To
circumvent this problem, we first construct by hand, splittings

sv : {(g, h) ∈ GUB(V )0(Fv)×GUB(W )(Fv) : ν(g) = ν(h)} → C(1)

in Appendix C and check that they satisfy several natural properties including the
product formula (Proposition C.4.4). This suffices to construct the theta lift Θ.
In order to prove the Rallis inner product formula, we need to check a further
compatibility between our splittings sv and the splittings sKudla,v, in the context
of the doubling method. This is accomplished in Lemma D.4.2 in Appendix D.
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CHAPTER 1

Quaternionic Shimura Varieties

1.1. Shimura varieties

1.1.1. Shimura varieties and canonical models. We recall quickly the
general theory of Shimura varieties and their canonical models [10]. Let S :=
ResC/R Gm denote the Deligne torus. There is an equivalence of categories

R-Hodge structures ←→ R-vector spaces with an algebraic action of S,

described as follows. Suppose that V is an R-vector space equipped with a pure
Hodge structure of weight n. Thus we have a decomposition of VC := V ⊗R C:

VC =
⊕

p+q=n

V pq,

where V pq = V qp. Define an action h of C× on VC by

h(z)v = z−pz̄−qv for v ∈ V pq.

Since h(z) commutes with complex conjugation, it is obtained by extension of
scalars from an automorphism of V defined over R. This gives a map on real points
h : S(R) = C× → GL(V )(R), that comes from an algebraic map S→ GL(V ).

A Shimura datum is a pair (G,X) consisting of a reductive algebraic group G
over Q and a G(R)-conjugacy class X of homomorphisms h : S→ GR satisfying the
following conditions:

(i) For h in X, the Hodge structure on the Lie algebra g of GR given by Ad ◦h
is of type (0, 0) + (−1, 1) + (1,−1). (In particular, the restriction of such an
h to Gm,R ⊂ S is central.)

(ii) For h in X, Ad h(i) is a Cartan involution on Gad
R , where Gad is the adjoint

group of G.
(iii) Gad has no factor defined over Q whose real points form a compact group.

These conditions imply that X has the natural structure of a disjoint union of
Hermitian symmetric domains. The group G(R) acts on X on the left by

(g · h)(z) = g · h(z) · g−1.

To agree with our geometric intuition, we will sometimes write τh (or simply τ ) for
h in X.

Let A and Af denote respectively the ring of adèles and finite adèles of Q.
Let K be an open compact subgroup of G(Af ). The Shimura variety associated to
(G,X,K) is the quotient

ShK(G,X) = G(Q)\X ×G(Af )/K.
11
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For K small enough, this has the natural structure of a smooth variety over C. The
inverse limit

Sh(G,X) = lim←−K ShK(G,X)

is a pro-algebraic variety that has a canonical model over a number field E(G,X),
the reflex field of the Shimura datum (G,X). In particular, each ShK(G,X) has a
canonical model over E(G,X).

We recall the definition of E(G,X). This field is defined to be the field of
definition of the conjugacy class of co-characters

μh : Gm,C → SC → GC,

where the first map is z �→ (z, 1) and the second is the one induced by h. Let us
say more precisely what this means. For any subfield k of C , letM(k) denote the
set of G(k)-conjugacy classes of homomorphisms Gm,k → Gk. Let Q denote the

algebraic closure of Q in C. Then the inclusion Q ↪→ C gives a bijection between
M(Q) and M(C), and thus a natural action of Gal(Q/Q) on M(C). The reflex
field E(G,X) ⊂ C is then the fixed field of the subgroup

{σ ∈ Gal(Q/Q) : σMX = MX}
where MX is the conjugacy class of μh for any h ∈ X.

1.1.2. Automorphic vector bundles. We recall the basics of the theory of
automorphic vector bundles following [20], [21], [17]. First, to any μ : Gm,C → GC

as above one can associate a filtration Filt(μ) of RepC(GC). This is the functor
which assigns to every complex representation (V, ρ) of GC the filtered vector space
(V, F ·

μ) where F ·
μ is the filtration on V corresponding to ρ ◦ μ; that is, F p

μV =

⊕i≥pV
i
μ, where V i

μ is the subspace of V on which Gm(C) acts via z �→ zi. In
particular, one obtains a filtration on gC via the adjoint representation of G(C).
Let Pμ be the subgroup ofGC that preserves the filtration F ·

μ in every representation
(V, ρ). Then Pμ is a parabolic subgroup of GC that contains the image of μ and
has Lie algebra F 0

μgC. The unipotent radical RuPμ of Pμ has Lie algebra F 1
μgC and

is the subgroup that acts as the identity on Gr·μ(V ) in every representation (V, ρ).
The centralizer Z(μ) of μ in GC is a Levi subgroup of Pμ, isomorphic to Pμ/RuPμ.
Thus the composite map

μ̄ : Gm,C → Pμ → Pμ/RuPμ

is a central homomorphism. Then Filt(μ) equals Filt(μ′) if and only if Pμ = Pμ′

and μ̄ = μ̄′.
Let X̌ denote the compact dual Hermitian symmetric space to X. As a set,

it may be defined as the set of filtrations of RepC(GC) that are G(C)-conjugate to
Filt(μh). Equivalently, it may be described as the set of equivalence classes [(P, μ)]
of pairs where P is a parabolic in GC and μ : Gm,C → P is a co-character such
that (P, μ) is G(C)-conjugate to (Pμh

, μh) for some (and therefore every) h ∈ X.
Here we say that (P, μ) is equivalent to (P ′, μ′) if P = P ′ and μ̄ = μ̄′. Note that
if (P, μ) is conjugate to (P, μ′), then μ̄ = μ̄′. Indeed, if g−1(P, μ)g = (P, μ′), then
g ∈ NGC

(P ) = P . Write g = �u, with � ∈ Z(μ) and u ∈ RuP , we see that

μ′ = g−1μg = u−1μu,

so that μ̄′ = μ̄ as claimed. Thus in a given conjugacy class of pairs (P, μ), the
homomorphism μ̄ is determined entirely by P . Conversely, for any pair (P, μ) in
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the conjugacy class of (Pμh
, μh), the parabolic P must equal Pμ so that μ determines

P . It follows from this discussion that the natural map

G(C)× X̌ → X̌, (g, [(P, μ)]) �→ [g(P, μ)g−1]

makes X̌ into a homogeneous space for G(C) and the choice of any basepoint [(P, μ)]
gives a bijection G(C)/P � X̌. Further, there is a unique way to make X̌ into a
complex algebraic variety such that this map is an isomorphism of complex varieties
for any choice of base point. Moreover, the map

ξ : MX → X̌, μ �→ [(Pμ, μ)]

is surjective and X̌ has the natural structure of a variety over E(G,X) such that the
map ξ is Aut(C/E(G,X))-equivariant. When we wish to emphasize the rational
structure of X̌, we will write X̌C instead of X̌.

There is a natural embedding (the Borel embedding)

β : X ↪→ X̌, h �→ [(Ph, μh)],

where henceforth we write Ph for Pμh
. Let V̌ be a GC-vector bundle on X̌. The

action of G(C) on X̌ extends the G(R) action onX. Thus V := V̌|X is aG(R)-vector
bundle on X. For an open compact subgroup K of G(Af ), define

VK = G(Q)\V ×G(Af )/K,
which we view as fibered over ShK(G,X). In order that this define a vector bundle
on ShK(G,X), we need to assume that V̌ satisfies the following condition:

(1.1) The action of GC on V̌ factors through Gc
C.

Here Gc = G/Zs, where Zs is the largest subtorus of the center ZG of G that is
split over R but that has no subtorus split over Q. Assuming (1.1), for sufficiently
small K, VK is a vector bundle on ShK(G,X). If V̌ is defined over E ⊇ E(G,X),
then VK has a canonical model over E as well.

Remark 1.1.1. The reader may keep in mind the following example which
occurs in this paper. Let G = ResF/Q GL2, with F a totally real field. Then
ZG = ResF/Q Gm and Zs = ker(NF/Q : ZG → Gm).

We now recall the relation between sections of the bundle VK and automorphic
forms on G(A). This requires the choice of a base point h ∈ X. Let Kh be the
stabilizer in G(R) of h. Let kh denote the Lie algebra of Kh and consider the
decomposition of gC with respect to the action of Ad ◦h:

gC = p
+
h ⊕ kh,C ⊕ p

−
h .

Here p
+
h = g

−1,1
C , p−h = g

1,−1
C and kh,C = g

0,0
C for the Hodge decomposition on gC

induced by Ad ◦h. Thus p
±
h correspond to the holomorphic and antiholomorphic

tangent spaces of X at h. Then Ph is the parabolic subgroup of G(C) with Lie
algebra kh,C ⊕ p

−
h . The choice of h gives identifications X = G(R)/Kh, X̌ =

G(C)/Ph and the Borel embedding is given by the natural map

G(R)/Kh ↪→ G(C)/Ph.

Let Vh denote the fiber of V at h; equivalently this is the fiber of the bundle V̌
at β(h) ∈ X̌. This comes equipped with a natural action of Kh, denoted ρVh

. Let
εh denote the map

G(A)→ ShK(G,X) = G(Q)\X ×G(Af )/K, g = (g∞, gf ) �→ [(g∞(h), gf )].
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Then there is a canonical isomorphism

ε∗h(VK) � G(A)× Vh,
via which sections of VK can be identified with suitable functions from G(A) into
Vh. This gives a canonical injective map

Lifth : Γ (ShK(G,X),V)→ C∞(G(Q)\G(A)/K,Vh)
whose image is the subspace A(G,K,V , h) consisting of ϕ ∈ C∞(G(Q)\G(A)/K,Vh)
satisfying:

(i) ϕ(gk) = ρVh
(k)−1ϕ(g), for g ∈ G(A) and k ∈ Kh;

(ii) Y · ϕ = 0 for all Y ∈ p
−
h ;

(iii) ϕ is slowly increasing, Kh-finite and Z(gC)-finite, where Z(gC) is the center
of the universal enveloping algebra of gC.

Let us make explicit the map Lifth. Fix some τ = τh ∈ X and let s be a section
of VK. For any gf ∈ G(Af ), there is a canonical identification

Vτ � VK,[τ,gf ]

where [τ, gf ] denotes the class of (τ, gf ) in ShK(G,X). Let g = (g∞, gf ) ∈ G(A) =
G(R)×G(Af ). The section s gives an element s([g∞τ, gf ]) ∈ Vg∞τ . However, the
element g∞ induces an isomorphism

tg∞ : Vτ � Vg∞τ .

The map Lifth(s) : G(A)→ Vτ is then defined by sending

g �→ t−1
g∞s([g∞τ, gf ]).

Remark 1.1.2. The subgroup Ph of GC acts on the fiber V̌β(h) at the point
β(h). This gives an equivalence of categories

GC-vector bundles on X̌ ←→ complex representations of Ph.

The functor in the opposite direction sends a representation (V, ρ) of Ph to the
vector bundle

GC ×ρ V = (GC × V )/{(gp, v) ∼ (g, ρ(p)v), p ∈ Ph},
which fibers over GC/Ph in the obvious way. Sections of this vector bundle can be
identified with functions

f : G(C)→ V, f(gp) = ρ(p)−1f(g).

Example 1.1.3. This example will serve to normalize our conventions. Let
G = GL2,Q and X the G(R)-conjugacy class containing

h0 : S→ GR, a+ bi �→
(

a b
−b a

)
.

Identify X with h±, the union of the upper and lower half planes; h0 is identified
with the point i. Then E(G,X) = Q and X̌ � P1

Q = G/P , where P is the Borel
subgroup (of upper triangular matrices) stabilizing ∞, for the standard action of
G on P1. We will fix the isomorphism X̌ � P1

Q such that the map

h± = X
β
↪→ X̌C
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is the identity map. For k ≡ r mod 2, let V̌k,r be the homogeneous GC-bundle on

X̌C corresponding to the character

χk,r : PC → C×,

(
a ∗

d

)
�→ dk det(·)

r−k
2

of PC. Note that abstractly V̌k,r � O(k) though the GC-action depends on r as
well. For any h ∈ X, we write ρk,r for the corresponding representation of Kh. The
representation ρk,r of Kh0

= R× · SO2(R) is the character given by

z · κθ �→ zreikθ, κθ =

(
cos θ sin θ
− sin θ cos θ

)
.

For more general h, the character ρk,r is given by composing the above character
with the isomorphism Kh � Kh0

given by x �→ α−1xα for any α ∈ G(R) such that
αh0α

−1 = h. The corresponding automorphic line bundle Vk,r,K is defined over Q.
Its dual V∨

k,r,K is the usual bundle of modular forms of weight k and level K. We
can make this more explicit as follows.

Let V = β∗(V̌k,r). The connected hermitian space h+ carries a natural family
of (polarized) elliptic curves, the fiber over τ ∈ h+ being the elliptic curve Aτ =
C/(Zτ + Z). Let ω be the sheaf of relative one-forms; it is a line bundle on h+

and there is a canonical isomorphism β∗V̌∨
k,r|h+ = V∨ � ωk. This gives a canonical

trivialization Trivh : V∨
h � C for all h ∈ h+, namely the map sending dz⊗k to

1, where z is the coordinate on C = Lie(Aτ ). Thus any section ϕ of V∨
k,r,K on

ShK(G,X) gives rise (via Trivh ◦Lifth) to a function

ϕh : GL2(A)→ C, h ∈ h
+,

such that ϕh(gκ) = ρ∨k,r(κ)
−1ϕh(g) for all κ ∈ Kh. In particular, for z · κθ ∈ Kh0

,
we have

ϕh0
(g · z · κθ) = ϕh0

(g) · zr · eikθ.

Finally, there is a unique modular form f of weight k on h+ such that for all h ∈ h+,
we have

ϕh(g) = f(g∞(τh))j(g∞, τh)
−k det(g∞)

r+k
2 ,

where g = gQ(gKg∞) with gQ ∈ G(Q), gK ∈ K and g∞ ∈ G(R)+. (Here G(R)+

denotes the topological identity component of G(R); moreover, as is the usual

convention, we set j(γ, z) = cz + d for γ =

[
a b
c d

]
.)

Example 1.1.4. Let G = B×, where B is a non-split indefinite quaternion
algebra over Q. Then E(G,X) = Q and X̌ is a form of P1; in fact it is a Severi–
Brauer variety associated to the class of B in the Brauer group of Q. The variety
X̌ (over C) carries the line bundles O(k) but only for k even do these descend to
line bundles over Q. Indeed, the canonical bundle on X̌ has degree −2, so O(−2)
descends. On the other hand, O(1) does not descend since if it did, by Riemann–
Roch it would admit a section whose zero locus is a rational point. Nevertheless,
for any σ ∈ Aut(C/Q), the line bundle L := O(1) on X̌C satisfies σ∗L � L, so its
field of definition is Q.
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1.1.3. Integral models. We assume in this section that the Shimura variety
(G,X) is of abelian type. Let O denote the ring of integers of E(G,X) and λ | �
a prime of O. We assume that we are given a reductive group G0 over Z(�) such
that GQ = G. Let G = G0,Z�

and K� = G(Z�). Then K� is a hyperspecial (maximal
compact) subgroup of G(Q�). Suppose that K is an open compact subgroup of
G(Af ) of the form K� · K�, with K� as above and K� a subgroup of G(A�

f ), where

A�
f denotes the ring of finite adeles with trivial component at �. Then ShK(G,X)

admits a natural integral model SK,λ(G,X) over O(λ), the localization of O at the

prime λ. More precisely, if one fixes K� and allows K� to vary, then Kisin [38] shows
that the projective system lim←− ShK�K�(G,X) admits a canonical model SK�,λ(G,X)
over O(λ), which is characterized by a certain extension property. We will also need
integral models of automorphic vector bundles on ShK(G,X). In the abelian case,
these are constructed in the paper of Lovering [49], and we now summarize the
relevant results.

Recall that the compact dual X̌ is naturally defined over E(G,X). In addition,
X̌ has a natural model X̌ over O(λ) whose A-valued points for any O(λ)-algebra A
are in bijection with equivalence classes of pairs (P, μ) consisting of a parabolic
subgroup P of G0,A and a cocharacter μ : Gm,A → P , where (P, μ) ∼ (P ′, μ′) if
P = P ′ and μ̄ = μ̄′. The data needed to define integral models of automorphic
vector bundles consists of the following:

— A finite extension L of E(G,X) and aGL-equivariant vector bundle V̌ on X̌L.
The corresponding automorphic vector bundle VK on ShK(G,X) has a canonical
model over L.

— A prime λ of OL; we write λ for the induced prime of O as well.
— A G0-equivariant vector bundle V̌λ on X̌OL,(λ)

, extending the GL-equivariant

vector bundle V̌ on X̌L.
To this data, one can associate (by the results of [49]) in a functorial way a

vector bundle VK,λ over SK,λ(G,X)⊗O(λ)
OL,(λ) which extends VK. Likewise, if one

fixes K� and varies K�, one gets a vector bundle VK�,λ over SK�,λ(G,X)⊗O(λ)
OL,(λ).

If f : V̌1
λ → V̌2

λ is a map of G0-equivariant vector bundles over X̌OL,(λ)
, there are

natural associated maps fK : V1
K,λ → V2

K,λ and fK�
: V1

K�,λ
→ V2

K�,λ
.

1.1.3.1. Models over OL[
1
N ]. These are also constructed in [49] and we sum-

marize the results. Suppose that we are given a reductive group G0 over Z[ 1N ] such
that G0,Q = G and that K is of the form

∏
�K�, where K� = G0(Z�) for all � not

dividing N , so that K� is hyperspecial for such �. Then the integral models of
ShK(G,X) for varying � (not dividing N) patch together to give a canonical model
SK,O[ 1

N ](G,X) over O[ 1N ].

The compact dual X̌ has a natural model X̌ over O[ 1N ] as well. Suppose that
we are given moreover:

— A finite extension L of E(G,X) and a GL-equivariant vector bundle V̌ on
X̌L.

— A G0-equivariant vector bundle V̌ on X̌OL[ 1
N ], extending the GL-equivariant

vector bundle V̌ on X̌L.
Then the integral models VK,λ (as λ varies over the primes of OL not dividing

N) patch together to give an integral model VK,OL[ 1
N ] over OL[

1
N ].
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1.2. Automorphic vector bundles on quaternionic Shimura varieties

In this section, we review the connection between automorphic forms on the
multiplicative group of a quaternion algebra over a totally real field and sections
of automorphic vector bundles on the corresponding Shimura variety. We will also
define canonical metrics on such bundles.

Remark 1.2.1. Everything in this section goes through verbatim even in the
case that the quaternion algebra B is totally definite, even though this does not
strictly speaking give a Shimura variety in the sense of §1.1.

Let F be a totally real field and B a quaternion algebra over F . Let GB denote
the Q-algebraic group ResF/Q(B

×). Thus for any Q-algebra R, the R-valued points
of GB are given by

GB(R) = (B ⊗Q R)×.

Let ΣB denote the set of places of F at which B is ramified.
We fix for the moment some choice of isomorphisms

B ⊗F,σ R � M2(R), for σ ∈ Σ∞ � ΣB;(1.2)

B ⊗F,σ R � H, for σ ∈ ΣB,∞,(1.3)

where H is the subalgebra {(
α β
−β̄ ᾱ

)
: α, β ∈ C

}
of M2(C). (Later we will fix these isomorphisms more carefully.) The choice of
isomorphisms above gives us identifications

GB(R) �
∏

σ∈Σ∞�ΣB

GL2(R)×
∏

σ∈ΣB,∞

H×

and

GB(C) �
∏

σ∈Σ∞

GL2(C).

Let XB be the GB(R)-conjugacy class of homomorphisms S→ GB,R containing

h0 : S→ GB,R, h0 :=
∏
σ

h0,σ, h0,σ(z) =

{
z, if σ ∈ Σ∞ � ΣB ;

1, if σ ∈ ΣB,∞,

where we identify C with a subring of M2(R) (see the remark below). Denote by
X̌B the corresponding compact dual hermitian symmetric space. The choice of
isomorphisms (1.2) and (1.3) above gives rise to an identification X̌B = (P1

C)
dB and

XB = (h±)dB , with dB being the number of infinite places of F where B is split.

Remark 1.2.2. (Choices) We embed C in M2(R) by identifying a+ bi with the
matrix (

a b
−b a

)
.

In addition, we identify the homomorphism

S→ GL2,R, a+ bi �→ a+ bi =

(
a b
−b a

)
.
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with the element i ∈ h. Note that this is opposite to the usual choice made by
Shimura. Shimura would identify i ∈ h with the map

a+ bi �→
(
a −b
b a

)
.

1.2.1. Hermitian forms. For σ ∈ Σ∞�ΣB, let Vσ,R denote the vector space
R2 of column vectors viewed as a left M2(R)-module. Let h : C× = S(R)→ (B⊗F,σ

R)× = GL2(R) = GL(Vσ,R) be any homomorphism that is GL2(R)-conjugate to
h0,σ. Then we can write

(1.4) Vσ,C = Vσ,R ⊗R C = V −1,0
σ,h ⊕ V 0,−1

σ,h ,

where the decomposition on the right corresponds to the C-subspaces on which
h(z)⊗ 1 acts as 1⊗ z and 1⊗ z̄ respectively. The bilinear form

(1.5) (x, y) �→ tx

(
0 −1
1 0

)
y

on Vσ,R is almost GL2(R)-invariant:

(gx, gy) = det(g) · (x, y).
Further, it satisfies the following conditions:

(i) (x, y) = −(y, x).
(ii) (h(i)x, h(i)y) = (x, y).
(iii) The form (x, h(i)y) is symmetric. (This follows formally from (i) and (ii).)

Further, it is positive definite if h is GL2(R)+-conjugate to h0. (Otherwise it
is negative definite.)

Remark 1.2.3. Let τ be the unique point on the complex upper half plane
fixed by Kh. The bilinear form above equals 1

2πiλτ where λτ is the Weil pairing on
H1(Aτ ) given in the ordered basis {τ, 1}.

The composite map

Vσ,R → Vσ ⊗R C→ V −1,0
σ,h

is an R-linear isomorphism; via this isomorphism one gets a skew-smmetric bilinear
form on V −1,0

σ,h , which is the negative of the imaginary part of a (necessarily unique)

hermitian form Hh on V −1,0
σ,h defined by identifying V −1,0

σ,h with Vσ,R and setting

Hh(x, y) = (x, h(i)y)− i(x, y) = (x, iy)− i(x, y).

Remark 1.2.4. The form Hh is linear in the first variable and conjugate linear
in the second variable. If we denote the form (1.5) above by B̃, then Hh agrees

with the form 2 · B̃h(i) of Appendix A, where:

(1.6) B̃h(i)(v, w) = B̃C(v, h(i)w̄).

If h is GL2(R)+-conjugate to h0, the form Hh is positive definite on account of
condition (iii) above. Note that

(1.7) Hh(x, x) = (x, h(i)x).

The subgroup Kh preserves the decomposition (1.4) and the form Hh is Kh-
invariant up to a scalar. In fact, for κ ∈ Kh, we have

Hh(κx, κy) = det(κ)Hh(x, y).
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Moreover, the natural action of GL2(R) on Vσ,C takes V −1,0
σ,h isomorphically onto

V −1,0
σ,g·h (recall g · h = ghg−1) and we have

Hg·h(gx, gy) = (gx, (gh(i)g−1)gy)− i(gx, gy) = det(g) [(x, h(i)y)− i(x, y)]

= det(g)Hh(x, y).

We note also that det(Vσ,C) carries a natural bilinear form induced from the C-
linear extension of (·, ·). We equip det(Vσ,C) with the positive definite Hermitian
form

(1.8) Hdet(x, y) = (x, ȳ),

where the complex conjugation is with respect to the natural real structure coming
from det(Vσ,R). This hermitian form satisfies

Hdet(gx, gy) = det(g)2 ·Hdet(x, y)

for all g ∈ GL2(R). Equivalently, one can first extend (·, ·) to a C-bilinear form on
VC, convert it to a Hermitian form H on VC by H(x, y) = (x, ȳ) and then let Hdet

be the induced hermitian form on det(VC). Explicitly,

Hdet(v1 ∧ v2, w1 ∧ w2) = det

[
H(v1, w1) H(v1, w2)
H(v2, w1) H(v2, w2)

]
= det

[
(v1, w̄1) (v1, w̄2)
(v2, w̄1) (v2, w̄2)

]
.

For σ ∈ ΣB,∞, let Vσ,C denote the C-vector space C2 of column vectors viewed
as a left M2(C)-module. The form

(x, y) �→ tx

(
0 −1
1 0

)
y

is almost GL2(C)-invariant:

(gx, gy) = det(g) · (x, y).
Let L be the R-linear operator

L(x) :=

(
0 1
−1 0

)
x̄.

The operator L is the analog in this case of the operator w �→ h(i)w̄ in (1.6) and
the operator x �→ h(i)x in (1.7) above. Define a hermitian form H on Vσ,C by

(1.9) H(x, y) = (x, Ly) = txȳ.

Note that L commutes with the left action of H, hence the form H is H×-invariant
up to a scalar, which is also obvious from the formula above. More precisely, for
g ∈ H×, we have

H(gx, gy) = ν(g)H(x, y)

where ν is the reduced norm. As before, we also get an induced Hermitian form
Hdet on det(Vσ,C), which satisfies

Hdet(gx, gy) = ν(g)2Hdet(x, y)

for g ∈ H×.
For any σ ∈ Σ∞, let ρσ,k,r denote the representation

Vσ,k,r = Symk(Vσ,C)⊗ det(Vσ,C)
r−k
2
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of GL2(C), viewed as a sub-representation of V ⊗k
σ,C ⊗ det(Vσ,C)

r−k
2 . Note that the

central character of ρσ,k,r is z �→ zr.

Remark 1.2.5. For σ ∈ ΣB,∞ the hermitian form H of (1.9) induces a pos-

itive definite hermitian metric on Symk(Vσ,C) as follows. Let V = Vσ,C. The
symmetrization map

V ⊗k → V ⊗k, v1 ⊗ · · · ⊗ vk �→
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k)

factors through Symk(V ) and gives an injection

(1.10) s : Symk(V ) ↪→ V ⊗k

which is a section of the natural map V ⊗k → Symk(V ). The hermitian form H
induces naturally a hermitian form on V ⊗k (the tensor product form) and then

by restriction a hermitian form on Symk(V ). It is easy to check that this gives a

positive definite hermitian form on Symk(V ). Combining this with the metric on
det(Vσ,C), we get a positive definite hermitian metric on Vσ,k,r for all σ ∈ ΣB,∞.

1.2.2. Hermitian metrics on automorphic vector bundles. Let (k, r) be
a multi-index of integers with k = (kσ)σ∈Σ∞ such that

kσ ≡ r (mod 2) for all σ ∈ Σ∞.

We assume that kσ ≥ 1 if B is split at σ and that kσ ≥ 0 if B is ramified at σ.
Let ρk,r = ⊗σρσ,kσ,r be the representation of GB(C) on

Vk,r =
⊗
σ

Vσ,kσ,r.

This gives rise to a GB(C)-homogeneous vector bundle V̌ρk,r
on X̌B:

V̌ρk,r
= X̌B × Vk,r,

where the GB(C) action is:

g · (x, v) = (gx, gv).

By restriction one gets a GB(R)-homogeneous vector bundle Vρk,r
on XB. Further,

the latter admits a unique GB(R)-equivariant sub-bundle Vk,r corresponding to the
Kh-subrepresentation ρk,r,h on

Vk,r,h =
⊗

σ∈Σ∞�ΣB

(
(V −1,0

σ,h )⊗kσ ⊗ det(Vσ,C)
⊗ r−kσ

2

) ⊗
σ∈ΣB,∞

Vσ,kσ,r.

Here we consider (V −1,0
σ,h )⊗kσ as a subspace of SymkσVσ,C via the composite map

(V −1,0
σ,h )⊗kσ ↪→ V ⊗kσ

σ,C → SymkσVσ,C.

Let X+
B denote the connected component of XB containing h0. Note that for

h ∈ X+
B , the Kh-representation above carries a natural positive definite hermitian

metric 〈·, ·〉h obtained from the hermitian metrics in (1.7), (1.8) and (1.9) above.
(See also Remark 1.2.5 above.) This gives a metric on Vk,r that is almost GB(R)+-
equivariant; in fact, one has

〈gx, gy〉g·h = ‖ν(g)‖r〈x, y〉h
for g ∈ GB(R)+ and x, y ∈ Vk,r,h, where ‖ ·‖ denotes the idelic norm. Now consider

the vector bundle Vk,r |X+
B
× GB(Af ) on X+

B × GB(Af ). We equip this with the
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hermitian metric that assigns to the fiber Vk,r,h×{gf} over (h, gf ) ∈ X+
B ×GB(Af )

the metric defined above on Vk,r,h multiplied by the factor ‖ν(gf )‖r. Recall that
ShK(GB, XB) = GB(Q)\XB ×GB(Af )/K = GB(Q)+\X+

B ×GB(Af )/K
and

Vk,r,K = GB(Q)\Vk,r ×GB(Af )/K = GB(Q)+\Vk,r |X+
B
×GB(Af )/K,

where GB(Q)+ = GB(R)+ ∩GB(Q).

Proposition 1.2.6. The metric on Vk,r |X+
B
× GB(Af ) above descends to a

(positive definite hermitian) metric on the vector bundle Vk,r,K over ShK(GB, XB).

Proof. Let (h, gf ) and (h′, g′f ) be two elements of X+
B×GB(Af ) whose classes

in ShK(GB, XB) are equal. Then there exist elements γ ∈ GB(Q)+ and κ ∈ K such
that

(h′, g′f ) = γ(h, gf )κ = (γ · h, γfgfκ).
Here γf is γ viewed as an element of GB(Af ). We need to check that the bijection

Vk,r,h × {gf} → Vk,r,h′ × {g′f} = Vk,r,γ·h × {γfgfκ}
given by (v, gf ) �→ (γv, γgfκ) is metric preserving. But

〈γv1, γv2〉γ·h · ‖ν(γfgfκ)‖r =
∏

σ∈Σ∞

σ(ν(γ))r · 〈v1, v2〉h · ‖ν(γ)f‖r‖ν(gf )‖r

= 〈v1, v2〉h · ‖ν(gf )‖r,
using the product formula and the fact that ‖ν(κ)‖ = 1. �

We will need to work with the dual vector bundle V∨
k,r. This is motivated by

observing that in the case of GL2(Q), the bundle Vρk,r
corresponds to the relative

homology of the universal elliptic curve and the sub-bundle Vk,r corresponds to
its relative Lie algebra. The line bundle of usual modular forms corresponds to
the bundle of relative differentials, which is why we need to replace Vk,r by its
dual. We begin by making the following completely elementary remark, which we
nevertheless state carefully to avoid any confusion.

Remark 1.2.7. If ρ is a representation of a group G on a finite-dimensional
complex vector space V , then ρ∨ is defined by

ρ∨(g)(L) = L ◦ ρ(g−1)

for L ∈ V ∨ = Hom(V,C) and g ∈ G. Thus for the tautological pairing

(·, ·) : V ∨ × V → C, (L, v) = L(v),

we have

(ρ∨(g−1)L, v) = (L, ρ(g)v).

Suppose V is equipped with a non-degenerate hermitian pairing 〈·, ·〉 that is linear
in the first variable and conjugate linear in the second variable, and such that

〈gv, gw〉 = χ(g)〈v, w〉
for some character χ : G→ C×. Since 〈·, ·〉 is non-degenerate, it induces a conjugate
linear isomorphism

V � V ∨, w �→ Lw, Lw(v) = 〈v, w〉.
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Composing the inverse of this isomorphism with the canonical isomorphism V �
V ∨∨ gives a conjugate linear isomorphism V ∨ � (V ∨)∨, which one may view as a
hermitian form on V ∨. (There is some choice here, but it is fixed by requiring the
form to be linear in the first variable.) Explicitly this isomorphism sends Lw to the
linear functional evalw ∈ (V ∨)∨, so that for any L ∈ V ∨, we have

〈L,Lw〉 = L(w).

Note that

gLw(v) = Lw(g
−1v) = 〈g−1v, w〉 = χ(g)−1〈v, gw〉 = χ(g)−1Lgw(v),

so that gLw = χ(g)−1Lgw. For any L ∈ V ∨, we have

〈gL, gLw〉 = 〈gL, χ(g)−1Lgw〉 = χ(g)
−1〈gL, Lgw〉

= χ(g)
−1

(gL)(gw) = χ(g)
−1

L(w)

= χ(g)
−1〈L,Lw〉,

so for any L1, L2 ∈ V ∨, we have 〈gL1, gL2〉 = χ(g)
−1〈L1, L2〉.

From the remark above, it is clear that for x, y ∈ V∨
k,r,h and g ∈ GB(R)+, we

have

〈gx, gy〉gh = ‖ν(g)‖−r〈x, y〉h.
Thus we take on V∨

k,r |X+
B

×GB(Af ) the metric which on V∨
k,r,h ×{gf} is ‖ν(gf )‖−r

times the induced metric on V∨
k,r,h. This descends to a positive definite hermitian

metric 〈〈·, ·〉〉 on V∨
k,r,K. (See Prop. 1.2.6 above.)

1.2.3. Petersson norms and scalar valued forms.

Definition 1.2.8. A holomorphic automorphic form of weight (k, r) and level
K on GB is a holomorphic section s of the bundle V∨

k,r,K on ShK(GB, XB). Let

K̃ ⊇ K be any open compact subgroup ofGB(Af ) such that 〈〈s(x), s(x)〉〉 descends to
a function on ShK̃(GB, XB). Then the Petersson norm of the section s (normalized

with respect to K̃) is defined to be the integral

〈〈s, s〉〉K̃ :=

∫
ShK̃(GB ,XB)

〈〈s(x), s(x)〉〉 dμx

where dμx is the measure on ShK̃(GB, XB) defined in §6.1.2.

Remark 1.2.9. Definition 1.2.8 above has the advantage that it does not de-
pend on any choice of base point. In practice though, one usually needs to pick
a base point to make any computation at all, and so we shall now discuss the
translation between these two points of view.

Pick a base point h ∈ X+
B . Via the isomorphism Lifth, the space of holo-

morphic automorphic forms s as above is identified with the space of functions
A(GB,K,V∨

k,r, h). An element

F : GB(Q)\GB(A)/K → V∨
k,r,h

in A(GB,K,V∨
k,r, h) satisfies in particular the condition

(1.11) F (gκh) = ρ∨k,r,h(κh)
−1F (g), for all κh ∈ Kh.
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Henceforth we will fix a character ξ of F×\A×
F which satisfies

ξ(z · z∞) = N(z∞)r · ξ(z)

for z ∈ A×
F , z∞ ∈ A×

F,∞, and assume that the section s satisfies the following

invariance under the center ZGB
(Af ) = A×

F,f :

(1.12) s(x · α) = ξ(α) · s(x).

This enables us to take K̃ containing the maximal open compact subgroup of
ZGB

(Af ), and implies that the corresponding function F above satisfies the fol-
lowing invariance property: for α ∈ A×

F = ZGB
(A), we have

F (g · α) = ξ(α) · F (g)

and

〈F (g · α), F (g · α)〉 = ‖α‖2r · 〈F (g), F (g)〉.

Proposition 1.2.10. Suppose Lifth(s) = F . Let K0 denote any maximal com-

pact subgroup of GB(Af ) containing K̃. Then

〈〈s, s〉〉K̃ = 2|Σ∞�ΣB | · hF · [K0 : K̃] · 〈F, F 〉h,

where

〈F, F 〉h =

∫
[GB ]

〈F (g), F (g)〉h · ‖ν(g)‖−r dg.

Here and henceforth we write [GB] for GB(Q)ZGB
(A)\GB(A). Also, dg denotes

the standard measure on [GB] which is defined in §6.1.2.

Proof. Recall that if g = (g∞, gf ), we have

F (g) = g−1
∞ s[(g∞ · h, gf )],

where we view s[(g∞ · h, gf )] as an element in V∨
k,r,g∞·h. Let

GB(A)
+ := {g ∈ GB(A) : g = (g∞, gf ), g∞ ∈ GB(R)

+}.

Now for g ∈ GB(A)+, we have

〈F (g), F (g)〉h = ‖ν(g∞)‖r〈s[(g∞ · h, gf )], s[(g∞ · h, gf )]〉g∞·h

= ‖ν(g∞)‖r‖ν(gf )‖r · 〈〈s[(g∞ · h, gf )], s[(g∞ · h, gf )]〉〉
= ‖ν(g)‖r〈〈s[(g∞ · h, gf )], s[(g∞ · h, gf )]〉〉.

Since F and s are left GB(Q)-invariant and GB(A) = GB(Q)GB(A)+, the equal-
ity above holds for all g ∈ GB(A). The proposition follows from this and the
comparison of measures in Lemma 6.1.3. �

Next, we simplify further to scalar valued forms. For κ = (zσe
iθσ )σ∈Σ∞ ∈

(C×)d, let κh be the element of Kh ⊂ GB(R) defined by:

κh,σ =

{
hσ(zσe

iθσ ), if σ ∈ Σ∞ � ΣB;

h′
σ(zσe

iθσ ), if σ ∈ ΣB,∞,

where for σ ∈ ΣB,∞, we let h′
σ be some embedding of C× in (B ⊗F,σ R)×. (The

discussion below thus depends on the choice of such an h′
σ for all σ ∈ ΣB,∞; for
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the moment the exact choice is unimportant but later in Chapter 7, we shall make
the choice more precise.) The equation (1.11) can be rewritten as

F (gκh) =
∏

σ∈Σ∞

zrσ ·
∏

σ∈Σ∞�ΣB

eikσθσ ·
⊗

σ∈ΣB,∞

ρ∨σ,kσ,r(h
′
σ(e

−iθσ ))F (g).

For σ ∈ Σ∞ �ΣB, let vσ,kσ
be any nonzero vector in the one-dimensional C-vector

space

(V −1,0
σ,h )⊗kσ ⊗ det(Vσ,C)

⊗ r−kσ
2 ,

so that

(1.13) ρσ,kσ,r(κh,σ) · vσ,kσ
= zrσe

ikσθσ · vσ,kσ
.

Note that vσ,kσ
may also be characterized as the unique vector (up to scaling)

in Vσ,kσ,r that satisfies (1.13) for all κ ∈ (C×)d. For σ ∈ ΣB,∞, we likewise let
vσ,kσ

∈ Vσ,kσ,r be any nonzero vector such that the condition (1.13) is satisfied for
all κ ∈ (C×)d. Such a vector is again well-defined up to scaling.

Set vk = ⊗σ∈Σ∞vσ,kσ
∈ Vk,r,h. Define

φF (g) = (F (g), vk).

Then φF (g) satisfies

(1.14) φF (gκh) =
∏

σ∈Σ∞

zrσe
ikσθσ · φF (g)

and

(1.15) φF (αg) = ξ(α)φF (g), for α ∈ ZGB
(A) = A×

F .

Proposition 1.2.11. The map F �→ φF is injective.

Proof. This follows immediately from the fact that Vk,r,h is irreducible as a
module over G =

∏
σ∈ΣB,∞

(B ⊗F,σ R)×. Indeed, given any w ∈ Vk,r,h, there exist

elements κi ∈ G and αi ∈ C such that

w =
∑
i

αiρ(κi)vk,

where ρ denotes the natural action of G on Vk,r,h. Then

(F (g), w) =
∑
i

αi(F (g), ρ(κi)vk) =
∑
i

αi(ρ
∨(κi)

−1F (g), vk)

=
∑
i

αi(F (gκi), vk) =
∑
i

αiφF (gκi).

Thus if φF is identically zero, then so is F . �

We will now compare 〈F, F 〉 to 〈φF , φF 〉, where

〈φF , φF 〉 =
∫
[GB ]

φF (g)φF (g) · ‖ν(g)‖−r dg.

We use the following well known lemma.
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Lemma 1.2.12. Let K be a compact Lie group and V a (finite dimensional)
irreducible complex representation of K. Let 〈·, ·〉 be a nonzero K-invariant her-
mitian form on V (such a form is unique up to scalar multiples) and denote also by
〈·, ·〉 the induced hermitian form on V ∨. Then for all v1, v2 ∈ V and L1, L2 ∈ V ∨,
we have ∫

K

(ρ∨(k)L1, v1)(ρ∨(k)L2, v2) dk =
1

dim(V )
· 〈v1, v2〉〈L1, L2〉,

where dk is Haar measure normalized to have total volume 1.

Remark 1.2.13. It is immediate to check that if the form 〈·, ·〉 on V is scaled
by α ∈ C×, then the form 〈·, ·〉 on V ∨ is scaled by ᾱ−1, so the right hand side is
independent of the choice of 〈·, ·〉.

Proposition 1.2.14.

〈F, F 〉h =
rankVk,r
〈vk, vk〉h

· 〈φF , φF 〉.

Proof. Let K0
h denote the maximal compact subgroup of Kh. Since Vk,r,h is

an irreducible representation of K0
h, using Lemma 1.2.12 we get

〈φF , φF 〉 =
∫
[GB ]

φF (g)φF (g) · ‖ν(g)‖−r dg

=

∫
K0

h

∫
[GB ]

φF (g)φF (g) · ‖ν(g)‖−r dg dκ

=

∫
K0

h

∫
[GB ]

φF (gκ
−1)φF (gκ−1) · ‖ν(gκ−1)‖−r dg dκ

=

∫
K0

h

∫
[GB ]

(F (gκ−1), vk)(F (gκ−1), vk) · ‖ν(g)‖−r dg dκ

=

∫
[GB ]

∫
K0

h

(ρ∨(κ)F (g), vk)(ρ∨(κ)F (g), vk) · ‖ν(g)‖−r dκ dg

=
1

rankVk,r
〈vk, vk〉h

∫
[GB ]

〈F (g), F (g)〉h‖ν(g)‖−r dg. �

1.3. Rational and integral structures

As in the introduction, let Π = ⊗vΠv be an irreducible cuspidal automorphic
representation of GL2(AF ) corresponding to a Hilbert modular form of weight (k, r),
character ξΠ and conductor N = Ns ·Nps. Thus the character ξΠ satisfies

ξΠ(z · z∞) = N(z∞)r · ξΠ(z)

for z ∈ A×
F and z∞ ∈ A×

F,∞. We also let π = ⊗vπv denote the corresponding unitary
representation:

π := Π⊗ ‖ det(·)‖−r/2.

Recall that ΣΠ denotes the set of all places v of F at which Πv is discrete series.
Let B be any quaternion algebra over F such that ΣB ⊆ ΣΠ, where ΣB denotes
the set of places v of F where B is ramified. By the Jacquet–Langlands corre-
spondence, there exists a unique irreducible (cuspidal) automorphic representation
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ΠB � ⊗vΠB,v of GB(A) such that ΠB,v � Πv for all v �∈ ΣB . Let kB = (kB,σ)σ∈Σ∞

be defined by:

(1.16) kB,σ =

{
kσ, if B is split at σ,

kσ − 2, if B is ramified at σ.

We say then that ΠB has weight (kB , r) at infinity.
Choose a maximal order OB in B. Recall that we have assumed that the

conductor N of Π satisfies

N = Ns ·Nps

where Ns is divisible exactly by those primes at which Πv is discrete series and Nps

is divisible exactly by those primes at which Πv is ramified principal series. Let dB
be the (finite part of the) discriminant of B, so that dB divides Ns. Then there is
a unique integral ideal NB in OF such that

N = NB · dB,

and we may choose and fix an Eichler order OB(NB) in OB of level NB . We will
also fix an orientation of this order at the places dividing Nps. By this, we mean a
ring homomorphism

o : OB(NB)→ OF /Nps.

This choice determines an open compact subgroup K =
∏

�K� of GB(Af ), namely
K� =

∏
v|�Kv where for any finite place v of F , we have

Kv = ker
[
ov : (OB(NB)⊗OF

OF,v)
× → (OF,v/NpsOF,v)

×] .
Here ov is the natural map induced by the orientation o. For all rational primes
� such that (�,N(Π)) = 1, the subgroup K� is a hyperspecial maximal compact
subgroup of GB(Q�).

Now, we will assume that B is not totally definite, relegating the case of totally
definite B to Remark 1.3.3 at the end of this section. Let � be such that (�,N(Π)) =
1. Then for each prime λ of E(GB, XB) dividing such an �, one has (see §1.1.3) an
associated canonical integral model SK,λ = SK,λ(GB, XB) of ShK(GB, XB) defined
over OE(GB ,XB),(λ).

We will now fix more carefully the isomorphism

(1.17) φB : B ⊗Q R �
∏

σ∈Σ∞�ΣB

M2(R)×
∏

σ∈ΣB,∞

H.

Note that the vector bundles previously denoted by VρkB
,r,K and VkB ,r,K actually

depend on the choice of φB. In this section alone, we will be pedantic and write

VφB

ρkB
,r,K and VφB

kB ,r,K to indicate the dependence on φB. Let L ⊂ Q be a number

field that contains the images of all embeddings σ of F in Q and such that for all
such σ, we have

B ⊗F,σ L � M2(L).

Then L contains E(GB, XB). We pick the isomorphism φB above such that B
maps into

∏
σ∈Σ∞

M2(L). This data defines an L-rational structure ([20], [53]) on

the automorphic vector bundle VφB

ρkB
,r,K on ShK(GB, XB) associated to the GB(R)-

homogeneous vector bundles VφB
ρkB

,r as well as the sub-bundles VφB

kB ,r,K. To define
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integral models of these vector bundles, we first pick a rational prime � prime to
N(Π) and insist that the isomorphism φB satisfy

(1.18) φB(OB) ⊂
∏
σ

M2(OL,(�)),

so that φB gives an isomorphism

(1.19) OB ⊗Z OL,(�) �
∏
σ

OB ⊗OF ,σ OL,(�) �
∏
σ

M2(OL,(�)).

For later use, we will need the following lemma.

Lemma 1.3.1. Let φB and φ′
B be two isomorphisms satisfying the requirements

above. Then there exists an element

t ∈

⎛⎝ ∏
σ∈Σ∞�ΣB

GL2(R)×
∏

σ∈ΣB,∞

H×

⎞⎠ ∩∏
σ

GL2(OL,(�))

such that φB and φ′
B are conjugate by t.

Proof. We can work one embedding at a time. First suppose σ ∈ Σ∞ � ΣB.
Then we have a diagram as below for φB and a similar one for φ′

B ,

B ⊗F,σ R
φB

	
�� M2(R)

OB ⊗OF ,σ OL0,(�)
φB

	
��

� �

��

��

��

M2(OL0,(�))� �

��

��

��

OB ⊗OF ,σ OL,(�)
φB

	
�� M2(OL,(�))

where L0 := L∩R. The map in the middle is an isomorphism of Azumaya algebras
over the semi-local ring OL0,(�), so the Skolem–Noether theorem applies ([39] Chap.
III, 5.2.3 ) and there exists t ∈ GL2(OL0,(�)) such that φB and φ′

B are conjugate by
t. The proof in the case σ ∈ ΣB,∞ proceeds along similar lines. We first note that
OB⊗OF ,σOL0,(�) is free of rank four over OL0,(�) and pick a basis b1, . . . , b4 for this
OL0,(�)-module. Then (b1, . . . , b4) is a basis both for B⊗F,σ R as an R-vector space
and for OB ⊗OF,σ

OL,(�) as an OL,(�)-module. From this it follows that

(B ⊗F,σ R) ∩ (OB ⊗OF ,σ OL,(�)) = OB ⊗OF ,σ OL0,(�).

Thus there is a diagram as above:

B ⊗F,σ R
φB

	
�� H

OB ⊗OF ,σ OL0,(�)
φB

	
��

� �

��

��

��

M2(OL,(�)) ∩H
� �

��

��

��

OB ⊗OF ,σ OL,(�)
φB

	
�� M2(OL,(�))

Moreover, A := OB⊗OF ,σOL0,(�) is an Azumaya algebra over OL0,(�) (by [39] Chap.
III, 5.1.1 ) since for every maximal idealm ofOL0,(�), the algebra A/mA � M2(km) is
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central simple over km := OL0,(�)/m. Thus the map in the middle of the diagram is
an isomorphism of Azumaya algebras overOL0,(�), and the Skolem–Noether theorem
applies as before. �

We now return to our discussion of integral models. Using the discussion in
§1.1.3, we will see that the choice of Eichler order OB(NB) and the isomorphism
φB defines for all primes λ′ of L with λ′ | λ | � natural integral models for the

bundles VφB

ρkB
,r,K and VφB

kB ,r,K over SK,λ ⊗OE(GB,XB),(λ)
OL,(λ′). Indeed, the choice

of the Eichler order OB(NB) determines a reductive group G0 over Z(�) such that
G0,Q = GB; namely for any Z(�)-algebra A, we have

G0(A) = (OB(NB)⊗A)×.

Further, the map φB induces an isomorphism

(1.20) G0 ⊗OL,(�) �
∏

σ∈Σ∞

GL2/OL,(�)
.

This gives an integral model over OL,(�) for the compact dual symmetric space

and the vector bundle V̌kB ,r. Via the identification (1.20) above, the integral model

X̌OL,(�)
for the compact dual is simply the conjugacy class of the parabolic subgroup

P :=
∏

σ∈Σ∞�ΣB

B ×
∏

σ∈ΣB,∞

GL2/OL,(�)

of G0 ⊗OL,(�), where

B =

{(
∗ ∗
0 ∗

)}
⊂ GL2/OL,(�)

.

Thus X̌OL,(�)
is isomorphic to

∏
σ∈Σ∞�ΣB

P1
OL,(�)

, the isomorphism depending on

the choice of φB. Let Lσ = O2
L,(�) with the obvious left action of GL2(OL,(�)).

Then the integral models of the vector bundles V̌ρkB
,r and V̌kB ,r over X̌OL,(�)

are

the vector bundles V̌φB

ρkB
,r,OL,(�)

and V̌φB

kB ,r,OL,(�)
corresponding respectively to the

representations ⊗
σ∈Σ∞

SymkB,σ(Lσ)⊗ det(Lσ)
r−kB,σ

2

and ∏
σ∈Σ∞�ΣB

χkB,σ,r ·
⊗

σ∈ΣB,∞

SymkB,σ (Lσ)⊗ det(Lσ)
r−kB,σ

2

of P. (Recall that χk,r has been defined in Eg. 1.1.3.) Finally we apply the

discussion in §1.1.3 to get corresponding canonical integral models of VφB

ρkB
,r,K and

VφB

kB ,r,K (and their duals) over SK,λ ⊗OE(GB,XB),(λ)
OL,(λ′).

For all finite places v of F at which B is split, we will fix an isomorphism

(1.21) iv : B ⊗ Fv � M2(Fv)

such that for all but finitely many v, we have

(1.22) iv : OB(NB)⊗OF,v � M2(OF,v).

Let Δ be a large enough finite set of places of F such that

• Δ contains all the infinite places, and all the finite places v at which Πv is
ramified.
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• For all v �∈ Δ, the condition (1.22) holds.

For all finite places v not in Δ, we get (using iv) an identification

(1.23) Kv � GL2(OF,v), H′
v � Hv

where H′
v and Hv denote the spherical Hecke algebras on B×

v and GL2(Fv) con-
structed using the maximal compact subgroups Kv and GL2(OF,v) respectively.
Let

H′
Δ =

⊗
v 
∈Δ

H′
v, HΔ =

⊗
v 
∈Δ

Hv.

Note that H′
Δ acts naturally on the space of sections of (VφB

kB ,r,K)
∨ and we have

an identification H′
Δ � HΔ. Also HΔ acts on ⊗′

v 
∈ΔΠv. Let ϕ = ⊗v 
∈Δϕv be a

new-vector in the space ⊗′
v 
∈ΔΠv, so that ϕ is an eigenvector for the action of HΔ.

Let ΛΠ denote the corresponding character of HΔ.

Proposition 1.3.2. There exists up to scaling a unique non-zero section sB of

the bundle (VφB

kB ,r,K)
∨ which satisfies the following conditions:

(i) s is an eigenvector for the action of H′
Δ and H′

Δ acts on it by ΛΠ, via the
identification H′

Δ � HΔ above.
(ii) s satisfies (1.12) for ξ = ξΠ.

Proof. Let s be any section of (VφB

kB ,r,K)
∨. Pick some point h ∈ XB. Let

Fs,h = Lifth(s) and set φs,h = φFs,h
, notations as in the previous section. By

strong multiplicity one, the assignment s �→ φs,h gives a bijection of the space of

sections of (VφB

kB ,r,K)
∨ on which H′

Δ acts by ΛΠ with the space of functions

φ : GB(Q)\GB(A)/K → C

that satisfy (1.14) and (1.15) and on which H′
Δ acts by ΛΠ. By the Jacquet–

Langlands correspondence and the uniqueness of newforms [6], this latter space is
one-dimensional, generated by a nonzero element φ. If sB is such that φsB ,h = φ,
then sB is our required section. �

Let us enlarge L if necessary so that EΠ ⊂ L where EΠ is the field generated
by the Hecke eigenvalues of Π. By [22] Prop. 2.2.4, the section sB of Prop. 1.3.2
can be chosen to be L-rational. Further, for λ′ | λ | � as above, the integral model

of (VφB

kB ,r,K)
∨ over SK,λ ⊗OE(GB,XB),(λ)

OL,(λ′) defines an OL,(λ′)-lattice Mλ′ in

H0(ShK(GB, XB)/L, (VφB

kB ,r,K)
∨).

Fixing �, choose sB (by suitably scaling) such that for all λ′ | λ | �, it is a
generator for the rank one OL,(λ′)-lattice Mλ′ ∩ LsB. We will say that the section
sB is �-normalized.

Remark 1.3.3. In this remark we deal with the case of totally definite B.
Pick φB satisfying (1.18), (1.19) above with an appropriate choice of L. Then

XB = {h0}, and sections s of (VφB

kB ,r,K)
∨ are identified with functions

F : GB(Q)\GB(A)/K → V∨
kB ,r =

⊗
σ∈Σ∞

V ∨
σ,kB,σ,r
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satisfying the appropriate invariance property under the right action ofGB(R). Now
VkB ,r admits a natural L-rational structure as well as a natural OL,(�)-submodule:

VkB ,r ⊃ VkB ,r(L) =
⊗

σ∈Σ∞

SymkB,σL2 ⊗ det(L2)
r−kB,σ

2

⊃ VkB ,r(OL,(�)) =
⊗

σ∈Σ∞

SymkB,σO2
L,(�) ⊗ det(O2

L,(�))
r−kB,σ

2 .

The same holds for V∨
kB ,r as well; this gives an L-rational structure and an OL,(�)-

integral structure on the space of sections of (VφB

kB ,r,K)
∨, namely we take sections s

which on GB(Af ) take values in V∨
kB ,r(L) and V∨

kB ,r(OL,(�)) respectively. We pick

isomorphisms iv as above and Prop. 1.3.2 continues to hold. Finally, we pick sB to
be �-normalized with respect to the integral structure provided by V∨

kB ,r(OL,(�)).

Finally, for the convenience of the reader, we summarize the discussion in this
section in the following proposition which makes clear all the choices involved.

Proposition 1.3.4. Suppose that the following data has been chosen:

(i) A maximal order OB in B.
(ii) An Eichler order OB(NB) ⊂ OB.
(iii) An orientation o : OB(NB)→ OF /Nps.

(iv) A number field L ⊂ Q containing σ(F ) for all embeddings σ : F ↪→ Q ⊂ C,
and containing the field generated by the Hecke eigenvalues of Π.

(v) An isomorphism

φB : B ⊗ R �
∏

σ∈Σ∞�ΣB

M2(R)×
∏

σ∈ΣB,∞

H,

such that
φB(OB) ⊂

∏
σ

M2(OL,(�)).

(vi) For all finite places v of F at which B is split, an isomorphism

iv : B ⊗ Fv � M2(Fv)

such that for almost all v, iv induces an isomorphism

OB(NB)⊗OF,v � M2(OF,v).

The data of (i) to (vi) determines an open compact subgroup K of GB(Af ) and a

canonical section sB of the vector bundle (VφB

kB ,r,K)
∨ that satisfies the conditions (i)

and (ii) of Prop. 1.3.2. Moreover, sB can be chosen such that it is well defined up
to multiplication by an �-adic unit.

In the next section, we shall define a canonical quadratic period invariant using
the section sB. The key point will be to show that this period invariant is (up to
�-adic units) independent of the choices made in the proposition above.

1.4. Canonical quadratic period invariants

We can now define the canonical quadratic period invariants attached to Π and
state the main conjecture relating these invariants. Let B be a quaternion algebra
such that ΣB ⊆ ΣΠ. As in the introduction, let R be the ring OQ[1/N(Π)]. For

any rational prime � prime to N(Π), we define an invariant qB(Π, �) ∈ C×/R×
(�)
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as follows. Let K̃ ⊇ K be the open compact subgroup of GB(Af ) defined by

K̃ =
∏

v K̃v with

K̃v = (OB(NB)⊗OF
OF,v)

×.

Choosing a section sB as above that is �-normalized, define

qB(Π, �) := 〈〈sB, sB〉〉K̃ ∈ C×/R×
(�),

to be the Petersson norm of the section sB as in Defn. 1.2.8.

Proposition 1.4.1. The invariant qB(Π, �) is well defined, in that as an el-
ement of C×/R×

(�), it does not depend on the choices of the number field L, the

pair (OB(NB), o) consisting of the Eichler order OB(NB) and the orientation o :
OB(NB) → OF /Nps, the isomorphism (1.17) satisfying (1.18), (1.19) above and
the collection of isomorphisms (1.21).

Proof. We will give the argument in the case when B is not totally definite.
In the case of a totally definite B, a similar (but simpler) argument can be given
which we leave to the reader.

Independence of the choice of L is clear since we can always replace L by a
larger field without changing the choice of sB. Implicitly in the arguments below
we may need to make such a field extension and we do this without comment. Let
us first show that fixed choices of other data, there is no dependence on the choice
of isomorphisms (1.21). Indeed, for all but finitely many v, the isomorphisms iv
must satisfy (1.22). Let {i′v} be a different set of choices. Then for all but finitely
many v, the isomorphisms iv and i′v must differ by conjugation by an element of
Kv. For such v, the identifications H′

v � Hv given by iv and i′v are the same. This
implies that the same choice of sB can be used if {iv} is replaced by {i′v} and the
norm 〈〈sB, sB〉〉K̃ is unchanged.

Next let us look at the dependence on the choice of isomorphism φB in (1.17),
for fixed choices of other data. Let φ′

B be a different choice of isomorphism satisfying
(1.18). By Lemma 1.3.1, the isomorphisms φB and φ′

B differ by conjugation by an
element

t ∈
∏
σ

GL2(OL,(�)) ∩

⎛⎝ ∏
σ∈Σ∞�ΣB

GL2(R)×
∏

σ∈ΣB,∞

H×

⎞⎠ .

Then there is a natural morphism of integral models

V̌φB

OL,(�)
� V̌φ′

B

OL,(�)

which is just given by the (left) action of t on the fibers. This induces an iso-
morphism between the integral models of the corresponding automorphic vector
bundles that is also given by the action of t on the fibers. (Keep in mind that the
G(Q)-actions on the fibers are different, and differ by conjugation by t, so the left
action of t on the fibers is indeed a map of bundles.) Thus if sB is an �-normalized

section of (VφB

kB ,r,K)
∨, then s′B := t · sB is an �-normalized section of (Vφ′

B

kB ,r,K)
∨.

Then the inner products 〈〈sB, sB〉〉K̃ and 〈〈s′B, s′B〉〉K̃ differ by a power of ‖ν(t)‖,
which is a unit at �.

Finally, we consider dependence on the choice of the pair (OB(NB), o). Let
(OB(NB)

′, o′) be another such pair and let φ′
B (respectively i′v) denote our choices

of isomorphism (1.17) satisfying (1.18) (respectively the isomorphisms (1.21) sat-
isfying (1.22) for all but finitely many v). Let us suppose first that the pair
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(OB(NB)
′, o′) is conjugate to (OB(NB), o) by an element in B×, say OB(NB)

′ =
b−1OB(NB)b and o′(x) = o(bxb−1). By what we have shown so far we may assume
that

φ′
B(x) = φB(bxb

−1), i′v(x) = iv(bxb
−1).

The open compact subgroup K′ of GB(Af ) determined by the pair (OB(NB)
′, o′)

satisfies K′ = b−1Kb. Let us write b = b∞ · bf where b∞ and bf denote the infinite
and finite components of b respectively, viewed as elements in GB(A). There is a
natural isomorphism of Shimura varieties

ShK(GB, XB) = GB(Q)\XB ×GB(Af )/K
ξb� GB(Q)\XB ×GB(Af )/K′

= ShK′(GB, XB),

given by
(h, gf ) �→ (h, gfbf ).

Further, there is a natural isomorphism

(VφB

kB ,r,K)
∨ = GB(Q)\(VφB

kB ,r)
∨ ×GB(Af )/K

ξ̃b� GB(Q)\(Vφ′
B

kB ,r)
∨ ×GB(Af )/K′

= (Vφ′
B

kB ,r,K′)
∨,

covering ξb, given by

(1.24) (v, gf ) �→ (φB(b) · v, gf bf ).
Note that if γ is an element in GB(Q) then

γ · (v, gf ) = (φB(γ) · v, γgf ) �→ (φB(b)φB(γ) · v, γgfbf )
= (φ′

B(γ)φB(b) · v, γgfbf ) = γ · (φB(b) · v, gf bf ),
so that the assignment in (1.24) does descend to equivalence classes for the GB(Q)-

action. Note also that ξ̃B is the map on automorphic vector bundles corresponding
to a morphism of vector bundles that extend to the integral models, since these
integral models are defined using the triples (OB(NB), o, φB) and (OB(NB)

′, o′, φ′
B)

respectively. Thus ξ̃b is an isomorphism at the level of integral models, and so we
may assume that s′B = ξ̃b(sB). But then we see from the definition of the metrics

on the vector bundles (VφB

kB ,r,K)
∨ and (Vφ′

B

kB ,r,K′)∨ and the product formula that

〈〈s′B, s′B〉〉K̃′ = ‖ν(b∞)‖−r · ‖ν(bf )‖−r · 〈〈sB, sB〉〉K̃ = 〈〈sB, sB〉〉K̃.
In general, it may not be true that the pairs (OB(NB), o) and (OB(NB)

′, o′) are
conjugate by an element of B×. Nevertheless, we can always find an element
βf ∈ B×(Af ) such that

OB(NB)
′ = β−1

f OB(NB)βf , o′(x) = o(βfxβ
−1
f ).

Let b be an element of B× approximating βf = (βv) at � so that

OB(NB)
′ ⊗ Z(�) = (b−1OB(NB)b)⊗ Z(�).

Then we may assume that

φ′
B(x) = φB(bxb

−1), i′v(x) = iv(βvxβ
−1
v ).

The open compact subgroup K′ satisfies K′ = β−1
f Kβf . We now run through the

same argument as above, defining

ξb[(h, gf )] = [(h, gfβf )], ξ̃b[(v, gf )] = [(φB(b) · v, gfβf )].
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The result follows from observing that ‖ν(b∞)‖ · ‖ν(βf )‖, while not necesarily 1, is
still an element in R×

(�). �

Finally, we define an invariant qB(Π) ∈ C×/R× such that the class of qB(Π) in
C×/R×

(�) equals qB(Π, �). Let us pick the isomorphism φB, the number field L and

the maximal order OB in B such that

φB(OB) ⊂
∏
σ

M2(OL).

Choose a pair (OB(NB), o) consisting of an Eichler order and an orientation. The
constructions in §1.3 can be copied verbatim to give integral models for everything
in sight over OL[

1
N(Π) ]. (See §1.1.3.1.) By enlarging L if need be, we can pick a

section sB that is �-normalized at all rational primes that are prime to N(Π). Then
we set

qB(Π) := 〈〈sB, sB〉〉K̃
for such a choice of sB. This is an element of C× that maps to qB(Π, �) under the
natural map C× → C×/R×

(�) for all � such that (�,N(Π)) = 1. Since the map

C×/R× →
∏

(�,N(Π))=1

C×/R×
(�)

is injective, the class of qB(Π) in C×/R× is well defined. This defines the invariants
needed in the formulation of Conjecture A of the introduction.





CHAPTER 2

Unitary and Quaternionic Unitary Groups

In §2.1, we review the general theory of hermitian and skew-hermitian forms
over local fields and number fields. In §2.2, we describe the construction of a certain
skew-hermitian space over a quaternion algebra (over a number field), which plays
an important role throughout the paper, while in §2.3 we review the connection
between this construction and the failure of the Hasse principle for quaternionic
skew-hermitian forms.

2.1. Hermitian and skew-hermitian spaces

2.1.1. Hermitian spaces. Let F be a field of characteristic zero and E a qua-
dratic extension of F , possibly split. Let V be a right E-vector space of dimension
n (i.e., a free E-module of rank n), equipped with a Hermitian form

(·, ·) : V ×V→ E.

Such a form is linear in one variable and antilinear in the other, and we fix any one
convention at this point. For example, if (·, ·) is antilinear in the first variable and
linear in the second, then:

(vα, v′β) = αρ(v, v′)β, (v, v′) = (v′, v)ρ,

where ρ denotes the nontrivial involution of E/F .
To such aV, one associates the following invariants: dim(V) = n and disc(V) ∈

F×/NE/FE
×, where

disc(V) = (−1)n(n−1)/2 det ((vi, vj)) ,

with {vi} an E-basis for V. Since (·, ·) is Hermitian, disc(V) lies in F× and its
class in F×/NE/FE

× is independent of the choice of basis.
Let GU(V) denote the unitary similitude group of V. (Occasionally, we will

write GUE(V) for clarity.) This is an algebraic group over F such that for any
F -algebra R, we have

GU(V)(R) := {g ∈ GL(V ⊗R) : (gv, gv′) = ν(g)(v, v′) for all v, v′, ν(g) ∈ R×}.

If E = F×F , then GU(V) � GLn×GL1. If E is a field, the various possibilities
for GU(V) are discussed below.

2.1.1.1. p-adic local fields. Let F be p-adic. As a Hermitian space, V is deter-
mined up to isomorphism by its dimension and discriminant. Further, given any
choice of dimension and discriminant, there is a space V with these as its invariants.
If dim(V) is odd, the group GU(V) is (up to isomorphism) independent of disc(V)
and is quasi-split. If dim(V) is even, there are two posibilities for GU(V) up to
isomorphism and GU(V) is quasi-split if and only if disc(V) = 1.

35
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2.1.1.2. Archimedean fields. Let F = R and E = C. Then the form (·, ·) can
be put into the diagonal form (1, . . . , 1,−1, . . . ,−1) which is called the signature
of V ; we say V is of type (p, q) if the number of 1s is p and the number of −1s
is q. Hermitian spaces are classified up to isomorphism by their signature (which
determines both the dimension and discrminant) and we write GU(p, q) for the
associated group. The only isomorphisms between these groups are GU(p, q) �
GU(q, p).

2.1.1.3. Number fields. Let E/F be a quadratic extension of number fields. IfV
is a Hermitian E-space, then for each place v of F , one gets a local space Vv which
is a Hermitian space for Ev/Fv and such that for almost all v, the discriminant
of Vv is 1. The Hasse principle says that V is determined up to isomorphism
by this collection of local spaces. Conversely, suppose we are given for each place
v a local space Vv (of some fixed dimension n) such that almost all of the local
discriminants are equal to 1. The collection of local discriminants gives an element
of A×

F /NE/FA
×
E . Such a collection of local spaces comes from a global space if

and only if this element lies in the image of F×, i.e., is trivial in the quotient
A×

F /F
×NE/FA

×
E , which has order 2.

2.1.2. Skew-Hermitian spaces. Let E/F be a quadratic extension as in the
beginning of the previous section. Skew-hermitian E-spaces are defined similarly
to hermitian spaces but with the condition

(v, v′) = −(v′, v)ρ.
We can go back and forth between hermitian and skew-hermitian spaces simply
by multiplying the form by an element in E× of trace zero. Indeed, pick a trace
zero element i ∈ E×. If (·, ·) is skew-hermitian form on V, the product (·, ·)′ :=
i · (·, ·) is hermitian. The group GU(V) is the same for both (·, ·) and (·, ·)′. Thus
the classification of skew-hermitian forms (and the corresponding groups) can be
deduced from the hermitian case.

2.1.3. Quaternionic hermitian spaces. Let F be a field and B a quaternion
algebra over F . Let a �→ a∗ denote the main involution on B. A B-Hermitian space
is a right B-space V equipped with a B-valued form

〈·, ·〉 : V × V → B

satisfying

〈vα, v′β〉 = α∗〈v, v′〉β, 〈v, v′〉 = 〈v′, v〉∗,
for v, v′ ∈ V and α, β ∈ B.

Let GU(V ) denote the unitary similitude group of V . (Sometimes, we write
GUB(V ) for clarity.) This is an algebraic group over F such that for any F -algebra
R, we have

GU(V )(R) := {g ∈ GL(V ⊗R) : 〈gv, gv′〉 = ν(g)〈v, v′〉 for all v, v′, ν(g) ∈ R×}.
If B is split, there is a unique such space V of any given dimension n over B.

The corresponding group GU(V ) is identified with GSp(2n). If B is nonsplit, the
classification of such spaces over p-adic fields and number fields is recalled below.

2.1.3.1. p-adic fields. If F is a p-adic field, there is a unique such space of any
given dimension, up to isometry. The corresponding group is the unique nontrivial
inner form of GSp(2n).
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2.1.3.2. Archimedean fields. If F = R, such spaces are classified by dimension
and signature. If the signature is of type (p, q), the associated group is denoted
GSp(p, q). The only isomorphisms between these are GSp(p, q) � GSp(q, p).

2.1.3.3. Global fields. The Hasse principle holds in this case, so a global B-
hermitian space is determined up to isometry by the collection of corresponding
local Bv-Hermitian spaces. Conversely, given any collection of Bv-hermitian spaces,
there is a (unique) B-Hermitian space that gives rise to this local collection up to
isometry.

2.1.4. Quaternionic skew-hermitian spaces. These are defined similarly
to B-hermitian spaces but with the condition

〈v, v′〉 = −〈v′, v〉∗.

To such a space V is associated the invariant det(V ) ∈ F×/(F×)2 as follows. Pick
a B-basis {vi} for V and set

det(V ) = νB(〈vi, vj〉).

Here νB denotes the reduced norm. (Often, we will omit the subscript B when
the choice of quaternion algebra is clear.) The group GU(V ) is defined similarly
as above. It is however not connected as an algebraic group. We now recall the
classification of such spaces and the associated groups. Note that if B is split, we can
associate to V a quadratic space V † over F of dimension 2n (where n = dimB(V ))
and GU(V ) � GO(V †).

2.1.4.1. p-adic fields. Let F be p-adic. If B is split, V is determined by dim(V ),
det(V ) and the Hasse invariant of V †. If B is nonsplit, V is determined by dim(V )
and det(V ).

2.1.4.2. Archimedean fields. If F = R and B is split, V is determined by the
signature of V †. The group GU(V ) is isomorphic to GO(p, q) where (p, q) is the
signature. If B is nonsplit, V is determined just by n = dimB(V ). The group
GU(V ) is isomorphic to GO∗(2n). If F = C, then B must be split and there is a
unique skew-hermitian space of any given dimension. Then GU(V ) � GO(2n,C).

2.1.4.3. Global fields. Let F be a number field. If B is split, then the classifica-
tion reduces to that for quadratic spaces via the assignment V �→ V †. In this case,
the Hasse principle holds. If B is nonsplit, then the Hasse principle does not hold.
Let ΣB be the set of places v where B is ramified and let s = |ΣB|. The space
V gives rise to a collection of local spaces and up to isometry there are exactly
2s−2 global B-skew-hermitian spaces that give rise to the same set of local spaces.
Conversely a collection of local Bv-skew-hermitian spaces Vv arises from a global
B-skew-hermitian space V if and only if there exists a global element d ∈ F× such
that det(Vv) = d in F×

v /(F×
v )2 for all v and for almost all v, the Hasse invariant of

V †
v is trivial.

2.2. The key constructions

In this section, we assume that B1 and B2 are two quaternion algebras over a
number field F and E/F is a quadratic extension that embeds in both B1 and B2.
We will fix embeddings E ↪→ B1 and E ↪→ B2. Via these embeddings, B1 and B2

are hermitian spaces over E. Let τi and νi be respectively the reduced trace and
norm on Bi. We think of B1 and B2 as right E-vector spaces, the Hermitian form
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being described below. Write

B1 = E + Ej1 = E + j1E, B2 = E + Ej2 = E + j2E,

where τ1(j1) = τ2(j2) = 0. We write pri for the projection Bi → E onto the “first
coordinate” and ∗i for the main involution on Bi. Then Bi is a right Hermitian
E-space, the form being given by:

(x, y)i = pri(x
∗iy).

If x = a+ jib, y = c+ jid, then

(x, y)i = (a+ jib, c+ jid)i = aρc− Jib
ρd,

where Ji := −νi(ji) = j2i . This form satisfies the relations

(xα, yβ)i = αρ(x, y)iβ, for α, β ∈ E,

and

(x, y)i = (y, x)ρi .

We note that B×
i acts naturally on Bi by left multiplication, and this action is

E-linear. Further,

(2.1) (αx,αy)i = νi(α)(x, y)i

for all α ∈ Bi. Thus B
×
i embeds naturally in GUE(Bi). In fact,

F×\(B×
i × E×) � GUE(Bi),

where E× acts on Bi by right multiplication, and we think of F× as a subgroup of
B×

i × E× via λ �→ (λ−1, λ).
Consider the (right) E-vector space

V := B1 ⊗E B2.

Remark 2.2.1. If x ∈ B1, y ∈ B2, α ∈ E, then by definition,

(x⊗ y)α = xα⊗ y = x⊗ yα.

The E-vector space V is equipped with a natural Hermitian form given by the
tensor product (·, ·)1⊗ (·, ·)2. We fix a nonzero element i ∈ E of trace 0, and define
(·, ·) on V by

(2.2) (·, ·) := i · (·, ·)1 ⊗ (·, ·)2.
Clearly, (·, ·) satisfies

(xα, yβ) = αρ(x, y)β, for α, β ∈ E,

(x, y) = −(y, x)ρ.
Thus (·, ·) is an E-skew-Hermitian form on V .

It will be useful to write down the form (·, ·) explicitly in terms of coordinates
with respect to a suitable E-basis. We pick the following (orthogonal) basis:

(2.3) e1 := 1⊗ 1, e2 := j1 ⊗ 1, e3 := 1⊗ j2, e4 := j1 ⊗ j2.

In this basis,

(e1a+ e2b+ e3c+ e4d, e1a
′ + e2b

′ + e3c
′ + e4d

′)

= i · [aρa′ − J1b
ρb′ − J2c

ρc′ + J1J2d
ρd′] .
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There is a natural map

GUE(B1)×GUE(B2)→ GUE(V ),

given by the actions of GUE(B1) and GUE(B2) on the first and second component
respectively of V = B1 ⊗E B2. The kernel of this map is

Z :=
{
([λ1, α1], [λ2, α2]) : λi ∈ F×, αi ∈ E×, λ1λ2α1α2 = 1

}
.

Let B := B1 ·B2 be the product in the Brauer group over F . Then E embeds in B
as well, and we will fix an embedding E → B. We may write

B = E + Ej

where τ (j) = 0 and J := −ν(j) = j2 satisfies

J = J1J2.

Here τ and ν are respectively the reduced trace and reduced norm on B. We define
a right action of B on V (extending the right E-action on V ) by setting

(1⊗ 1) · j = j1 ⊗ j2(2.4)

(j1 ⊗ 1) · j = J1(1⊗ j2)(2.5)

(1⊗ j2) · j = J2(j1 ⊗ 1)(2.6)

(j1 ⊗ j2) · j = J1J2(1⊗ 1)(2.7)

and requiring the right action by j on V to be conjugate E-linear. (It is straightfor-
ward to check that this gives an action.) Then V is a free rank-2 right B-module.
For example, a basis for V as a right B-module is given either by

{1⊗ 1, j1 ⊗ 1}

or

{1⊗ 1, 1⊗ j2}.
Further, one checks that (equivalently)

(xj, y) = (yj, x)(2.8)

(xj, yj)ρ = −J(x, y)(2.9)

for all x, y ∈ V .
We will now show that there is a B-valued skew-Hermitian form 〈·, ·〉 on V such

that

pr ◦ 〈·, ·〉 = (·, ·).
Indeed, define

(2.10) 〈x, y〉 = (x, y)− 1

J
· j · (xj, y).

It may be checked (using (2.8) and (2.9)) that

〈xα, yβ〉 = α∗〈x, y〉β,(2.11)

〈x, y〉 = −〈y, x〉∗,(2.12)

for all α,β ∈ B. For future reference, we write down the matrix of inner products
〈ei, ej〉.
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〈·, ·〉 e1 e2 e3 e4
e1 i 0 0 ij
e2 0 −J1i −ij 0
e3 0 −ij −J2i 0
e4 ij 0 0 J i

From the table, we see that det(V ) = ν(−J1u) = 1 in F×/(F×)2.
Notice that B×

1 and B×
2 act on V by left multiplication on the first and second

factor of V = B1⊗E B2 respectively. These actions are (right) E-linear and in fact
(right) B-linear as is easily checked using (2.4) through (2.7). Further, it follows
from (2.1), (2.2), and (2.10) that

(2.13) 〈αi · x,αi · y〉 = νi(αi)〈x, y〉
for αi ∈ B×

i . Clearly, the actions of B×
1 and B×

2 commute, hence one gets an
embedding

(2.14) F×\(B×
1 ×B×

2 ) ↪→ GUB(V ),

the quaternionic unitary group of the B-skew-Hermitian form 〈·, ·〉. (Here we think
of F× as embedded antidiagonally in B×

1 × B×
2 via λ �→ (λ−1, λ).) Then (2.14)

gives an isomorphism

F×\(B×
1 ×B×

2 ) � GUB(V )0,

where GUB(V )0 denotes the identity component of GUB(V ). Further, one has a
commutative diagram

F×\(B×
1 ×B×

2 )
	 ��

� �

��

GUB(V )0
� �

��

Z\(GUE(B1)×GUE(B2)) �� GUE(V )

where the vertical map

F×\(B×
1 ×B×

2 ) ↪→ Z\(GUE(B1)×GUE(B2))

is

[b1, b2] �→ [[(b1, 1)], [(b2, 1)]] ,

and the vertical map GUB(V )0 ↪→ GUE(V ) is just the natural inclusion.
Let V = ResE/F (V ), that is V is just V thought of as an F -space, with non-

degenerate symplectic form

〈〈v1, v2〉〉 :=
1

2
trE/F (v1, v2).

Let

X = Fe1 ⊕ Fe2 ⊕ Fe3 ⊕ Fe4 ⊂ V.

Since X is maximal isotropic for 〈〈·, ·〉〉, there exists a unique maximal isotropic
subspace Y in V, such that V = X⊕Y. Let (e∗1, . . . , e

∗
4) be an F -basis for Y that is

dual to (e1, . . . , e4). We can identify this basis precisely: letting i2 = u ∈ F×, we
have

(2.15) e∗1 =
1

u
e1i, e∗2 = − 1

J1u
e2i, e∗3 = − 1

J2u
e3i, e∗4 =

1

Ju
e4i.
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2.2.1. The unitary group UE(V ) at infinite places. This section will not
be relevant in this paper. We simply record for future use the isomorphism class
of the unitary group UE(V ) at the infinite places v assuming that Fv = R and
Ev = C. The skew-hermitian form is given by

i · [aρa′ − J1b
ρb′ − J2c

ρc′ + Jdρd′]

Thus we have the following table which summarizes the relation between the ram-
ification of B1 and B2 at v and the isomorphism class of UE(V ).

B1, B2 J1, J2 UE(V )
split, split J1 > 0, J2 > 0 U(2, 2)

ramified, split J1 < 0, J2 > 0 U(2, 2)
split, ramified J1 > 0, J2 < 0 U(2, 2)

ramified, ramified J1 < 0, J2 < 0 U(4, 0)

2.3. The failure of the Hasse principle

The constructions above illustrate the failure of the Hasse principle for skew-
hermitian B-spaces. Indeed, let us fix a B and consider pairs (B1, B2) such that
ΣB1

∩ ΣB2
= Σ0, where Σ0 is some fixed set of places not intersecting ΣB. Let

E/F be a quadratic extension that is nonsplit at all the places in ΣB ∪ Σ0. Then
E embeds in B,B1,B2, so the constructions from the previous section apply. The
various spaces V obtained by taking different choices of B1 and B2 are all locally
isometric, since all of them have det(V ) = 1 and the Hasse invariant of V †

v is
independent of V for v �∈ ΣB. Since interchanging B1 and B2 gives an isometric
global space, the number of different global spaces obtained in this way (up to
isometry) is exactly 2s−2, where s = |ΣB |.

Conversely, suppose that we are given a quaternion division algebra B and a
collection of local Bv-skew-hermitian spaces Vv such that det(Vv) = 1 for all v and
the Hasse invariant of V †

v (for v �∈ ΣB) is 1 for all but finitely many v. Then there
are up to isometry 2s−2 different global skew-hermitian spaces that give rise to this
collection of local spaces, and all of them may be obtained by the construction
above, by suitably choosing B1, B2 and i.





CHAPTER 3

Weil Representations

In this chapter, we recall some basic properties of metaplectic groups and Weil
representations. The material in this chapter is standard, but we include it for
the convenience of the reader. We also consider splittings over some quaternionic
unitary similitude groups, but the actual construction will be deferred to Appendix
C.

3.1. Preliminaries

3.1.1. Weil indices. Let F be a local field of characteristic not 2 and fix a
non-trivial additive character ψ of F . For a non-degenerate symmetric F -bilinear
form q, we let γF (ψ ◦ q) ∈ μ8 denote the Weil index associated to the character of
second degree x �→ ψ(q(x, x)) (see [75], [63, Appendix]). When q(x, y) = xy for
x, y ∈ F , we write γF (ψ) := γF (ψ ◦ q). Put

γF (a, ψ) :=
γF (aψ)

γF (ψ)

for a ∈ F×, where (aψ)(x) := ψ(ax) for x ∈ F . Then we have

γF (ab
2, ψ) = γF (a, ψ),

γF (ab, ψ) = γF (a, ψ) · γF (b, ψ) · (a, b)F ,
γF (a, bψ) = γF (a, ψ) · (a, b)F ,
γF (a, ψ)

2 = (−1, a)F ,
γF (a, ψ)

4 = 1,

γF (ψ)
2 = γF (−1, ψ)−1,

γF (ψ)
8 = 1

for a, b ∈ F× (see [63, p. 367]). Here (·, ·)F is the quadratic Hilbert symbol of F .
Let q be a non-degenerate symmetric F -bilinear form. Let det q ∈ F×/(F×)2

and hF (q) ∈ {±1} denote the determinant and the Hasse invariant of q. For
example, when

q(x, y) = a1x1y1 + · · ·+ amxmym

for x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Fm, then

det q =
∏

1≤i≤m

ai, hF (q) =
∏

1≤i<j≤m

(ai, aj)F .

Moreover, we have

(3.1) γF (ψ ◦ q) = γF (ψ)
m · γF (det q, ψ) · hF (q)

(see [63, pp. 367–368]).

43
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3.1.2. Leray invariants. Let V be a 2n-dimensional F -vector space with
a non-degenerate symplectic form 〈〈·, ·〉〉 : V × V → F . For maximal isotropic
subspaces Y, Y′, Y′′ of V, the Leray invariant q(Y,Y′,Y′′) is a non-degenerate
symmetric F -bilinear form defined as follows. (See also Definitions 2.4 and 2.10 of
[63].)

Suppose first that Y, Y′, Y′′ are pairwise transverse. Let PY be the maximal
parabolic subgroup of Sp(V) stabilizing Y and let NY be its unipotent radical. By
Lemma 2.3 of [63], there exists a unique g ∈ NY such that Y′g = Y′′. We write

g =

(
1 b

1

)
, b ∈ Hom(Y′,Y)

with respect to the complete polarization V = Y′ + Y. Then q = q(Y,Y′,Y′′) is a
symmetric bilinear form on Y′ defined by

q(x′, y′) := 〈〈x′, y′b〉〉.
In general, we consider a symplectic space VR := R⊥/R, where

R := (Y ∩ Y′) + (Y′ ∩ Y′′) + (Y′′ ∩ Y),

and maximal isotropic subspaces

YR := (Y ∩ R⊥)/R, Y′
R := (Y′ ∩ R⊥)/R, Y′′

R := (Y′′ ∩ R⊥)/R

of VR. By Lemma 2.9 of [63], YR, Y′
R, Y

′′
R are pairwise transverse. We put

q(Y,Y′,Y′′) := q(YR,Y
′
R,Y

′′
R).

By Theorem 2.11 of [63], we have

q(Yg,Y′g,Y′′g) = q(Y,Y′,Y′′)

for g ∈ Sp(V).

3.2. Weil representation for metaplectic groups

3.2.1. Heisenberg group, Heisenberg representations. Let F be a local
field of characteristic not 2. For simplicity, we assume that F is non-archimedean.

Let V be a finite dimensional F -vector space equipped with a non-degenerate
symplectic form

〈〈·, ·〉〉 : V× V −→ F.

The Heisenberg group H(V) is defined by

H(V) := V⊕ F

as a set, with group law

(v1, z1) · (v2, z2) =
(
v1 + v2, z1 + z2 +

1

2
〈〈v1, v2〉〉

)
.

The center of H(V) is F .
Let ψ be a nontrivial additive character of F . Then by the Stone–von Neumann

theorem, H(V) admits a unique (up to isomorphism) irreducible representation ρψ
on which F acts via ψ. This representation can be realized as follows. Fix a
complete polarization

V = X⊕ Y,
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i.e., X and Y are maximal isotropic subspaces of V. We construct a character ψY

of H(Y) = Y⊕ F by setting
ψY(y, z) = ψ(z).

Define
SY := Ind

H(V)
H(Y) ψY.

i.e. SY is the space of functions f : H(V)→ C satisfying

(i) f(ỹṽ) = ψY(ỹ)f(ṽ) for ỹ ∈ H(Y), ṽ ∈ H(V).
(ii) f is smooth i.e. there exists an open compact subgroup (a lattice !) L in V

such that
f(ṽ�) = f(ṽ) for all � ∈ L ⊂ V ⊂ H(V).

Then H(V) acts on SY on the right naturally. We can identify SY with S(X), the
Schwartz space of locally constant functions with compact support on X, via the
restriction of functions to X.

3.2.2. Metaplectic group. Let Sp(V) be the symplectic group of V. Fol-
lowing Weil, we let Sp(V) act on V on the right. Recall that Sp(V) acts on H(V)
by

(v, z)g := (vg, z).

Let S̃p(V) be the unique non-trivial 2-fold central extension of Sp(V). The
metaplectic group Mp(V) is a central extension

1 −→ C1 −→ Mp(V) −→ Sp(V) −→ 1

defined by

Mp(V) := S̃p(V)×{±1} C
1.

Lemma 3.2.1. Any automorphism of Mp(V) which lifts the identity map of
Sp(V) and which restricts to the identity map of C1 must be the identity map of
Mp(V).

Proof. Let p : Mp(V) → Sp(V) be the projection. Let f : Mp(V) → Mp(V)
be such an automorphism. Since p(f(g)) · p(g)−1 = 1 for g ∈ Mp(V), there exists a
character κ : Mp(V)→ C1 such that f(g) · g−1 = κ(g). Since f(z) = z for z ∈ C1,
κ is trivial on C1, and hence induces a character of Sp(V). Since [Sp(V), Sp(V)] =
Sp(V), this character must be trivial. �

One can realize Mp(V) explicitly as follows. Put

zY(g1, g2) = γF (
1

2
ψ ◦ q(Y,Yg−1

2 ,Yg1))

for g1, g2 ∈ Sp(V). By Theorem 4.1 of [63], zY is a 2-cocycle valued in 8th roots of
unity (called the Leray cocycle), and the group

Mp(V)Y := Sp(V)× C1

with group law
(g1, z1) · (g2, z2) = (g1g2, z1z2 · zY(g1, g2))

is isomorphic to Mp(V). Moreover, by Lemma 3.2.1, this isomorphism is canonical.
If there is no confusion, we identify Mp(V)Y with Mp(V). We also remark that
there is a 2-cocycle valued in {±1} realizing Mp(V) (called the Ranga Rao cocycle;
see [63, Theorem 5.3]), but the Leray cocycle is more convenient for our purposes
(see e.g. Lemma B.1.1 below).
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Let V = X′ ⊕ Y′ be another complete polarization.

Lemma 3.2.2. We have

zY′(g1, g2) = λ(g1g2)λ(g1)
−1λ(g2)

−1 · zY(g1, g2),

where λ : Sp(V)→ C1 is given by

λ(g) := γF (
1

2
ψ ◦ q(Y,Y′g−1,Y′)) · γF (

1

2
ψ ◦ q(Y,Y′,Yg)).

In particular, the bijection

Mp(V)Y −→ Mp(V)Y′

(g, z) �−→ (g, z · λ(g))

is an isomorphism.

Proof. See Lemma 4.2 of [40]. �

Suppose that V = V1 ⊕ V2, where each Vi is a non-degenerate symplectic
subspace. One can lift the natural embedding Sp(V1) × Sp(V2) ↪→ Sp(V) to a
homomorphism

Mp(V1)×Mp(V2) −→ Mp(V).

If Vi = Xi ⊕ Yi is a complete polarization and

X = X1 ⊕ X2, Y = Y1 ⊕ Y2,

then this homomorphism is given by

Mp(V1)Y1
×Mp(V2)Y2

−→ Mp(V)Y,

((g1, z1), (g2, z2)) �−→ (g1g2, z1z2)

i.e., we have

zY1
(g1, g

′
1) · zY2

(g2, g
′
2) = zY(g1g2, g

′
1g

′
2)

for gi, g
′
i ∈ Sp(Vi) (see Theorem 4.1 of [63]).

Let L be a self-dual lattice in V and let K be the stabiliser of L in Sp(V). If
the residual characteristic of F is not 2, then there exists a splitting

Mp(V)

��

K ��

�����������
Sp(V)

.

Moreover, if the residue field of F has at least four elements, then [K,K] = K (see
Lemma 11.1 of [54]), and hence such a splitting is unique. In the next section, we
shall describe this splitting by using the Schrödinger model.

3.2.3. Weil representation, Schrödinger model. Recall that ρψ is the
unique (up to isomorphism) irreducible smooth representation of H(V) with central
character ψ. Let S be the underlying space of ρψ. The Weil representation ωψ of
Mp(V) on S is a smooth representation characterized by the following properties:

• ρψ(h
g) = ωψ(g)

−1ρψ(h)ωψ(g) for all h ∈ H(V) and g ∈ Mp(V).
• ωψ(z) = z · idS for all z ∈ C1.
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One can realize ωψ explicitly as follows. We regard V = F 2n as the space of row
vectors. Fix a complete polarization V = X⊕Y. Choose a basis e1, . . . , en, e∗1, . . . , e∗n
of V such that

X = Fe1 + · · ·+ Fen, Y = Fe∗1 + · · ·+ Fe∗n, 〈〈ei, e∗j 〉〉 = δij .

Then we have

Sp(V) =

{
g ∈ GL2n(F )

∣∣∣∣ g( 1n

−1n

)
tg =

(
1n

−1n

)}
.

The Weil representation ωψ of Mp(V)Y on the Schwartz space S(X) is given as
follows:

ωψ

((
a

ta−1

)
, z

)
ϕ(x) = z · | det a|1/2 · ϕ(xa)

ωψ

((
1n b

1n

)
, z

)
ϕ(x) = z · ψ

(
1

2
xbtx

)
· ϕ(x)

ωψ

((
1n

−1n

)
, z

)
ϕ(x) = z ·

∫
Fn

ϕ(y)ψ(xty) dy.

for ϕ ∈ S(X), x ∈ X ∼= Fn, a ∈ GL(X) ∼= GLn(F ), b ∈ Hom(X,Y) ∼= Mn(F ) with
tb = b, and z ∈ C1. More generally, for (g, z) ∈ Mp(V)Y with g =

(
a b
c d

)
∈ Sp(V),

we have

ωψ(g, z)ϕ(x)

= z ·
∫
Fn/ ker(c)

ψ

(
1

2
(xa, xb) + (xb, yc) +

1

2
(yc, yd)

)
ϕ(xa+ yc) dμg(y),

where (x, y) = xty for row vectors x, y ∈ Fn, and the measure dμg(y) on Fn/ ker(c)
is normalized so that this operator is unitary (see [42, Proposition 2.3]). In partic-
ular, if det c �= 0, then ωψ(g, 1)ϕ(x) is equal to∫

Fn

ψ

(
1

2
(xa, xb) + (xb, yc) +

1

2
(yc, yd)

)
ϕ(xa+ yc) dμg(y)

= | det c|−1 · ψ
(
1

2
(xa, xb)

)
×
∫
Fn

ψ

(
(xb, y − xa) +

1

2
(y − xa, yc−1d− xac−1d)

)
ϕ(y) dμg(y)

= | det c|−1 · ψ
(
1

2
(xa, x(ac−1d− b))

)
×
∫
Fn

ψ

(
(y, x(b− ac−1d)) +

1

2
(y, yc−1d)

)
ϕ(y) dμg(y)

= | det c|−1 · ψ
(
1

2
(xa, xtc−1)

)
·
∫
Fn

ψ

(
−(y, xtc−1) +

1

2
(y, yc−1d)

)
ϕ(y) dμg(y)

= | det c|−1/2 · ψ
(
1

2
(xac−1, x)

)
·
∫
Fn

ψ

(
−(xtc−1, y) +

1

2
(yc−1d, y)

)
ϕ(y) dy,

where dy is the self-dual Haar measure on Fn with respect to the pairing ψ ◦ (·, ·).
If the residual characteristic of F is not 2, let K be the stabilizer of the self-dual

lattice

oe1 + · · ·+ oen + oe∗1 + · · ·+ oe∗n.



48 3. WEIL REPRESENTATIONS

Then the splitting K → Mp(V)Y is given as follows. Assume that ψ is of order
zero. Let ϕ0 ∈ S(X) be the characteristic function of oe1 + · · · + oen ∼= on. Since
the residual characteristic of F is not 2, we see that

ωψ(k, 1)ϕ
0 = ϕ0

for

k =

(
a

ta−1

)
,

(
1n b

1n

)
and

(
1n

−1n

)
,

where a ∈ GLn(o) and b ∈ Mn(o). Since these elements generate K, there exists a
function sY : K → C1 such that

ωψ(k, 1)ϕ
0 = sY(k)

−1 · ϕ0 for all k ∈ K.

Thus we obtain

zY(k1, k2) = sY(k1k2)sY(k1)
−1sY(k2)

−1

for k1, k2 ∈ K, so that the map k �→ (k, sY(k)) is the desired splitting.

3.2.4. Change of models. Suppose V = X′ ⊕ Y′ is another polarization of
V. Then likewise the representation ρψ can be realized on SY′ � S(X′). We will
need an explicit isomorphism between these representations of H(V). At the level
of the induced representations, this is given by the map

SY′ → SY, f ′ �→ f

f(ṽ) =

∫
Y∩Y′\Y

f ′((y, 0) · ṽ) · ψY(y, 0)
−1 dy =

∫
Y∩Y′\Y

f ′((y, 0) · ṽ) dy.

For now, we will take any Haar measure on Y to define this. We will fix this
more carefully later. Let us now write down this isomorphism in terms of Schwartz
spaces.

Lemma 3.2.3. Suppose that ϕ ∈ S(X) and ϕ′ ∈ S(X′) correspond to f ∈ SY

and f ′ ∈ SY′ respectively. Then we have

(3.2) ϕ(x) =

∫
Y∩Y′\Y

ψ

(
1

2
〈〈x′, y′〉〉 − 1

2
〈〈x, y〉〉

)
ϕ′(x′) dy,

where x′ = x′(x, y) ∈ X′ and y′ = y′(x, y) ∈ Y′ are given by x′ + y′ = x+ y ∈ V.

Proof. Let ϕ′ ∈ S(X′). Let (x′ + y′, z) ∈ H(V). We write this as:

(x′ + y′, z) =

(
y′, z − 1

2
〈〈y′, x′〉〉

)
· (x′, 0).

Thus if f ′ ∈ SY′ corresponds to ϕ′, then

f ′(x′ + y′, z) = ψ

(
z − 1

2
〈〈y′, x′〉〉

)
· ϕ′(x′).

We can rewrite this as: (with v = x′ + y′)

f ′(v, z) = ψ

(
z − 1

2
〈〈v, x′〉〉

)
· ϕ′(x′).
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Thus f ′ corresponds to f ∈ SY given by

f(x+ y, z) =

∫
Y∩Y′\Y

f ′((y0, 0) · (x+ y, z)) dy0

=

∫
Y∩Y′\Y

f ′
(
x+ y + y0, z +

1

2
〈〈y0, x〉〉

)
dy0.

Thus

ϕ(x) =

∫
Y∩Y′\Y

f ′
(
x+ y0,

1

2
〈〈y0, x〉〉

)
dy0

=

∫
Y∩Y′\Y

ψ

(
1

2
〈〈y0, x〉〉

)
f ′ (x+ y0, 0) dy0

=

∫
Y∩Y′\Y

ψ

(
−1

2
〈〈x+ y0, x

′〉〉+ 1

2
〈〈y0, x〉〉

)
ϕ′(x′) dy0. �

Thus we obtain an H(V)-equivariant isomorphism S(X′) ∼= S(X) defined by
the partial Fourier transform (3.2). Using the characterization of the Weil repre-
sentation of Mp(V), one sees that this isomorphism is also Mp(V)-equivariant.

The isomorphism S(X′) ∼= S(X) is in fact a partial Fourier transform. To see
this, we assume for simplicity that there exists a basis e1, . . . , en, e

∗
1, . . . , e

∗
n of V

such that

X = Fe1 + · · ·+ Fen, X′ = Fe1 + · · ·+ Fek + Fe∗k+1 + · · ·+ Fe∗n,

Y = Fe∗1 + · · ·+ Fe∗n, Y′ = Fe∗1 + · · ·+ Fe∗k + Fek+1 + · · ·+ Fen,

and 〈〈ei, e∗j 〉〉 = δij , where k = dim(Y ∩ Y′). In particular, we have Y ∩ Y′ =

Fe∗1 + · · ·+Fe∗k. Let ϕ ∈ S(X) and ϕ′ ∈ S(X′) be as in (3.2). We also regard ϕ′ as
a function on Fn via the basis e1, . . . , ek, e

∗
k+1, . . . , e

∗
n. Write x+ y = x′ + y′ with

x ∈ X, y ∈ Y, x′ ∈ X′, y′ ∈ Y′. If we write

x = x1e1 + · · ·+ xnen, y = y1e
∗
1 + · · ·+ yne

∗
n

with xi, yj ∈ F , then

x′ = x1e1 + · · ·+ xkek + yk+1e
∗
k+1 + · · ·+ yne

∗
n,

y′ = y1e
∗
1 + · · ·+ yke

∗
k + xk+1ek+1 + · · ·+ xnen,

and

〈〈x, y〉〉 = x1y1 + · · ·+ xnyn,

〈〈x′, y′〉〉 = x1y1 + · · ·+ xkyk − xk+1yk+1 − · · · − xnyn.

Hence we have

ϕ(x) =

∫
Y∩Y′\Y

ψ

(
1

2
(〈〈x′, y′〉〉 − 〈〈x, y〉〉)

)
ϕ′(x′) dy

=

∫
Fn−k

ψ (−xk+1yk+1 − · · · − xnyn)ϕ
′(x1, . . . , xk, yk+1, . . . , yn) dyk+1 · · · dyn.
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3.2.5. Over global fields. In this section, let F be a number field with ring
of adeles A. Let V be a symplectic space over F . The global metaplectic group
Mp(V)A is defined as follows.

Fix a lattice L in V. For each finite place v, let Kv be the stabilizer of Lv

in Sp(Vv). For almost all v, Lv is self-dual and there exists a unique splitting
Kv ↪→ Mp(Vv), in which case we identify Kv with its image in Mp(Vv).

For a finite set S of places of F including all archimedean places, we define a
central extension

1 −→ C1 −→ Mp(V)S −→
∏
v∈S

Sp(Vv) −→ 1

by

Mp(V)S :=

(∏
v∈S

Mp(Vv)

)
/

{
(zv) ∈

∏
v∈S

C1 |
∏
v∈S

zv = 1

}
.

Put KS :=
∏

v/∈S Kv. If S ⊂ S′ are sufficiently large, the splitting Kv ↪→ Mp(Vv)
induces an embedding

Mp(V)S ×KS ↪→ Mp(V)S′ ×KS′
.

Then Mp(V)A is defined by

Mp(V)A := lim−→
S

(
Mp(V)S ×KS

)
.

There exists a unique splitting

Mp(V)A

��

Sp(V)(F ) ��

������������
Sp(V)(A)

given as follows. Fix a complete polarization V = X ⊕ Y over F . Recall that
the metaplectic group Mp(Vv) = Sp(Vv)× C1 is determined by the 2-cocycle zYv

.
Moreover, for almost all v, there exists a function sYv

: Kv → C1 such that

zYv
(k1, k2) = sYv

(k1k2)sYv
(k1)

−1sYv
(k2)

−1

for k1, k2 ∈ Kv.

Lemma 3.2.4. Let γ ∈ Sp(V)(F ). Then we have

sYv
(γ) = 1

for almost all v.

Proof. By the Bruhat decomposition, we may write γ = p1wp2 with some

pi =

(
ai bi

ta−1
i

)
, w =

⎛⎜⎜⎝
1k

1n−k

−1k

1n−k

⎞⎟⎟⎠ ,

where ai ∈ GLn(F ) and bi ∈ Mn(F ). By Theorem 4.1 of [63], we have

zYv
(p1, g) = zYv

(g, p2) = 1

for all v and g ∈ Sp(Vv), so that

(p1wp2, 1) = (p1, 1) · (w, 1) · (p2, 1) in Mp(Vv).
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On the other hand, for almost all v, we have pi ∈ Kv and

ωψv
(pi, 1)ϕ

0
v = ϕ0

v, ωψv
(w, 1)ϕ0

v = ϕ0
v,

where ψv is a non-trivial character of Fv of order zero and ϕ0
v is the characteristic

function of onv . Thus we obtain

ωψv
(γ, 1)ϕ0

v = ωψv
(p1, 1)ωψv

(w, 1)ωψv
(p2, 1)ϕ

0
v = ϕ0

v

for almost all v. �

For γ ∈ Sp(V)(F ), let (γ, 1) be the element in
∏

v Mp(Vv) such that (γ, 1)v =
(γ, 1) for all v. By Lemma 3.2.4, we have (γ, 1)v ∈ Kv for almost all v. Hence, if S
is a sufficiently large finite set of places of F , then (γ, 1) maps to an element i(γ)
in Mp(V)S ×KS .

Lemma 3.2.5. The map

i : Sp(V)(F ) −→ Mp(V)A

is a homomorphism.

Proof. Let γ1, γ2 ∈ Sp(V)(F ). For each v, we have

(γ1, 1)v · (γ2, 1)v = (γ1γ2, zYv
(γ1, γ2)) in Mp(Vv).

Choose a finite set S of places of F such that

γ1, γ2 ∈ Kv, sYv
(γ1) = sYv

(γ2) = sYv
(γ1γ2) = 1

for v /∈ S. Then we have

zYv
(γ1, γ2) = 1

for v /∈ S. Moreover, by the product formula for the Weil index, we have∏
v∈S

zYv
(γ1, γ2) = 1.

Hence the image of (γ1, 1) · (γ2, 1) in Mp(V)S ×KS is equal to i(γ1γ2). �

Fix a non-trivial additive character ψ of A/F . We have the global Weil repre-
sentation ωψ of Mp(V)A on the Schwartz space S(X(A)). For each ϕ ∈ S(X(A)),
the associated theta function on Mp(V)A is defined by

Θϕ(g) :=
∑
x∈X

ωψ(g)ϕ(x).

Then Θϕ is a left Sp(V)(F )-invariant slowly increasing smooth function on Mp(V)A.

3.3. Reductive dual pairs

In this section, we consider the reductive dual pair (GU(V ),GU(W )), where
V is a skew-Hermitian right B-space of dimension two and W is a Hermitian left
B-space of dimension one.
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3.3.1. Reductive dual pairs; examples. Recall that in §2.2, we have con-
structed the 2-dimensional skew-Hermitian right B-space V = B1 ⊗E B2 with the
skew-Hermitian form 〈·, ·〉 : V × V → B. Let W = B be the 1-dimensional Hermit-
ian left B-space with the Hermitian form 〈·, ·〉 : W ×W → B defined by

〈x, y〉 = xy∗.

These forms satisfy that

〈vα, v′β〉 = α∗〈v, v′〉β 〈v′, v〉 = −〈v, v′〉∗

〈αw,βw′〉 = α〈w,w′〉β∗ 〈w′, w〉 = 〈w,w′〉∗

for v, v′ ∈ V , w,w′ ∈W and α,β ∈ B. We let GL(V ) act on V on the left and let
GL(W ) act on W on the right. Let GU(V ) and GU(W ) be the quaternionic unitary
similitude groups of V and W with the similitude characters ν : GU(V )→ F× and
ν : GU(W )→ F× respectively:

GU(V ) := {g ∈ GL(V ) | 〈gv, gv′〉 = ν(g) · 〈v, v′〉 for all v, v′ ∈ V },
GU(W ) := {g ∈ GL(W ) | 〈wg,w′g〉 = ν(g) · 〈w,w′〉 for all w,w′ ∈W}.

Let U(V ) := ker ν and U(W ) := ker ν be the unitary groups of V and W respec-
tively.

Put
V := V ⊗B W.

Then V is an F -space equipped with a symplectic form

〈〈·, ·〉〉 := 1

2
trB/F (〈·, ·〉 ⊗ 〈·, ·〉∗) .

If we identify ResB/F (V ) with V via the map v �→ v ⊗ 1, then the associated
symplectic form on V is given by

〈〈·, ·〉〉 = 1

2
trB/F 〈·, ·〉 =

1

2
trE/F (·, ·),

where (·, ·) = pr ◦ 〈·, ·〉 is the associated E-skew-Hermitian form. We let GL(V ) ×
GL(W ) act on V on the right:

(v ⊗ w) · (g, h) := g−1v ⊗ wh.

This gives a natural homomorphism

G(U(V )×U(W )) −→ Sp(V),

where

G(U(V )×U(W )) := {(g, h) ∈ GU(V )×GU(W ) | ν(g) = ν(h)}.

3.3.2. Splittings. Recall that

V = e1E + e2E + e3E + e4E.

Let V = X+ Y be the complete polarization given by

X = Fe1 + Fe2 + Fe3 + Fe4, Y = Fe∗1 + Fe∗2 + Fe∗3 + Fe∗4.

We first suppose that F is a local field. In Appendix C, we define a function

s : G(U(V )×U(W ))0 −→ C1

such that
zY(g1, g2) = s(g1g2)s(g1)

−1s(g2)
−1,
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so that the map

ι : G(U(V )×U(W ))0 −→ Mp(V)Y

g �−→ (g, s(g))

is a homomorphism. Thus we have a commutative diagram

Mp(V)

��

G(U(V )×U(W ))0

ι

��������������
�� Sp(V)

.

If V = X′ + Y′ is another complete polarization, we choose g0 ∈ Sp(V) such that
Y′ = Yg0 and define a function

s′ : G(U(V )×U(W ))0 −→ C1

by

s′(g) = s(g) · zY(g0, gg−1
0 ) · zY(g, g−1

0 )

= s(g) · zY(g0gg−1
0 , g0)

−1 · zY(g0, g).
By Lemma 3.2.2, we have

zY′(g1, g2) = s′(g1g2)s
′(g1)

−1s′(g2)
−1,

so that the map

G(U(V )×U(W ))0 −→ Mp(V)Y′

g �−→ (g, s′(g))

is a homomorphism.
We next suppose that F is a number field. For each place v of F , we have

defined a function

sv : G(U(Vv)×U(Wv))
0 −→ C1

with associated homomorphism

ιv : G(U(Vv)×U(Wv))
0 −→ Mp(Vv).

Lemma 3.3.1. The homomorphisms ιv induce a homomorphism

ι : G(U(V )×U(W ))0(A) −→ Mp(V)A.

Moreover, the diagram

G(U(V )×U(W ))0(F )

��

� � �� G(U(V )×U(W ))0(A)

ι

��

Sp(V)(F )
i �� Mp(V)A

is commutative.

Proof. Recall that, for almost all v, Kv is the maximal compact subgroup
of Sp(Vv) and sYv

: Kv → C1 is the function which defines the splitting Kv ↪→
Mp(Vv). Put

Kv := G(U(Vv)× U(Wv))
0 ∩Kv.
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Then Kv is a maximal compact subgroup of G(U(Vv) × U(Wv))
0 for almost all v.

By Lemma C.4.3, we have
sv|Kv

= sYv
|Kv

for almost all v. Hence, for g = (gv) ∈ G(U(V )×U(W ))0(A), the element (ιv(gv)) ∈∏
v Mp(Vv) maps to an element ι(g) in Mp(V)S×KS if S is sufficiently large. This

proves the first assertion.
Let γ ∈ G(U(V )×U(W ))0(F ). By Proposition C.4.4, we have∏

v

sv(γ) = 1.

Hence, if S is sufficiently large, the image of (ιv(γ)) in Mp(V)S × KS is equal to
that of (γ, 1). This proves the second assertion. �

3.3.3. Weil representation for the above reductive dual pair. If F is
local, we get the Weil representation ωψ ◦ ι of G(U(V ) × U(W ))0 on S(X), where
ωψ is the Weil representation of Mp(V)Y and ι : G(U(V ) × U(W ))0 → Mp(V)Y
is the above homomorphism. Similarly, if F is global, we get the global Weil
representation ωψ ◦ ι of G(U(V )×U(W ))0(A) on S(X(A)). If there is no confusion,
we suppress ι from the notation.



CHAPTER 4

The Rallis Inner Product formula and the
Jacquet–Langlands Correspondence

In this chapter, we generalize the result of Shimizu [68] and realize the Jacquet–
Langlands correspondence from B× to B×

1 ×B×
2 as theta lifts, where B,B1, B2 are

quaternion algebras over a number field F such that B �= M2(F ) and B = B1 ·B2 in
the Brauer group. More precisely, we consider the quaternionic unitary similitude
groups

GU(V )0 ∼= (B×
1 ×B×

2 )/F×, GU(W ) ∼= B×,

where V is the skew-hermitian B-space given in §2.2 and W is the hermitian B-
space given in §3.3.1. Then we have a Weil representation of G(U(V )×U(W ))0(A)
on the Schwartz space S(X(A)), where X is the maximal isotropic subspace of the
symplectic F -space V = V ⊗B W given in §2.2. For any irreducible unitary auto-
morphic representation πB of B×(A), we can define a space Θ(πB) of automorphic
forms on B×

1 (A)×B×
2 (A) with an equivariant surjective map

πB ⊗ S(X(A)) −→ Θ(πB),

f ⊗ ϕ �−→ θϕ(f)

where θϕ(f) is the theta lift of f , i.e. the integral of f against the theta function
associated to ϕ. The main result of this section (Proposition 4.2.3) says that if the
Jacquet–Langlands transfers πB1

, πB2
of πB to B×

1 (A), B×
2 (A) exist, then

Θ(πB) = πB1
� πB2

.

In fact, this easily follows from the local theta correspondence for unramified rep-
resentations and the strong multiplicity one theorem, once we know that Θ(πB) is
non-zero.

To prove the non-vanishing of Θ(πB), we will compute the inner product
〈θϕ(f), θϕ(f)〉 for f ∈ πB and ϕ ∈ S(X(A)) by using a see-saw diagram

GU(W�)

����
����

����
���

G(U(V )×U(V ))

���
���

���
���

��

G(U(W )×U(W )) GU(V )

,

where W� = W ⊕W is the B-space equipped with a hermitian form

〈(x, x′), (y, y′)〉 = 〈x, y〉 − 〈x′, y′〉.
Indeed, by the associated see-saw identity, we have

〈θϕ(f), θϕ(f)〉 = 〈θϕ⊗ϕ̄(f ⊗ f̄)|GU(V ),1〉
= 〈θϕ⊗ϕ̄(1)|G(U(W )×U(W )), f̄ ⊗ f〉,

55
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where

• ϕ⊗ ϕ̄ ∈ S(X�);
• X� = X⊕ X is a maximal isotropic subspace of V� = V⊕ V;
• θϕ⊗ϕ̄(f ⊗ f̄) is the theta lift of f ⊗ f̄ to G(U(V )×U(V ))(A);
• θϕ⊗ϕ̄(1) is the theta lift of the constant function 1 to GU(W�)(A).

On the other hand, W� always has a complete polarization W� = W� ⊕W�,
where

W� = {(x,−x) |x ∈W}, W� = {(x, x) |x ∈W}.
Since V� = V ⊗W� is also a maximal isotropic subspace of V� = V ⊗B W�, we
have a partial Fourier transform

S(X�(A)) −→ S(V�(A)),

which relates the two models of the Weil representation. By the Poisson summation
formula, the two associated theta distributions on the Schwartz spaces are the same,
and in particular, we have

θϕ⊗ϕ̄(1) = θϕ̂(1),

where ϕ̂ ∈ S(V�(A)) is the image of ϕ ⊗ ϕ̄ under the partial Fourier transform.
However, the Siegel–Weil formula says that θϕ̂(1) is equal to the Siegel Eisenstein

series on GU(W�)(A) associated to ϕ̂. Combining this with the doubling method,
we obtain the Rallis inner product formula (Proposition 4.4.2)

〈θϕ(f), θϕ(f)〉 = 2 · L
S(1, π, ad)

ζS(2)2
·
∏
v∈S

Zv,

where

• S is a sufficiently large finite set of places of F ;
• π is the Jacquet–Langlands transfer of πB to GL2(A);
• LS(s, π, ad) is the partial adjoint L-function of π;
• ζS(s) is the partial Dedekind zeta function of F ;
• Zv is the local zeta integral.

Thus, we may reduce the non-vanishing of Θ(πB) to that of Zv, which will be
proved in Lemma 4.3.3.

4.1. Setup

Let F be a number field and B a quaternion algebra over F . As in Appendix
D, we consider the following spaces:

• V = B1 ⊗E B2 is the 2-dimensional right skew-hermitian B-space.
• W = B is the 1-dimensional left hermitian B-space.
• W� = W ⊕W is the 2-dimensional left hermitian B-space.
• V = V ⊗B W is the 8-dimensional symplectic F -space.
• V� = V ⊗B W� = V⊕ V is the 16-dimensional F -space.
• W� = W� ⊕W� is the complete polarization over B.
• V = X⊕ Y is the complete polarization over F .
• Vv = X′

v ⊕ Y′
v is the complete polarization over Fv.

• V� = V� ⊕ V� is the complete polarization over F .
• V� = X� ⊕ Y� is the complete polarization over F .
• V�

v = X′�
v ⊕ Y′�

v is the complete polarization over Fv.
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We have a natural map

ι : G(U(W )×U(W )) −→ GU(W�)

and a see-saw diagram

GU(W�)

����
����

����
���

G(U(V )×U(V ))

���
���

���
���

��

G(U(W )×U(W )) GU(V )

.

4.1.1. Partial Fourier transform. Fix a non-trivial character ψ = ⊗vψv of
A/F . Recall that e1, . . . , e4 is a basis of X over F . For each place v of F , this basis
and the self-dual measure on Fv with respect to ψv define a Haar measure dxv on
Xv. Then the product measure dx =

∏
v dxv is the Tamagawa measure on X(A).

We define a hermitian inner product 〈·, ·〉 on S(X(A)) by

〈ϕ1, ϕ2〉 :=
∫
X(A)

ϕ1(x)ϕ2(x) dx.

Recall that V� = V� ⊕ V� = X� ⊕ Y�. We define a partial Fourier transform

S(X�(A)) −→ S(V�(A))

ϕ �−→ ϕ̂

by

ϕ̂(u) =

∫
(V�∩Y�\V�)(A)

ϕ(x)ψ

(
1

2
(〈〈x, y〉〉 − 〈〈u, v〉〉)

)
dv,

where we write u+ v = x+ y with u ∈ V�(A), v ∈ V�(A), x ∈ X�(A), y ∈ Y�(A),
and dv is the Tamagawa measure.

Lemma 4.1.1 ([48, p. 182, (13)]). If ϕ = ϕ1 ⊗ ϕ̄2 ∈ S(X�(A)) with ϕi ∈
S(X(A)), then we have

ϕ̂(0) = 〈ϕ1, ϕ2〉.

Proof. We include a proof for convenience. Since V� ∩ Y� = Y�, we have

ϕ̂(u) =

∫
X�(A)

ϕ(x)ψ

(
1

2
(〈〈x, y〉〉 − 〈〈u, v〉〉)

)
dv.

We write

v = (v0, v0), u = (u0,−u0), u0 = x0 + y0

with v0, x0 ∈ X(A) and y0 ∈ Y(A), so that

x = (v0 + x0, v0 − x0), y = (y0,−y0).
We have

〈〈x, y〉〉 = 〈〈v0 + x0, y0〉〉 − 〈〈v0 − x0,−y0〉〉 = 2〈〈v0, y0〉〉,
〈〈u, v〉〉 = 2〈〈u0, v0〉〉 = 2〈〈y0, v0〉〉,

and hence

ϕ̂(u) =

∫
X(A)

ϕ(v0 + x0, v0 − x0)ψ(2〈〈v0, y0〉〉) dv0,
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where dv0 is the Tamagawa measure on X(A). In particular, we have

ϕ̂(0) =

∫
X(A)

ϕ(v0, v0) dv0. �

For each place v of F , we define a hermitian inner product 〈·, ·〉 on S(Xv) with
respect to the Haar measure dxv on Xv given above. Fix a Haar measure on X′

v

and define a hermitian inner product 〈·, ·〉 on S(X′
v) similarly. For ϕ′ ∈ S(X′

v), we
define its partial Fourier transform ϕ ∈ S(Xv) by

ϕ(x) =

∫
Yv∩Y′

v\Yv

ϕ′(x′)ψv

(
1

2
(〈〈x′, y′〉〉 − 〈〈x, y〉〉)

)
dy,

where we write x + y = x′ + y′ with x ∈ Xv, y ∈ Yv, x
′ ∈ X′

v, y
′ ∈ Y′

v, and we
normalize a Haar measure dy so that

〈ϕ1, ϕ2〉 = 〈ϕ′
1, ϕ

′
2〉

holds for ϕ′
1, ϕ

′
2 ∈ S(X′

v) and their partial Fourier transforms ϕ1, ϕ2 ∈ S(Xv).

4.1.2. Weil representations. Fix a place v of F and suppress the subscript
v from the notation. In Appendices C, D, we have defined the maps

• ŝ : G(U(V )×U(W�))→ C1 such that zV� = ∂ŝ,
• s : GU(V )0 ×GU(W )→ C1 such that zY = ∂s,
• s′ : GU(V )0 ×GU(W )→ C1 such that zY′ = ∂s′.

Let ωψ and ω�
ψ be the Weil representations of Mp(V) and Mp(V�) with respect to

ψ, respectively. Composing these with ŝ, s, s′, we obtain:

• a representation ω�
ψ of G(U(V )×U(W�)) on S(V�),

• a representation ωψ of G(U(V )0 ×U(W )) on S(X),
• a representation ωψ of G(U(V )0 ×U(W )) on S(X′).

By §D.4, the partial Fourier transform

S(V�) ∼= S(X�) = S(X)⊗ S(X)
induces an isomorphism

ω�
ψ ◦ (id⊗ ι) ∼= ωψ ⊗ ω̄ψ

as representations of G(U(V )0×U(W )×U(W )). By definition, the partial Fourier
transform S(X′) ∼= S(X) is G(U(V )0 ×U(W ))-equivariant.

4.2. The Jacquet–Langlands–Shimizu correspondence

Let F be a number field and B a quaternion algebra over F . We assume that
B is division. Set

G = GU(W ), H = GU(V ), H0 = GU(V )0,

G1 = U(W ), H1 = U(V ), H0
1 = U(V )0.

Recall that G ∼= B× and

1 −→ F× i−→ B×
1 ×B×

2 −→ H0 −→ 1,

where B1 and B2 are quaternion algebras over F such that B1 · B2 = B in the
Brauer group and i(z) = (z, z−1).
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Put (A×)+ = ν(G(A)) ∩ ν(H0(A)),

G(A)+ = {g ∈ G(A) | ν(g) ∈ (A×)+},
H0(A)+ = {h ∈ H0(A) | ν(h) ∈ (A×)+}.

For each place v of F , we define (F×
v )+, G+

v , (H
0
v )

+ similarly. We have (F×
v )+ = F×

v

if v is either finite or complex. If v is real, then we have

(F×
v )+ =

{
R× if Bv, B1,v, B2,v are split,

R×
+ otherwise.

We have (A×)+ =
∏′

v(F
×
v )+, G(A)+ =

∏′
v G

+
v , and H0(A)+ =

∏′
v(H

0
v )

+.
Let π be an irreducible unitary cuspidal automorphic representation of GL2(A).

We assume that its Jacquet–Langlands transfers πB, πB1
, πB2

to B×(A), B×
1 (A),

B×
2 (A) exist. We regard πB and πB1

� πB2
as irreducible unitary automorphic

representations of G(A) and H0(A) respectively.
We define a theta distribution Θ : S(X(A))→ C by

Θ(ϕ) =
∑

x∈X(F )

ϕ(x)

for ϕ ∈ S(X(A)). Let ϕ ∈ S(X(A)) and f ∈ πB. For h ∈ H0(A)+, choose
g ∈ G(A)+ such that ν(g) = ν(h) and put

(4.1) θϕ(f)(h) :=

∫
G1(F )\G1(A)

Θ(ωψ(g1gh)ϕ)f(g1g) dg1.

Here dg1 =
∏

v dg1,v is the Tamagawa measure on G1(A) and we may assume that
the volume of a hyperspecial maximal compact subgroup of G1,v with respect to
dg1,v is 1 for almost all v. Note that vol(G1(F )\G1(A)) = 1. Using Eichler’s norm
theorem, one can see that θϕ(f)(γh) = θϕ(f)(h) for γ ∈ H0(F ) ∩ H0(A)+ and
h ∈ H0(A)+. Since H0(A) = H0(F )H0(A)+, θϕ(f) defines an automorphic form
on H0(A). Let Θ(πB) be the automorphic representation of H0(A) generated by
θϕ(f) for all ϕ ∈ S(X(A)) and f ∈ πB.

Lemma 4.2.1. The automorphic representation Θ(πB) is cuspidal.

Proof. If both B1 and B2 are division, then H0 is anisotropic modulo center
and the assertion is obvious. Hence we may assume that either B1 or B2 is split.
Then there exists a complete polarization V = X̃⊕ Ỹ over B. As in §C.3, we regard
V as a left B-space. Choosing a basis ṽ, ṽ∗ of V such that X̃ = Bṽ, Ỹ = Bṽ∗,
〈ṽ, ṽ∗〉 = 1, we may write

H =

{
h ∈ GL2(B)

∣∣∣∣h( 1
−1

)
th∗ = ν(h) ·

(
1

−1

)}
.

Put

n(b) :=

(
1 b

1

)
∈ H

for b ∈ F . It remains to show that∫
F\A

θϕ(f)(n(b)) db = 0

for all ϕ ∈ S(X(A)) and f ∈ πB.
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Let V = X̃⊕ Ỹ be another complete polarization over F given by X̃ = W ⊗B X̃
and Ỹ = W⊗B Ỹ , where we regard W as a right B-space. As in [40, §5], we define a
Weil representation ω̃ψ of G1(A)×H1(A) with respect to ψ on S(X̃(A)) ∼= S(W (A)).
Note that

ω̃ψ(g1)ϕ̃(x) = ϕ̃(g−1
1 x),

ω̃ψ(n(b))ϕ̃(x) = ψ( 12 〈x, x〉b)ϕ̃(x)

for ϕ̃ ∈ S(W (A)), x ∈ W (A), g1 ∈ G1(A), and b ∈ A. Let ϕ̃ ∈ S(W (A)) be the
partial Fourier transform of ϕ ∈ S(X(A)). Then we have

Θ(ωψ(g)ϕ) = χ(g)
∑

x∈W (F )

ω̃ψ(g)ϕ̃(x)

for g ∈ G1(A)×H0
1 (A) with some character χ of G1(A)×H0

1 (A) trivial on G1(F )×
H0

1 (F ). One can see that χ(g1) = χ(n(b)) = 1 for g1 ∈ G1(A) and b ∈ A. Since W
is anisotropic, we have∫

F\A
θϕ(f)(n(b)) db

=

∫
F\A

∫
G1(F )\G1(A)

∑
x∈W (F )

ψ( 12 〈x, x〉b)ω̃ψ(g1)ϕ̃(x)f(g1) dg1 db

=

∫
G1(F )\G1(A)

ω̃ψ(g1)ϕ̃(0)f(g1) dg1

= ϕ̃(0)

∫
G1(F )\G1(A)

f(g1) dg1.

Since π is cuspidal, the restriction of πB to G1(A) is orthogonal to the trivial
representation of G1(A), so that this integral vanishes. This completes the proof.

�

Lemma 4.2.2. The automorphic representation Θ(πB) is non-zero.

The proof of this lemma will be given in §4.4 below.

Proposition 4.2.3. We have

Θ(πB) = πB1
� πB2

.

Proof. Since Θ(πB) is cuspidal and non-zero, the assertion follows from the
local theta correspondence for unramified representations and the strong multiplic-
ity one theorem. �

4.3. The doubling method

4.3.1. Degenerate principal series representations. Set

G� = GU(W�), G�
1 = U(W�).

Choosing a basis w,w∗ of W� such that W� = Bw, W� = Bw∗, 〈w,w∗〉 = 1,
we may write

G� =

{
g ∈ GL2(B)

∣∣∣∣ g( 1
1

)
tg∗ = ν(g) ·

(
1

1

)}
.
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Let P and P1 be the Siegel parabolic subgroups of G� and G�
1 given by

P =

{(
a ∗

ν · (a∗)−1

)
∈ G�

∣∣∣∣ a ∈ B×, ν ∈ F×
}

and P1 = P ∩ G�
1 respectively. Let δP and δP1

denote the modulus characters of
P (A) and P1(A) respectively. We have

δP

((
a ∗

ν · (a∗)−1

))
= |ν(a)|3 · |ν|−3

and δP1
= δP |P1(A). Put

d(ν) :=

(
1

ν

)
∈ P

for ν ∈ F×. We fix a maximal compact subgroup K of G�(A) such that G�(A) =
P (A)K and G�

1 (A) = P1(A)K1, where K1 = K ∩G�
1 (A).

For s ∈ C, we consider a degenerate principal series representation I(s) :=

IndG
�

P (δ
s/3
P ) of G�(A) consisting of smooth functions F on G�(A) which satisfy

F
((

a ∗
ν · (a∗)−1

)
g

)
= |ν(a)|s+ 3

2 · |ν|−s− 3
2 · F(g).

We define a degenerate principal series representation I1(s) := Ind
G�

1

P1
(δ

s/3
P1

) of

G�
1 (A) similarly. Then the restriction I(s) → I1(s) to G�

1 (A) as functions is a
G�

1 (A)-equivariant isomorphism. For each place v of F , we define degenerate prin-
cipal series representations Iv(s) and I1,v(s) of G�

v and G�
1,v similarly.

For ϕ ∈ S(V�(A)), we define Fϕ ∈ I( 12 ) by

Fϕ(g) = |ν(g)|−2 · (ω�
ψ (d(ν(g)

−1)g)ϕ)(0).

One can see that the map ϕ �→ Fϕ is G(U(V ) × U(W�))(A)-equivariant, where
GU(V )(A) acts trivially on I( 12 ).

4.3.2. Eisenstein series. For a holomorphic section Fs of I(s), we define an
Eisenstein series E(Fs) on G�(A) by (the meromorphic continuation of)

E(g,Fs) =
∑

γ∈P (F )\G�(F )

Fs(γg).

For a holomorphic section F1,s of I1(s), we define an Eisenstein series E(F1,s)

on G�
1 (A) similarly. If Fs is a holomorphic section of I(s), then Fs|G�

1 (A) is a

holomorphic section of I1(s) and E(Fs)|G�
1 (A) = E(Fs|G�

1 (A)). By [79, Theorem

3.1], E(Fs) is holomorphic at s = 1
2 . In particular, the map

E : I( 12 ) −→ A(G�)

given by E(F) := E(Fs)|s= 1
2
is G�(A)-equivariant, where A(G�) is the space of

automorphic forms on G�(A) and Fs is the holomorphic section of I(s) such that
F 1

2
= F and Fs|K is independent of s.
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4.3.3. Doubling zeta integrals. Let 〈·, ·〉 be the invariant hermitian inner
product on πB given by

〈f1, f2〉 :=
∫
ZG(A)G(F )\G(A)

f1(g)f2(g) dg

for f1, f2 ∈ πB. Here ZG is the center of G and dg is the Tamagawa measure
on ZG(A)\G(A). Note that vol(ZG(A)G(F )\G(A)) = 2. Fix an isomorphism
πB
∼= ⊗vπB,v. For each place v of F , we choose an invariant hermitian inner

product 〈·, ·〉 on πB,v so that 〈f1, f2〉 =
∏

v〈f1,v, f2,v〉 and 〈f1,v, f2,v〉 = 1 for almost
all v for f1 = ⊗vf1,v, f2 = ⊗vf2,v ∈ πB. Set

G = G(U(W )×U(W )) = {(g1, g2) ∈ G×G | ν(g1) = ν(g2)}.
Then the doubling zeta integral of Piatetski-Shapiro and Rallis [58] is given by

Z(Fs, f1, f2) =

∫
Z(A)G(F )\G(A)

E(ι(g1, g2),Fs)f1(g1)f2(g2) dg

for a holomorphic section Fs of I(s) and f1, f2 ∈ πB. Here Z is the center of G� and
dg is the Tamagawa measure on Z(A)\G(A). Note that vol(Z(A)G(F )\G(A)) = 2.
For each place v of F , put

Z(Fs,v, f1,v, f2,v) =

∫
G1,v

Fs,v(ι(g1,v, 1))〈πB,v(g1,v)f1,v, f2,v〉 dg1,v

for a holomorphic section Fs,v of Iv(s) and f1,v, f2,v ∈ πB,v. Note that, for fixed
f1,v and f2,v, this integral depends only on the holomorphic section Fs,v|G�

1,v
of

I1,v(s).

Lemma 4.3.1. We have

Z(Fs, f1, f2) =
LS(s+ 1

2 , π, ad)

ζS(s+ 3
2 )ζ

S(2s+ 1)
·
∏
v∈S

Z(Fs,v, f1,v, f2,v)

for a holomorphic section Fs = ⊗vFs,v of I(s) and f1 = ⊗vf1,v, f2 = ⊗vf2,v ∈ πB.
Here S is a sufficiently large finite set of places of F .

Proof. The assertion follows from the doubling method [58]. Indeed, as in
[58], [22, §6.2], we unfold the Eisenstein series E(ι(g1, g2),Fs) and see that only
the open G-orbit P\PG in P\G� contributes to the integral Z(Fs, f1, f2). Hence
we have

Z(Fs, f1, f2) =

∫
Z(A)G�(F )\G(A)

Fs(ι(g1, g2))f1(g1)f2(g2) dg,

where G� = {(g, g) | g ∈ G}. We have Fs(ι(g1, g2)) = Fs(ι(g
−1
2 g1, 1)) for (g1, g2) ∈

G. Writing g = g2 and g′ = g−1
2 g1, we have

Z(Fs, f1, f2) =

∫
G1(A)

∫
ZG(A)G(F )\G(A)

Fs(ι(g
′, 1))f1(gg

′)f2(g) dg dg
′

=

∫
G1(A)

Fs(ι(g
′, 1))〈πB(g

′)f1, f2〉 dg′

=
∏
v

Z(Fs,v, f1,v, f2,v).
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By [58], we have

Z(Fs,v, f1,v, f2,v) =
L(s+ 1

2 , πv, ad)

ζv(s+
3
2 )ζv(2s+ 1)

for almost all v. This completes the proof. �

4.3.4. Local zeta integrals.

Lemma 4.3.2. The integral Z(Fv, f1,v, f2,v) is absolutely convergent for Fv ∈
Iv( 12 ) and f1,v, f2,v ∈ πB,v.

Proof. If Bv is split, then the lemma is proved in [16, Lemma 6.5]. If Bv is
division, then G1,v is compact and the assertion is obvious. �

Lemma 4.3.3. There exist ϕv ∈ S(V�
v ) and f1,v, f2,v ∈ πB,v such that

Z(Fϕv
, f1,v, f2,v) �= 0.

Proof. If Bv is split, then the lemma is proved in [16, Lemma 6.6]. Assume
that Bv is division. As in [43, Theorem 3.2.2], [45, Proposition 7.2.1], one can see
that there exist Fv ∈ Iv( 12 ) and f1,v, f2,v ∈ πB,v such that Z(Fv, f1,v, f2,v) �= 0.
On the other hand, by [78, Theorems 1.2, 9.2], the map

S(V�
v ) −→ I1,v( 12 )
ϕv �−→ Fϕv

|G�
1,v

is surjective . This yields the lemma. �

If ϕv is the partial Fourier transform of ϕ1,v⊗ ϕ̄2,v ∈ S(X�
v ) with ϕi,v ∈ S(Xv),

then we have

(4.2) Z(Fϕv
, f1,v, f2,v) =

∫
G1,v

〈ωψ(g1,v)ϕ1,v, ϕ2,v〉〈πB,v(g1,v)f1,v, f2,v〉 dg1,v.

This will be used later to explicate the Rallis inner product formula.

4.4. The Rallis inner product formula

4.4.1. Theta integrals. Recall that G(U(V )×U(W�))(A) acts on S(V�(A))
via the Weil representation ω�

ψ . We define aG�
1 (A)-equivariant andH1(A)-invariant

map

I : S(V�(A)) −→ A(G�
1 )

as follows. Here A(G�
1 ) is the space of automorphic forms on G�

1 (A).
Let Θ : S(V�(A))→ C be the theta distribution given by

Θ(ϕ) =
∑

x∈V�(F )

ϕ(x)

for ϕ ∈ S(V�(A)). Let dh1 be the Haar measure on H1(A) such that

vol(H1(F )\H1(A)) = 1.

First we assume that either B1 or B2 is split. Then the integral

(4.3)

∫
H1(F )\H1(A)

Θ(ω�
ψ (g1h1)ϕ) dh1
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may not be convergent. Following Yamana [79, §2], we choose a place v ∈ ΣB and a
‘regularizing element’ z0 in the Bernstein center of H1,v or the universal enveloping
algebra of the complexified Lie algebra of H1,v. Then the integral

I(g1, ϕ) :=

∫
H1(F )\H1(A)

Θ(ω�
ψ (g1h1)(z0 · ϕ)) dh1

is absolutely convergent for all g1 ∈ G�
1 (A) and ϕ ∈ S(V�(A)), and defines an

automorphic form on G�
1 (A). Note that I(g1, ϕ) = (4.3) if the right-hand side is

absolutely convergent for all g1. In particular, I(g1, ϕ) does not depend on choice of
v and z0. Next we assume that both B1 and B2 are division. Then H1(F )\H1(A)
is compact. For ϕ ∈ S(V�(A)), we define an automorphic form I(ϕ) on G�

1 (A) by

I(g1, ϕ) :=

∫
H1(F )\H1(A)

Θ(ω�
ψ (g1h1)(z0 · ϕ)) dh1,

where we write z0 for the identity operator for uniformity.
Similarly, we define a G�

1 (A)-equivariant and H0
1 (A)-invariant map

I0 : S(V�(A)) −→ A(G�
1 )

by

I0(g1, ϕ) :=

∫
H0

1 (F )\H0
1 (A)

Θ(ω�
ψ (g1h

0
1)(z0 · ϕ)) dh0

1,

where dh0
1 is the Tamagawa measure on H0

1 (A). Note that vol(H0
1 (F )\H0

1 (A)) = 2.

Lemma 4.4.1. We have

I0 = 2 · I.

Proof. The lemma follows from [41, Proposition 4.2] with slight modifica-
tions. We include a proof for convenience. For each place v /∈ ΣB, we consider
the space HomH0

1,v
(S(V�

v ),C) with the natural action of H0
1,v\H1,v. Let V †

v and

(W�
v )† be the 4-dimensional quadratic Fv-space and the 4-dimensional symplectic

Fv-space associated to Vv and W�
v respectively. Since dim V †

v > 1
2 dim(W�

v )†, we

have HomH1,v
(S(V�

v ), sgnv) = {0} by [62, p. 399], where sgnv is the non-trivial

character of H0
1,v\H1,v. Hence H1,v acts trivially on HomH0

1,v
(S(V�

v ),C). On the

other hand, we have H0
1,v = H1,v for all v ∈ ΣB. Hence H1(A) acts trivially on

HomH0
1 (A)

(S(V�(A)),C), so that

I(g1, ϕ) =

∫
H0

1 (A)H1(F )\H1(A)

I0(g1, ω
�
ψ (ḣ1)ϕ) dḣ1

=

∫
H0

1 (A)H1(F )\H1(A)

I0(g1, ϕ) dḣ1

=
1

2
· I0(g1, ϕ),

where dḣ1 is the Haar measure on H0
1 (A)\H1(A) such that

vol(H0
1 (A)H1(F )\H1(A)) = 1

2 . �
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4.4.2. The Siegel–Weil formula. The Siegel–Weil formula [79, Theorem
3.4] due to Yamana says that I(ϕ) = E(Fϕ)|G�

1 (A) for ϕ ∈ S(V�(A)). Hence, by

Lemma 4.4.1, we have

(4.4) I0(ϕ) = 2 · E(Fϕ)|G�
1 (A)

for ϕ ∈ S(V�(A)).

4.4.3. The Rallis inner product formula. Recall that πB is the Jacquet–
Langlands transfer to B×(A) of an irreducible unitary cuspidal automorphic repre-
sentation π of GL2(A). Recall also that we have fixed an isomorphism πB

∼= ⊗vπB,v

and an invariant hermitian inner product 〈·, ·〉 on πB,v as in §4.3.3. This inner prod-
uct is used in the definition of the integral Z(Fϕv

, f1,v, f2,v) (see (4.2)). Let ZH0

be the center of H0 and dh0 the Tamagawa measure on Z0
H(A)\H0(A). Note that

vol(ZH0(A)H0(F )\H0(A)) = 4.

Proposition 4.4.2. Let ϕ = ⊗vϕv ∈ S(V�(A)) be the partial Fourier trans-
form of ϕ1 ⊗ ϕ̄2 ∈ S(X�(A)) with ϕi = ⊗vϕi,v ∈ S(X(A)). Let f1 = ⊗vf1,v, f2 =
⊗vf2,v ∈ πB. Then we have∫

ZH0 (A)H0(F )\H0(A)

θϕ1
(f1)(h

0) · θϕ2
(f2)(h0) dh0

= 2 · L
S(1, π, ad)

ζS(2)2
·
∏
v∈S

Z(Fϕv
, f1,v, f2,v).

Here S is a sufficiently large finite set of places of F .

Proof. Put (F×)+ = F× ∩ (A×)+,

G(F )+ = G(F ) ∩G(A)+,

H0(F )+ = H0(F ) ∩H0(A)+.

Set C = (A×)2(F×)+\(A×)+. Then the similitude characters induce isomorphisms

ZG(A)G1(A)G(F )+\G(A)+ ∼= C,
ZH0(A)H0

1 (A)H
0(F )+\H0(A)+ ∼= C.

Fix cross sections c �→ gc and c �→ hc of G(A)+ → C and H0(A)→ C respectively.
Since

G(A) = Z(A) ·G(F ) · (G1 ×G1)(A) · {(gc, gc) | c ∈ C},

we have

Z(Fϕ,s, f1, f2)

= 2

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

E(ι(g1gc, g2gc),Fϕ,s)f1(g1gc)f2(g2gc) dg1 dg2 dc,

where dg1, dg2 are the Tamagawa measures on G1(A) and dc is the Haar measure
on C such that vol(C) = 1. For each c ∈ C, put ϕc = ω�

ψ (ι(gc, gc), hc)ϕ. Since
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E(gι(gc, gc),Fϕ) = E(g,Fϕc
), we have

Z(Fϕ, f1, f2)

= 2

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

E(ι(g1, g2),Fϕc
)f1(g1gc)f2(g2gc) dg1 dg2 dc

=

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

I0(ι(g1, g2), ϕc)f1(g1gc)f2(g2gc) dg1 dg2 dc

=

∫
C

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

∫
H0

1 (F )\H0
1 (A)

Θ(ω�
ψ (ι(g1, g2)h

0
1)(z0 · ϕc))

× f1(g1gc)f2(g2gc) dh
0
1 dg1 dg2 dc

=

∫
C

∫
H0

1 (F )\H0
1 (A)

∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

Θ(ω�
ψ (ι(g1, g2)h

0
1)ϕc) ∗ z0

× f1(g1gc)f2(g2gc) dg1 dg2 dh
0
1 dc

by the Siegel–Weil formula (4.4). On the other hand, we have

Θ(ω�
ψ (ι(g1, g2)h

0
1)ϕc) = Θ(ωψ(g1gch

0
1hc)ϕ1) ·Θ(ωψ(g2gch0

1hc)ϕ2).

Hence we have∫
G1(F )\G1(A)

∫
G1(F )\G1(A)

Θ(ω�
ψ (ι(g1, g2)h

0
1)ϕc) ∗ z0 · f1(g1gc)f2(g2gc) dg1 dg2

=
(
θϕ1

(f1)(h
0
1hc) · θϕ2

(f2)(h0
1hc)

)
∗ z0.

By Lemma 4.2.1, the function h0
1 �→ θϕ1

(f1)(h
0
1hc) · θϕ2

(f2)(h0
1hc) is integrable over

H0
1 (F )\H0

1 (A), so that∫
H0

1 (F )\H0
1 (A)

(
θϕ1

(f1)(h
0
1hc) · θϕ2

(f2)(h0
1hc)

)
∗ z0 dh0

1

=

∫
H0

1 (F )\H0
1 (A)

θϕ1
(f1)(h

0
1hc) · θϕ2

(f2)(h0
1hc) dh

0
1

and hence

Z(Fϕ, f1, f2) =

∫
C

∫
H0

1 (F )\H0
1 (A)

θϕ1
(f1)(h

0
1hc) · θϕ2

(f2)(h0
1hc) dh

0
1 dc.

Since H0(A) = ZH0(A) ·H0(F ) ·H0
1 (A) · {hc | c ∈ C}, this integral is equal to

1

2

∫
ZH0 (A)H0(F )\H0(A)

θϕ1
(f1)(h

0) · θϕ2
(f2)(h0) dh0.

Now the assertion follows from this and Lemma 4.3.1. �
Now Lemma 4.2.2 follows from Proposition 4.4.2 and Lemma 4.3.3.



CHAPTER 5

Schwartz Functions

Recall that, in Chapter 4, we have defined the theta lift θϕ(fB) for an auto-
morphic form fB ∈ πB and a Schwartz function ϕ ∈ S(X(A)). For our applications,
we will study arithmetic properties of θϕ(fB) for some particular choice of fB and
ϕ. The purpose of this chapter is to choose ϕ. Note that fB will be chosen in §6
below.

More precisely, we will pick a decomposable Schwartz function ϕ = ⊗vϕv, where
ϕv ∈ S(Xv) depends not only on the representation πB,v but also on some auxiliary
data as described in §5.5 below. We require that ϕv satisfies some equivariance
properties, but it is not easy to give a direct definition since the Weil representa-
tion on S(Xv) is complicated. On the other hand, if we take a different maximal
isotropic subspace X′

v of the symplectic Fv-space Vv as in §5.2 below, then the Weil
representation on S(X′

v) has a simple description (see §5.3). In particular, it is easy
to find a Schwartz function ϕ′

v ∈ S(X′
v) with the required properties (see §5.6).

Since we have a partial Fourier transform (which is explicated in §5.4 below)

S(X′
v) −→ S(Xv),

which relates the two models of the Weil representation, we can define ϕv as the
image of ϕ′

v. We also compute ϕv explicitly in §5.7 for the sequel [31] of this paper.

5.1. Notation

Let F be a number field. Let o be the integer ring of F and d the different of
F over Q. Let D be the discriminant of F . For each finite place v of F , let ov be
the integer ring of Fv, pv = �vov the maximal ideal of ov, �v a uniformizer of ov,
and qv the cardinality of the residue field ov/pv. Let dv be the non-negative integer
such that d⊗o ov = �dv

v ov. Then we have |D| =
∏

v∈Σfin
qdv
v .

Let ψ0 = ⊗vψ0,v be the non-trivial character of AQ/Q given by

• ψ0,∞(x) = e2π
√
−1x for x ∈ R,

• ψ0,p(x) = e−2π
√
−1x for x ∈ Qp.

Let ψ = ⊗vψv be the non-trivial character of A/F defined by ψ = ψ0 ◦ trF/Q.
We call ψ the standard additive character of A/F . If v is a real place of F , then

ψv(x) = e2π
√
−1x for x ∈ Fv. If v is a complex place of F , then ψv(x) = e2π

√
−1(x+x̄)

for x ∈ Fv, where x̄ is the complex conjugate of x. If v is a finite place of F , then
ψv is trivial on �−dv

v ov but non-trivial on �−dv−1
v ov. For each place v of F , we

define a Fourier transform

S(Fv) −→ S(Fv)

φ �−→ φ̂

67
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by

φ̂(x) =

∫
Fv

φ(y)ψv(xy) dy,

where dy is the self-dual Haar measure on Fv with respect to ψv.
Let V = B1⊗E B2 be the 2-dimensional right skew-hermitian B-space given in

§2.2 and W = B the 1-dimensional left hermitian B-space given in §3.3.1. Recall
that

E = F + F i, B = E + Ej, B1 = E + Ej1, B2 = E + Ej2,

u = i2, J = j2, J1 = j21, J2 = j22,

where J = J1J2. Let V = V ⊗B W be the 8-dimensional symplectic F -space. We
identify V with ResB/F (V ) via the map v �→ v ⊗ 1. In §2.2, we chose a complete
polarization V = X⊕Y over F . Let e1, . . . , e4 and e∗1, . . . , e

∗
4 be the bases of X and

Y, respectively, given by (2.3), (2.15).

5.2. Complete polarizations

In Appendix C, we also choose a complete polarization Vv = X′
v ⊕ Y′

v over Fv

for each place v of F . Note that in picking the polarization, we use the assumption
that for any place v of F , at least one of u, J , J1, J2 is a square in Fv. In this
section, we recall the choice of this polarization. Later, we will pick a Schwartz
function on X′

v and then transfer it to a Schwartz function on Xv by a partial
Fourier transform. From now on, we fix a place v of F and suppress the subscript
v from the notation.

5.2.1. The case u ∈ (F×)2. Choose t ∈ F× such that u = t2. We define an
isomorphism i : B → M2(F ) of quaternion F -algebras by

(5.1) i(1) =

(
1

1

)
, i(i) =

(
t
−t

)
, i(j) =

(
1

J

)
, i(ij) =

(
t

−tJ

)
.

Put

e =
1

2
+

1

2t
i, e′ =

1

2
j+

1

2t
ij, e′′ =

1

2J
j− 1

2tJ
ij, e∗ =

1

2
− 1

2t
i,

so that

i(e) =

(
1 0
0 0

)
, i(e′) =

(
0 1
0 0

)
, i(e′′) =

(
0 0
1 0

)
, i(e∗) =

(
0 0
0 1

)
.

Let W † := eW be the 2-dimensional F -space associated to W equipped with a
non-degenerate symplectic form 〈·, ·〉† defined by

(5.2) 〈x, y〉∗ = 〈x, y〉† · e′

for x, y ∈W †. Then the restriction toW † induces a natural isomorphism GU(W ) ∼=
GSp(W †). We have

〈e, e〉† = 〈e′, e′〉† = 0, 〈e, e′〉† = 1,

and [
e ·α
e′ ·α

]
= i(α) ·

[
e
e′

]
for α ∈ B. We take a complete polarization W † = X ⊕ Y given by

X = Fe, Y = Fe′.
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Similarly, let V † := V e be the 4-dimensional F -space associated to V equipped
with a non-degenerate symmetric bilinear form 〈·, ·〉† defined by

(5.3)
1

2
· 〈x, y〉 = 〈x, y〉† · e′′

for x, y ∈ V †. Then the restriction to V † induces a natural isomorphism GU(V ) ∼=
GO(V †). We take a complete polarization V = X′ ⊕ Y′ given by

X′ = V † ⊗X, Y′ = V † ⊗ Y.

We identify X′ with V † via the map v �→ v ⊗ e. Put

(5.4)

v1 = 2e1e = e1 + te∗1, v∗
1 = −1

t
e1e

∗ = − 1

2t
e1 +

1

2
e∗1,

v2 = 2e2e = e2 − tJ1e
∗
2, v∗

2 =
1

tJ1
e2e

∗ =
1

2tJ1
e2 +

1

2
e∗2,

v3 = − 1

tJ1
e2e

′′ = − 1

2tJ
e3 +

1

2J1
e∗3, v∗

3 = −2e2e′ = −J1e3 − tJe∗3,

v4 = −1

t
e1e

′′ = − 1

2tJ
e4 −

1

2
e∗4, v∗

4 = 2e1e
′ = e4 − tJe∗4.

Then v1, . . . ,v4 and v∗
1, . . . ,v

∗
4 are bases of X′ and Y′, respectively, such that

〈〈vi,v
∗
j 〉〉 = δij .

We may identify the quadratic space V † with the space M2(F ) equipped with
a non-degenerate symmetric bilinear form

(5.5) tr(xy∗) = x1y4 − x2y3 − x3y2 + x4y1

for x = ( x1 x2
x3 x4

), y = ( y1 y2
y3 y4 ). Indeed, the basis v1, . . . ,v4 of V † gives rise to an

isomorphism V † ∼= M2(F ) of quadratic spaces by

v1 �→
(
1 0
0 0

)
, v2 �→

(
0 1
0 0

)
, v3 �→

(
0 0
1 0

)
, v4 �→

(
0 0
0 1

)
.

Under this identification, we have

α1v = v · i1(α1)
∗, α2v = i2(α2) · v

for αi ∈ Bi and v ∈ V † ∼= M2(F ), where i1 : B1 → M2(F ) and i2 : B2 → M2(F )
are isomorphisms of quaternion F -algebras given by

(5.6)

i1(a+ bi+ cj1 + dij1) =

(
a− bt −(c− dt)

−J1(c+ dt) a+ bt

)
,

i2(a+ bi+ cj2 + dij2) =

(
a+ bt − 1

2tJ1
(c+ dt)

−2tJ(c− dt) a− bt

)
.

5.2.2. The case J ∈ (F×)2. Choose t ∈ F× such that J = t2. We define an
isomorphism i : B → M2(F ) of quaternion F -algebras by

(5.7) i(1) =

(
1

1

)
, i(i) =

(
1

u

)
, i(j) =

(
t
−t

)
, i(ij) =

(
−t

tu

)
.

Put

e =
1

2
+

1

2t
j, e′ =

1

2
i− 1

2t
ij, e′′ =

1

2u
i+

1

2tu
ij, e∗ =

1

2
− 1

2t
j,
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so that

i(e) =

(
1 0
0 0

)
, i(e′) =

(
0 1
0 0

)
, i(e′′) =

(
0 0
1 0

)
, i(e∗) =

(
0 0
0 1

)
.

Let W † := eW be the 2-dimensional F -space associated to W equipped with a
non-degenerate symplectic form 〈·, ·〉† defined by (5.2). We have

〈e, e〉† = 〈e′, e′〉† = 0, 〈e, e′〉† = 1,

and [
e ·α
e′ ·α

]
= i(α) ·

[
e
e′

]
for α ∈ B. We take a complete polarization W † = X ⊕ Y given by

X = Fe, Y = Fe′.

Similarly, let V † := V e be the 4-dimensional F -space associated to V equipped
with a non-degenerate symmetric bilinear form 〈·, ·〉† defined by (5.3). We take a
complete polarization V = X′ ⊕ Y′ given by

X′ = V † ⊗X, Y′ = V † ⊗ Y.

We identify X′ with V † via the map v �→ v ⊗ e. Put

ṽ1 = e1e =
1

2
e1 +

1

2t
e4, ṽ∗

1 =
2

u
e1e

′ = e∗1 + te∗4,

ṽ2 = e1e
′′ =

1

2
e∗1 −

t

2
e∗4, ṽ∗

2 = −2e1e∗ = −e1 +
1

t
e4,

ṽ3 = e2e =
1

2
e2 +

J1
2t

e3, ṽ∗
3 = − 2

uJ1
e2e

′ = e∗2 +
t

J1
e∗3,

ṽ4 = e2e
′′ = −J1

2
e∗2 +

t

2
e∗3, ṽ∗

4 =
2

J1
e2e

∗ =
1

J1
e2 −

1

t
e3.

Then ṽ1, . . . , ṽ4 and ṽ∗
1, . . . , ṽ

∗
4 are bases of X′ and Y′, respectively, such that

〈〈ṽi, ṽ
∗
j 〉〉 = δij .

We need to use two coordinate systems given as follows:
5.2.2.1. The case (i). We fix s ∈ F× and define bases v1, . . . ,v4 and v∗

1, . . . ,v
∗
4

of X′ and Y′, respectively, such that 〈〈vi,v
∗
j 〉〉 = δij by

(5.8)
v1 = ṽ1, v2 = ṽ2, v3 =

1

s
ṽ3, v4 =

1

s
ṽ4,

v∗
1 = ṽ∗

1, v∗
2 = ṽ∗

2, v∗
3 = sṽ∗

3, v∗
4 = sṽ∗

4.

We may identify the quadratic space V † with the space B1 equipped with a
non-degenerate symmetric bilinear form

−1

4
trB1/F (xy

∗).

Indeed, since

〈ṽ1, ṽ1〉† =
u

2
, 〈ṽ2, ṽ2〉† = −

1

2
, 〈ṽ3, ṽ3〉† = −

uJ1
2

, 〈ṽ4, ṽ4〉† =
J1
2
,

and 〈ṽi, ṽj〉† = 0 if i �= j, the basis ṽ1, . . . , ṽ4 of V † gives rise to an isomorphism
V † ∼= B1 of quadratic spaces by

ṽ1 �→ i, ṽ2 �→ 1, ṽ3 �→ j1i, ṽ4 �→ j1.
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Under this identification, we have

α1v = α1 · v, α2v = v · i2(α2)
∗

for αi ∈ Bi and v ∈ V † ∼= B1, where i2 : B2 → B1 is an isomorphism of quaternion
F -algebras given by

(5.9) i2(α+ βj2) = αρ +
tβρ

J1
j1

for α, β ∈ E.
5.2.2.2. The case (ii). Assume that J1 ∈ (F×)2. We choose t1 ∈ F× such that

J1 = t21 and define bases v1, . . . ,v4 and v∗
1, . . . ,v

∗
4 of X′ and Y′, respectively, such

that 〈〈vi,v
∗
j 〉〉 = δij by

(5.10)

v1 = ṽ1 +
1

t1
ṽ3 =

1

2
e1 +

1

2t1
e2 +

t1
2t
e3 +

1

2t
e4,

v2 = ṽ2 +
1

t1
ṽ4 =

1

2
e∗1 −

t1
2
e∗2 +

t

2t1
e∗3 −

t

2
e∗4,

v3 = ṽ2 −
1

t1
ṽ4 =

1

2
e∗1 +

t1
2
e∗2 −

t

2t1
e∗3 −

t

2
e∗4,

v4 =
1

u
ṽ1 −

1

t1u
ṽ3 =

1

2u
e1 −

1

2t1u
e2 −

t1
2tu

e3 +
1

2tu
e4,

v∗
1 =

1

2
ṽ∗
1 +

t1
2
ṽ∗
3 =

1

2
e∗1 +

t1
2
e∗2 +

t

2t1
e∗3 +

t

2
e∗4,

v∗
2 =

1

2
ṽ∗
2 +

t1
2
ṽ∗
4 = −1

2
e1 +

1

2t1
e2 −

t1
2t
e3 +

1

2t
e4,

v∗
3 =

1

2
ṽ∗
2 −

t1
2
ṽ∗
4 = −1

2
e1 −

1

2t1
e2 +

t1
2t
e3 +

1

2t
e4,

v∗
4 =

u

2
ṽ∗
1 −

t1u

2
ṽ∗
3 =

u

2
e∗1 −

t1u

2
e∗2 −

tu

2t1
e∗3 +

tu

2
e∗4.

We may identify the quadratic space V † with the space M2(F ) equipped with
the non-degenerate symmetric bilinear form (5.5). Indeed, the basis v1, . . . ,v4 of
V † gives rise to an isomorphism V † ∼= M2(F ) of quadratic spaces by

v1 �→
(
1 0
0 0

)
, v2 �→

(
0 1
0 0

)
, v3 �→

(
0 0
1 0

)
, v4 �→

(
0 0
0 1

)
.

Under this identification, we have

α1v = i1(α1) · v, α2v = v · i2(α2)
∗

for αi ∈ Bi and v ∈ V † ∼= M2(F ), where i1 : B1 → M2(F ) and i2 : B2 → M2(F )
are isomorphisms of quaternion F -algebras given by

(5.11)

i1(a+ bi+ cj1 + dij1) =

(
a+ ct1 b− dt1

u(b+ dt1) a− ct1

)
,

i2(a+ bi+ cj2 + dij2) =

(
a− c t

t1
−u(b+ d t

t1
)

−(b− d t
t1
) a+ c t

t1

)
.
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5.2.3. The case J1 ∈ (F×)2 or J2 ∈ (F×)2. We only consider the case
J1 ∈ (F×)2; we switch the roles of B1 and B2 in the other case. Choose t ∈ F×

such that J1 = t2. We define isomorphisms i1 : B1 → M2(F ) and i2 : B2 → B of
quaternion F -algebras by
(5.12)

i1(1) =

(
1

1

)
, i1(i) =

(
2

u
2

)
, i1(j1) =

(
t
−t

)
, i1(ij1) =

(
−2t

tu
2

)
,

and

(5.13) i2(α+ βj2) = α+
β

t
j

for α, β ∈ E. Put

v :=
1

2
e1 +

1

2t
e2, v∗ := e∗1 + te∗2 =

1

u
e1i−

1

tu
e2i.

Then v,v∗ is a basis of V over B such that

〈v,v〉 = 〈v∗,v∗〉 = 0, 〈v,v∗〉 = 1.

Moreover, we have [
αi · v αi · v∗] = [v v∗] · ii(αi)

for αi ∈ Bi. Here we identify i2(α2) with the scalar matrix i2(α2) · 12 in M2(B).
Let V ′ := V , regarded as a left B-space via α ·x′ := (x ·α∗)′, where for an element
x ∈ V , we write x′ for the corresponding element in V ′. We have a natural skew-
hermitian form 〈·, ·〉′ on V ′ defined by 〈x′, y′〉′ = 〈x, y〉. Let GL(V ′) act on V ′ on
the right. We may identify GU(V ) with GU(V ′) via the isomorphism

GL(V ) −→ GL(V ′).

g �−→
[
x′ �→ (g−1 · x)′

]
Under this identification, we have[

v′ ·αi

(v∗)′ ·αi

]
= t(ii(αi)

−1)∗ ·
[

v′

(v∗)′

]
for αi ∈ Bi. We take a complete polarization V ′ = X ′ ⊕ Y ′ given by

X ′ = B · v′, Y ′ = B · (v∗)′.

Similarly, let W ′ := W , regarded as a right B-space via x′ ·α := (α∗ ·x)′. We have
a natural hermitian form 〈·, ·〉′ on W ′ defined by 〈x′, y′〉′ = 〈x, y〉. Let GL(W ′) act
on W ′ on the left. We may identify GU(W ) with GU(W ′) via the isomorphism

GL(W ) −→ GL(W ′).

g �−→
[
x′ �→ (x · g−1)′

]
We now consider an F -space V′ := W ′ ⊗B V ′ equipped with a non-degenerate
symplectic form

〈〈·, ·〉〉′ := 1

2
trB/F (〈·, ·〉′ ⊗ 〈·, ·〉′∗).

Let GL(V′) act on V′ on the right. We identify V with V′ via the map x = x⊗y �→
x′ = y′⊗x′. Then by Lemma C.3.1, we may identify GSp(V) with GSp(V′) via the
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isomorphism

GL(V) −→ GL(V′),

g �−→ [x′ �→ (x · g)′]

which induces a commutative diagram

GU(V )×GU(W ) ��

��

GSp(V)

��

GU(W ′)×GU(V ′) �� GSp(V′)

.

We take a complete polarization

V′ = (W ′ ⊗B X ′)⊕ (W ′ ⊗B Y ′).

Under the identification V = V′, this gives a complete polarization V = X′ ⊕ Y′,
where

X′ = (v ·B)⊗B W, Y′ = (v∗ ·B)⊗B W.

We identify X′ with W via the map w �→ v ⊗ w. We fix s ∈ F× and put

(5.14)

v1 = v =
1

2
e1 +

1

2t
e2, v∗

1 = v∗ = e∗1 + te∗2,

v2 =
1

u
vi =

1

2
e∗1 −

t

2
e∗2, v∗

2 = −v∗i = −e1 +
1

t
e2,

v3 =
1

s
vj =

1

2s
e4 +

t

2s
e3, v∗

3 = − s

J
v∗j = se∗4 +

s

t
e∗3,

v4 =
1

su
vij = − J

2s
e∗4 +

J

2st
e∗3, v∗

4 =
s

J
v∗ij =

s

J
e4 −

st

J
e3.

Then v1, . . . ,v4 and v∗
1, . . . ,v

∗
4 are bases of X′ and Y′, respectively, such that

〈〈vi,v
∗
j 〉〉 = δij .

5.3. Weil representations

Recall that we have the Weil representation ωψ of G(U(V )0 ×U(W )) on S(X)
obtained from the map s : GU(V )0 × GU(W ) → C1 such that zY = ∂s given in
Appendix C. This Weil representation is unitary with respect to the hermitian
inner product 〈·, ·〉 on S(X) given by

〈ϕ1, ϕ2〉 =
∫
X

ϕ1(x)ϕ2(x) dx,

where dx = dx1 · · · dx4 for x = x1e1 + · · · + x4e4 with the self-dual Haar measure
dxi on F with respect to ψ. The map s is defined in terms of another map s′ :
GU(V )0 ×GU(W )→ C1 such that zY′ = ∂s′ given in Appendix C, based on [40].
Thus we obtain the Weil representation ωψ of G(U(V )0 × U(W )) on S(X′) from
s′, as in [40, §5], [27, §5]. This Weil representation is unitary with respect to the
hermitian inner product 〈·, ·〉 on S(X′) given in terms of certain Haar measure on
X′. In this section, we define this Haar measure on X′ and give explicit formulas
for the Weil representation on S(X′).
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5.3.1. The case u ∈ (F×)2. Recall that we identified X′ with V †. We take
the self-dual Haar measure on V † with respect to the pairing (x, y) �→ ψ(〈x, y〉†).
More explicitly, this measure is given by

dx = dx1 · · · dx4

for x = x1v1 + · · · + x4v4 ∈ X′, where v1, . . . ,v4 is the basis of X′ given by (5.4)
and dxi is the self-dual Haar measure on F with respect to ψ.

We identity GU(W ) ∼= B× with GL2(F ) via the isomorphism i given by (5.1).
Then U(W ) ∼= SL2(F ) acts on S(X′) by

ωψ

(
a

a−1

)
ϕ(x) = |a|2ϕ(ax), a ∈ F×,

ωψ

(
1 b

1

)
ϕ(x) = ψ

(
1

2
b〈x, x〉†

)
ϕ(x), b ∈ F,

ωψ

(
−1

1

)
ϕ(x) =

∫
X′
ϕ(y)ψ(−〈x, y〉†) dy.

This action extends to an action of G(U(V )0 × U(W )) by

ωψ(g, h) = ωψ(g · d(ν)−1) ◦ L(h) = L(h) ◦ ωψ(d(ν)
−1 · g)

for g ∈ GU(W ) ∼= GL2(F ) and h ∈ GU(V )0 ∼= GO(V †)0 such that ν(g) = ν(h) =:
ν, where d(ν) = ( 1 ν ) and

L(h)ϕ(x) = |ν|−1ϕ(h−1x).

5.3.2. The case J ∈ (F×)2. Recall that we identified X′ with V †. We take
the self-dual Haar measure on V † with respect to the pairing (x, y) �→ ψ(〈x, y〉†).
More explicitly, according the coordinate system, this measure is given as follows:

(i)

dx =

∣∣∣∣uJ14s2

∣∣∣∣ dx1 · · · dx4

for x = x1v1 + · · · + x4v4 ∈ X′, where v1, . . . ,v4 is the basis of X′ given by
(5.8) and dxi is the self-dual Haar measure on F with respect to ψ.

(ii)

dx = dx1 · · · dx4

for x = x1v1 + · · · + x4v4 ∈ X′, where v1, . . . ,v4 is the basis of X′ given by
(5.10) and dxi is the self-dual Haar measure on F with respect to ψ.

We identity GU(W ) ∼= B× with GL2(F ) via the isomorphism i given by (5.7).
Then U(W ) ∼= SL2(F ) acts on S(X′) by

ωψ

(
a

a−1

)
ϕ(x) = |a|2ϕ(ax), a ∈ F×,

ωψ

(
1 b

1

)
ϕ(x) = ψ

(
1

2
b〈x, x〉†

)
ϕ(x), b ∈ F,

ωψ

(
−1

1

)
ϕ(x) = γB1

∫
X′
ϕ(y)ψ(−〈x, y〉†) dy,

where

γB1
=

{
1 if B1 is split,

−1 if B1 is ramified.
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This action extends to an action of G(U(V )0 × U(W )) by

ωψ(g, h) = ωψ(g · d(ν)−1) ◦ L(h) = L(h) ◦ ωψ(d(ν)
−1 · g)

for g ∈ GU(W ) ∼= GL2(F ) and h ∈ GU(V )0 ∼= GO(V †)0 such that ν(g) = ν(h) =:
ν, where d(ν) = ( 1 ν ) and

L(h)ϕ(x) = |ν|−1ϕ(h−1x).

5.3.3. The case J1 ∈ (F×)2 or J2 ∈ (F×)2. We only consider the case
J1 ∈ (F×)2; we switch the roles of B1 and B2 in the other case. Recall that we
identified X′ with W . We take the self-dual Haar measure on W with respect to
the pairing (x, y) �→ ψ( 12 trB/F 〈x, y〉). More explicitly, this measure is given by

dx =

∣∣∣∣ J

s2u

∣∣∣∣ dx1 · · · dx4

for x = x1v1 + · · ·+ x4v4 ∈ X′, where v1, . . . ,v4 is the basis of X′ given by (5.14)
and dxi is the self-dual Haar measure on F with respect to ψ.

We identity GU(V )0 ∼= (B×
1 ×B×

2 )/F× with the group{
g ∈ GL2(B)

∣∣∣∣ tg∗( 1
−1

)
g = ν(g)

(
1

−1

)}
via the map (α1,α2) �→ i1(α1)i2(α2), where i1 and i2 are the isomorphisms given
by (5.12), (5.13). Then U(V )0 acts on S(X′) via the identification U(V )0 ∼= U(V ′)0

followed by the Weil representation of U(V ′)0 on S(W ′ ⊗B X ′) given in [40, §5].
Hence U(V )0 acts on S(X′) by

ωψ

(
a

(a−1)∗

)
ϕ(x) = |ν(a)|−1ϕ(a−1x), a ∈ B×,

ωψ

(
1
b 1

)
ϕ(x) = ψ

(
−1

2
b〈x, x〉

)
ϕ(x), b ∈ F,

ωψ

(
−1

1

)
ϕ(x) = γB

∫
X′
ϕ(y)ψ

(
−1

2
trB/F 〈x, y〉

)
dy,

where

γB =

{
1 if B is split,

−1 if B is ramified.

This action extends to an action of G(U(V )0 × U(W )) by

ωψ(g, h) = ωψ(h · d(ν)−1) ◦R(g) = R(g) ◦ ωψ(d(ν)
−1 · h)

for g ∈ GU(W ) and h ∈ GU(V )0 such that ν(g) = ν(h) =: ν, where d(ν) = ( 1 ν )
and

R(g)ϕ(x) = |ν|ϕ(xg).

5.4. Partial Fourier transforms

Recall that the partial Fourier transform ϕ ∈ S(X) of ϕ′ ∈ S(X′) is given by

ϕ(x) =

∫
Y/Y∩Y′

ϕ′(x′)ψ

(
1

2
(〈〈x′, y′〉〉 − 〈〈x, y〉〉)

)
dμY/Y∩Y′(y),
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where for x ∈ X and y ∈ Y, we write x + y = x′ + y′ with x′ = x′(x, y) ∈ X′ and
y′ = y′(x, y) ∈ Y′, and we take the Haar measure μY/Y∩Y′ on Y/Y ∩Y′ so that the
map

S(X′) −→ S(X)
ϕ′ �−→ ϕ

respects the hermitian inner products (given in terms of the Haar measures on X
and X′ given in §5.3). By construction, this partial Fourier transform is a unitary
equivalence between the Weil representations of G(U(V )0 × U(W )) on S(X) and
S(X′). In this section, we explicate the Haar measure μY/Y∩Y′ and the partial
Fourier transform S(X′)→ S(X).

We write

x = x1e1 + · · ·+ x4e4 ∈ X, y = y1e
∗
1 + · · ·+ y4e

∗
4 ∈ Y,

x′ = x′
1v1 + · · ·+ x′

4v4 ∈ X′, y′ = y′1v
∗
1 + · · ·+ y′4v

∗
4 ∈ Y′,

where v1, . . . ,v4 and v∗
1, . . . ,v

∗
4 are the bases of X′ and Y′, respectively, given in

§5.2. Let dxi, dyj , dx
′
i, dy

′
j be the self-dual Haar measures on F with respect to ψ.

5.4.1. The case u ∈ (F×)2. Recall that vi,v
∗
j are given by (5.4). Note that

Y ∩ Y′ = {0}. We define a Haar measure μY/Y∩Y′ on Y by

dμY/Y∩Y′(y) = |4u|− 1
2 dy1 · · · dy4

for y = y1e
∗
1+ · · ·+y4e

∗
4. We will see below that the partial Fourier transform with

respect to this Haar measure is an isometry.
If x+ y = x′ + y′, then we have

x′
1 =

1

2t
(y1 + tx1), y′1 = y1 − tx1,

x′
2 = − 1

2tJ1
(y2 − tJ1x2), y′2 = y2 + tJ1x2,

x′
3 = J1(y3 − tJ2x3), y′3 = − 1

2tJ
(y3 + tJ2x3),

x′
4 = −(y4 + tJx4), y′4 = − 1

2tJ
(y4 − tJx4).

Namely, putting

a1 = t, a2 = −tJ1, a3 = −tJ2, a4 = tJ, b1 = b2 = 1, b3 = b4 = −2tJ,
we have

x′
i =

bi
2ai

(yi + aixi), y′i =
1

bi
(yi − aixi),

so that

x′
iy

′
i − xiyi = x′

i

(
2ai
b2i

x′
i −

2ai
bi

xi

)
− xi

(
2ai
bi

x′
i − aixi

)
=

2ai
b2i

(x′
i)

2 − 4ai
bi

xix
′
i + aix

2
i .

Hence, if ϕ′(x′) =
∏4

i=1 ϕ
′
i(x

′
i) with ϕ′

i ∈ S(F ), then we have

ϕ(x) = |4u|− 1
2

4∏
i=1

ϕi(xi),
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where

ϕi(xi) =

∫
F

ϕ′
i(x

′
i)ψ

(
1

2
(x′

iy
′
i − xiyi)

)
dyi

=

∣∣∣∣2aibi

∣∣∣∣ψ (ai2 x2
i

)∫
F

ϕ′
i(x

′
i)ψ

(
ai
b2i
(x′

i)
2 − 2ai

bi
xix

′
i

)
dx′

i.

Since
4∏

i=1

2ai
bi

= 4u,

the partial Fourier transform with respect to μY/Y∩Y′ is an isometry.

5.4.2. The case J ∈ (F×)2.
5.4.2.1. The case (i). Recall that vi,v

∗
j are given by (5.8). Note that Y∩Y′ =

Fv∗
1 +Fv∗

3. Let μY and μY∩Y′ be the Haar measures on Y and Y∩Y′, respectively,
defined by

dμY(y) = dy1 · · · dy4, dμY∩Y′(y′) = dy′1 dy
′
3

for y = y1e
∗
1 + · · ·+ y4e

∗
4 and y′ = y′1v

∗
1 + y′3v

∗
3. We define a Haar measure μY/Y∩Y′

on Y/Y ∩ Y′ by

μY/Y∩Y′ =

∣∣∣∣ uJ14s2J

∣∣∣∣ 12 μY

μY∩Y′
.

We will see below that the partial Fourier transform with respect to this Haar
measure is an isometry.

If x+ y = x′ + y′, then we have

x′
1 = x1 + tx4, y′1 =

1

2

(
y1 +

1

t
y4

)
,

x′
2 = y1 −

1

t
y4, y′2 = −1

2
(x1 − tx4),

x′
3 = s

(
x2 +

t

J1
x3

)
, y′3 =

1

2s

(
y2 +

J1
t
y3

)
,

x′
4 = − s

J1

(
y2 −

J1
t
y3

)
, y′4 =

J1
2s

(
x2 −

t

J1
x3

)
,

so that

x′
1y

′
1 − x′

2y
′
2 = x1y1 + x4y4, x′

3y
′
3 − x′

4y
′
4 = x2y2 + x3y3.

Also, we have

dx′
1 dx

′
3 dy

′
2 dy

′
4 = |J | dx1 · · · dx4,

dx′
2 dx

′
4 dy

′
1 dy

′
3 = |J |−1 dy1 · · · dy4.

Hence, if ϕ′(x′) =
∏4

i=1 ϕ
′
i(x

′
i) with ϕ′

i ∈ S(F ), then we have

ϕ(x) =

∣∣∣∣uJJ14s2

∣∣∣∣ 12 ϕ′
1(x

′
1)ϕ

′
3(x

′
3)

∫
F

∫
F

ϕ′
2(x

′
2)ϕ

′
4(x

′
4)ψ(x

′
2y

′
2 + x′

4y
′
4) dx

′
2 dx

′
4

=

∣∣∣∣uJJ14s2

∣∣∣∣ 12 ϕ′
1(x

′
1)ϕ̂

′
2(y

′
2)ϕ

′
3(x

′
3)ϕ̂

′
4(y

′
4).

In particular, the partial Fourier transform with respect to μY/Y∩Y′ is an isometry.
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5.4.2.2. The case (ii). Recall that vi,v
∗
j are given by (5.10). Note that Y∩Y′ =

Fv∗
1 +Fv∗

4. Let μY and μY∩Y′ be the Haar measures on Y and Y∩Y′, respectively,
defined by

dμY(y) = dy1 · · · dy4, dμY∩Y′(y′) = dy′1 dy
′
4

for y = y1e
∗
1 + · · ·+ y4e

∗
4 and y′ = y′1v

∗
1 + y′4v

∗
4. We define a Haar measure μY/Y∩Y′

on Y/Y ∩ Y′ by

μY/Y∩Y′ = |uJ |− 1
2

μY

μY∩Y′
.

We will see below that the partial Fourier transform with respect to this Haar
measure is an isometry.

If x+ y = x′ + y′, then we have

x′
1 =

1

2

(
x1 + t1x2 +

t

t1
x3 + tx4

)
, y′1 =

1

2

(
y1 +

1

t1
y2 +

t1
t
y3 +

1

t
y4

)
,

x′
2 =

1

2

(
y1 −

1

t1
y2 +

t1
t
y3 −

1

t
y4

)
, y′2 = −1

2

(
x1 − t1x2 +

t

t1
x3 − tx4

)
,

x′
3 =

1

2

(
y1 +

1

t1
y2 −

t1
t
y3 −

1

t
y4

)
, y′3 = −1

2

(
x1 + t1x2 −

t

t1
x3 − tx4

)
,

x′
4 =

u

2

(
x1 − t1x2 −

t

t1
x3 + tx4

)
, y′4 =

1

2u

(
y1 −

1

t1
y2 −

t1
t
y3 +

1

t
y4

)
,

so that

x′
1y

′
1 − x′

2y
′
2 − x′

3y
′
3 + x′

4y
′
4 = x1y1 + x2y2 + x3y3 + x4y4.

Also, we have

dx′
1 dx

′
4 dy

′
2 dy

′
3 = |uJ | dx1 · · · dx4,

dx′
2 dx

′
3 dy

′
1 dy

′
4 = |uJ |−1 dy1 · · · dy4.

Hence, if ϕ′(x′) =
∏4

i=1 ϕ
′
i(x

′
i) with ϕ′

i ∈ S(F ), then we have

ϕ(x) = |uJ | 12ϕ′
1(x

′
1)ϕ

′
4(x

′
4)

∫
F

∫
F

ϕ′
2(x

′
2)ϕ

′
3(x

′
3)ψ(x

′
2y

′
2 + x′

3y
′
3) dx

′
2 dx

′
3

= |uJ | 12ϕ′
1(x

′
1)ϕ̂

′
2(y

′
2)ϕ̂

′
3(y

′
3)ϕ

′
4(x

′
4).

In particular, the partial Fourier transform with respect to μY/Y∩Y′ is an isometry.

5.4.3. The case J1 ∈ (F×)2 or J2 ∈ (F×)2. We only consider the case
J1 ∈ (F×)2; we switch the roles of B1 and B2 in the other case. Recall that vi,v

∗
j

are given by (5.14). Note that Y∩Y′ = Fv∗
1 +Fv∗

3. Let μY and μY∩Y′ be the Haar
measures on Y and Y ∩ Y′, respectively, defined by

dμY(y) = dy1 · · · dy4, dμY∩Y′(y′) = dy′1 dy
′
3

for y = y1e
∗
1 + · · ·+ y4e

∗
4 and y′ = y′1v

∗
1 + y′3v

∗
3. We define a Haar measure μY/Y∩Y′

on Y/Y ∩ Y′ by

μY/Y∩Y′ = |s2u|− 1
2

μY

μY∩Y′
.

We will see below that the partial Fourier transform with respect to this Haar
measure is an isometry.
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If x+ y = x′ + y′, then we have

x′
1 = x1 + tx2, y′1 =

1

2

(
y1 +

1

t
y2

)
,

x′
2 = y1 −

1

t
y2, y′2 = −1

2
(x1 − tx2),

x′
3 = s

(
x4 +

1

t
x3

)
, y′3 =

1

2s
(y4 + ty3),

x′
4 = − s

J
(y4 − ty3), y′4 =

J

2s

(
x4 −

1

t
x3

)
,

so that

x′
1y

′
1 − x′

2y
′
2 = x1y1 + x2y2, x′

3y
′
3 − x′

4y
′
4 = x3y3 + x4y4.

Also, we have

dx′
1 dx

′
3 dy

′
2 dy

′
4 = |J | dx1 · · · dx4,

dx′
2 dx

′
4 dy

′
1 dy

′
3 = |J |−1 dy1 · · · dy4.

Hence, if ϕ′(x′) =
∏4

i=1 ϕ
′
i(x

′
i) with ϕ′

i ∈ S(F ), then we have

ϕ(x) =

∣∣∣∣ J2

s2u

∣∣∣∣
1
2

ϕ′
1(x

′
1)ϕ

′
3(x

′
3)

∫
F

∫
F

ϕ′
2(x

′
2)ϕ

′
4(x

′
4)ψ(x

′
2y

′
2 + x′

4y
′
4) dx

′
2 dx

′
4

=

∣∣∣∣ J2

s2u

∣∣∣∣
1
2

ϕ′
1(x

′
1)ϕ̂

′
2(y

′
2)ϕ

′
3(x

′
3)ϕ̂

′
4(y

′
4).

In particular, the partial Fourier transform with respect to μY/Y∩Y′ is an isometry.

5.5. Automorphic representations

Suppose that F is a totally real number field. Let πB
∼= ⊗vπB,v be an irre-

ducible unitary cuspidal automorphic representation of B×(A) satisfying the fol-
lowing conditions:

• For v ∈ Σfin � ΣB,fin,
(ur) πB,v = Ind(χv ⊗ μv) is a principal series representation, where χv and μv are

unitary unramified; or
(rps) πB,v = Ind(χv ⊗ μv) is a principal series representation, where χv is unitary

unramified and μv is unitary ramified; or
(st) πB,v = St ⊗ χv is a twist of the Steinberg representation, where χv is unitary

unramified.
• For v ∈ ΣB,fin,

(1d) πB,v = χv◦νv is a 1-dimensional representation, where χv is unitary unramified.
• For v ∈ Σ∞ � ΣB,∞,
(ds) πB,v = DSkv

is the irreducible unitary (limit of) discrete series representation
of weight kv.

• For v ∈ ΣB,∞,

(fd) πB,v = Symkv is the irreducible unitary (kv + 1)-dimensional representation.

We assume that πB,v is unramified for all finite places v of F such that Fv is
ramified or of residual characteristic 2. By Proposition 7.1.4, we may assume that
the following conditions (which are relevant to the choice of the polarization Vv =
X′

v ⊕ Y′
v) are satisfied:
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• If v /∈ ΣB, then J ∈ (F×
v )2 except in the case (ur).

• If v ∈ ΣB, then either J1 ∈ (F×
v )2 or J2 ∈ (F×

v )2.

In fact, Proposition 7.1.4 (applied as at the beginning of §7.2; see also Remark
7.1.3) enables us to impose more precise ramification conditions as described in the
following table:

π B B1, B2 E u F J J1, J2

ur ur.p.s. spl spl, spl spl sq unit ur int ints
spl sq unit ram sq unit sq units
inert nsq unit ur ∗ ∗
ram unif ur sq unit sq units

rps r.p.s. spl spl, spl spl sq unit ur sq unit sq units
st St spl spl, spl spl sq unit ur sq unit sq units

ram, ram inert nsq unit ur sq of unif ∗∗
1d St ram spl, ram inert nsq unit ur unif sq unit, unif

ram, spl inert nsq unit ur unif unif, sq unit
ds d.s. spl spl, spl C − R + +,+

ram, ram C − R + −,−
fd d.s. ram spl, ram C − R − +,−

ram, spl C − R − −,+
· All places above 2 fall into the case (ur) with E being split.
· In the case (ur) with E being inert, we need to consider separately the case
J ∈ (F×

v )2 and the case J1 ∈ (F×
v )2 or J2 ∈ (F×

v )2.
· ∗ indicates integers with even valuation.
· ∗∗ indicates uniformizers such that the ratio J1/J2 is a square unit.
· int : integer, sq unit : square unit, nsq unit : non-square unit
· unif : uniformizer, sq of unif : square of a uniformizer
· + : positive, − : negative

Here π ∼= ⊗vπv is the Jacquet–Langlands transfer of πB to GL2(A). These condi-
tions will be very useful in the computation of the partial Fourier transform. From
now on, we fix a place v of F and suppress the subscript v from the notation.

5.6. Schwartz functions on X′

In this section, we pick a Schwartz function ϕ′ ∈ S(X′) such that 〈ϕ′, ϕ′〉 = 1,
together with maximal compact subgroups K,K1,K2 of B×, B×

1 , B×
2 , respectively.

Also, we study equivariance properties of ϕ′ under the action of K and K1 × K2,
regarded as subgroups of GU(W ) ∼= B× and GU(V )0 ∼= (B×

1 × B×
2 )/F×, respec-

tively.
We need to introduce some notation. For any set A, let IA denote the charac-

teristic function of A. If F is non-archimedean, then for any positive integer n, we
define a subalgebra Rn of M2(F ) by

Rn =

{(
a b
c d

)
∈ M2(o)

∣∣∣∣ c ∈ �no

}
.

Note that R1 is an Iwahori subalgebra of M2(F ). If F = R, then we choose an
isomorphism E ∼= C such that

i√
−1

> 0,
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i.e., i = |u| 12
√
−1. Put

∂

∂z
=

1

2

(
∂

∂x
+

1

i

∂

∂y

)
,

∂

∂zρ
=

1

2

(
∂

∂x
− 1

i

∂

∂y

)
for z = x+ yi. For any integer k, we define a character χk of C× by

χk(α) =

(
α√
ααρ

)k

.

Put

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

5.6.1. The case (ur).
5.6.1.1. The case when E is split and F is unramified. In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• u = t2 for some t ∈ o×,
• J, J1, J2 ∈ o.

We define maximal orders oB , oB1
, oB2

in B,B1, B2, respectively, by

oB = i
−1(M2(o)), oB1

= i
−1
1 (M2(o)), oB2

= i
−1
2 (M2(o)),

where i, i1, i2 are the isomorphisms given by (5.1), (5.6). Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

.

We take the complete polarization V = X′ ⊕ Y′ and identify X′ with V † ∼= M2(F )
as in §5.2.1. We define ϕ′ ∈ S(X′) by ϕ′ = IM2(o), i.e.,

ϕ′(x) = Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.4). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ K, k1 ∈ K1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).
5.6.1.2. The case when E is split and F is ramified. In this case, we have:

• F is non-archimedean,
• u = t2 for some t ∈ o×,
• J, J1, J2 ∈ (o×)2.

Let d be the non-negative integer such that ψ is trivial on �−do but non-trivial on
�−d−1o. We define maximal orders oB, oB1

, oB2
in B,B1, B2, respectively, by

oB = i
−1
((

1
�d

)
M2(o)

(
1
�−d

))
, oB1

= i
−1
1 (M2(o)), oB2

= i
−1
2 (M2(o)),

where i, i1, i2 are the isomorphisms given by (5.1), (5.6). Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

.

We take the complete polarization V = X′ ⊕ Y′ and identify X′ with V † ∼= M2(F )
as in §5.2.1. We define ϕ′ ∈ S(X′) by ϕ′ = qd · IM2(o), i.e.,

ϕ′(x) = qd · Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.4). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′



82 5. SCHWARTZ FUNCTIONS

for k ∈ K, k1 ∈ K1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).
5.6.1.3. The case when E is inert and J ∈ (F×)2. In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u ∈ o× � (o×)2,
• J = t2 for some t ∈ o,
• J1 ∈ s2o× for some s ∈ o,
• J2 ∈ o.

We define maximal orders oB , oB1
, oB2

in B,B1, B2, respectively, by

oB = i−1(M2(o)), oB1
= o+ oi+ o

j1
s
+ o

ij1
s
, oB2

= i
−1
2 (oB1

),

where i, i2 are the isomorphisms given by (5.7), (5.9). Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

.

We take the complete polarization V = X′ ⊕ Y′ as in §5.2.2 and identify X′ with
V † ∼= B1 as in §5.2.2.1. We define ϕ′ ∈ S(X′) by ϕ′ = IoB1

, i.e.,

ϕ′(x) = Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.8). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ K, k1 ∈ K1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).
5.6.1.4. The case when E is inert, and J1 ∈ (F×)2 or J2 ∈ (F×)2. We only

consider the case J1 ∈ (F×)2; we switch the roles of B1 and B2 in the other case.
In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u ∈ o× � (o×)2,
• J1 = t2 for some t ∈ o,
• J ∈ s2o× for some s ∈ o,
• J2 ∈ o.

We define maximal orders oB , oB1
, oB2

in B,B1, B2, respectively, by

oB = o+ oi+ o
j

s
+ o

ij

s
, oB1

= i
−1
1 (M2(o)), oB2

= i
−1
2 (oB),

where i1, i2 are the isomorphisms given by (5.12), (5.13). Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

.

We take the complete polarization V = X′ ⊕ Y′ and identify X′ with W = B as in
§5.2.3. We define ϕ′ ∈ S(X′) by ϕ′ = IoB

, i.e.,

ϕ′(x) = Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1+ · · ·+x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.14). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ K, k1 ∈ K1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).
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5.6.1.5. The case when E is ramified. In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u ∈ �o×,
• J = t2 for some t ∈ o×,
• J1 = t21 for some t1 ∈ o×,
• J2 ∈ (o×)2.

We define maximal orders oB , oB1
, oB2

in B,B1, B2, respectively, by

oB = i
−1(M2(o)), oB1

= i
−1
1 (M2(o)), oB2

= i
−1
2 (M2(o)),

where i, i1, i2 are the isomorphisms given by (5.7), (5.11). Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

.

We take the complete polarization V = X′ ⊕ Y′ as in §5.2.2 and identify X′ with
V † ∼= M2(F ) as in §5.2.2.2. We define ϕ′ ∈ S(X′) by ϕ′ = IM2(o), i.e.,

ϕ′(x) = Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1+ · · ·+x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.10). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ K, k1 ∈ K1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).

5.6.2. The case (rps). In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u = t2 for some t ∈ o×,
• J, J1, J2 ∈ (o×)2.

We define maximal orders oB , oB1
, oB2

in B,B1, B2 and subalgebras oB,n, oB1,n,
oB2,n of B,B1, B2, respectively, by

oB = i−1(M2(o)), oB1
= i

−1
1 (M2(o)), oB2

= i
−1
2 (M2(o)),

oB,n = i
−1(Rn), oB1,n = i

−1
1 (Rn), oB2,n = i

−1
2 (Rn),

where i, i1, i2 are the isomorphisms given by (5.1), (5.6). We define orientations

oB : oB,n −→ o/�no,

oB1
: oB1,n −→ o/�no,

oB2
: oB2,n −→ o/�no

by

oB
(
i−1
(
a b
c d

))
= d mod �no,

oB1

(
i
−1
1

(
a b
c d

))
= d mod �n

o,

oB2

(
i
−1
2

(
a b
c d

))
= a mod �n

o.

Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

,

Kn = o
×
B,n, K1,n = o

×
B1,n

, K2,n = o
×
B2,n

.
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We take the complete polarization V = X′ ⊕ Y′ and identify X′ with V † ∼= M2(F )
as in §5.2.1. For a unitary ramified character μ of F× of conductor qn, i.e., trivial
on 1 + �no but non-trivial on 1 +�n−1o (resp. o×) if n > 1 (resp. if n = 1), we
define ϕ′ = ϕ′

μ ∈ S(X′) by

ϕ′(x) = q
n+1
2 (q − 1)−

1
2 · Io(x1)Io(x2)I�no(x3)Io×(x4)μ(x4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.4). Then
we have

ωψ(k, (k1, k2))ϕ
′ = μ(k)−1μ(k1)μ(k2)

−1μ(ν(k2))ϕ
′

for k ∈ Kn, k1 ∈ K1,n, k2 ∈ K2,n such that ν(k) = ν(k1)ν(k2), where μ is the
character of R×

n (and those of Kn,K1,n,K2,n via i, i1, i2) defined by

μ(k) := μ(d)

for k =
(
a b
c d

)
.

5.6.3. The case (st).
5.6.3.1. The case when B1 and B2 are split. In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u = t2 for some t ∈ o×,
• J, J1, J2 ∈ (o×)2.

We define maximal orders oB , oB1
, oB2

inB,B1, B2 and Iwahori subalgebras I, I1, I2
of B,B1, B2, respectively, by

oB = i
−1(M2(o)), oB1

= i
−1
1 (M2(o)), oB2

= i
−1
2 (M2(o)),

I = i−1(R1), I1 = i
−1
1 (R1), I2 = i

−1
2 (R1),

where i, i1, i2 are the isomorphisms given by (5.1), (5.6). Put

K = o
×
B, K1 = o

×
B1

, K2 = o
×
B2

,

I = I
×, I1 = I

×
1 , I2 = I

×
2 .

We take the complete polarization V = X′ ⊕ Y′ and identify X′ with V † ∼= M2(F )
as in §5.2.1. We define ϕ′ ∈ S(X′) by

ϕ′(x) = q
1
2 · Io(x1)Io(x2)Ip(x3)Io(x4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.4). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ I, k1 ∈ I1, k2 ∈ I2 such that ν(k) = ν(k1)ν(k2).
5.6.3.2. The case when B1 and B2 are ramified. In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u ∈ o× � (o×)2,
• J = t2 for some t ∈ �o×,
• J1, J2 ∈ �o×.
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We define a maximal order oB in B and an Iwahori subalgebra I of B by

oB = i−1(M2(o)), I = i−1(R1),

where i is the isomorphism given by (5.7). Let oB1
and oB2

be the unique maximal
orders in B1 and B2, respectively. Then we have

oB1
= o+ oi+ oj1 + oij1, oB2

= i
−1
2 (oB1

),

where i2 is the isomorphism given by (5.9). Put

K = o
×
B, I = I×, K1 = o

×
B1

, K2 = o
×
B2

.

Put s = 1. We take the complete polarization V = X′⊕Y′ as in §5.2.2 and identify
X′ with V † ∼= B1 as in §5.2.2.1. We define ϕ′ ∈ S(X′) by ϕ′ = q

1
2 · IoB1

, i.e.,

ϕ′(x) = q
1
2 · Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.8). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ I, k1 ∈ K1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).

5.6.4. The case (1d). We only consider the case J1 ∈ (F×)2; we switch the
roles of B1 and B2 in the other case. In this case, we have:

• F is non-archimedean,
• ψ is of order zero,
• 2 ∈ o×,
• u ∈ o× � (o×)2,
• J1 = t2 for some t ∈ o×,
• J, J2 ∈ �o×.

We define a maximal order oB1
in B1 and an Iwahori subalgebra I1 of B1 by

oB1
= i

−1
1 (M2(o)), I1 = i

−1
1

((
1
�−1

)
R1

(
1
�

))
,

where i1 is the isomorphism given by (5.12). Let oB and oB2
be the unique maximal

orders in B and B2, respectively. Then we have

oB = o+ oi+ oj+ oij, oB2
= i

−1
2 (oB),

where i2 is the isomorphism given by (5.13). Put

K = o
×
B, K1 = o

×
B1

, I1 = I
×
1 , K2 = o

×
B2

.

Put s = 1. We take the complete polarization V = X′ ⊕ Y′ and identify X′ with
W = B as in §5.2.3. We define ϕ′ ∈ S(X′) by ϕ′ = q

1
2 · IoB

, i.e.,

ϕ′(x) = q
1
2 · Io(x1)Io(x2)Io(x3)Io(x4)

for x = x1v1+ · · ·+x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.14). Then
we have

ωψ(k, (k1, k2))ϕ
′ = ϕ′

for k ∈ K, k1 ∈ I1, k2 ∈ K2 such that ν(k) = ν(k1)ν(k2).

5.6.5. The case (ds).
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5.6.5.1. The case when B1 and B2 are split. In this case, we have:

• F = R,
• ψ(x) = e2π

√
−1x,

• u < 0,
• J = t2 for some t ∈ F×,
• J1 = s2 for some s ∈ F×,
• J2 > 0.

Put v = |u| 12 . We take the complete polarization V = X′ ⊕ Y′ as in §5.2.2 and
identify X′ with V † ∼= B1 as in §5.2.2.1. For a non-negative integer k, we define
ϕ′ = ϕ′

k ∈ S(X′) by

ϕ′(x) = c
− 1

2

k · (x2 − x1i)
k · e− π

2v (x
2
2−ux2

1+x2
4−ux2

3)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.8) and

ck =
k!|u| k2+1

4πk
.

Lemma 5.6.1. We have 〈ϕ′, ϕ′〉 = 1 and

ωψ(α, (α1, α2))ϕ
′ = χk(α)

−1χk(α1)χk(α2)ϕ
′

for α, α1, α2 ∈ E× such that ν(α) = ν(α1)ν(α2).

Proof. Recall that the Haar measure on X′ is given by dx = |u|
4 dx1 · · · dx4.

We have

|u|
4

∫
F 4

(x2
2 − ux2

1)
ke−

π
v (x2

2−ux2
1+x2

4−ux2
3) dx1 · · · dx4

=
|u|
4π2

( v
π

)k ∫
F 4

(x2
2 + x2

1)
ke−(x2

2+x2
1+x2

4+x2
3) dx1 · · · dx4

=
|u| k2+1

4πk+2
· (2π)2

∫ ∞

0

∫ ∞

0

r2k1 e−(r21+r22) r1 dr1 r2 dr2

=
|u| k2+1

4πk

∫ ∞

0

∫ ∞

0

rk1e
−(r1+r2) dr1 dr2

=
|u| k2+1

4πk
· Γ(k + 1)

and hence 〈ϕ′, ϕ′〉 = 1. If we write z1 = x2 + x1i and z2 = x4 + x3i, then

ϕ′(x) = c
− 1

2

k · (zρ1)k · e−
π
2v (z1z

ρ
1+z2z

ρ
2 ),

and it is easy to see that

ωψ(ν
1
2 , (α1, α2))ϕ

′ = χk(α1)χk(α2)ϕ
′

for α1, α2 ∈ E× and ν = ν(α1)ν(α2). On the other hand, we have

ωψ(H)ϕ
′(x) =

(
2 + x1

∂

∂x1
+ · · ·+ x4

∂

∂x4

)
ϕ′(x),

ωψ(X)ϕ
′(x) =

π
√
−1
2

(ux2
1 − x2

2 − ux2
3 + x2

4)ϕ
′(x),

ωψ(Y)ϕ
′(x) = − 1

2π
√
−1

(
1

u

∂2

∂x2
1

− ∂2

∂x2
2

− 1

u

∂2

∂x2
3

+
∂2

∂x2
4

)
ϕ′(x),
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where we identity GU(W ) ∼= B× with GL2(F ) via the isomorphism i given by (5.7).
Thus, noting that

∂2

∂z1∂z
ρ
1

=
1

4

(
∂2

∂x2
2

− 1

u

∂2

∂x2
1

)
,

∂2

∂z2∂z
ρ
2

=
1

4

(
∂2

∂x2
4

− 1

u

∂2

∂x2
3

)
,

we see that

ωψ(v
−1X− vY)ϕ′ = −

√
−1kϕ′.

This implies that

ωψ(α, (1, 1))ϕ
′ = χk(α)

−1ϕ′

for α ∈ E1 since

i(α) =

(
a b
bu a

)
=

(
1

v

)(
cos θ sin θ
− sin θ cos θ

)(
1

v−1

)
= exp((v−1X− vY)θ)

if we write α = a+ bi = e
√
−1θ. This completes the proof. �

5.6.5.2. The case when B1 and B2 are ramified. In this case, we have:

• F = R,
• ψ(x) = e2π

√
−1x,

• u < 0,
• J = t2 for some t ∈ F×,
• J1 = −s2 for some s ∈ F×,
• J2 < 0.

Put v = |u| 12 . We take the complete polarization V = X′ ⊕ Y′ as in §5.2.2 and
identify X′ with V † ∼= B1 as in §5.2.2.1. For a non-negative integer k, we define
ϕ′ = ϕ′

k ∈ S(X′) by

ϕ′(x) = c
− 1

2

k · (x2 − x1i)
k · e− π

2v (x
2
2−ux2

1+x2
4−ux2

3)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.8) and

ck =
k!|u| k2+1

4πk
.

Lemma 5.6.2. We have 〈ϕ′, ϕ′〉 = 1 and

ωψ(α, (α1, α2))ϕ
′ = χk+2(α)

−1χk(α1)χk(α2)ϕ
′

for α, α1, α2 ∈ E× such that ν(α) = ν(α1)ν(α2).

Proof. The proof is the same as that of Lemma 5.6.1 and we omit the details.
Note that, in this case, we have

ωψ(H)ϕ
′(x) =

(
2 + x1

∂

∂x1
+ · · ·+ x4

∂

∂x4

)
ϕ′(x),

ωψ(X)ϕ
′(x) =

π
√
−1
2

(ux2
1 − x2

2 + ux2
3 − x2

4)ϕ
′(x),

ωψ(Y)ϕ
′(x) = − 1

2π
√
−1

(
1

u

∂2

∂x2
1

− ∂2

∂x2
2

+
1

u

∂2

∂x2
3

− ∂

∂x2
4

)
ϕ′(x). �
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5.6.6. The case (fd). We only consider the case J1 ∈ (F×)2; we switch the
roles of B1 and B2 in the other case. In this case, we have:

• F = R,
• ψ(x) = e2π

√
−1x,

• u < 0,
• J1 = t2 for some t ∈ F×,
• J = −s2 for some s ∈ F×,
• J2 < 0.

Put v = |u| 12 . We take the complete polarization V = X′ ⊕Y′ and identify X′ with
W = B as in §5.2.3. For a non-negative integer k, we define ϕ′ = ϕ′

k ∈ S(X′) by

ϕ′(x) = c
− 1

2

k ·
(
x1 − x2

i

u

)k

· e−πv
2 (x2

1− 1
ux2

2+x2
3− 1

ux2
4)

for x = x1v1 + · · ·+ x4v4, where v1, . . . ,v4 is the basis of X′ given by (5.14) and

ck =
k!

πk|u| k2+1
.

Lemma 5.6.3. We have 〈ϕ′, ϕ′〉 = 1 and

ωψ(α, (α1, α2))ϕ
′ = χk(α)

−1χk+2(α1)χk(α2)ϕ
′

for α, α1, α2 ∈ E× such that ν(α) = ν(α1)ν(α2).

Proof. Recall that the Haar measure on X′ is given by dx = 1
|u| dx1 · · · dx4.

We have

1

|u|

∫
F 4

(
x2
1 −

1

u
x2
2

)k

e−πv(x2
1− 1

ux2
2+x2

3− 1
ux2

4) dx1 · · · dx4

=
1

π2|u|

(
1

πv

)k ∫
F 4

(x2
1 + x2

2)
ke−(x2

1+x2
2+x2

3+x2
4) dx1 · · · dx4

=
1

πk+2|u| k2+1
· (2π)2

∫ ∞

0

∫ ∞

0

r2k1 e−(r21+r22) r1 dr1 r2 dr2

=
1

πk|u| k2+1

∫ ∞

0

∫ ∞

0

rk1e
−(r1+r2) dr1 dr2

=
1

πk|u| k2+1
· Γ(k + 1)

and hence 〈ϕ′, ϕ′〉 = 1. If we write z1 = x1 + x2
i
u and z2 = x3 + x4

i
u , then

ϕ′(x) = c
− 1

2

k · (zρ1)k · e−
πv
2 (z1z

ρ
1+z2z

ρ
2 ),

and it is easy to see that

ωψ(α, (ν
1
2 , α2))ϕ

′ = χk(α)
−1χk(α2)ϕ

′



5.7. SCHWARTZ FUNCTIONS ON X 89

for α, α2 ∈ E× and ν = ν(α)ν(α2)
−1. On the other hand, we have

ωψ(H)ϕ
′(x) = −

(
2 + x1

∂

∂x1
+ · · ·+ x4

∂

∂x4

)
ϕ′(x),

ωψ(X)ϕ
′(x) =

1

4π
√
−1

(
∂2

∂x2
1

− u
∂2

∂x2
2

+
∂2

∂x2
3

− u
∂

∂x2
4

)
ϕ′(x),

ωψ(Y)ϕ
′(x) = −π

√
−1
(
x2
1 −

1

u
x2
2 + x2

3 −
1

u
x2
4

)
ϕ′(x),

where we identity GU(V )0 ∼= (B×
1 × B×

2 )/F× with a subgroup of GL2(B) via the
isomorphisms i1, i2 given by (5.12), (5.13). Thus, noting that

∂2

∂z1∂z
ρ
1

=
1

4

(
∂2

∂x2
1

− u
∂2

∂x2
2

)
,

∂2

∂z2∂z
ρ
2

=
1

4

(
∂2

∂x2
3

− u
∂2

∂x2
4

)
,

we see that
ωψ(2v

−1X− 2−1vY)ϕ′ =
√
−1(k + 2)ϕ′.

This implies that
ωψ(1, (α, 1))ϕ

′ = χk+2(α)ϕ
′

for α ∈ E1 since

i1(α) =

(
a 2b
bu
2 a

)
=

(
1

2−1v

)(
cos θ sin θ
− sin θ cos θ

)(
1

2v−1

)
= exp((2v−1X− 2−1vY)θ)

if we write α = a+ bi = e
√
−1θ. This completes the proof. �

5.7. Schwartz functions on X

Let ϕ ∈ S(X) be the partial Fourier transform of the Schwartz function ϕ′ ∈
S(X′) given in §5.6. (We also write ϕμ and ϕk for the partial Fourier transforms of
ϕ′
μ and ϕ′

k, respectively, to indicate the dependence on a unitary ramified character
μ in the case (rps) and on a non-negative integer k in the cases (ds), (fd).) Then
we have

〈ϕ, ϕ〉 = 〈ϕ′, ϕ′〉 = 1.

Also, since the partial Fourier transform is a G(U(V )0 × U(W ))-equivariant map,
ϕ satisfies the same equivariance properties as ϕ′. In this section, we compute ϕ
explicitly.

We need to introduce more notation. Put κ1 = 1 and κ2 = −J1. We define a
quadratic F -algebra K by

K = F + F j.

We write

x = e1z1 + e2z2 = x1e1 + x2e2 + x3e3 + x4e4 ∈ X,

zi = αi + βij ∈ K,

so that

α1 = x1, β1 = x4, α2 = x2, β2 =
1

J1
x3.

Recall that the Weil index γF (ψ) is an 8th root of unity such that∫
F

φ(x)ψ(x2) dx = γF (ψ)|2|−
1
2

∫
F

φ̂(x)ψ

(
−x2

4

)
dx
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for all φ ∈ S(F ), where φ̂ is the Fourier transform of φ with respect to ψ and dx is
the self-dual Haar measure on F with respect to ψ. For any non-negative integer
n, let Hn(x) denote the Hermite polynomial defined by

Hn(x) = (−1)nex2 dn

dxn

(
e−x2

)
.

5.7.1. The case (ur).
5.7.1.1. The case when E is split and F is unramified. We use the notation

of §5.6.1.1. By the partial Fourier transform given in §5.4.1, we have ϕ(x) =

|2|−1
∏4

i=1 ϕi(xi), where

ϕi(xi) =

∣∣∣∣2aibi

∣∣∣∣ψ (ai2 x2
i

)∫
o

ψ

(
ai
b2i
(x′

i)
2 − 2ai

bi
xix

′
i

)
dx′

i.

Lemma 5.7.1. Assume that ψ is of order zero. Put

I(a, b) =

∫
o

ψ(ax2 + bx) dx

for a, b ∈ F .

(i) We have

I(a, b) =

{
Io(b) if a ∈ o,

ψ(− b2

4a )γF (aψ)|2a|−
1
2 Io( b

2a ) if 4a /∈ p,

where aψ is the non-trivial character of F given by (aψ)(x) = ψ(ax).
(ii) If F = Q2 and 2a ∈ o×, then we have

I(a, b) = Io×( ba ).

Proof. If a ∈ o, then we have I(a, b) = Îo(b) = Io(b). If 2a /∈ p, then we
change the variable x �→ x+ y

2a with y ∈ o to get

I(a, b) =

∫
o

ψ

(
a
(
x+

y

2a

)2
+ b
(
x+

y

2a

))
dx

= ψ

(
y2

4a
+

by

2a

)∫
o

ψ(ax2 + xy + bx) dx

= ψ

(
y2

4a
+

by

2a

)
I(a, b).

Assume that 4a /∈ p. Then we have I(a, b) = ψ( by2a )I(a, b) for all y ∈ o, so that

I(a, b) = 0 unless b
2a ∈ o. If b

2a ∈ o, then we have

I(a, b) =

∫
o

ψ

(
a

(
x+

b

2a

)2

− b2

4a

)
dx = ψ

(
− b2

4a

)∫
o

ψ(ax2) dx.

On the other hand, by definition, we have∫
F

φ(x)ψ(ax2) dx = γF (aψ)|2a|−
1
2

∫
F

φ̂(x)ψ

(
−x2

4a

)
dx

for all φ ∈ S(F ). Hence we have∫
o

ψ(ax2) dx = γF (aψ)|2a|−
1
2

∫
o

ψ

(
−x2

4a

)
dx = γF (aψ)|2a|−

1
2 .

This proves (i).
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Assume that F = Q2 and 2a ∈ o×. As above, we have I(a, b) = ψ( by2a )I(a, b)

for all y ∈ 2o, so that I(a, b) = 0 unless b
a ∈ o. Also, we have

I(a, b) = ψ

(
− b2

4a

)∫
o

ψ(ax2) dx

if b
a ∈ 2o. Changing the variable x �→ x+ 1, we have∫

o

ψ(ax2) dx =

∫
o

ψ(ax2 + 2ax+ a) dx = ψ(a)

∫
o

ψ(ax2) dx.

Since F = Q2, ψ is of order zero, and ψ(a)2 = ψ(2a) = 1, we must have ψ(a) = −1.
Hence we have ∫

o

ψ(ax2) dx = 0,

so that I(a, b) = 0 if b
a ∈ 2o. Assume that b

a ∈ o×. Since F = Q2, we may write

a = y + 1
2 and b

2a = z + 1
2 for some y, z ∈ o. Then we have

I(a, b) =

∫
o

ψ

(
x2

(
y +

1

2

)
+ 2x

(
y +

1

2

)(
z +

1

2

))
dx

=

∫
o

ψ

(
1

2
x2 +

1

2
x

)
dx

= 1

since 1
2x(x+ 1) ∈ o for all x ∈ o. This proves (ii). �

By Lemma 5.7.1, we have

I

(
ai
b2i
,−2ai

bi
xi

)
=

⎧⎨⎩Io(
2ai

bi
xi) if ai

b2i
∈ o,

ψ(−aix2
i )γF (aiψ)

∣∣∣ b2i2ai

∣∣∣ 12 Io(bixi) if 4ai

b2i
/∈ p,

so that

ϕ1(x1) = |2| · ψ
(
t

2
x2
1

)
· Io(2x1),

ϕ2(x2) = |2J1| · ψ
(
− tJ1

2
x2
2

)
· Io(2J1x2),

ϕ3(x3) = γF (−tJ2ψ) · |2J2|
1
2 · ψ

(
tJ2
2

x2
3

)
· Io(2Jx3),

ϕ4(x4) = γF (tJψ) · |2J |
1
2 · ψ

(
− tJ

2
x2
4

)
· Io(2Jx4).

We have

γF (−tJ2ψ) · γF (tJψ) = γF (−2tJ2,
1

2
ψ) · γF (2tJ,

1

2
ψ) · γF (

1

2
ψ)2

= γF (−J1,
1

2
ψ) · (−2tJ2, 2tJ)F · γF (−1,

1

2
ψ)−1

= γF (J1,
1

2
ψ) · (2tJ2, J1)F .
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Hence we have

ϕ(x) = γF (J1,
1

2
ψ) · (2tJ2, J1)F · |2|2|J1|

3
2 |J2|

× ψ

(
t

2
(x2

1 − J1x
2
2 + J2x

2
3 − Jx2

4)

)
· Io(2x1)Io(2J1x2)Io(2Jx3)Io(2Jx4)

= γF (J1,
1

2
ψ) · (2tJ2, J1)F · |2|2|J1|

3
2 |J2| · ϕ̃κ1

(z1)ϕ̃κ2
(z2),

where

ϕ̃κ(z) = ψ

(
κt

2
NK/F (z)

)
· I

o+o
j
J
(2κz)

for z ∈ K.
5.7.1.2. The case when E is split and F is ramified. We use the notation of

§5.6.1.2. Note that the inverse different d−1 is equal to�−do. By the partial Fourier
transform given in §5.4.1, we have ϕ(x) = qd|2|−1

∏4
i=1 ϕi(xi), where

ϕi(xi) =

∣∣∣∣2aibi

∣∣∣∣ψ (ai2 x2
i

)∫
o

ψ

(
ai
b2i
(x′

i)
2 − 2ai

bi
xix

′
i

)
dx′

i.

In particular, we have

ϕi(xi) ∈ Z[q−
1
2 , μp∞ ]

for all xi ∈ F , where p is the residual characteristic of F and μp∞ is the group of
p-power roots of unity. If further 2 ∈ o×, then we have

ϕi(xi) = ψ
(ai
2
x2
i

)
· Îo
(
−2ai

bi
xi

)
= q−

d
2 · ψ

(ai
2
x2
i

)
· Id−1(xi)

and hence

ϕ(x) = q−d · ψ
(
t

2
(x2

1 − J1x
2
2 − J2x

2
3 + Jx2

4)

)
· Id−1(x1)Id−1(x2)Id−1(x3)Id−1(x4)

= q−d · ϕ̃κ1
(z1)ϕ̃κ2

(z2),

where

ϕ̃κ(z) = ψ

(
κt

4
trK/F (z

2)

)
· Id−1+d−1j(z)

for z ∈ K.
5.7.1.3. The case when E is inert and J ∈ (F×)2. We use the notation of

§5.6.1.3. By the partial Fourier transform given in §5.4.2.1, we have

ϕ(x) = |J | 12 · Io(x1 + tx4)Îo

(
−1

2
(x1 − tx4)

)
× Io

(
s

(
x2 +

t

J1
x3

))
Îo

(
J1
2s

(
x2 −

t

J1
x3

))
= |J | 12 · Io(x1)Io(sx2)Io

(
st

J1
x3

)
Io(tx4)

= |J | 12 · I
o+o

j
t
(z1)Io+o

j
t
(sz2).
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5.7.1.4. The case when E is inert, and J1 ∈ (F×)2 or J2 ∈ (F×)2. We use the
notation of §5.6.1.4. By the partial Fourier transform given in §5.4.3, we have

ϕ(x) = |J | 12 · Io(x1 + tx2)Îo

(
−1

2
(x1 − tx2)

)
× Io

(
s

(
x4 +

1

t
x3

))
Îo

(
J

2s

(
x4 −

1

t
x3

))
= |J | 12 · Io(x1)Io(tx2)Io

(s
t
x3

)
Io(sx4)

= |J | 12 · I
o+o

j
s
(z1)Io+o

j
s
(tz2).

5.7.1.5. The case when E is ramified. We use the notation of §5.6.1.5. By the
partial Fourier transform given in §5.4.2.2, we have

ϕ(x) = q−
1
2

× Io

(
1

2

(
x1 + t1x2 +

t

t1
x3 + tx4

))
Îo

(
−1

2

(
x1 − t1x2 +

t

t1
x3 − tx4

))
× Îo

(
−1

2

(
x1 + t1x2 −

t

t1
x3 − tx4

))
Io

(
u

2

(
x1 − t1x2 −

t

t1
x3 + tx4

))
= q−

1
2 · Io(x1 − tx4)Io

(
x2 −

t

J1
x3

)
× Io

(
x1 + t1x2 +

t

t1
x3 + tx4

)
I�−1o

(
x1 − t1x2 −

t

t1
x3 + tx4

)
= q−

1
2 · Io(α1 − tβ1)Io(α2 − tβ2)

× Io(α1 + tβ1 + t1α2 + tt1β2)I�−1o(α1 + tβ1 − t1α2 − tt1β2).

5.7.2. The case (rps). We use the notation of §5.6.2. By the partial Fourier

transform given in §5.4.1, we have ϕ(x) = q
n+1
2 (q − 1)−

1
2

∏4
i=1 ϕi(xi), where

ϕi(xi) = ψ
(ai
2
x2
i

)
· Îo
(
−2ai

bi
xi

)
= Io(xi)

for i = 1, 2,

ϕ3(x3) = ψ
(a3
2
x2
3

)
· Î�no

(
−2a3

b3
x3

)
= q−n · ψ

(
− tJ2

2
x2
3

)
· I�−no(x3),

and

ϕ4(x4) = ψ
(a4
2
x2
4

)
· Îo×μ

(
−2a4

b4
x4

)
= ψ

(
tJ

2
x2
4

)
· Îo×μ(x4).

Since μ is of conductor qn, we have

Îo×μ = q−n · g(μ, ψ) · I�−no×μ−1,

where

g(μ, ψ) =

∫
�−no×

μ(y)ψ(y) dy.
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Note that |g(μ, ψ)| = q
n
2 . Hence we have

ϕ(x) = q−
3
2n+

1
2 (q − 1)−

1
2 · g(μ, ψ)

× ψ

(
t

2
(−J2x2

3 + Jx2
4)

)
· Io(x1)Io(x2)I�−no(x3)I�−no×(x4)μ(x4)

−1

= q−
3
2n+

1
2 (q − 1)−

1
2 · g(μ, ψ)

× ψ

(
κ1tJ

2
β2
1

)
· Io(α1)I�−no×(β1)μ(β1)

−1

× ψ

(
κ2tJ

2
β2
2

)
· Io(α2)I�−no(β2).

5.7.3. The case (st).
5.7.3.1. The case when B1 and B2 are split. We use the notation of §5.6.3.1.

By the partial Fourier transform given in §5.4.1, we have ϕ(x) = q
1
2

∏4
i=1 ϕi(xi),

where

ϕi(xi) = ψ
(ai
2
x2
i

)
· Îo
(
−2ai

bi
xi

)
= Io(xi)

for i = 1, 2, 4 and

ϕ3(x3) = ψ
(a3
2
x2
3

)
· Îp
(
−2a3

b3
x3

)
= q−1 · ψ

(
− tJ2

2
x2
3

)
· I�−1o(x3).

Hence we have

ϕ(x) = q−
1
2 · ψ

(
− tJ2

2
x2
3

)
· Io(x1)Io(x2)I�−1o(x3)Io(x4)

= q−
1
2 · Io(α1)Io(β1) · ψ

(
κ2tJ

2
β2
2

)
· Io(α2)I�−1o(β2).

5.7.3.2. The case when B1 and B2 are ramified. We use the notation of §5.6.3.2.
By the partial Fourier transform given in §5.4.2.1, we have

ϕ(x) = q−1 · Io(x1 + tx4)Îo

(
−1

2
(x1 − tx4)

)
× Io

(
s

(
x2 +

t

J1
x3

))
Îo

(
J1
2s

(
x2 −

t

J1
x3

))
= q−1 · Io(x1)I�−1o(x4)Io

(
x2 +

t

J1
x3

)
I�−1o

(
x2 −

t

J1
x3

)
= q−1 · Io(α1)I�−1o(β1)Io(α2 + tβ2)I�−1o(α2 − tβ2).

5.7.4. The case (1d). We use the notation of §5.6.4. By the partial Fourier
transform given in §5.4.3, we have

ϕ(x) = q−
1
2 · Io(x1 + tx2)Îo

(
−1

2
(x1 − tx2)

)
× Io

(
s

(
x4 +

1

t
x3

))
Îo

(
J

2s

(
x4 −

1

t
x3

))
= q−

1
2 · Io(x1)Io(x2)Io

(
x4 +

1

t
x3

)
I�−1o

(
x4 −

1

t
x3

)
= q−

1
2 · Io(α1)Io(α2)Io(β1 + tβ2)I�−1o(β1 − tβ2).
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5.7.5. The case (ds).
5.7.5.1. The case when B1 and B2 are split. We use the notation of §5.6.5.1.

By the partial Fourier transform given in §5.4.2.1, we have

ϕ(x) = c
− 1

2

k

∣∣∣∣uJ4
∣∣∣∣ 12 ∫ ∞

−∞
(x′

2 − v
√
−1x′

1)
ke−

π
2 (vx′2

1 + 1
v x

′2
2 )e2π

√
−1x′

2y
′
2 dx′

2

×
∫ ∞

−∞
e−

π
2 (vx′2

3 + 1
v x

′2
4 )e2π

√
−1x′

4y
′
4 dx′

4.

Lemma 5.7.2. Let k be a non-negative integer and v a positive real number.
Put

I(x, y) =

∫ ∞

−∞

(
x+

√
−1
v

w

)k

e−
π
2 (vx2+ 1

vw
2)e2π

√
−1wy dw

for x, y ∈ R. Then we have

I(x, y) =
1√

2k−1πkvk−1
·Hk

(√
2πv

(
1

2
x− y

))
· e−πv( 1

2x
2+2y2).

Proof. We have

I(x, y) = e−
πv
2 x2

√
2v

π

∫ ∞

−∞

(
x+

√
2

πv

√
−1w

)k

e−w2

e2
√
2πv

√
−1wy dw

= e−
πv
2 x2

√
2k+1

πk+1vk−1

∫ ∞

−∞

(√
πv

2
x+
√
−1w

)k

e−(w−
√
2πv

√
−1y)2−2πvy2

dw

= e−
πv
2 x2−2πvy2

√
2k+1

πk+1vk−1

∫ ∞

−∞

(√
πv

2
x+
√
−1w −

√
2πvy

)k

e−w2

dw.

Hence the assertion follows from the integral representation of the Hermite polyno-
mial:

Hk(x) =
2k√
π

∫ ∞

−∞
(x+

√
−1w)ke−w2

dw. �

By Lemma 5.7.2, we have

ϕ(x) = c
− 1

2

k

∣∣∣∣uJ4
∣∣∣∣ 12 · (−v

√
−1)k√

2k−2πkvk−2

×Hk

(√
2πv

(
1

2
x′
1 − y′2

))
· e−πv( 1

2x
′2
1 +2y′2

2 + 1
2x

′2
3 +2y′2

4 )

=
|uJ | 12 (−

√
−1)k

2
k
2−1
√
k!

·Hk(
√
2πvx1) · e−πv(x2

1+Jx2
4+J1x

2
2+

J
J1

x2
3)

=
|uJ | 12 (−

√
−1)k

2
k
2−1
√
k!

·Hk(
√
2πvα1) · e−πv(α2

1+Jβ2
1) · e−πvJ1(α

2
2+Jβ2

2).

5.7.5.2. The case when B1 and B2 are ramified. We use the notation of §5.6.5.2.
By the partial Fourier transform given in §5.4.2.1, we have

ϕ(x) = c
− 1

2

k

∣∣∣∣uJ4
∣∣∣∣ 12 ∫ ∞

−∞
(x′

2 − v
√
−1x′

1)
ke−

π
2 (vx′2

1 + 1
v x

′2
2 )e2π

√
−1x′

2y
′
2 dx′

2

×
∫ ∞

−∞
e−

π
2 (vx′2

3 + 1
v x

′2
4 )e2π

√
−1x′

4y
′
4 dx′

4.
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By Lemma 5.7.2, we have

ϕ(x) = c
− 1

2

k

∣∣∣∣uJ4
∣∣∣∣ 12 · (−v

√
−1)k√

2k−2πkvk−2

×Hk

(√
2πv

(
1

2
x′
1 − y′2

))
· e−πv( 1

2x
′2
1 +2y′2

2 + 1
2x

′2
3 +2y′2

4 )

=
|uJ | 12 (−

√
−1)k

2
k
2−1
√
k!

·Hk(
√
2πvx1) · e−πv(x2

1+Jx2
4−J1x

2
2− J

J1
x2
3)

=
|uJ | 12 (−

√
−1)k

2
k
2−1
√
k!

·Hk(
√
2πvα1) · e−πv(α2

1+Jβ2
1) · eπvJ1(α

2
2+Jβ2

2).

5.7.6. The case (fd). We use the notation of §5.6.6. By the partial Fourier
transform given in §5.4.3, we have

ϕ(x) = c
− 1

2

k

∣∣∣∣Ju
∣∣∣∣ 12 ∫ ∞

−∞

(
x′
1 +

√
−1
v

x′
2

)k

e−
π
2 (vx′2

1 + 1
v x

′2
2 )e2π

√
−1x′

2y
′
2 dx′

2

×
∫ ∞

−∞
e−

π
2 (vx′2

3 + 1
v x

′2
4 )e2π

√
−1x′

4y
′
4 dx′

4.

By Lemma 5.7.2, we have

ϕ(x) = c
− 1

2

k

∣∣∣∣Ju
∣∣∣∣ 12 · 1√

2k−2πkvk−2

×Hk

(√
2πv

(
1

2
x′
1 − y′2

))
· e−πv( 1

2x
′2
1 +2y′2

2 + 1
2x

′2
3 +2y′2

4 )

=
|uJ | 12

2
k
2−1
√
k!
·Hk(

√
2πvx1) · e−πv(x2

1+J1x
2
2−Jx2

4− J
J1

x2
3)

=
|uJ | 12

2
k
2−1
√
k!
·Hk(

√
2πvα1) · e−πv(α2

1−Jβ2
1) · e−πvJ1(α

2
2−Jβ2

2).



CHAPTER 6

Explicit Form of the Rallis Inner Product Formula

In this chapter, we prove an explicit formula (Theorem 6.3.2) for the inner
product of the theta lift θϕ(fB), where ϕ ∈ S(X(A)) is the Schwartz function given
in Chapter 5 and fB ∈ πB is the automorphic form which will be given via the
theory of new vectors (see §6.2). For this, we will explicate the Rallis inner product
formula (Proposition 4.4.2), which essentially boils down to computing the integral

Zv =

∫
B1

v

〈ωψ(g1,v)ϕv, ϕv〉〈πB,v(g1,v)fB,v, fB,v〉 dg1,v.

This computation is almost straightforward (see §6.6), except that it is not easy
to directly compute 〈ωψ(g1,v)ϕv, ϕv〉 since the Weil representation on S(Xv) is
complicated. However, we have defined ϕv as the image of a nice Schwartz function
ϕ′
v under the partial Fourier transform S(X′

v)→ S(Xv). Hence, by the Plancherel
formula, we have

〈ωψ(g1,v)ϕv, ϕv〉 = 〈ωψ(g1,v)ϕ
′
v, ϕ

′
v〉.

Since the Weil representation on S(X′
v) has a simple description, we can easily

compute the right-hand side (see §6.5).

6.1. Measures

In Chapter 4, for any connected reductive algebraic group G over a number
field F , we have always taken the Tamagawa measure on G(A), which is a product
of Haar measures on Gv defined in terms of a non-zero invariant differential form of
top degree on G over F . However, with respect to this Haar measure, the volume
of a hyperspecial maximal compact subgroup of Gv is not necessarily 1 for almost
all v. For our applications, it is more convenient to take the “standard” measure on
G(A), which is a product of Haar measures onGv such that the volume of a maximal
compact subgroup of Gv is 1 for all v. In this section, we give a precise definition of
the standard measures on A×\B×(A) and B1(A), where B is a quaternion algebra
over F , and compare them with the Tamagawa measures.

Let F be a number field and ψ the standard additive character of A/F . Let
D = DF be the discriminant of F . We have |D| =

∏
v∈Σfin

qdv
v , where dv is the

non-negative integer such that ψv is trivial on �−dv
v ov but non-trivial on �−dv−1

v ov.
For each place v of F , let ζv(s) be the local zeta function of Fv defined by

ζv(s) =

⎧⎪⎨⎪⎩
(1− q−s

v )−1 if v is finite,

π− s
2Γ( s2 ) if v is real,

2(2π)−sΓ(s) if v is complex.

97
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Note that

ζv(1) =

{
1 if v is real,

π−1 if v is complex.

Let ζF (s) =
∏

v∈Σfin
ζv(s) be the Dedekind zeta function of F . Put

ρF := Res
s=1

ζF (s) =
2r1(2π)r2hR

|D| 12w
,

where r1 is the number of the real places of F , r2 is the number of the complex
places of F , h = hF is the class number of F , R = RF is the regulator of F , and
w = wF is the number of roots of unity in F . For any connected reductive algebraic
group G over F , let τ (G) denote the Tamagawa number of G.

From now on, we assume that F is totally real.

6.1.1. Measures on A×. For each place v of F , we define a Haar measure
d×xTam

v on F×
v by

d×xTam
v := ζv(1) ·

dxv

|xv|
,

where dxv is the self-dual Haar measure on Fv with respect to ψv. Note that:

• vol(ov, dxv) = q
− dv

2
v if v is finite,

• dxv is the Lebesgue measure if v is real.

Then the Tamagawa measure on A× is given by

d×xTam := ρ−1
F ·

∏
v

d×xTam
v .

We have τ (Gm) = 1.
On the other hand, we define the standard measure on A× as a product measure

d×x :=
∏

v d
×xv, where

• d×xv is the Haar measure on F×
v such that vol(o×v , d

×xv) = 1 if v is finite,
• d×xv = dxv

|xv | if v is real.

We have

(6.1) d×xTam = |D|− 1
2 ρ−1

F · d×x.

6.1.2. Measures on B×(A). For each place v of F , we define a Haar measure
d×αTam

v on B×
v by

d×αTam
v := ζv(1) ·

dαv

|ν(αv)|2
,

where dαv is the self-dual Haar measure on Bv with respect to the pairing

(αv,βv) �→ ψv(trBv/Fv
(αvβv)).

Then the Tamagawa measure on B×(A) is given by

d×αTam := ρ−1
F ·

∏
v

d×αTam
v .

Also, the Tamagawa measure on (B×/Gm)(A) = B×(A)/A× is given by the quo-
tient measure d×αTam/d×xTam. We have τ (B×/Gm) = 2.
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On the other hand, we define the standard measure on B×(A) as a product
measure d×α :=

∏
v d

×αv, where d×αv is given as follows:

• For v ∈ Σfin � ΣB,fin, fix an isomorphism iv : Bv → M2(Fv) of quaternion Fv-
algebras and let d×αv be the Haar measure on B×

v such that

vol(i−1
v (GL2(ov)), d

×αv) = 1.

Since iv is unique up to inner automorphisms, d×αv is independent of the choice
of iv.
• For v ∈ ΣB,fin, let d

×αv be the Haar measure on B×
v such that vol(o×Bv

, d×αv) =
1, where oBv

is the unique maximal order in Bv.
• For v ∈ Σ∞ � ΣB,∞, fix an isomorphism iv : Bv → M2(Fv) of quaternion Fv-
algebras and define a Haar measure d×αv on B×

v by

d×αv =
dxv dyv
|yv|2

dzv
zv

dκv

for αv = i−1
v

((
1 xv

1

) ( yv

1

)
zvκv

)
with xv ∈ R, yv ∈ R×, zv ∈ R×

+, κv ∈ SO(2),
where dxv, dyv, dzv are the Lebesgue measures and dκv is the Haar measure on
SO(2) such that vol(SO(2), dκv) = 1. Since iv is unique up to inner automor-
phisms, d×αv is independent of the choice of iv.
• For v ∈ ΣB,∞, let d×αv be the Haar measure on B×

v such that

vol(B×
v /F×

v , d×αv/d
×xv) = 1.

Also, we define the standard measure on B×(A)/A× as the quotient measure
d×α/d×x.

Lemma 6.1.1. We have

d×αTam = (2π)|Σ∞�ΣB,∞| · (4π2)|ΣB,∞|

×
∏

v∈ΣB,fin

(qv − 1)−1 · |D|−2 · ρ−1
F · ζF (2)−1 · d×α.

Proof. For each place v of F , let Cv be the constant such that d×αTam
v =

Cv · d×αv. If v ∈ Σfin � ΣB,fin, we identify Bv with M2(Fv). Then we have
vol(M2(ov), dαv) = q−2dv

v and hence

Cv = vol(GL2(ov), d
×αTam

v )

= ζv(1) · |GL2(Fqv )| · vol(1 +M2(pv), dαv)

= q−2dv
v · ζv(2)−1.

If v ∈ ΣB,fin, then we have vol(oBv
, dαv) = q−2dv−1

v and hence

Cv = vol(o×Bv
, d×αTam

v )

= ζv(1) · |F×
q2v
| · vol(1 + pBv

, dαv)

= q−2dv
v · (qv − 1)−1 · ζv(2)−1.

If v ∈ Σ∞�ΣB,∞, we identify Bv with M2(R). Then d×αTam
v arises from the gauge

form on GL2(R) determined (up to sign) by the lattice M2(Z) in LieGL2(R) =

M2(R). Also, the measures dxv dyv

|yv |2 , dzv
zv

, dκv in the definition of d×αv arise from
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the (left invariant) gauge forms determined by the lattices

Z

(
1 0
0 0

)
+ Z

(
0 1
0 0

)
, Z

(
1 0
0 1

)
, 2πZ

(
0 1
−1 0

)
,

respectively. Hence we have

Cv = 2π.

If v ∈ ΣB,∞, we identify Bv with

H :=

{(
α β
−β̄ ᾱ

) ∣∣∣∣α, β ∈ C

}
.

Then d×αTam
v arises from the gauge form on H× determined by the lattice spanned

by

1√
2

(
1 0
0 1

)
,

1√
2

(√
−1 0
0 −

√
−1

)
,

1√
2

(
0 1
−1 0

)
,

1√
2

(
0

√
−1√

−1 0

)
in LieH× = H. Let d×α̇v be the Haar measure on H×/R× which arises from the
gauge form determined by the lattice spanned by

1

2

(√
−1 0
0 −

√
−1

)
,

(
0 1
−1 0

)
,

(
0

√
−1√

−1 0

)
,

so that we have d×αTam
v /d×xv = 2·d×α̇v. Note that this lattice is an integral lattice

in LieH×/R× constructed in [51]. It follows from [51] that vol(H×/R×, d×α̇v) =
2π2 and hence

Cv = vol(H×/R×, d×αTam
v /d×xv) = 4π2.

This completes the proof. �

Example 6.1.2 (Eichler’s mass formula [14], [74], [81]). Suppose that B is
totally definite. Put B∞ = B ⊗Q R and fix a maximal compact subgroup K of
B×(Afin). We can write

B×(A) =
n⊔

i=1

A×B×(F )B×
∞αiK,

where {αi ∈ B×(Afin) | 1 ≤ i ≤ n} is a (finite) set of representatives for

A×B×(F )B×
∞\B×(A)/K.

Put

mass := vol

(
A×B×(F )\B×(A),

d×α

d×x

)
=

n∑
i=1

1

|Γi|
,

where Γi = F×\(B×(F ) ∩ A×
finαiKα−1

i ). Then it follows from (6.1) and Lemma
6.1.1 that

mass = τ (B×/Gm) · (4π2)−d ·
∏

v∈ΣB,fin

(qv − 1) · |D| 32 · ζF (2)

= (−1)d · 2−d+1 ·
∏

v∈ΣB,fin

(qv − 1) · ζF (−1),

where d = [F : Q].
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Finally, we compare the standard measure on A×\B×(A) with the measure on
the Shimura variety. Let (G,X) = (ResF/Q(B

×), XB) be the Shimura datum given
in §1.2. If v ∈ Σ∞ � ΣB,∞, we identify Bv with M2(R). As explained in §1.2, this
gives rise to an identification

(6.2) X =
∏

v∈Σ∞�ΣB,∞

h
±.

Fix an open compact subgroup K of B×(Afin) such that

ô× ⊂ K,

where ô× :=
∏

v∈Σfin
o×v ⊂ A×

fin. Let ShK(G,X) be the associated Shimura variety:

ShK(G,X) = B×(F )\X ×B×(Afin)/K.

Since h± = GL2(R)/R
×
+ · SO(2), we have a natural surjective map

p : B×(A) −→ ShK(G,X).

Recall that in Definition 1.2.8, we have taken the measure on ShK(G,X) given as
follows:

• On X, we take the product over v ∈ Σ∞�ΣB,∞ of the GL2(R)-invariant measure

dxv dyv
|yv|2

for xv +
√
−1yv ∈ h±, where dxv, dyv are the Lebesgue measures. This measure

is independent of the choice of identification (6.2).
• On B×(Afin)/K, we take the counting measure.
• If B is not totally definite, then o×\B×(F ) acts on X × B×(Afin)/K properly
discontinuously, and we take a natural measure dμx on ShK(G,X) induced by
the product of the above measures.
• If B is totally definite, then ShK(G,X) is a finite set, and for any x ∈ ShK(G,X),
its stabilizer Γx in o×\B×(F ) is a finite group. We take a measure dμx on
ShK(G,X) given by∫

ShK(G,X)

φ(x) dμx =
∑

x∈ShK(G,X)

|Γx|−1φ(x).

Lemma 6.1.3. Let φ be an integrable function on ShK(G,X) such that φ(x·z) =
φ(x) for all x ∈ ShK(G,X) and z ∈ A×. Then we have

(6.3)

∫
ShK(G,X)

φ(x) dμx

= 2|Σ∞�ΣB,∞| · [K0 : K] · hF ·
∫
A×B×(F )\B×(A)

p∗φ(α) d×α,

where K0 is any maximal compact subgroup of B×(Afin) containing K.

Proof. Put F∞ = F ⊗Q R and B∞ = B ⊗Q R. We can write

B×(A) =
n⊔

i=1

B×(F )B×
∞αiK,

where {αi ∈ B×(Afin) | 1 ≤ i ≤ n} is a (finite) set of representatives for

B×(F )B×
∞\B×(A)/K.
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Then we have

ShK(G,X) =
n⊔

i=1

Γi\X,

where Γi = o×\(B×(F ) ∩ αiKα−1
i ). For each i, we have a natural commutative

diagram

B×
∞αiK

pi ��

��

X

��

B×(F )B×
∞αiK

p
�� Γi\X

.

First we assume that B is not totally definite. Since both sides of (6.3) are
proportional, we may assume that for each i, the restriction of φ to Γi\X is of the
form

φ(x) =
∑
γ∈Γi

ϕi(γx)

for some continuous compactly supported function ϕi on X. Then, noting that Γi

acts on X faithfully, we have∫
Γi\X

φ(x) dμx =

∫
X

ϕi(x) dμx,

where the measure dμx on X on the right-hand side is as defined above. By the
definition of the standard measure, we have∫

X

ϕi(x) dμx = 2|Σ∞�ΣB,∞| · vol(K)−1 ·
∫
B×

∞αiK/F×
∞ô×

p∗iϕi(α) d×α.

(Here the factor 2 arises from [R× : R×
+].) Since

p∗φ(α) = φ(p(α)) =
∑
γ∈Γi

ϕi(γpi(α)) =
∑
γ∈Γi

ϕi(pi(γα)) =
∑
γ∈Γi

p∗iϕi(γα)

for α ∈ B×
∞αiK, we have∫

B×
∞αiK/F×

∞ô×
p∗iϕi(α) d×α =

∫
Γi\B×

∞αiK/F×
∞ô×

p∗φ(α) d×α.

Thus, noting that

Γi\B×
∞αiK/F×

∞ô
× = B×(F )\B×(F )B×

∞αiK/F×
∞ô

×,

we have∫
Γi\X

φ(x) dμx

= 2|Σ∞�ΣB,∞| · vol(K)−1 ·
∫
B×(F )\B×(F )B×

∞αiK/F×
∞ô×

p∗φ(α) d×α.
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Summing over i, we obtain∫
ShK(G,X)

φ(x) dμx

= 2|Σ∞�ΣB,∞| · vol(K)−1 ·
∫
B×(F )\B×(A)/F×

∞ô×
p∗φ(α) d×α

= 2|Σ∞�ΣB,∞| · vol(K)−1 · vol(F×\A×/F×
∞ô

×) ·
∫
A×B×(F )\B×(A)

p∗φ(α) d×α.

On the other hand, we have vol(K) = [K0 : K]−1 for any maximal compact sub-
group K0 of B×(Afin) containing K, and vol(F×\A×/F×

∞ô×) = hF since the stan-
dard measure on A×/F×

∞ô× is the counting measure. This proves (6.3).
Next we assume that B is totally definite. Since

vol(B×(F )\B×(F )B×
∞αiK/F×

∞ô×) = |Γi|−1 · vol(K),

we have ∫
B×(F )\B×(A)/F×

∞ô×
p∗φ(α) d×α = vol(K) ·

n∑
i=1

|Γi|−1p∗φ(αi)

= vol(K) ·
∫
ShK(G,X)

φ(x) dμx.

The rest of the proof is the same as before. �

6.1.3. Measures on B1(A). We recall the exact sequence

1 −→ B1 −→ B× ν−→ Gm −→ 1

of algebraic groups over F . For each place v of F , this induces an exact sequence

1 −→ B1
v −→ B×

v
ν−→ F×

v .

We define a Haar measure dgTamv on B1
v by requiring that∫

B×
v

φ(αv) d
×αTam

v =

∫
ν(B×

v )

φ̇(xv) d
×xTam

v

for all φ ∈ L1(B×
v ), where

φ̇(ν(αv)) :=

∫
B1

v

φ(gvαv) dg
Tam
v .

Note that ν(B×
v ) = F×

v unless v ∈ ΣB,∞, in which case we have ν(B×
v ) = R×

+.
Then the Tamagawa measure on B1(A) is given by

dgTam :=
∏
v

dgTamv .

We have τ (B1) = 1.
On the other hand, we define the standard measure on B1(A) as a product

measure dg :=
∏

v dgv, where dgv is given as follows:

• For v ∈ Σfin � ΣB,fin, fix an isomorphism iv : Bv → M2(Fv) of quaternion Fv-
algebras, which is unique up to inner automorphisms by elements of GL2(Fv),
and let dgv be the Haar measure on B1

v such that vol(i−1
v (SL2(ov)), dgv) = 1.
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Noting that there are exactly 2 conjugacy classes of maximal compact subgroups

of SL2(Fv), i.e., those of SL2(ov) and
(
�v

1

)
SL2(ov)

(
�−1

v
1

)
, we have

vol(i−1
v (hvSL2(ov)h

−1
v ), dgv) = vol(i−1

v (SL2(ov)), dgv)

for hv ∈ GL2(Fv). Hence dgv is independent of the choice of iv.
• For v ∈ ΣB,fin, let dgv be the Haar measure on B1

v such that vol(B1
v , dgv) = 1.

• For v ∈ Σ∞ � ΣB,∞, fix an isomorphism iv : Bv → M2(Fv) of quaternion Fv-
algebras, which is unique up to inner automorphisms by elements of GL2(Fv),
and define a Haar measure dgv on B1

v by

dgv =
dxv dyv

y2v
dκv

for gv = i−1
v

((
1 xv

1

) (√yv √
yv

−1

)
κv

)
with xv ∈ R, yv ∈ R×

+, κv ∈ SO(2), where

dxv, dyv are the Lebesgue measures and dκv is the Haar measure on SO(2) such
that vol(SO(2), dκv) = 1. This measure dgv does not change if we replace iv by
Ad(hv)◦iv for hv ∈ SL2(Fv). If we replace iv by Ad

(−1
1

)
◦iv, then dgv becomes

dxv dyv

y2
v

dκv for gv = i−1
v

((
1 −xv

1

) (√yv √
yv

−1

)
κ−1
v

)
, which is in fact equal to the

original dgv. Hence dgv is independent of the choice of iv.
• For v ∈ ΣB,∞, let dgv be the Haar measure on B1

v such that vol(B1
v , dgv) = 1.

Lemma 6.1.4. We have

dgTam = π|Σ∞�ΣB,∞| · (4π2)|ΣB,∞|

×
∏

v∈ΣB,fin

(qv − 1)−1 · |D|− 3
2 · ζF (2)−1 · dg.

Proof. For each place v of F , let Cv be the constant such that dgTamv =
Cv · dgv. If v ∈ Σfin � ΣB,fin, we identify Bv with M2(Fv). As in the proof of
Lemma 6.1.1, we have

Cv = vol(SL2(ov), dg
Tam
v )

=
vol(GL2(ov), d

×αTam
v )

vol(o×v , d×xTam
v )

= q
− 3dv

2
v · ζv(2)−1.

If v ∈ ΣB,fin, then as in the proof of Lemma 6.1.1, we have

Cv = vol(B1
v , dg

Tam
v )

=
vol(o×Bv

, d×αTam
v )

vol(o×v , d×xTam
v )

= q
− 3dv

2
v · (qv − 1)−1 · ζv(2)−1.

If v ∈ Σ∞ � ΣB,∞, we identify Bv with M2(R). For αv ∈ GL2(R)+, we write
αv = zv · gv with zv ∈ R×

+ and gv ∈ SL2(R). Then we have

d×αTam
v = 2 · d×zv dgTamv , d×αv = d×zv dgv

on GL2(R)+. Since d×αTam
v = 2π · d×αv as in the proof of Lemma 6.1.1, we have

Cv =
1

2
· 2π = π.
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If v ∈ ΣB,∞, then we have d×αTam
v = 2 · d×zv dgTamv for αv = zv · gv with zv ∈ R×

+

and gv ∈ B1
v . Hence we have

Cv = vol(B1
v , dg

Tam
v )

=
1

2
· vol(B×

v /R×
+, d

×αTam
v /d×zv)

= vol(B×
v /R×, d×αTam

v /d×zv)

= 4π2

as in the proof of Lemma 6.1.1. This completes the proof. �

Example 6.1.5 (Siegel’s formula [72]). Suppose that B = M2(F ). Put

vol := vol

(
SL2(o)\hd,

∏
v∈Σ∞

dxv dyv
y2v

)
,

where d = [F : Q]. Since

SL2(o)\hd ∼= SL2(F )\SL2(A)/K,

where K =
∏

v∈Σ∞
SO(2)×

∏
v∈Σfin

SL2(ov), we have

vol(SL2(F )\SL2(A), dg) = vol · vol
(
{±1}\K,

∏
v∈Σ∞

dκv ·
∏

v∈Σfin

dgv

)

= vol · 1
2
.

On the other hand, it follows from Lemma 6.1.4 that

vol(SL2(F )\SL2(A), dg) = τ (B1) · π−d · |D| 32 · ζF (2)
= (−2π)d · ζF (−1).

Hence we have
vol = (−1)d · 2d+1 · πd · ζF (−1).

6.2. New vectors

In this section, we define a 1-dimensional subspace of new vectors in the space
of an irreducible representation of B×

v . For the moment, we fix a place v of F and
suppress the subscript v from the notation. We only consider representations π of
B× listed below:

• If F is non-archimedean and B is split, then
(ur) π = Ind(χ⊗ μ) is a principal series representation, where χ and μ are unitary

unramified; or
(rps) π = Ind(χ⊗μ) is a principal series representation, where χ is unitary unramified

and μ is unitary ramified of conductor qn; or
(st) π = St ⊗ χ is a twist of the Steinberg representation, where χ is unitary un-

ramified.
• If F is non-archimedean and B is ramified, then

(1d) π = χ ◦ ν is a 1-dimensional representation, where χ is unitary unramified.
• If F = R and B is split, then
(ds) π = DSk is the irreducible unitary (limit of) discrete series representation of

weight k.
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• If F = R and B is ramified, then
(fd) π = Symk is the irreducible unitary (k + 1)-dimensional representation.

If F is non-archimedean, we define a compact subgroup Kn of GL2(F ) by

Kn =

{(
a b
c d

)
∈ GL2(o)

∣∣∣∣ c ∈ �n
o

}
.

Note that I := K1 is an Iwahori subgroup of GL2(F ). If F = R, we define a
character χk of C× by

χk(α) =

(
α√
ααρ

)k

.

6.2.1. The case (ur). Fix an isomorphism i : B → M2(F ). This determines
a maximal compact subgroup K = i−1(GL2(o)) of B

×. We say that f ∈ π is a new
vector with respect to K if

π(k)f = f

for all k ∈ K.

6.2.2. The case (rps). Fix an isomorphism i : B → M2(F ). This determines
a compact subgroup Kn = i−1(Kn) of B×. We define a character μ of Kn by
μ(k) = μ(d) for k = i−1

(
a b
c d

)
. We say that f ∈ π is a new vector with respect to

(Kn,μ) if

π(k)f = μ(k)f

for all k ∈ Kn.

6.2.3. The case (st). Fix an isomorphism i : B → M2(F ). This determines
an Iwahori subgroup I = i−1(I) of B×. We say that f ∈ π is a new vector with
respect to I if

π(k)f = f

for all k ∈ I.

6.2.4. The case (1d). Let K = o
×
B be the unique maximal compact subgroup

of B×. Then we have

π(k)f = f

for all k ∈ K and f ∈ π. For uniformity, we call any f ∈ π a new vector with
respect to K.

6.2.5. The cases (ds), (fd). Fix an embedding h : C× ↪→ B×. We say that
f ∈ π is a new vector with respect to h if

π(h(z))f = χk(z)f

for all z ∈ C×.
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6.3. An explicit Rallis inner product formula

Suppose that F is global. Let π ∼= ⊗vπv be an irreducible unitary cuspidal
automorphic representation of GL2(A) such that for v ∈ Σfin,

• πv = Ind(χv ⊗ μv), where χv and μv are unitary unramified; or
• πv = Ind(χv ⊗ μv), where χv is unitary unramified and μv is unitary ramified of
conductor qnv

v ; or
• πv = St⊗ χv, where χv is unitary unramified,

and for v ∈ Σ∞,

• πv = DSkv
, where kv ≥ 1.

We assume that πv is unramified for all finite places v of F such that Fv is ramified or
of residual characteristic 2. Put Σπ = {v |πv is a discrete series}, Σπ,fin = Σπ∩Σfin,
and

Σ′
π,fin := {v ∈ Σfin |πv is a ramified principal series}.

We consider a non-zero vector f = ⊗vfv ∈ π such that:

• for v ∈ Σfin � (Σπ,fin ∪ Σ′
π,fin), fv is a new vector with respect to GL2(ov);

• for v ∈ Σπ,fin, fv is a new vector with respect to the Iwahori subgroup I of
GL2(Fv) given in §6.2;
• for v ∈ Σ′

π,fin, fv is a new vector with respect to (Knv
,μv), where Knv

is the

compact subgroup of GL2(Fv) given in §6.2 and μv is the character ofKnv
defined

by μv

(
a b
c d

)
= μv(d);

• for v ∈ Σ∞, fv is a new vector with respect to the embedding hv : C× ↪→ GL2(R)
defined by hv(a+ b

√
−1) =

(
a b
−b a

)
.

We normalize such a vector f , which is unique up to scalars, so that

Wf

(
δ−1

1

)
= e−2πd,

where Wf is the Whittaker function of f defined by

Wf (g) =

∫
F\A

f

((
1 x

1

)
g

)
ψ(x) dx

with the Tamagawa measure dx on A, δ = (�dv
v ) ∈ A×

fin, and d = [F : Q] (see also
Lemmas 6.4.1, 6.4.3, 6.4.5 and (6.5) below). Let 〈f, f〉 be the Petersson norm of f
defined by

〈f, f〉 =
∫
A×GL2(F )\GL2(A)

|f(g)|2 dg,

where dg is the standard measure on A×\GL2(A). In §6.4 below, we will prove:

Proposition 6.3.1. We have

〈f, f〉 = 2 ·
∏

v∈Σ∞

(kv − 1)!

22kv+1πkv+1
·

∏
v∈Σπ,fin∪Σ′

π,fin

qv
qv + 1

· |D| · L(1, π, ad),

where L(s, π, ad) =
∏

v∈Σfin
L(s, πv, ad) is the adjoint L-function of π.

Let B, B1, B2 be quaternion algebras over F such that B = B1·B2 in the Brauer
group. We assume that ΣB �= ∅ and ΣB ∪ΣB1

∪ΣB2
⊂ Σπ, i.e., B is division and

the Jacquet–Langlands transfers πB, πB1
, πB2

of π to B×(A), B×
1 (A), B×

2 (A) exist.
Now, we choose a totally imaginary quadratic extension E of F such that E embeds
into B, B1, B2, and write E = F +F i, B = E+Ej, B1 = E +Ej1, B2 = E +Ej2.
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We also impose the ramification conditions on u, J, J1, J2 in §5.5. We consider non-
zero vectors fB = ⊗vfB,v ∈ πB, fB1

= ⊗vfB1,v ∈ πB1
, fB2

= ⊗vfB2,v ∈ πB2
such

that:

• for v ∈ Σfin � (Σπ,fin ∪ Σ′
π,fin), fB,v, fB1,v, fB2,v are new vectors with respect to

K, K1, K2, respectively, given in §5.6.1;
• for v ∈ Σπ,fin� (ΣB,fin ∪ΣB1,fin ∪ΣB2,fin), fB,v, fB1,v, fB2,v are new vectors with
respect to I, I1, I2, respectively, given in §5.6.3.1;
• for v ∈ ΣB1,fin ∩ΣB2,fin, fB,v, fB1,v, fB2,v are new vectors with respect to I, K1,
K2, respectively, given in §5.6.3.2;
• for v ∈ ΣB,fin ∩ ΣB2,fin, fB,v, fB1,v, fB2,v are new vectors with respect to K,
I1, K2, respectively, given in §5.6.4; we switch the roles of B1 and B2 for v ∈
ΣB,fin ∩ ΣB1,fin;
• for v ∈ Σ′

π,fin, fB,v, fB1,v, fB2,v are new vectors with respect to (Knv
,μv),

(K1,nv
,μv), (K2,nv

,μ−1
v · μv ◦ ν), respectively, given in §5.6.2;

• for v ∈ Σ∞, fB,v, fB1,v, fB2,v are new vectors with respect to the embeddings
C× ∼= E×

v ↪→ B×
v , C× ∼= E×

v ↪→ B×
1,v, C

× ∼= E×
v ↪→ B×

2,v, respectively, given in
§§5.6.5, 5.6.6.

We fix such vectors fB , fB1
, fB2

, which are unique up to scalars. We emphasize that
the 1-dimensional subspaces of πB, πB1

, πB2
spanned by fB , fB1

, fB2
, respectively,

depend on the choice of E, i, j, j1, j2. Let 〈fB, fB〉 be the Petersson norm of fB
defined by

〈fB , fB〉 =
∫
A×B×(F )\B×(A)

|fB(g)|2 dg,

where dg is the standard measure on A×\B×(A). We define the Petersson norms
〈fB1

, fB1
〉 and 〈fB2

, fB2
〉 similarly.

Let ϕ = ⊗vϕv ∈ S(X(A)) be the Schwartz function given in §5.7, where

• ϕv = ϕμv
for v ∈ Σ′

π,fin;

• ϕv = ϕkv
for v ∈ Σ∞ � (ΣB,∞ ∪ ΣB1,∞ ∪ ΣB2,∞);

• ϕv = ϕkv−2 for v ∈ ΣB1,∞ ∩ ΣB2,∞;
• ϕv = ϕkv−2 for v ∈ ΣB,∞ ∩ ΣB2,∞; we switch the roles of B1 and B2 for v ∈
ΣB,∞ ∩ ΣB1,∞.

In §4.2, we have defined the theta lift θϕ(fB), but for our purposes, we slightly
modify its definition: on the right-hand side of (4.1), we take the standard measure
on B1(A) rather than the Tamagawa measure on B1(A). We regard θϕ(fB) as
an automorphic form on B×

1 (A) × B×
2 (A). Then it follows from the equivariance

properties of ϕ that there exists a constant α(B1, B2) ∈ C (once we fix fB , fB1
,

fB2
) such that

(6.4) θϕ(fB) = α(B1, B2) · (fB1
× fB2

).

Now we state an explicit Rallis inner product formula.

Theorem 6.3.2. We have

|α(B1, B2)|2 · 〈fB1
, fB1
〉 · 〈fB2

, fB2
〉 = C · 〈f, f〉 · 〈fB, fB〉,
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where C = |D|2 ·
∏

v Cv with

Cv =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if v ∈ Σfin � (Σπ,fin ∪ Σ′
π,fin),

qv
(qv + 1)2

if v ∈ Σπ,fin � (ΣB,fin ∪ ΣB1,fin ∪ ΣB2,fin),

qv if v ∈ ΣB1,fin ∩ ΣB2,fin,

qv if v ∈ ΣB,fin,
1

qnv−3
v (qv − 1)(qv + 1)2

if v ∈ Σ′
π,fin,

22kv+2πkv

kv!
if v ∈ Σ∞ � (ΣB,∞ ∪ ΣB1,∞ ∪ ΣB2,∞),

22kvπkv−2

(kv − 1)2 · (kv − 2)!
if v ∈ ΣB1,∞ ∩ ΣB2,∞,

22kv−2πkv−2

(kv − 1)2 · (kv − 2)!
if v ∈ ΣB,∞.

Proof. By Proposition 4.4.2, we have

CB1
· CB2

· (C1
B)

2 · |α(B1, B2)|2 · 〈fB1
, fB1
〉 · 〈fB2

, fB2
〉

= 2 · CB · C1
B ·

LS(1, π, ad)

ζSF (2)
2
· 〈fB, fB〉 ·

∏
v∈S

Zv

for a sufficiently large finite set S of places of F , where

• CB is the constant such that dgTam = CB · dg, where dgTam is the Tamagawa
measure on A×\B×(A) and dg is the standard measure on A×\B×(A); we define
CB1

and CB2
similarly;

• C1
B is the constant such that dgTam1 = C1

B · dg1, where dgTam1 is the Tamagawa
measure on B1(A) and dg is the standard measure on B1(A);
• Zv is the integral defined by

Zv =

∫
B1

v

〈ωψ(g1,v)ϕv, ϕv〉〈πB,v(g1,v)fB,v, fB,v〉 dg1,v

(cf. (4.2)), where
· the hermitian inner product 〈·, ·〉 on S(Xv) is normalized as in §5.3;
· the invariant hermitian inner product 〈·, ·〉 on πB,v is normalized so that

〈fB,v, fB,v〉 = 1;

· dg1,v is the standard measure on B1
v .

Hence, by (6.1) and Lemmas 6.1.1, 6.1.4, we have

|α(B1, B2)|2 · 〈fB1
, fB1
〉 · 〈fB2

, fB2
〉

= C ′ · L(1, π, ad) · 〈fB, fB〉 ·
∏

v∈Sfin

ζv(2)
2

L(1, πv, ad)
·
∏
v∈S

Zv,



110 6. EXPLICIT FORM OF THE RALLIS INNER PRODUCT FORMULA

where Sfin = S ∩ Σfin and

C ′ =
2 · CB

CB1
· CB2

· C1
B · ζF (2)2

= 2 · 2|Σ∞�ΣB,∞| · (2π)−|Σ∞�ΣB1,∞|−|Σ∞�ΣB2,∞| · (4π2)−|ΣB1,∞|−|ΣB2,∞|

×
∏

v∈ΣB1,fin

(qv − 1) ·
∏

v∈ΣB2,fin

(qv − 1) · |D|3

= 2 · |D|3 ·
∏
v

C ′
v

with

C ′
v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if v ∈ Σfin � (ΣB,fin ∪ ΣB1,fin ∪ ΣB2,fin),

(qv − 1)2 if v ∈ ΣB1,fin ∩ ΣB2,fin,

qv − 1 if v ∈ ΣB,fin,

(2π2)−1 if v ∈ Σ∞ � (ΣB,∞ ∪ ΣB1,∞ ∪ ΣB2,∞),

(8π4)−1 if v ∈ ΣB1,∞ ∩ ΣB2,∞,

(8π3)−1 if v ∈ ΣB,∞.

Moreover, by Proposition 6.3.1, we have

|α(B1, B2)|2 · 〈fB1
, fB1
〉 · 〈fB2

, fB2
〉

= C ′′ · 〈f, f〉 · 〈fB, fB〉 ·
∏

v∈Sfin

ζv(2)
2

L(1, πv, ad)
·
∏
v∈S

Zv,

where C ′′ = |D|2 ·
∏

v C
′′
v with

C ′′
v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if v ∈ Σfin � (Σπ,fin ∪ Σ′
π,fin),

qv + 1

qv
if v ∈ Σπ,fin � (ΣB,fin ∪ ΣB1,fin ∪ ΣB2,fin),

(qv − 1)2(qv + 1)

qv
if v ∈ ΣB1,fin ∩ ΣB2,fin,

(qv − 1)(qv + 1)

qv
if v ∈ ΣB,fin,

qv + 1

qv
if v ∈ Σ′

π,fin,

22kvπkv−1

(kv − 1)!
if v ∈ Σ∞ � (ΣB,∞ ∪ ΣB1,∞ ∪ ΣB2,∞),

22kv−2πkv−3

(kv − 1)!
if v ∈ ΣB1,∞ ∩ ΣB2,∞,

22kv−2πkv−2

(kv − 1)!
if v ∈ ΣB,∞.

Now Theorem 6.3.2 follows from this and Lemmas 6.6.1, 6.6.2, 6.6.3, 6.6.4, 6.6.5,
6.6.6 in §6.6 below, where we compute the integral Zv explicitly. �

6.4. Computation of 〈f, f〉
Proposition 6.3.1 follows from a standard computation of the Rankin–Selberg

integral, but we give the details of the proof for the convenience of the reader. We
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retain the notation of §6.3. Put

n(x) =

(
1 x

1

)
, t(y) =

(
y

1

)
, w =

(
−1

1

)
.

By [36, §4], [47, §2.2], [82, Proposition 3.1], we have

C · 〈f, f〉 = 2

ρF
· Ress=1 L

S(s, π × π∨)

ζSF (2)
· |D|− 1

2 ·
∏
v∈S

‖Wv‖2

for a sufficiently large finite set S of places of F , where

• C is the constant such that dgTam = C · dg, where dgTam is the Tamagawa
measure on A×\GL2(A) and dg is the standard measure on A×\GL2(A);
• the Whittaker function Wf of f is decomposed as a product Wf =

∏
v Wv, where

Wv is the Whittaker function of πv with respect to ψv normalized so that
· Wv(t(�

−dv
v )) = 1 for v ∈ Σfin � (Σπ,fin ∪ Σ′

π,fin);

· Wv(1) = 1 for v ∈ Σπ,fin;
· Wv(1) = 1 for v ∈ Σ′

π,fin;

· Wv(1) = e−2π for v ∈ Σ∞;
• ‖Wv‖2 is the integral defined by

‖Wv‖2 =

∫
F×

v

|Wv(t(yv))|2 d×yv,

where d×yv is the standard measure on F×
v .

We remark that:

• the volume of F×\A1 given in [82, Proposition 3.1] is equal to ρF ,

•
∏

v d
×yTamv = |D|− 1

2 ·
∏

v d
×yv.

Hence, by (6.1) and Lemma 6.1.1, we have

〈f, f〉 = 2 · (2π)−[F :Q] · |D| · L(1, π, ad) ·
∏

v∈Sfin

ζv(2)

ζv(1) · L(1, πv, ad)
·
∏
v∈S

‖Wv‖2,

where Sfin = S ∩ Σfin. Now Proposition 6.3.1 follows from this and Lemmas 6.4.2,
6.4.4, 6.4.6, 6.4.7 below, where we compute the integral ‖Wv‖2 explicitly.

For the rest of this section, we fix a place v of F and suppress the subscript v
from the notation.

6.4.1. The case v ∈ Σfin�(Σπ,fin∪Σ′
π,fin). Recall that π = Ind(χ⊗μ), where

χ and μ are unitary unramified. Put α = χ(�) and β = μ(�). We have

L(s, π, ad) =
1

(1− q−s)(1− αβ−1q−s)(1− α−1βq−s)
.

Lemma 6.4.1. We have

W (t(�i−d)) =

⎧⎨⎩q−
i
2 · α

i+1 − βi+1

α− β
if i ≥ 0,

0 if i < 0.

Proof. Recall that d is the non-negative integer such that ψ is trivial on �−do

but non-trivial on �−d−1o. We define a non-trivial character ψ0 of F of order zero
by ψ0(x) = ψ(�−dx). Let W 0 be the Whittaker function of π with respect to ψ0

such that

• W 0(gk) = W 0(g) for all g ∈ GL2(F ) and k ∈ GL2(o),
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• W 0(1) = 1.

Then we have W (g) = W 0(t(�d))g), so that the assertion follows from the formula
of Casselman–Shalika [8]. �

Lemma 6.4.2. We have

‖W‖2 =
ζ(1) · L(1, π, ad)

ζ(2)
.

Proof. By Lemma 6.4.1, we have

‖W‖2 =
∞∑
i=0

|W (t(�i−d))|2

=
1

(α− β)(α−1 − β−1)
·

∞∑
i=0

q−i(αi+1 − βi+1)(α−i−1 − β−i−1)

=
1

(α− β)(α−1 − β−1)

×
(

1

1− q−1
− αβ−1

1− αβ−1q−1
− α−1β

1− α−1βq−1
+

1

1− q−1

)
=

1 + q−1

(1− q−1)(1− αβ−1q−1)(1− α−1βq−1)
. �

6.4.2. The case v ∈ Σπ,fin. Recall that π = St ⊗ χ, where χ is unitary
unramified. Put α = χ(�). We have L(s, π, ad) = ζ(s+ 1).

Lemma 6.4.3. We have

W (t(�i)) =

{
q−i · αi if i ≥ 0,

0 if i < 0.

Proof. We may assume that χ = 1. We recall the exact sequence

0 −→ St −→ Ind(| · | 12 ⊗ | · |− 1
2 )

M−→ 1 −→ 0,

where M : Ind(| · | 12 ⊗ | · |− 1
2 ) → Ind(| · |− 1

2 ⊗ | · | 12 ) is the intertwining operator
defined by

M(f)(g) =

∫
F

f(wn(x)g) dx

with the Haar measure dx on F such that vol(o, dx) = 1. In particular, we have

St = {f ∈ Ind(| · | 12 ⊗ | · |− 1
2 ) |M(f)(1) = 0}.

Also, we have

dimC StI = 1, dimC Ind(| · | 12 ⊗ | · |− 1
2 )I = 2.

Let f1, fw be the basis of Ind(| · | 12 ⊗ | · |− 1
2 )I determined by

f1|GL2(o) = II , fw|GL2(o) = IIwI .

Then f1 − q−1fw is a basis of StI . Indeed, noting that

wn(x) =

(
−1

1 x

)
=

(
x−1 −1

x

)(
1

x−1 1

)
,
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we have

M(f1)(1) =
∞∑
j=1

∫
�−jo×

|x|−2 dx =
∞∑
j=1

q−j(1− q−1) = q−1

and

M(fw)(1) =

∫
o

dx = 1.

We consider the Jacquet integral

Wk(g) :=

∫
F

fk(wn(x)g)ψ(x) dx

for k = 1, w, where we recall that ψ is assumed to be of order zero. We have

Wk(t(y)) = |y|−1

∫
F

fk(wn(xy
−1))ψ(x) dx

=

∫
F

fk(wn(x))ψ(xy) dx.

If k = 1, then we have

W1(t(y)) =
∞∑
j=1

∫
�−jo×

|x|−2ψ(xy) dx =
∞∑
j=1

q−j · Îo×(�−jy).

Since

Îo×(x) =

⎧⎪⎨⎪⎩
1− q−1 if x ∈ o,

−q−1 if x ∈ �−1o×,

0 otherwise,

we have

W1(t(�
i))

=

⎧⎪⎨⎪⎩
∑i

j=1 q
−j(1− q−1) + q−(i+1) · (−q−1) = q−1 − q−i−1 − q−i−2 if i > 0,

q−1 · (−q−1) = −q−2 if i = 0,

0 if i < 0.

If k = w, then we have

Ww(t(y)) =

∫
o

ψ(xy) dx = Io(y).

Hence, if we put W =W1 − q−1Ww, then we have

W(t(�i)) =

{
−q−i−1(1 + q−1) if i ≥ 0,

0 if i < 0.

Thus W =W(1)−1 · W and the assertion follows. �

Lemma 6.4.4. We have

‖W‖2 = L(1, π, ad).

Proof. By Lemma 6.4.3, we have

‖W‖2 =

∞∑
i=0

|W (t(�i))|2 =

∞∑
i=0

q−2i =
1

1− q−2
. �
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6.4.3. The case v ∈ Σ′
π,fin. Recall that π = Ind(χ ⊗ μ), where χ is unitary

unramified and μ is unitary ramified of conductor qn. Put α = χ(�). We have
L(s, π, ad) = ζ(s).

Lemma 6.4.5. We have

W (t(�i)) =

{
q−

i
2 · αi if i ≥ 0,

0 if i < 0.

Proof. Let f ∈ Ind(χ ⊗ μ) be the new vector with respect to (Kn,μ) deter-
mined by

f |GL2(o) = IKn
μ.

We consider the Jacquet integral

W(g) :=

∫
F

f(wn(x)g)ψ(x) dx,

where we recall that ψ is assumed to be of order zero. We have

W(t(y)) = μ(y)|y|− 1
2

∫
F

f(wn(xy−1))ψ(x) dx

= μ(y)|y| 12
∫
F

f(wn(x))ψ(xy) dx.

Noting that

wn(x) =

(
−1

1 x

)
=

(
x−1 −1

x

)(
1

x−1 1

)
,

we have ∫
F

f(wn(x))ψ(xy) dx =
∞∑
j=n

∫
�−jo×

χ(x)−1μ(x)|x|−1ψ(xy) dx

=
∞∑
j=n

αjμ(�)−j · Îo×μ(�−jy).

Since Îo×μ = q−n · g(μ, ψ) · I�−no×μ−1, where

g(μ, ψ) =

∫
�−no×

μ(x)ψ(x) dx,

we have

W(t(�i)) = μ(�)iq−
i
2 · αi+nμ(�)−(i+n) · q−n · g(μ, ψ) · μ(�)n

= q−
i
2−n · αi+n · g(μ, ψ)

if i ≥ 0, and W(t(�i)) = 0 if i < 0. Thus W = W(1)−1 · W and the assertion
follows. �

Lemma 6.4.6. We have

‖W‖2 = L(1, π, ad).

Proof. By Lemma 6.4.5, we have

‖W‖2 =

∞∑
i=0

|W (t(�i))|2 =

∞∑
i=0

q−i =
1

1− q−1
. �
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6.4.4. The case v ∈ Σ∞. Recall that π = DSk and ψ(x) = e2π
√
−1x. It is

known that

(6.5) W (t(y)) =

{
y

k
2 e−2πy if y > 0,

0 if y < 0.

Lemma 6.4.7. We have

‖W‖2 =
(k − 1)!

(4π)k
.

Proof. By (6.5), we have

‖W‖2 =

∫ ∞

0

|W (t(y))|2 dy

y
=

∫ ∞

0

yk−1e−4πy dy =
Γ(k)

(4π)k
. �

6.5. Matrix coefficients of the Weil representation

Suppose that F is local. In this section, we compute the function

Φ(g) := 〈ωψ(g)ϕ, ϕ〉

on U(W ) ∼= B1 explicitly, where ϕ ∈ S(X) is the Schwartz function given in §5.7.
Since ϕ is the partial Fourier transform of the Schwartz function ϕ′ ∈ S(X′) given
in §5.6, we have

Φ(g) = 〈ωψ(g)ϕ
′, ϕ′〉.

Put

m(a) =

(
a

a−1

)
, n(b) =

(
1 b

1

)
for a ∈ F×, b ∈ F .

6.5.1. The case (ur). We identify B× with GL2(F ) via:

• the isomorphism i given by (5.1) if E is split and F is unramified;
• the isomorphism Ad

(
1
�−d

)
◦ i, where i is the isomorphism given by (5.1) and

�−do is the inverse different, if E is split and F is ramified;
• the isomorphism i given by (5.7) if E is inert and J ∈ (F×)2;
• any fixed isomorphism i : B → M2(F ) such that i(oB) = M2(o), where oB is the
maximal order in B given in §5.6.1.4, if E is inert, and J1 ∈ (F×)2 or J2 ∈ (F×)2;
• the isomorphism i given by (5.7) if E is ramified.

Under this identification, we have K = GL2(o), where K is the maximal compact
subgroup of B× given in §5.6.1.

Lemma 6.5.1. We have Φ(m(a)) = |a|2 for a ∈ o� {0}.

Proof. Put

φ(a) :=

∫
F

Io(ax)Io(x) dx = q−
d
2 ×

{
1 if a ∈ o,

|a|−1 otherwise,

where dx is the self-dual Haar measure on F with respect to ψ. Note that d = 0
unless E is split and F is ramified.
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Assume that E is split and F is unramified. We use the notation of §5.6.1.1.
Then the Weil representation ωψ on S(X′) is given in §5.3.1. We have

Φ(m(a)) = |a|2 ·
∫
X′
ϕ′(ax)ϕ′(x) dx

= |a|2 ·
4∏

i=1

∫
F

Io(axi)Io(xi) dxi

= |a|2 · φ(a)4.

This yields the desired identity.
Assume that E is split and F is ramified. We use the notation of §5.6.1.2. Then

the Weil representation ωψ on S(X′) is given in §5.3.1, where B× is identified with

GL2(F ) via i rather than Ad
(
1
�−d

)
◦ i. We have

Φ(m(a)) = |a|2 ·
∫
X′
ϕ′(ax)ϕ′(x) dx

= q2d · |a|2 ·
4∏

i=1

∫
F

Io(axi)Io(xi) dxi

= q2d · |a|2 · φ(a)4.

This yields the desired identity.
Assume that E is inert and J ∈ (F×)2. We use the notation of §5.6.1.3. Then

the Weil representation ωψ on S(X′) is given in §5.3.2. We have

Φ(m(a)) = |a|2 ·
∫
X′
ϕ′(ax)ϕ′(x) dx

= |a|2 ·
4∏

i=1

∫
F

Io(axi)Io(xi) dxi

= |a|2 · φ(a)4.

This yields the desired identity.
Assume thatE is inert and J1 ∈ (F×)2; the case when E is inert and J2 ∈ (F×)2

is similar. We use the notation of §5.6.1.4. Then the Weil representation ωψ on
S(X′) is given in §5.3.3. We have

Φ(m(a)) =

∫
X′
ϕ′(xm(a))ϕ′(x) dx

=

∫
M2(F )

ϕ′(xm(a))ϕ′(x) dx

= φ(a)2 · φ(a−1)2,

where we identify X′ ∼= W with M2(F ) via the fixed isomorphism i and normalize
the Haar measure on M2(F ) so that vol(M2(o)) = 1. This yields the desired identity.
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Assume that E is ramified. We use the notation of §5.6.1.5. Then the Weil
representation ωψ on S(X′) is given in §5.3.2. We have

Φ(m(a)) = |a|2 ·
∫
X′
ϕ′(ax)ϕ′(x) dx

= |a|2 ·
4∏

i=1

∫
F

Io(axi)Io(xi) dxi

= |a|2 · φ(a)4.
This yields the desired identity. �

6.5.2. The case (rps). We identify B× with GL2(F ) via the isomorphism
i given by (5.1). Under this identification, we have K = GL2(o), where K is the
maximal compact subgroup of B× given in §5.6.2. We write Φ = Φμ to indicate
the dependence of ϕ = ϕμ on a unitary ramified character μ of conductor qn.

Lemma 6.5.2. We have

Φμ(n(b)m(a)) =

{
μ(a) if a ∈ o× and b ∈ o,

0 otherwise.

Proof. We use the notation of §5.6.2. Then the Weil representation ωψ on
S(X′) is given in §5.3.1. We have

Φμ(n(b)m(a)) = |a|2 ·
∫
X′
ϕ′(ax)ϕ′(x)ψ

(
1

2
b〈x, x〉†

)
dx

= qn+1(q − 1)−1 · μ(a) · |a|2

×
∫
F 4

Io(ax1)Io(x1)Io(ax2)Io(x2)I�no(ax3)I�no(x3)Io×(ax4)Io×(x4)

× ψ(b(x1x4 − x2x3)) dx1 dx2 dx3 dx4.

Since Io×(ax4)Io×(x4) = Io×(a)Io×(x4), the above integral is zero unless a ∈ o×, in
which case it is equal to∫

F 4

Io(x1)Io(x2)I�no(x3)Io×(x4)ψ(b(x1x4 − x2x3)) dx1 dx2 dx3 dx4

=

∫
F

Io(bx3)I�no(x3) dx3 ·
∫
F

Io(bx4)Io×(x4) dx4

=

{
q−n(1− q−1) if b ∈ o,

0 otherwise.

This yields the lemma. �

6.5.3. The case (st). We identify B× with GL2(F ) via:

• the isomorphism i given by (5.1) if B1 and B2 are split;
• the isomorphism i given by (5.7) if B1 and B2 are ramified.

Under this identification, we have K = GL2(o), where K is the maximal compact
subgroup of B× given in §5.6.3. Put

w =

(
−1

1

)
.
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Lemma 6.5.3. We have

Φ(m(�i)) =

{
q−2i if i ≥ 0,

q2i if i ≤ 0,

Φ(m(�i)w) =

{
γB1
· q−2i−1 if i ≥ 0,

γB1
· q2i+1 if i < 0,

where

γB1
=

{
1 if B1 is split,

−1 if B1 is ramified.

Proof. For convenience, we write pi = �io for i ∈ Z. Put

φ(j, k) :=

∫
F

Ipj (x)Ipk(x) dx =

{
q−j if j ≥ k,

q−k if j ≤ k

for j, k ∈ Z, where dx is the self-dual Haar measure on F with respect to ψ.
Assume that B1 and B2 are split. We use the notation of §5.6.3.1. Then the

Weil representation ωψ on S(X′) is given in §5.3.1. We have

ϕ′(x) = q
1
2 · Io(x1)Io(x2)Ip(x3)Io(x4),

ωψ(w)ϕ
′(x) = q−

1
2 · Io(x1)Ip−1(x2)Io(x3)Io(x4),

so that

Φ(m(�i)) = q−2i ·
∫
X′
ϕ′(�ix)ϕ′(x) dx

= q−2i+1 · φ(−i, 0)3 · φ(−i+ 1, 1),

Φ(m(�i)w) = q−2i ·
∫
X′
ωψ(w)ϕ

′(�ix)ϕ′(x) dx

= q−2i · φ(−i, 0)2 · φ(−i− 1, 0) · φ(−i, 1).

This yields the desired identity.
Assume that B1 and B2 are ramified. We use the notation of §5.6.3.2. Then

the Weil representation ωψ on S(X′) is given in §5.3.2. We have

ϕ′(x) = q
1
2 · Io(x1)Io(x2)Io(x3)Io(x4),

ωψ(w)ϕ
′(x) = −q− 1

2 · Io(x1)Io(x2)Ip−1(x3)Ip−1(x4),

so that

Φ(m(�i)) = q−2i ·
∫
X′
ϕ′(�ix)ϕ′(x) dx

= q−2i · φ(−i, 0)4,

Φ(m(�i)w) = q−2i ·
∫
X′
ωψ(w)ϕ

′(�ix)ϕ′(x) dx

= −q−2i−1 · φ(−i, 0)2 · φ(−i− 1, 0)2.

This yields the desired identity. �
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6.5.4. The case (1d). Let K = o
×
B be the unique maximal compact subgroup

of B×. We have B1 ⊂ K.

Lemma 6.5.4. We have Φ(g) = 1 for g ∈ B1.

Proof. We use the notation of §5.6.4. We have ωψ(g)ϕ
′ = ϕ′ and hence

Φ(g) = 〈ϕ′, ϕ′〉 = 1 for all g ∈ B1. �

6.5.5. The case (ds). We identify B× with GL2(F ) via the isomorphism i

given by (5.7). We write Φ = Φk to indicate the dependence of ϕ = ϕk on a
non-negative integer k.

Lemma 6.5.5. We have

Φk(m(a)) =

(
a+ a−1

2

)−k−2

for a > 0.

Proof. Assume that B1 and B2 are split. We use the notation of §5.6.5.1.
Then the Weil representation ωψ on S(X′) is given in §5.3.2. We have

Φk(m(a)) = a2 ·
∫
X′
ϕ′(ax)ϕ′(x) dx

=
|u|
4
· c−1

k · ak+2 ·
∫
F 4

(x2
2 − ux2

1)
k · e− π

2v (a
2+1)(x2

2−ux2
1+x2

4−ux2
3) dx1 · · · dx4

=
|u|
4
· c−1

k · ak+2 · v−2 ·
( π

2v
(a2 + 1)

)−k−2

· φ(k) · φ(0),

where

φ(k) :=

∫ ∞

−∞

∫ ∞

−∞
(x2 + y2)ke−(x2+y2) dx dy

with the Lebesgue measures dx, dy on R. Since

φ(k) =

∫ 2π

0

∫ ∞

0

r2ke−r2r dr dθ = π ·
∫ ∞

0

rke−r dr = π · k!,

we have

Φk(m(a)) =
|u|
4
· 4πk

k!|u| k2+1
· ak+2 · v−2 ·

( π

2v
(a2 + 1)

)−k−2

· π2 · k!

=

(
a+ a−1

2

)−k−2

.

Assume that B1 and B2 are ramified. We use the notation of §5.6.5.2. Then
the Weil representation ωψ on S(X′) is given in §5.3.2 and the computation is the
same as in the case when B1 and B2 are split. �

6.5.6. The case (fd). We identify C× with a subgroup of B× via the isomor-
phism E ∼= C such that i/

√
−1 > 0 and the fixed embedding E ↪→ B. Let φk be

the matrix coefficient of Symk such that

• φk(αgβ) = χk(α)χk(β)φk(g) for α, β ∈ C× and g ∈ B×,
• φk(1) = 1.

We write Φ = Φk to indicate the dependence of ϕ = ϕk on a non-negative integer
k.
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Lemma 6.5.6. We have Φk(g) = φk(g) for g ∈ B1.

Proof. We use the notation of §5.6.6. Then the Weil representation ωψ on

S(X′) is given in §5.3.3. If we write x = z1 + z2
j
s ∈ X′ ∼= W = B with z1, z2 ∈ E,

then

ϕ′(x) = c
− 1

2

k · (zρ1)k · e−
πv
2 (z1z

ρ
1+z2z

ρ
2 ).

Let Sk be the subspace of S(X′) generated by ωψ(g)ϕ
′ for all g ∈ B1. Since

ωψ(g)ϕ
′(z1, z2) = ϕ′(z1α1 − z2α

ρ
2, z1α2 + z2α

ρ
1)

for g = α1 + α2
j
s ∈ B1 with α1, α2 ∈ E, Sk is generated by

(zρ1)
i · (zρ2)k−i · e−πv

2 (z1z1ρ+z2z
ρ
2 )

for all 0 ≤ i ≤ k. Moreover, the representation of B1 on Sk is isomorphic to
the unique irreducible (k + 1)-dimensional representation Symk|B1 , so that Φk is

a matrix coefficient of Symk|B1 . On the other hand, by Lemma 5.6.3, we have
Φk(αgβ) = χk(α)

−1χk(β)
−1Φk(g) for α, β ∈ C1 and Φk(1) = 〈ϕ′, ϕ′〉 = 1. Hence

we must have Φk = φ̄k|B1 . �

6.6. Computation of Zv

To finish the proof of Theorem 6.3.2, it remains to compute the integral Zv.
We fix a place v of F and suppress the subscript v from the notation. Recall that

Z =

∫
B1

Φ(g)Ψ(g) dg,

where

• Φ is the function on B1 given in §6.5;
• Ψ is the function on B1 defined by

Ψ(g) = 〈πB(g)fB, fB〉,
where fB ∈ πB is the new vector as in §6.3 and 〈·, ·〉 is the invariant hermitian
inner product on πB normalized so that 〈fB, fB〉 = 1;
• dg is the standard measure on B1.

6.6.1. The case (ur). In this case, πB = Ind(χ ⊗ μ), where χ and μ are
unitary unramified. We have

L(s, π, ad) =
1

(1− q−s)(1− γq−s)(1− γ−1q−s)
,

where γ = χ(�) · μ(�)−1.

Lemma 6.6.1. We have

Z =
L(1, π, ad)

ζ(2)2
.

Proof. We retain the notation of §§5.6.1, 6.5.1. Put K′ = SL2(o). Then we
have

Z =
∞∑
i=0

Φ(m(�i))Ψ(m(�i)) vol(K′m(�i)K′).

By Macdonald’s formula [50], [7], we have

Ψ(m(�i)) =
q−i

1 + q−1
·
(
γi · 1− γ−1q−1

1− γ−1
+ γ−i · 1− γq−1

1− γ

)
.
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Also, we see that

vol(K′m(�i)K′) =

{
1 if i = 0,

q2i(1 + q−1) if i ≥ 1.

Combining these with Lemma 6.5.1, we obtain

Z = 1 +
∞∑
i=1

q−i ·
(
γi · 1− γ−1q−1

1− γ−1
+ γ−i · 1− γq−1

1− γ

)
= 1 +

γq−1

1− γq−1
· 1− γ−1q−1

1− γ−1
+

γ−1q−1

1− γ−1q−1
· 1− γq−1

1− γ

=
(1 + q−1)(1− q−2)

(1− γq−1)(1− γ−1q−1)
. �

6.6.2. The case (rps). In this case, πB = Ind(χ⊗μ) and Φ = Φμ, where χ is
unitary unramified and μ is unitary ramified of conductor qn. We have L(s, π, ad) =
ζ(s).

Lemma 6.6.2. We have

Z =
1

qn−4(q − 1)(q + 1)3
· L(1, π, ad)

ζ(2)2
.

Proof. Following [46, Chapter VIII], we shall compute Z explicitly. We retain
the notation of §§5.6.2, 6.5.2. Put K′ = SL2(o) and K′

n = Kn ∩ SL2(o). We take
the invariant hermitian inner product 〈·, ·〉 on πB defined by

〈f1, f2〉 =
∫
K
f1(k)f2(k) dk,

where dk is the Haar measure on K such that vol(K) = 1. Then fB is determined
by

fB |K = vol(Kn)
− 1

2 · IKn
μ.

We can define a new vector f̃B ∈ πB with respect to (Kn,μ) by

f̃B(h) =

∫
B1

Φ(g)fB(hg) dg

for h ∈ B×. Since f̃B = f̃B(1)
fB(1) · fB and 〈fB, fB〉 = 1, we have

Z = 〈f̃B, fB〉 = vol(Kn)
1
2 · f̃B(1).

We have

f̃B(1) =

∫
B1

Φ(g)fB(g) dg

=

∫
K′

∫
F×

∫
F

Φ(n(b)m(a)k) · fB(n(b)m(a)k) · |a|−2 db da dk

= vol(Kn)
− 1

2 ·
∫
K′

n

∫
F×

∫
F

Φ(n(b)m(a))μ(k)−1 · χ(a)μ(a)−1|a|μ(k)

× |a|−2 db da dk

= vol(Kn)
− 1

2 · vol(K′
n) ·
∫
F×

∫
F

Φ(n(b)m(a)) · χ(a)μ(a)−1|a|−1 db da,
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where

• db is the Haar measure on F such that vol(o) = 1;
• da is the Haar measure on F× such that vol(o×) = 1;
• dk is the Haar measure on K′ such that vol(K′) = 1.

By Lemma 6.5.2, we have∫
F×

∫
F

Φ(n(b)m(a)) · χ(a)μ(a)−1|a|−1 db da =

∫
o×

∫
o

χ(a)|a|−1 db da = 1.

Hence we have

Z = vol(K′
n) =

1

qn−1(q + 1)
. �

6.6.3. The case (st). In this case, πB = St⊗χ, where χ is unitary unramified.
We have L(s, π, ad) = ζ(s+ 1).

Lemma 6.6.3.

(i) If B1 and B2 are split, then we have

Z =
q2

(q + 1)3
· L(1, π, ad)

ζ(2)2
.

(ii) If B1 and B2 are ramified, then we have

Z =
q2

(q − 1)2(q + 1)
· L(1, π, ad)

ζ(2)2
.

Proof. We retain the notation of §§5.6.3, 6.5.3. Put I ′ = I∩SL2(o). Let W̃ =
N(T0)/T0 be the extended affine Weyl group of GL2(F ), where T0 = {( a d ) | a, d ∈
o×} and N(T0) is the normalizer of T0 in GL2(F ). Then we have

GL2(F ) =
⊔

w̃∈W̃

Iw̃I.

We can write W̃ = Ω�Wa with Ω = 〈ω〉 and Wa = 〈w1, w2〉, where

ω =

(
1

�

)
, w1 =

(
1

1

)
, w2 =

(
�−1

�

)
.

Noting that w2
1 = w2

2 = 1 and w1w2 = m(�), we have

SL2(F ) =
1⊔

j=0

∞⊔
i=−∞

I ′m(�i)wjI ′

and hence

Z =
1∑

j=0

∞∑
i=−∞

Φ(m(�i)wj)Ψ(m(�i)wj) vol(I ′m(�i)wjI ′).

Let � be the length function on W̃ , so that �(ω) = 0 and �(w1) = �(w2) = 1. By
[18, §7], we have

Ψ(ωkw̃) = (−χ(�))k · (−q)−�(w̃)
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for k ∈ Z and w̃ ∈ Wa. Also, we see that |Iw̃I/I| = q�(w̃) for w̃ ∈ W̃ . Hence we
have

Ψ(m(�i)wj) vol(I ′m(�i)wjI ′) = (−1)�(m(�i)wj) · vol(I ′)

=
1

q + 1
×
{
1 if j = 0,

−1 if j = 1,

so that

Z =
1

q + 1
·
( ∞∑

i=−∞
Φ(m(�i))−

∞∑
i=−∞

Φ(m(�i)w)

)
.

Combining this with Lemma 6.5.3, we obtain

Z =
1

q + 1
·
( ∞∑

i=0

q−2i +

∞∑
i=1

q−2i −
∞∑
i=0

q−2i−1 −
∞∑
i=1

q−2i+1

)

=
1

q + 1
· 1 + q−2 − q−1 − q−1

1− q−2

=
q − 1

(q + 1)2

if B1 and B2 are split, and

Z =
1

q + 1
·
( ∞∑

i=0

q−2i +
∞∑
i=1

q−2i +
∞∑
i=0

q−2i−1 +
∞∑
i=1

q−2i+1

)

=
1

q + 1
· 1 + q−2 + q−1 + q−1

1− q−2

=
1

q − 1

if B1 and B2 are ramified. �

6.6.4. The case (1d). In this case, πB = χ◦ν, where χ is unitary unramified.
We have L(s, π, ad) = ζ(s+ 1).

Lemma 6.6.4. We have

Z =
q2

(q − 1)(q + 1)
· L(1, π, ad)

ζ(2)2
.

Proof. We retain the notation of §§5.6.4, 6.5.4. Then by Lemma 6.5.4, we
have

Z =

∫
B1

dg = 1. �

6.6.5. The case (ds). In this case, πB = DSk and Φ = Φl, where

l =

{
k if B1 and B2 are split,

k − 2 if B1 and B2 are ramified.

Lemma 6.6.5.

(i) If B1 and B2 are split, then we have

Z =
4π

k
.
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(ii) If B1 and B2 are ramified, then we have

Z =
4π

k − 1
.

Proof. We retain the notation of §§5.6.5, 6.5.5. In particular, we identify C×

with a subgroup of B×. Then we have

Z = 4π ·
∫
C1

∫ ∞

0

∫
C1

Φ(κ1m(et)κ2)Ψ(κ1m(et)κ2) sinh(2t) dκ1 dt dκ2

= 4π ·
∫ ∞

0

Φ(m(et))Ψ(m(et)) sinh(2t) dt,

where

• dt is the Lebesgue measure;
• dκ1 and dκ2 are the Haar measures on C1 such that vol(C1) = 1.

It is known that
Ψ(m(et)) = cosh(t)−k.

Combining these with Lemma 6.5.5, we obtain

Z = 4π ·
∫ ∞

0

cosh(t)−k−l−2 sinh(2t) dt

= 8π ·
∫ ∞

0

cosh(t)−k−l−1 sinh(t) dt

= 8π ·
∫ ∞

1

t−k−l−1 dt

=
8π

k + l
. �

6.6.6. The case (fd). In this case, πB = Symk−2 and Φ = Φk−2.

Lemma 6.6.6. We have

Z =
1

k − 1
.

Proof. We retain the notation of §§5.6.6, 6.5.6. Then by Lemma 6.5.6 and
the Schur orthogonality relations, we have

Z =

∫
B1

|φk−2(g)|2 dg =
1

k − 1
. �



CHAPTER 7

The Main Conjecture on the Arithmetic of Theta
Lifts

7.1. On the choices of u, J1 and J2

We suppose now that we are given a totally real number field F and two
quaternion algebras B1 and B2 over F . Let us define for convenience:

dB1�B2
=

∏
q|dB1

, q�dB2

q, dB2�B1
=

∏
q|dB2

, q�dB1

q,

dB1∪B2
=

∏
q|dB1

dB2

q, dB1∩B2
=

∏
q|(dB1

,dB2
)

q

and

ΣB1�B2
= ΣB1

� ΣB2
, ΣB2�B1

= ΣB2
� ΣB1

,

ΣB1∪B2
= ΣB1

∪ ΣB2
, ΣB1∩B2

= ΣB1
∩ ΣB2

.

For the constructions so far (especially the constructions of splittings), the only
condition needed is:

(7.1) At every place v of F , at least one of u, J1, J2, J is a square.

However, to formulate the main conjecture we will need to make a more careful
choice. In this section, we show that we can make such a choice that satisfies a
number of useful auxiliary conditions. For purposes of clarity, we first make the
following definition.

Definition 7.1.1. Let F , B1 and B2 be given. Suppose that we are also given
an ideal f of OF that is coprime to dB1∪B2

. A triple (u, J1, J2) of elements in F×

will be said to be well adapted to (F,B1, B2, f) if:

(i) u, J1, J2 lie in OF .
(ii) At every place v of F , at least one of u, J1, J2, J is a square (where J := J1J2).
(iii) u� 0, so that E := F + F i, i2 = u is a CM field.
(iv) u is a unit at any prime q of F that is unramified in E.
(v) If q is a prime of F dividing 2, then Eq is the unique unramified quadratic

extension of Fq if q | dB1∪B2
and Eq/Fq is split otherwise.

(vi) (a) B1 � E + Ej1, with j21 = J1 and ij1 = −j1i.
(b) B2 � E + Ej2, with j22 = J2 and ij2 = −j2i.
(c) B � E + Ej with j2 = J = J1J2 and ij = −ji, where B � B1 · B2 in

the Brauer group of F . (This is actually a formal consequence of the
previous two subparts.)

(vii) (a) If q | dB1�B2
, then J1 is a uniformizer at q and J2 is the square of a unit.

(b) If q | dB2�B1
, then J2 is a uniformizer at q and J1 is the square of a unit.
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126 7. THE MAIN CONJECTURE ON THE ARITHMETIC OF THETA LIFTS

(c) If q | dB1∩B2
, then J1 and J2 are both uniformizers at q such that J1/J2

is the square of a unit.
(viii) u, J1, J2 and J are squares of units at the primes of OF dividing f.

A well adapted coordinate system for (F,B1, B2, f) will consist of a well adapted
choice of (u, J1, J2) together with a choice of isomorphisms as in (vi) above. (If
f = (1) we may simply drop it from the notation.)

Remark 7.1.2. If f′ | f, then a well adapted coordinate system for (F,B1, B2, f)
gives rise naturally to a well adapted coordinate system for (F,B1, B2, f

′).

Remark 7.1.3. In our application later in this chapter, we will assume that
dB1∪B2

is prime to 2DF/Q (where DF/Q denotes the different of F/Q) and that
2DF/Q | f. Note that with this assumption, for any prime q of OF above 2, condition
(viii) implies that the element u must be a square of a unit at such a q and hence
Eq/Fq is split. Thus the conditions (viii) and (v) both apply at such a q but
are consistent. Then choosing a well adapted coordinate system for (F,B1, B2, f)
ensures that the list of possibilities in the table of §5.5 covers all possible ramification
scenarios at any place v of F .

The following key proposition shows that we can pick a well adapted coordinate
system that is especially convenient for studying �-integrality questions.

Proposition 7.1.4. Suppose that � is a rational prime that is coprime to
dB1∪B2

and {f1, · · · , fn} is a collection of primes of OF (possibly empty) that are co-
prime to �dB1∪B2

. Then we can find elements u, J1, J2 ∈ F such that the following
hold:

(i) u, J1, J2 lie in OF .
(ii) At every place v of F , at least one of u, J1, J2, J is a square.
(iii) u� 0, so that E := F + F i, i2 = u is a CM field.
(iv) u is a unit at any prime q that is unramified in E.
(v) If q is a prime of F dividing 2, then Eq is the unique unramified quadratic

extension of Fq if q | dB1∪B2
and Eq/Fq is split otherwise.

(vi) (a) B1 � E + Ej1, with j21 = J1 and ij1 = −j1i.
(b) B2 � E + Ej2, with j22 = J2 and ij2 = −j2i.
(c) B � E + Ej with j2 = J = J1J2 and ij = −ji.

(vii) (a) If q | dB1�B2
, then J1 is a uniformizer at q and J2 is the square of a

unit.
(b) If q | dB2�B1

, then J2 is a uniformizer at q and J1 is the square of a
unit.

(c) If q | dB1∩B2
, then J1 and J2 are both uniformizers at q such that J1/J2

is the square of a unit.
(viii) u, J1, J2 and J are squares of units at the primes in {f1, . . . , fn} and at all

primes l of F above �.

In other words, there exists a well adapted coordinate system for (F,B1, B2, (�)f)
with f :=

∏
i fi.

Let K denote the quadratic extension of F given by

(7.2) K = F + F j.

Note that the condition (viii) above implies that both E and K are split at the
primes in {l | �} ∪ {f1, . . . , fn}.
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Prop. 7.1.4 will suffice for the current paper. The following enhancement of it
will be useful in [31], [32].

Proposition 7.1.5. Let � and f1, . . . , fn be as in the previous proposition. Sup-
pose that the prime � satisfies the following conditions:

• � is unramified in F .
• � > 5 and for any q | dB1�B2

· dB2�B1
, we have

Nq �≡ 0,±1 (mod �).

Then we can choose u, J1, J2 such that in addition to (i) through (viii) above, we
have:

(ix) If E or K is ramified at a prime p, then Np �≡ 0,±1 (mod �).

The following Lemmas 7.1.6 and 7.1.7 will be useful in the proofs of Prop. 7.1.4
and Prop. 7.1.5 respectively.

Lemma 7.1.6. Let F be a number field, Ξf a finite subset of Σfin and Ξ∞ ⊆ Σ∞
a set of real infinite places. Let I be an ideal in OF prime to the primes in Ξf .
Then there exists a prime ideal q ⊂ OF such that I · q = (α) is principal with α
satisfying:

(a) α is a square of a unit at the primes in Ξf .
(b) σv(α) < 0 for v in Ξ∞ and σv(α) > 0 for any real place v of F not in Ξ∞.

Further, q can be picked to avoid any finite set of primes.

Lemma 7.1.7. Let F be a number field and � > 5 a rational prime unramified
in F . Suppose that Ξf is a finite subset of Σfin all whose elements are prime to �
and Ξ∞ ⊆ Σ∞ is a set of real infinite places. Let I be an ideal in OF prime to �
and the primes in Ξf . Then there exists a prime ideal q ⊂ OF such that I · q = (α)
is principal with α satisfying:

(a) α is a square of a unit at the primes in Ξf and at all primes l above �.
(b) σv(α) < 0 for v in Ξ∞ and σv(α) > 0 for v any real place of F not in Ξ∞.
(c) Nq �≡ 0,±1 (mod �).

Further, q can be picked to avoid any finite set of primes.

We first prove Lemma 7.1.6 and then explain the modifications needed to prove
Lemma 7.1.7.

Proof (of Lemma 7.1.6). Let m be the product of all the real places of F and
the primes in Ξf , each raised to a sufficiently large power so that the local units
congruent to 1 (mod m) are squares. For α ∈ F×, let ι(α) denote the principal
fractional ideal generated by α. Also let Fm,1 denote the set of elements in F× that

are congruent to 1 (mod× m). If UF denotes the units in F and UF,m the units

congruent to 1 (mod× m), then there is an exact sequence:

1→ UF

UF,m
→ F×

Fm,1
→ ι(F×)

ι(Fm,1)
→ 1.

Let H be the Hilbert class field of F and Hm the ray class field of F of conductor
m. Then F ⊂ H ⊂ Hm and there is a canonical isomorphism

Gal(Hm/H) � ι(F×)

ι(Fm,1)
.
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Pick an element β ∈ F× such that β ≡ 1 (mod m) and such that β is negative at the
real places in Ξ∞ and positive at the real places not in Ξ∞. Let σ(β) ∈ Gal(Hm/H)
be the element corresponding to [ι(β)] via the isomorphism above. Let σI denote
the image of I in Gal(Hm/F ) under the Artin map. By Chebotarev, there exists a
prime ideal q in OF that is prime to m and such that

σq = σ−1
I · σ(β) in Gal(Hm/F ).

In particular this implies that σq = σ−1
I in Gal(H/F ), so there exists α ∈ F× such

that q · I = (α). Then σ(α) = σ(β), which is the same as saying that

[ι(α)] = [ι(β)] in
ι(F×)

ι(Fm,1)
.

The exact sequence above implies then that there is a unit u ∈ UF such that

[u · α] = [β] in
F×

Fm,1
.

Replacing α by u · α, we see that it has the required properties. �

Proof (of Lemma 7.1.7). We modify the proof of Lemma 7.1.6.
Let {l1, . . . , lr} be the primes of F lying over �. Let m be the product of all the

real places of F , the primes in Ξf (each raised to a sufficiently large power so that
the local units congruent to 1 (mod m) are squares) and the primes l2, . . . , lr. Fix
for the moment an element w ∈ (oF /l1)

×. By the approximation theorem, we may
pick β ∈ F× such that

• β is negative at the places in Ξ∞ and positive at the real places not in Ξ∞.
• β ≡ 1 (mod m).
• β ≡ w2 (mod l1).

Let σI denote the image of I in Gal(Hml1/F ) under the Artin map. By Cheb-
otarev, there exists a prime ideal q in OF that is prime to m · l1 and such that

σq = σ−1
I · σ(β) in Gal(Hml1/F ).

As before then, there exists α ∈ F× such that q · I = (α) and a unit u ∈ UF such
that

[u · α] = [β] in
F×

Fml1,1
.

Replacing α by u ·α, we see that α satisfies the requirements (a), (b) of the lemma.
It remains to show that w can be chosen so that q satisfies (c). Clearly q is prime
to �. But

Nq ·NI = ±N(α) = ±N(β) ≡ ±NFl1
/F�

(w2) (mod �).

Since NI is fixed and we only need Nq �≡ ±1 (mod �), it suffices to show that the
subgroup {

NFl1
/F�

(w2) : w ∈ F×
l1

}
⊂ F×

�

contains at least 3 elements. But this subgroup is just (F×
� )

2 (since l1 is unramified

over �) and has cardinality �−1
2 > 2 since � > 5 by assumption. �

Now we prove Prop. 7.1.4 and then explain the modifications needed to prove
Prop. 7.1.5.
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Proof (of Prop. 7.1.4). Let f = f1 · · · fn and S = 2�dB1∪B2
f. We begin by

using Lemma 7.1.6 above to pick:

• A prime ideal qB1�B2
(prime to S) such that dB1�B2

· qB1�B2
= (αB1�B2

), with
αB1�B2

satisfying the following conditions:
· αB1�B2

is a square of a unit at the primes dividing �dB2
f and the primes above

2 not dividing dB1�B2
.

· For v ∈ Σ∞,

σv(αB1�B2
) < 0, if v ∈ ΣB1�B2

; σv(αB1�B2
) > 0, if v �∈ ΣB1�B2

.

• A prime ideal qB2�B1
(prime to S) such that dB2�B1

· qB2�B1
= (αB2�B1

), with
αB2�B1

satisfying the following conditions:
· αB2�B1

is a square of a unit at the primes dividing �dB1
f and the primes above

2 not dividing dB2�B1
.

· For v ∈ Σ∞,

σv(αB2�B1
) < 0, if v ∈ ΣB2�B1

; σv(αB2�B1
) > 0, if v �∈ ΣB2�B1

.

• A prime ideal qB1∩B2
(prime to S) such that dB1∩B2

· qB1∩B2
= (αB1∩B2

), with
αB1∩B2

satisfying the following conditions:
· αB1∩B2

is a square of a unit at the primes dividing �dB1�B2
dB2�B1

f and the
primes above 2 not dividing dB1∩B2

.
· For v ∈ Σ∞,

σv(αB1∩B2
) < 0, if v ∈ ΣB1∩B2

; σv(αB1∩B2
) > 0, if v �∈ ΣB1∩B2

.

Let R denote the ideal

R := qB1�B2
· qB2�B1

· qB1∩B2
.

Next, we use the approximation theorem to pick α ∈ F× satisfying the following
properties:

(I) α� 0.
(II) −α is a square of a unit at the primes dividing �Rf.
(III) If q is a prime dividing dB1∪B2

, then −α is a unit at q but not a square.
If further q divides 2, then we also require that

√
−α generate the unique

unramified extension of Fq.
(IV) If q is a prime dividing 2 but not dividing dB1∪B2

, then −α is a square of a
unit at q.

Let

m := 2a� · dB1∪B2
f ·R ·

∏
v∈Σ∞

v,

with the power 2a being chosen large enough so that locally at any prime above
2, the units congruent to 1 modulo 2a are squares. By Chebotarev, there exists a
prime ideal Q ⊂ OF (prime to m) such that

σ(α) · σQ = 1 in Gal(Hm/F ).

This implies that

(α) ·Q = (β),

for some β ≡ 1 (mod× m). Now, take

u := −α−1β, J1 := αB1�B2
· αB1∩B2

, J2 := αB2�B1
· αB1∩B2

.
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Since

(u) = Q, (J1) = dB1
· qB1�B2

· qB1∩B2
, (J2) = dB2

· qB2�B1
· qB1∩B2

,

we see that u, J1, J2 lie in OF , which shows that (i) is satisfied. Let E/F be the
quadratic extension E = F + F i with i2 = u. Since α � 0 and β � 0, we
have u � 0, which shows (iii), whence E is a CM quadratic extension of F . The
conditions (III) and (IV) above imply that if q is a prime above 2, then Eq is the
unique unramified quadratic extension of Fq if q divides dB1∪B2

and otherwise is
split, which shows (v). Since (u) = Q, it follows that E is ramified exactly at the
prime Q, and in particular satisfies (iv). Now we check that

B1 � E + Ej1, j21 = J1, ij1 = −j1i.

To show this, it suffices to check that the Hilbert symbol (u, J1)v equals −1 exactly
for those v at which B1 is ramified. At the archimedean places this is clear since
u � 0 and J1 is negative exactly at the places at which B1 is ramified. As for
the finite places, we only need to check this for v dividing 2uJ1, since outside of
these primes B1 is split and (u, J1) = 1 since both u and J1 are units at such
places. At the primes dividing qB1�B2

· qB1∩B2
, the algebra B1 is split and u is

a square of a unit, so this is clear. For q | dB1
, the algebra B1 is ramified, J1 is

a uniformizer and by (III) above, we have (u, J1)q = (−α, J1)q = −1. Next we
consider the primes q above 2. If q | dB1

, this is done already. If q | dB2�B1
,

then J1 is a square at q, so (u, J1)q = 1 as required. This leaves the primes q

above 2 which do not divide dB1∪B2
. At such primes, u is a square of a unit, so

(u, J1)q = 1. The only prime left is Q at which the required equality follows from
the product formula! The isomorphism B2 � E + Ej2 follows similarly, and then
the isomorphism B � E + Ej follows from the equality B = B1 · B2 in the Brauer
group. This completes the proof of (vi). The conditions (vii) and (viii) are easily
verified, which leaves (ii).

Finally, we check that (ii) is satisfied, namely that at every place v of F , at
least one of u, J1, J2 or J is a square. At the archimedean places, this is obvious.
At the primes dividing dB1∪B2

, this follows from (vii). Let q be a finite prime not
dividing dB1∪B2

. If such a q divides 2, then all of u, J1, J2, J are squares at q. So
let q be prime to 2dB1∪B2

. If E is split at q, then u is a square at q. If E is inert
at q, then J1, J2 lie in NEq/Fq

(E×
q ) since B1 and B2 are split at q. If J1 and J2 are

both not squares at such q, it must be the case that J = J1J2 is a square. Finally,
we deal with q = Q, the only ramified prime in E. At this prime, J1 and J2 are
both units. Again, if both of them are non-squares, their product must be a square.
This completes the proof. �

We will now prove Prop 7.1.5.

Proof (of Prop. 7.1.5). We will show that we can pick u, J1, J2 such that
(ix) is satisfied in addition to (i)-(viii). The proof is almost the same as that of
Prop. 7.1.4 with some minor modifications which we now describe. First, we pick as
before the prime ideals qB1�B2

, qB2�B1
, qB1∩B2

and the elements αB1�B2
, αB2�B1

,
αB1∩B2

. Using Lemma 7.1.7, we can ensure that for q = qB1�B2
and qB2�B1

, we
have

Nq �≡ 0,±1 (mod �).
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Fix a prime l1 of F above �. Let R be as before and then using the approximation
theorem, pick α ∈ F× satisfying the properties (I) through (IV) of the proof of
Prop. 7.1.4 and the following additional conditions:

(V) −α ≡ w2 (mod l1), where w ∈ F×
l1

is an element such that NFl1
/F�

(w2) �=
±1.

(VI) −α ≡ 1 (mod l) for all primes l �= l1 dividing �.

Note that this uses the assumption that � is unramified in F and � > 5. Next, as
before, we pick m, β and Q and set:

u := −α−1β, J1 := αB1�B2
· αB1∩B2

, J2 := αB2�B1
· αB1∩B2

.

It is easy to see (using arguments similar to those of Prop. 7.1.4) that (i)-(viii)
hold. We verify (ix) now.

The field E is only ramified at Q. Also,

NQ = ±N(β) ·N(α−1) ≡ ±N(α−1) ≡ ±NFl1
/F�

(w−2) �≡ 0,±1 (mod �),

which proves what we need for the field E. Now let us consider the field K. Since
J = J1J2, we have

(J) = dB1
· qB1�B2

· qB1∩B2
· dB2

· qB2�B1
· qB1∩B2

= dB1�B2
· dB2�B1

· qB1�B2
· qB2�B1

· d2B1∩B2
· q2B1∩B2

.

We claim that K is ramified exactly at the primes dividing

dK := dB1�B2
· dB2�B1

· qB1�B2
· qB2�B1

.

This will follow if we show that K/F is unramified at the primes q over 2 that do
not divide dB1�B2

· dB2�B1
. We claim that J is a square (and hence K is split) at

such primes q. Indeed, if a prime q above 2 does not divide dB1∪B2
, then αB1�B2

,
αB2�B1

and αB1∩B2
are all squares of units at q, hence J1, J2 and J are squares at

q. On the other hand, if a prime q above 2 divides dB1∩B2
, then αB1�B2

, αB2�B1

are squares of units at q and thus

J = αB1�B2
· αB2�B1

· α2
B1∩B2

is a square at q.
Thus it suffices to consider the primes q dividing dK . For q dividing either

dB1�B2
or dB2�B1

, it follows from the assumptions in the statement of the propo-
sition that Nq �≡ 0,±1 (mod �). For q equal to either qB1�B2

or qB2�B1
, the same

follows from the choice of these prime ideals. �

7.2. The main conjecture

Finally, in this section we come to the main conjecture. Our starting data will
be the totally real field F , the automorphic representation Π (from the introduction)
of conductor N = Ns ·Nps and the two quaternion algebras B1 and B2. We assume
that Π admits a Jacquet–Langlands transfer to both B1 and B2. We also assume
the following condition holds (see Remark 6 of the introduction):

• N is prime to 2DF/Q, where DF/Q denotes the different of F/Q.
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7.2.1. The conjecture will in addition depend on several auxiliary choices which
we now make completely explicit in the following series of steps.

(i) Let � be a rational prime such that (�,N(Π)) = 1. Recall from the introduc-
tion that

N(Π) = 2 · hF ·DF ·NΠ · kΠ!,
where NΠ = NN and kΠ = max ki.

(ii) Pick u, J1 and J2 satisfying all the conditions of Prop. 7.1.4, with {f1, . . . , fn}
being the set of primes of F dividing 2DF/Q. In other words, we pick a
well adapted coordinate system for (F,B1, B2, (2�)DF/Q). As mentioned in
Remark 7.1.3 this ensures that the list of possibilities in the table of §5.5
covers all possible ramification scenarios at any place v of F .

(iii) Set E = F + F i where i2 = u. An explicit model for Bi, i = 1, 2, is Bi =
E + Eji where j2i = Ji and αji = jiα

ρ for α ∈ E. Likewise an explicit model
for B = B1 ·B2 is B = E + Ej where j2 = J := J1J2.

(iv) Let B′ denote any one of the quaternion algebras B, B1 or B2. Let dB′ denote
the discriminant of B′ and define NB′ by

N = dB′ ·NB′ .

Thus dB′ divides Ns, and Nps divides NB′ .
(v) Given the choices of u, J1 and J2, in §5.6 we have picked local maximal

orders and oriented Eichler orders of level NB′ . (Here the orientation is only
picked at places dividing Nps.) Let OB′ (resp. OB′(NB′)) denote the unique
maximal order (resp. Eichler order of level NB′) corresponding to these
choices. Also denote by oB′ the corresponding orientation on OB′(NB′).

This defines open compact subgroups KB′
=
∏

v KB′

v and K̃B′
=
∏

v K̃B′

v of

B′×(Af ) with

KB′

v = ker
[
oB′,v : (OB′(NB′)⊗OF

OF,v)
× → (OF,v/NpsOF,v)

×]
and

K̃B′

v = (OB′(NB′)⊗OF
OF,v)

×.

For future use, we record that with our choices of u, J1 and J2 and local
orders, we have

(7.3) OE ⊗ Z(�) ⊆ OB′ ⊗ Z(�).

(vi) As in §1.4, we pick a large enough number field L and isomorphisms φB, φB1

and φB2
satisfying (1.18). We recall that φB′ gives an isomorphism:

(7.4) OB′ ⊗OL,(�) �
∏
σ

M2(OL,(�))

for B′ = B, B1 and B2. As explained in §1.4, we can define automorphic
vector bundles on ShKB (GB, XB), ShKB1 (GB1

, XB1
) and ShKB2 (GB2

, XB2
)

as well as sections sB, sB1
and sB2

of these bundles that are �-normalized.
(See Prop. 1.3.4.) For B′ = B,B1 or B2 let us denote the corresponding

bundle by VB′

kB′ ,r
to indicate that is a bundle on XB′ .

(vii) So far, we have not had to pick a base point of XB′ but we will now need
to do so. Fix isomorphisms E ⊗F,σ R � C for all infinite places σ of F as in
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§5.6. For B′ = B,B1, B2 we define hB′ as follows: take the composite maps

C→
∏

σ∈Σ∞

C � E ⊗ R→ B′ ⊗ R

where the first map sends

z �→ (zσ)σ

with zσ = z if σ is split in B′ and zσ = 1 is σ is ramified in B′.
(viii) For B′ = B,B1 or B2, let FB′ = LifthB′ (sB′).

(ix) To move to scalar valued forms, we need to pick an embedding of (C×)d in
(B′ ⊗Q R)× as in §1.2.3. We use the following embedding:

(C×)d �
∏
σ

(E ⊗F,σ R)× � (E ⊗Q R)× ↪→ (B′ ⊗Q R)×.

For σ ∈ Σ∞�ΣB′,∞, the embedding C× ↪→ (B′⊗F,σR)× is simply hB′,σ. For
σ ∈ ΣB′,∞, we denote the embedding C× ↪→ (B′⊗F,σ R)× by h′

B′,σ following
the notation in §1.2.3.

(x) For each σ and each B′, we pick a vector vB
′

σ,kB′,σ
∈ Vσ,kB′,σ,r satisfying (1.13)

and that is integrally normalized with respect to the �-integral structure given
by

SymkB′,σ (O2
L,(�))⊗ det(O2

L,(�))
r−k

B′,σ
2 ⊂ SymkB′,σ (L2)⊗ det(L2)

r−k
B′,σ
2

⊂ Vσ,kB′,σ,r.

This means that vB
′

σ,kB′,σ
lies in the OL,(�)-module on the left and is not

divisible in it by any prime of OL,(�) above (�). (At this point we also need

to ensure that SymkB′,σ (L2)⊗ det(L2)
r−k

B′,σ
2 contains an eigenvector for the

action of (E⊗F,σ R)× = C×. Since E× is dense in (E⊗F,σ R)×, it suffices to
have an eigenvector for the E×-action; this can be arranged by extending L
if necessary to a larger number field.)

(xi) Let vB
′

kB′ = ⊗σv
B′

σ,kB′,σ
. Now we can define φFB′ = (FB′(g), vB

′

kB′ ). Let fB′

denote the corresponding element of πB′ :

fB′(g) = φFB′ (g) · νB′(g)−r/2.

Then fB′ is a new-vector as defined in §6.3.
From Defn. 1.2.8, Prop. 1.2.10 and Prop. 1.2.14, we find that

(7.5)

〈〈sB′ , sB′〉〉K̃B′ = 2dB′hF [KB′

0 : K̃B′
] · 〈FB′ , FB′〉hB′

= 2dB′hF [KB′

0 : K̃B′
] ·

rankVB′

kB′ ,r

〈vB′
kB′

, vB
′

kB′
〉hB′

· 〈fB′ , fB′〉,

where dB′ is the number of infinite places of F where B′ is split, and KB′

0 is the

maximal open compact subgroup of B′×(Af ) defined by KB′

0 =
∏

v KB′

0,v, with

KB′

0,v = (OB′ ⊗OF,v)
×.

We note the following proposition about the values 〈vB′

kB′
, vB

′

kB′
〉hB′ .

Proposition 7.2.1. For B′ = B,B1, B2, the value 〈vB′

kB′ , v
B′

kB′ 〉hB′ is a unit at

all primes above �, i.e., is an element of R×
(�).
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Proof. Since vB
′

kB′
= ⊗σv

B′

σ,kB′,σ
, it suffices to show that 〈vB′

σ,kB′,σ
, vB

′

σ,kB′,σ
〉 is

in R×
(�) for all σ. Recall that this inner product is defined using the hermitian forms

H and Hh of §1.2.1 in the cases σ ∈ ΣB′,∞ and σ ∈ Σ∞ � ΣB′,∞ respectively. We
consider these cases separately. In either case, for B′ = B,B1, B2 respectively, we
write J ′ for J, J1, J2 and j′ for j, j1, j2 respectively.

First consider the case σ ∈ ΣB′,∞. Let Lσ = O2
L,(�). The vector v

B′

σ,kB′,σ
is char-

acterized as the unique element (up to scaling) in SymkB′,σ (Lσ)⊗det(Lσ)
(r−kB′,σ)/2

on which C× acts by zeiθ �→ zreikB′,σθ. Since the hermitian form on det(Lσ) is
regular and C× acts on det(Lσ) as zeiθ �→ z2, it suffices to consider instead just

Symk(Lσ) (for any integer k with 0 ≤ k < �) and show that the norm of an inte-

grally normalized vector in Symk(Lσ) on which C× acts by zeiθ �→ zkeikθ lies in

R×
(�). Now the hermitian form on Symk(Lσ) is defined by first using the section

s of equation (1.10) to embed it into V ⊗k
σ,C and then taking the restriction of the

tensor product form. Since � > k, this section maps Symk(Lσ) into L⊗k
σ and thus

the hermitian form on Symk(Lσ) takes values in R(�). It is thus enough to show

that there is a non-zero vector vk in Symk(Lσ) on which C× acts by zeiθ �→ zkeikθ

and whose norm lies in R×
(�). Moreover, it suffices to consider the case k = 1 since

for general k, we can simply take vk to be the image of v⊗k
1 in Symk(Lσ).

Recall that we have an embedding E → B′ and hence an embedding φσ defined
by the diagram below:

C× 	 ��

h′
B′,σ

��
(E ⊗F,σ R)× ��

φσ

��

(B′ ⊗F,σ R)×
φB′,σ

	 �� H×,

where the (inverse of) first isomorphism is the map that sends i ∈ E× to i
√
|σu| ∈

C×. Also, the line spanned by the vector v1 is distinguished simply by the action
of φσ(i). On account of (7.3) and (7.4), we have φσ(i) ∈ GL2(OL,(�)).

Since σ ∈ ΣB′,∞, we have σJ ′ < 0. To prove the proposition, we may extend L

if needed to a larger number field and thus we may assume that i
√
|σu|, i

√
|σJ ′| ∈

L. Now consider the isomorphism

φ′ : B′ ⊗F,σ R→ H

defined by

φ′(i) =

[
i
√
|σu|

−i
√
|σu|

]
, φ′(j′) =

[
i
√
|σJ ′|

i
√
|σJ ′|

]
.

Then, as in the middle line of the second commutative diagram in the proof of
Lemma 1.3.1, φ′ gives an isomorphism of Azumaya algebras over the semi-local
ring OL0,(�):

φ′ : OB′ ⊗OF ,σ OL0,(�) � M2(OL,(�)) ∩H,

where L0 = L ∩ R. Since φB′,σ also gives such an isomorphism, φ′ and φB′,σ must
be conjugate by an element

A ∈ (M2(OL,(�)) ∩H)× = GL2(OL,(�)) ∩H×.
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Now e1 :=

[
1
0

]
is an eigenvector of φ′(i) with eigenvalue i

√
|σu| and so Ae1 is an

eigenvector of φσ(i) with the same eigenvalue. Since A ∈ GL2(OL,(�)) ∩ H×, we
have v1 := Ae1 ∈ Lσ and

〈v1,v1〉 = 〈Ae1, Ae1〉 = ν(A)〈e1, e1〉 = ν(A) ∈ O×
L,(�).

Next we consider the case σ ∈ Σ∞ � ΣB′,∞. This time, it suffices to consider

the hermitian inner product on the space (V −1,0
σ,h )⊗k with h = φB′,σ ◦ hB′,σ and

k = kB′,σ. Again, it is enough to produce a non-zero vector vk in (V −1,0
σ,h )⊗k whose

image lies in Symk(Lσ) and whose norm is an �-unit. (We are using here that � > k
as in the earlier case. We also extend L if needed to a larger number field so that
i,
√
|σu|,

√
|σJ ′| ∈ L.) As in the previous case, it also suffices to consider only the

case k = 1. Consider the composite map

Vσ,R → Vσ,C → V −1,0
σ,h

which is an R-linear isomorphism that is used to define the hermitian inner product
on V −1,0

σ,h . As before we have an embedding E → B′ and hence an embedding φσ

which fits into the diagram below:

C× 	 ��

hB′,σ

��
(E ⊗F,σ R)× ��

φσ

��

(B′ ⊗F,σ R)×
φB′,σ

	 �� GL2(R),

where the (inverse of) first isomorphism is the map that sends i ∈ E× to i
√
|σu| ∈

C×. By definition V −1,0
σ,h is the subspace of Vσ,C on which C× = (E ⊗F,σ R)× acts

by z �→ z. Now, V −1,0
σ,h may more simply be identified as the subspace of Vσ,C = C2

on which φσ(i) acts as i
√
|σu|. Since B′ is split, we have σJ ′ > 0. Consider the

isomorphism

φ′ : B′ ⊗F,σ R→ M2(R)

defined by

φ′(i) =

[ √
|σu|

−
√
|σu|

]
, φ′(j′) =

[√
|σJ ′|

−
√
|σJ ′|

]
.

Then φ′ gives an isomorphism of Azumaya algebras over OL0,(�):

φ′ : OB′ ⊗OF ,σ OL0,(�) � M2(OL,(�)) ∩M2(R) = M2(OL0,(�)).

Since φB′,σ also gives such an isomorphism, φ′ and φB′,σ must be conjugate by

an element A ∈ GL2(OL0,(�)). Now e1 :=
1

2

[
1
i

]
is an eigenvector of φ′(i) with

eigenvalue i
√
|σu| and so Ae1 is an eigenvector of φσ(i) = φB′,σ(i) with the same

eigenvalue. Since A ∈ GL2(OL0,(�)), we have v1 := Ae1 ∈ Lσ and

〈v1,v1〉h = 〈Ae1, Ae1〉h = det(A)〈e1, e1〉A−1·h.
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Now

(A−1 · h)(i) = A−1(φB′,σ ◦ hB′,σ)(i)A =
1√
|σu|

A−1φB′,σ(i)A

=
1√
|σu|

φ′(i) =

[
1

−1

]
.

Since e1 corresponds to the vector e1 :=

[
1
0

]
∈ Vσ,R via the R-linear isomorphism

Vσ,R � V −1,0
σ,A−1·h, we have

〈e1, e1〉A−1·h = te1

[
−1

1

]
(A−1 · h)(i)e1 = te1e1 = 1.

Thus 〈v1,v1〉h = det(A) ∈ O×
L0,(�)

. �

7.2.2. In order to state the main conjecture, we will need to renormalize the
measure and the Schwartz function in the definition of the theta lift. First we
renormalize the Schwartz function. Let ϕv be the Schwartz function on S(Xv)
defined in §5.7. We set ϕ = ⊗vϕv where

ϕv =
√
Cϕ

v · ϕv

with

Cϕ
v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Πv is unramified principal series,
qv − 1

q2nv+1
v

if Πv is ramified principal series with conductor qnv
v ,

q−2
v if Πv is special,
kv!

2kvπkv
if v ∈ Σ∞ � (ΣB,∞ ∪ ΣB1,∞ ∪ ΣB2,∞),

(kv − 2)!

2kv−2πkv−2
if v ∈ ΣB1,∞ ∩ ΣB2,∞

(kv − 2)!

2kv−4πkv−2
if v ∈ ΣB,∞.

As for the measure used in the theta lift (4.1) we renormalize the measure on
B(1)(A) to

[KB
0 : K̃B] · rankVB

kB ,r · standard measure on B(1)(A).

With this choice of measure, let us define α(B1, B2) by

(7.6) θϕ(fB) = α(B1, B2) · (fB1
× fB2

).

Remark 7.2.2. The definition of the constant Cϕ
v is rigged so that (7.8) below

holds. It would be better to have a conceptual definition of Cϕ
v but for the moment

it may simply be viewed as a local correction factor that is 1 at almost all places.

Theorem 7.2.3. Suppose B �= M2(F ). Then

(7.7) |α(B1, B2)|2 · 〈〈sB1
, sB1
〉〉K̃B1 · 〈〈sB2

, sB2
〉〉K̃B2 = Λ(1,Π, ad) · 〈〈sB, sB〉〉K̃B

in C×/R×
(�).
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Proof. Recall that Λ(s,Π, ad) =
∏

v∈Σ∞
L(s,Πv, ad) · L(s,Π, ad) with

L(s,Πv, ad) = ΓR(s+ 1)ΓC(s+ kv − 1),

where ΓR(s) = π− s
2Γ( s2 ) and ΓC(s) = 2(2π)−sΓ(s). Since

L(1,Πv, ad) =
(kv − 1)!

2kv−1πkv+1

for v ∈ Σ∞, it follows from Proposition 6.3.1 that

〈f, f〉 = 2|DF | ·
∏
v

CΛ
v · Λ(1,Π, ad)

with

CΛ
v =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if Πv is unramified principal series,
qv

qv + 1
if Πv is ramified principal series or special,

1

2kv+2
if v ∈ Σ∞.

We define a constant CB′

v for B′ = B1, B2, B by

CB′

v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Πv is unramified principal series,

qnv−1
v (qv + 1) if Πv is ramified principal series with conductor qnv

v ,

qv + 1 if Πv is special and v /∈ ΣB′,fin,

1 if Πv is special and v ∈ ΣB′,fin,

1 if v ∈ Σ∞ � ΣB′,∞,

kv − 1 if v ∈ ΣB′,∞,

so that we have

〈〈sB′ , sB′〉〉K̃B′ = 2dB′hF ·
∏
v

CB′

v ·
〈fB′ , fB′〉

〈vB′
kB′

, vB
′

kB′
〉hB′

by (7.5). Then, by the definition of α(B1, B2) and α(B1, B2) (see (6.4) and (7.6)
respectively), we have

|α(B1, B2)|2 =
∏
v

(CB
v )2Cϕ

v · |α(B1, B2)|2.

By Theorem 6.3.2, we have

|α(B1, B2)|2 · 〈fB1
, fB1
〉 · 〈fB2

, fB2
〉 = |DF |2 ·

∏
v

Cv · 〈fB, fB〉 · 〈f, f〉

with the constant Cv defined there, and hence

|α(B1, B2)|2∏
v(C

B
v )2Cϕ

v
·
〈vB1

kB1

, vB1

kB1

〉hB1
· 〈〈sB1

, sB1
〉〉K̃B1

2dB1hF ·
∏

v C
B1
v

·
〈vB2

kB2

, vB2

kB2

〉hB2
· 〈〈sB2

, sB2
〉〉K̃B2

2dB2hF ·
∏

v C
B2
v

= |DF |2 ·
∏
v

Cv ·
〈vBkB

, vBkB
〉hB
· 〈〈sB, sB〉〉K̃B

2dBhF ·
∏

v C
B
v

· 2|DF | ·
∏
v

CΛ
v · Λ(1,Π, ad).
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Since 2, hF , |DF |, 〈vB
′

kB′
, vB

′

kB′
〉hB′ ∈ R×

(�) for B
′ = B1, B2, B, this implies that

|α(B1, B2)|2 · 〈〈sB1
, sB1
〉〉K̃B1 · 〈〈sB2

, sB2
〉〉K̃B2

=
∏
v

CB1
v CB2

v CB
v CΛ

v C
ϕ
v Cv · Λ(1,Π, ad) · 〈〈sB, sB〉〉K̃B

in C×/R×
(�). Now the theorem follows from this and the fact that

(7.8) CB1
v CB2

v CB
v CΛ

v C
ϕ
v Cv = 1

for all v (see the table below).

Πv B1,v B2,v Bv CB1
v CB2

v CB
v

ur spl spl spl 1 1 1
rps spl spl spl qnv−1

v (qv + 1) qnv−1
v (qv + 1) qnv−1

v (qv + 1)
st spl spl spl qv + 1 qv + 1 qv + 1
st ram ram spl 1 1 qv + 1
st ram spl ram 1 qv + 1 1
st spl ram ram qv + 1 1 1
ds spl spl spl 1 1 1
ds ram ram spl kv − 1 kv − 1 1
ds ram spl ram kv − 1 1 kv − 1
ds spl ram ram 1 kv − 1 kv − 1

Πv B1,v B2,v Bv CΛ
v Cϕ

v Cv

ur spl spl spl 1 1 1

rps spl spl spl qv
qv+1

qv−1

q2nv+1
v

1

qnv−3
v (qv−1)(qv+1)2

st spl spl spl qv
qv+1 q−2

v
qv

(qv+1)2

st ram ram spl qv
qv+1 q−2

v qv
st ram spl ram qv

qv+1 q−2
v qv

st spl ram ram qv
qv+1 q−2

v qv

ds spl spl spl 1
2kv+2

kv!
2kvπkv

22kv+2πkv

kv!

ds ram ram spl 1
2kv+2

(kv−2)!
2kv−2πkv−2

22kvπkv−2

(kv−1)2·(kv−2)!

ds ram spl ram 1
2kv+2

(kv−2)!
2kv−4πkv−2

22kv−2πkv−2

(kv−1)2·(kv−2)!

ds spl ram ram 1
2kv+2

(kv−2)!
2kv−4πkv−2

22kv−2πkv−2

(kv−1)2·(kv−2)!

�

7.2.3. We now motivate the main conjecture of this paper. Let us set (as in
(I.1))

Λ(Π) := Λ(1,Π, ad).

Thus from (7.7), we see that for B1 �= B2, we have

(7.9) |α(B1, B2)|2 · qB1
(Π, �) · qB2

(Π, �) = Λ(Π) · qB(Π, �) in C×/R×
(�),

and consequently,

(7.10) |α(B1, B2)|2 · qB1
(Π) · qB2

(Π) = Λ(Π) · qB(Π) in C×/R×
(�).
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If we combine this with Conjecture A(ii) of the introduction, we are lead to the
following conjectural expression for |α(B1, B2)|2:

|α(B1, B2)|2 ?
=

Λ(Π) · Λ(Π)∏
v∈ΣB

cv(Π)

Λ(Π)∏
v∈ΣB1

cv(Π)
· Λ(Π)∏

v∈ΣB2
cv(Π)

=

⎡⎣ ∏
v∈ΣB1

∩ΣB2

cv(Π)

⎤⎦2

in C×/R×
(�).

Combining this last expression with Conjecture A(i) suggests Conjecture D of
the introduction on the arithmetic nature of the constants α(B1, B2). We restate
it below for the convenience of the reader.

Conjecture 7.2.4. Suppose that B1 �= B2 and ΣB1
∩ ΣB2

∩ Σ∞ = ∅, that is
B1 and B2 have no infinite places of ramification in common. Then

(i) α(B1, B2) lies in Q
×
.

(ii) Moreover, α(B1, B2) belongs to R(�).
(iii) If in addition B1 and B2 have no finite places of ramification in common,

then α(B1, B2) lies in R×
(�).

Note that this conjecture makes absolutely no reference to the constants cv(Π).
However, we shall show now that the truth of this conjecture (for all � prime to
N(Π)) implies the truth of Conj. A.

Theorem 7.2.5. Suppose that Conj. 7.2.4 is true for all � prime to N(Π).
Then Conj. A is true.

Remark 7.2.6. The proof below will show that the validity of Conj. 7.2.4 for
a single � implies a version of Conj. A with R× replaced by R×

(�).

Remark 7.2.7. The constant α(B1, B2) depends implicitly on the many choices
made above including that of a well adapted coordinate system for (F ,B1,B2,

(2�)DF ), the base points hB′ and the vectors vB
′

kB′ for B′ = B,B1, B2. The re-

lation (7.10) shows however that |α(B1, B2)|2, viewed as an element of C×/R×
(�)

does not depend on any choices. This in turn implies (from the proof below) that
in the statement of Theorem 7.2.5 above, for a given �, it suffices to check the
validity of Conj. 7.2.4 for a single set of choices.

Proof. Recall from Remark 3 of the introduction that

(7.11) qM2(F )(Π) = Λ(Π) in C×/R×.

Note that if |ΣΠ| = 0 or 1, then Π does not transfer to any non-split quaternion
algebra, so the conjecture follows from (7.11).

If |ΣΠ| = 2, say ΣΠ = {v, w}, then there is a unique non-split quaternion
algebra B with ΣB ⊆ ΣΠ, given by ΣB = ΣΠ. In this case, we need to pick two
elements cv(Π) and cw(Π) in C×/R× such that the relation

qB(Π) =
Λ(Π)

cv(Π) · cw(Π)

is satisfied (in addition to (7.11)), and there are obviously many ways to do this.
Note that in this case, the invariants cv(Π) and cw(Π) are not uniquely determined
by the single relation above, so in order to get canonical invariants one would need
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to rigidify the choices by imposing other constraints on them. We do not pursue
this here.

Thus we may assume that |ΣΠ| ≥ 3. We need to first define the constants
cv(Π) in this case. First, for any subset Σ ⊆ ΣΠ of even cardinality let us define
cΣ(Π) ∈ C×/R× by

cΣ(Π) :=
Λ(Π)

qBΣ
(Π)

,

where BΣ denotes the unique quaternion algebra ramified exactly at Σ. Note that
from (7.11), we have

(7.12) c∅(Π) = 1 in C×/R×.

Now let v be any element in ΣΠ. We will define cv(Π) as follows. Pick any two
other elements u,w ∈ ΣΠ and define cv(Π) to be the unique element in C×/R×

such that

(7.13) cv(Π)2 =
c{v,u}(Π) · c{v,w}(Π)

c{u,w}(Π)
.

We will show that the truth of Conj. 7.2.4 for a single � implies that cv(Π) is
well defined in C×/R×

(�), that it lies in R(�) if v is a finite place and that the relation

(7.14) qB(Π) =
Λ(Π)∏

v∈ΣB
cv(Π)

in C×/R×
(�)

is satisfied. It follows from this that the truth of Conj. 7.2.4 for all � prime to
N(Π) implies that the cv(Π) is well defined in C×/R×, that it lies in R if v is a
finite place and that the relation

qB(Π) =
Λ(Π)∏

v∈ΣB
cv(Π)

in C×/R×

is satisfied, which would complete the proof of the theorem.
Thus let � be any prime not dividing N(Π) and let us assume the truth of

Conj. 7.2.4 for this fixed �. If Σ1 and Σ2 are two distinct subsets of ΣΠ of even
cardinality and if B1 and B2 are the corresponding quaternion algebras, the relation
(7.10) gives

|α(B1, B2)|2 · cΣ(Π) = cΣ1
(Π) · cΣ2

(Π) in C×/R×
(�),

where Σ := (Σ1 � Σ2) � (Σ2 � Σ1). If moreover Σ1 and Σ2 are disjoint, then
Conj. 7.2.4 implies that α(B1, B2) lies in R×

(�). Thus we get the key multiplicative

relation:

(7.15) cΣ1
(Π) · cΣ2

(Π) = cΣ1�Σ2
(Π) in C×/R×

(�), if Σ1 ∩ Σ2 = ∅,

including the case Σ1 = Σ2 = ∅ on account of (7.12). We can use this to check
that cv(Π) defined via (7.13) is independent of the choice of u and w, viewed as
an element in C×/R×

(�). If |ΣΠ| = 3, then it is clear that there is a unique way to

define cv(Π), so we may assume that |ΣΠ| ≥ 4. Since the definition is symmetric
in u and w, it suffices to show that it remains invariant under changing u to some
other u′ distinct from u and w. However, this follows from the equality

c{v,u}(Π) · c{u′,w}(Π) = c{v,u,u′,w}(Π) = c{v,u′}(Π) · c{u,w}(Π) in C×/R×
(�),

which is implied by (7.15).
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Next we check that if v is a finite place, then cv(Π) lies in R(�). If B1, B2 and
B are the quaternion algebras with ΣB1

= {v, u}, ΣB2
= {v, w} and ΣB = {u,w},

then B = B1 ·B2 and

cv(Π)2 =

Λ(Π)

qB1
(Π)
· Λ(Π)

qB2
(Π)

Λ(Π)

qB(Π)

=
Λ(Π) · qB(Π)

qB1
(Π) · qB2

(Π)
= |α(B1, B2)|2 in C×/R×

(�).

Since B1 and B2 have no infinite places of ramification in common, it follows from
(i) and (ii) of Conj. 7.2.4 that cv(Π) lies in R(�).

Finally, let us check that cu(Π)·cv(Π) = c{u,v}(Π) in C×/R×
(�) if u, v are distinct

elements in ΣB. Indeed, picking any w distinct from u and v, we have

cu(Π)2 · cv(Π)2 =
c{u,v}(Π) · c{u,w}(Π)

c{v,w}(Π)
·
c{v,u}(Π) · c{v,w}(Π)

c{u,w}(Π)

= c{u,v}(Π)2 in C×/R×
(�),

as claimed. From this, (7.12) and (7.15) it follows immediately that for any subset
Σ ⊆ ΣΠ of even cardinality, we have

cΣ(Π) =
∏
v∈Σ

cv(Π) in C×/R×
(�),

from which (7.14) follows immediately. �





APPENDIX A

Abelian Varieties, Polarizations and Hermitian
Forms

In this section we discuss polarizations and the action of complex conjugation
on Hodge structures attached to abelian varieties. This material is completely
standard, so the purpose of this section is simply to carefully fix our conventions
and motivate some of our constructions in Chapter 1.

A.1. Abelian varieties and Hodge structures

If A is a complex abelian variety, there is a natural Hodge structure on Λ =
H1(A,Z). If V = Λ⊗Q, we have

VC = H1(A,C) = V −1,0 ⊕ V 0,−1

where V −1,0 = Lie(A) and V 0,−1 = F 0(V ) = V −1,0 is identified with H1(A,OA)
∨.

In fact, the exact sequence

0→ V 0,−1 → VC → V −1,0 → 0

is dual to

0→ H0(A,Ω1
A)→ H1(A,C)→ H1(A,OA)→ 0

which describes the Hodge filtration on H1(A,C). As a complex torus, A is recov-
ered as

A = V 0,−1\VC/Λ � V −1,0/Λ.

Let h : S → GL(VR) be the homomorphism of the Deligne torus into GL(VR)
corresponding to the Hodge structure on H1(A,Z). Let C = h(i). Recall that
according to our conventions, the operator C⊗1 on VR⊗RC acts on V −1,0 as i and
on V 0,−1 as −i. We write F for F 0V = V 0,−1 so that F̄ = V −1,0 = Lie(A). Then
the composite maps

(A.1) Λ⊗ R→ Λ⊗ C→ F, Λ⊗ R→ Λ⊗ C→ F̄

are R-linear isomorphisms.

A.2. Polarizations and hermitian forms

Let Ψ be a skew-symmetric form

Ψ : Λ× Λ→ Z(1)

whose R-linear extension ΨR : VR × VR → R(1) satisfies

ΨR(Cv,Cw) = ΨR(v, w).

Define

B : Λ× Λ→ Z, B(v, w) =
1

2πi
Ψ(v, w).

143
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Remark A.2.1. Note that the discussion up to this point was in fact indepen-
dent of a choice of i. However, in the definition of B above and in the sequel, we
need to fix such a choice. For any element x+ yi ∈ C let us also set

Im(x+ yi) = yi, im(x+ yi) = y.

Let BR and BC denote the R-linear and C-linear extensions of B to VR and VC

respectively. Let BC denote the hermitian form on VC given by

BC(v, w) := BC(v, Cw̄).

Finally, we let BF and BF̄ denote the bilinear forms on F and F̄ obtained from BR

via the isomorphisms (A.1) above.

Proposition A.2.2. The forms BC and BC have the following properties:

(i) The subspaces F and F̄ of VC are isotropic for BC.
(ii) The form BC pairs F × F̄ to zero.
(iii) 2 · im(BC)|F = BF and 2 · im(BC)|F̄ = −BF̄ .

Proof. For v, w ∈ F , we have

BC(v, w) = BC(h(i)v, h(i)w) = BC(−iv,−iw) = −BC(v, w),

so F is isotropic for BC. The argument for F̄ is similar. Part (ii) follows immediately
from part (i). For part (iii), suppose v, w ∈ F . Then

2 Im(BC)(v, w) = BC(v, w)−BC(v, w) = BC(v, Cw̄)−BC(v̄, Cw)

= BC(v, iw̄)−BC(v̄,−iw) = i (BC(v, w̄) +BC(v̄, w)) .

On the other hand, under the isomorphism VR � F , the element v ∈ F corresponds
to v + v̄ ∈ VR. Thus

BF (v, w) = BR(v + v̄, w + w̄) = BC(v + v̄, w + w̄) = BC(v, w̄) +BC(v̄, w)

from part (i). This shows that 2 · im(BC)|F = BF . The proof for F̄ is similar. �
Proposition A.2.3. The following are equivalent:

(i) The bilinear form (v, w) �→ BR(v, Cw) on VR is positive definite.
(ii) The hermitian form BC on VC is positive definite and induces by restriction

positive definite hermitian forms on both F and F̄ .

Proof. Let v, w ∈ VC. Suppose v = v1 + v2 and w = w1 +w2 with v1, w1 ∈ F
and v2, w2 ∈ F̄ . Then

BC(v, w) = BC(v1 + v2, w1 + w2) = BC(v1, w1) +BC(v2, w2)

= BC(v1, Cw̄1) +BC(v2, Cw̄2)

so in particular,
BC(v, v) = BC(v1, Cv̄1) +BC(v2, Cv̄2).

On the other hand,

BR(v1 + v̄1, C(v1 + v̄1)) = BC(v1, Cv̄1) +BC(v̄1, Cv1)

= BC(v1, Cv̄1)−BC(C
2v̄1, Cv1)

= BC(v1, Cv̄1)−BC(Cv̄1, v1)

= 2BC(v1, Cv̄1).
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Likewise,
BR(v2 + v̄2, C(v2 + v̄2)) = 2BC(v2, Cv̄2).

The implication (i) ⇐⇒ (ii) is clear from this. �
Definition A.2.4. We will say that Ψ or B is a polarization if either of the

equivalent conditions of the proposition above are satisfied.

Remark A.2.5. In the classical theory of complex abelian varieties, one con-
siders hermitian forms H on F or F̄ whose imaginary part im H equals a given
skew-symmetric form. A polarization corresponds to the choice of a skew-symmetric
form such that H is either positive or negative definite. This can lead to some con-
fusion: note for example that the skew-symmetric form BF is the imaginary part
of the positive definite form 2 · BC |F , while the skew-symmetric form BF̄ is the
imaginary part of the negative definite form −2 · BC |F̄ . We will always use the
form BC which is positive definite on both F and F̄ .





APPENDIX B

Metaplectic Covers of Symplectic
Similitude Groups

In this section, we recall some basic properties of the metaplectic covers of
symplectic similitude groups.

B.1. Setup

Let F be a local field of characteristic zero. Fix a nontrivial additive character
ψ of F .

Let V be a 2n-dimensional symplectic space over F . Let GSp(V) and Sp(V) :=
ker ν be the symplectic similitude group and the symplectic group of V respectively,
where ν : GSp(V)→ F× is the similitude character.

Fix a complete polarization V = X ⊕ Y. Choose a basis e1, . . . , en, e
∗
1, . . . , e

∗
n

of V such that

X = Fe1 + · · ·+ Fen, Y = Fe∗1 + · · ·+ Fe∗n, 〈〈ei, e∗j 〉〉 = δij .

Using this basis, we may write

GSp(V) =

{
g ∈ GL2n(F )

∣∣∣∣ g( 1n

−1n

)
tg = ν(g) ·

(
1n

−1n

)}
.

For ν ∈ F×, we define d(ν) = dY(ν) ∈ GSp(V) by

d(ν) :=

(
1n

ν · 1n

)
.

Let P = PY be the maximal parabolic subgroup of Sp(V) stabilizing Y:

P =

{(
a ∗

ta−1

) ∣∣∣∣ a ∈ GLn(F )

}
.

We have a Bruhat decomposition

Sp(V) =
n∐

j=0

PτjP,

where

τj :=

⎛⎜⎜⎝
1n−j

−1j

1n−j

1j

⎞⎟⎟⎠ .

For h ∈ Sp(V), put j(h) := j if h ∈ PτjP . We define a map

x : Sp(V) −→ F×/(F×)2

by
x(p1τjp2) := det(a1a2) mod (F×)2,

147
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where

pi =

(
ai ∗

ta−1
i

)
∈ P.

In particular, we have x(p1hp2) = x(p1)x(h)x(p2) for p1, p2 ∈ P and h ∈ Sp(V).
Let zY = zSpY be the 2-cocycle given by

zY(h1, h2) := γF (
1

2
ψ ◦ q(Y,Yh−1

2 ,Yh1))

for h1, h2 ∈ Sp(V).

Lemma B.1.1. We have

• zY(h, h
−1) = 1 for h ∈ Sp(V),

• zY(p1h1p, p
−1h2p2) = zY(h1, h2) for p, pi ∈ P and hi ∈ Sp(V),

• zY(τi, τj) = 1,

• zY(τn,n(β)τn) = γF (
1
2ψ ◦ qβ) for n(β) =

(
1n β

1n

)
with β ∈ Hom(X,Y) if qβ is

non-degenerate, where qβ is a symmetric bilinear form on X defined by qβ(x, y) =
〈〈x, yβ〉〉.

Proof. See [63, Theorem 4.1, Corollary 4.2]. �

Suppose that V = V1 ⊕ V2, where each Vi is a non-degenerate symplectic
subspace over F . If Vi = Xi ⊕ Yi is a complete polarization and

X = X1 ⊕ X2, Y = Y1 ⊕ Y2,

then we have

zY1
(h1, h

′
1) · zY2

(h2, h
′
2) = zY(h1h2, h

′
1h

′
2)

for hi, h
′
i ∈ Sp(Vi) (see Theorem 4.1 of [63]).

B.2. Action of outer automorphisms on the 2-cocycle

For ν ∈ F×, let αν = αY,ν be the outer automorphism of Sp(V) given by

αν(h) = d(ν) · h · d(ν)−1

for h ∈ Sp(V). This induces an action of F× on Sp(V) and thus we have an
isomorphism

Sp(V)� F× −→ GSp(V).

(h, ν) �−→ (h, ν)Y := h · d(ν)
Note that

(h, ν)Y · (h′, ν′)Y = (h · αν(h
′), ν · ν′)Y.

There exists a unique automorphism α̃ν of Mp(V) such that α̃ν |C1 = idC1 and
the diagram

Mp(V)
α̃ν ��

��

Mp(V)

��

Sp(V)
αν �� Sp(V)

commutes. This implies that there exists a unique function

vY : Sp(V)× F× −→ C1
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such that

α̃ν(h, z) = (αν(h), z · vY(h, ν))
for (h, z) ∈ Mp(V)Y. Since α̃ν is an automorphism, we have

zY(αν(h), αν(h
′)) = zY(h, h

′) · vY(hh′, ν) · vY(h, ν)−1 · vY(h′, ν)−1

for h, h′ ∈ Sp(V) and ν ∈ F×.

Lemma B.2.1. We have

vY(h, ν) = (x(h), ν)F · γF (ν,
1

2
ψ)−j(h)

for h ∈ Sp(V) and ν ∈ F×.

Proof. See [2, Proposition 1.2.A]. For convenience, we recall the proof of
[2, Proposition 1.2.A]. Warning: our convention differs from that in [2].

Note that zY(p, h) = zY(h, p) = 1 for p ∈ P and h ∈ Sp(V). This implies that

vY(php
′, ν) = vY(p, ν) · vY(h, ν) · vY(p′, ν)

for p, p′ ∈ P and h ∈ Sp(V). Moreover, there exist a character ξν of F× and an
element γν ∈ C1 such that

vY(p, ν) = ξν(x(p)), vY(τj , ν) = γj
ν .

To determine ξν and γν , we may assume that dimV = 2 as explained in the
proof of [2, Proposition 1.2.A]. Put

n(x) :=

(
1 0
x 1

)
.

If x �= 0, then we have

n(x) =

(
1 x−1

0 1

)(
0 −1
1 0

)(
x 1
0 x−1

)
,

so that

vY(n(x), ν) = ξν(x) · γν .
Let x, y ∈ F such that x �= 0, y �= 0, x+ y �= 0. Since αν(n(x)) = n(νx), we have

zY(n(νx),n(νy))

zY(n(x),n(y))
=

vY(n(x+ y), ν)

vY(n(x), ν) · vY(n(y), ν)
= ξν

(
x+ y

xy

)
· γ−1

ν .

By [63, Corollary 4.3], we have

zY(n(x),n(y)) = γF (
1

2
xy(x+ y) · ψ)

and hence

zY(n(νx),n(νy))

zY(n(x),n(y))
=

γF (
1
2ν

3xy(x+ y) · ψ)
γF (

1
2xy(x+ y) · ψ)

=
γF (ν

3xy(x+ y), 12ψ)

γF (xy(x+ y), 1
2ψ)

= γF (ν
3,

1

2
ψ) · (xy(x+ y), ν3)F

= γF (ν,
1

2
ψ) · (xy(x+ y), ν)F .
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Thus we obtain

γF (ν,
1

2
ψ) ·

(
x+ y

xy
, ν

)
F

= ξν

(
x+ y

xy

)
· γ−1

ν .

Taking x = y = 2, we have

γν = γF (ν,
1

2
ψ)−1

and hence

ξν(a) = (a, ν)F

for all a ∈ F×. �

B.3. Metaplectic groups

For each ν ∈ F×, we have an automorphism α̃ν of Mp(V). This induces an
action of F× on Mp(V) and thus we have a topological group

Mp(V)� F×.

We define a bijection

Mp(V)Y � F× −→ GMp(V)Y := GSp(V)× C1

((h, z), ν) �−→ ((h, ν)Y, z)

as sets. Via this bijection, we regard GMp(V)Y as a group. Note that the diagram

Mp(V)Y � F× ��

��

GMp(V)Y

��

Sp(V)� F× �� GSp(V)

commutes. Let zGSp
Y be the 2-cocycle associated to GMp(V)Y. By definition, one

can see that

zGSp
Y (g, g′) = zSpY (h, αν(h

′)) · vY(h′, ν)

for g = (h, ν)Y, g
′ = (h′, ν′)Y ∈ GSp(V). In particular, the restriction of zGSp

Y to

Sp(V) × Sp(V) is equal to zSpY . Thus we omit the superscripts GSp and Sp from
the notation.

We shall see that the isomorphism class of GMp(V)Y does not depend on the
choice of the complete polarization. If there is no confusion, we write GMp(V) =
GMp(V)Y.

B.4. Change of polarizations

Let V = X′ +Y′ be another complete polarization. Fix an element h0 ∈ Sp(V)
such that X′ = Xh0 and Y′ = Yh0. Let α0 be the inner automorphism of GSp(V)
given by

α0(g) = h0 · g · h−1
0

for g ∈ GSp(V). Note that α0|Sp(V) is an inner automorphism of Sp(V). We have

dY′(ν) = h−1
0 · dY(ν) · h0, αY′,ν = α−1

0 ◦ αY,ν ◦ α0.

By [40, Lemma 4.2], we have

zY′(h, h′) = zY(α0(h), α0(h
′))
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for h, h′ ∈ Sp(V), and an isomorphism

Mp(V)Y −→ Mp(V)Y′ ,

(h, z) �−→ (h, z · μ(h))
where

μ(h) = zY(h0, hh
−1
0 ) · zY(h, h−1

0 )

for h ∈ Sp(V).

Lemma B.4.1. We have

vY′(h, ν) = vY(α0(h), ν)

for h ∈ Sp(V) and ν ∈ F×.

Proof. We have

zY′(αY′,ν(h), αY′,ν(h
′))

= zY′((α−1
0 ◦ αY,ν ◦ α0)(h), (α

−1
0 ◦ αY,ν ◦ α0)(h

′))

= zY((αY,ν ◦ α0)(h), (αY,ν ◦ α0)(h
′))

= zY(α0(h), α0(h
′)) · vY(α0(h) · α0(h

′), ν) · vY(α0(h), ν)
−1 · vY(α0(h

′), ν)−1

= zY′(h, h′) · vY(α0(hh
′), ν) · vY(α0(h), ν)

−1 · vY(α0(h
′), ν)−1.

Thus the assertion follows from the characterization of vY′ . �
Lemma B.4.2. We have

zY′(g, g′) = zY(α0(g), α0(g
′))

for g, g′ ∈ GSp(V).

Proof. Let g = (h, ν)Y′ , g′ = (h′, ν′)Y′ ∈ GSp(V). Then we have

zY′(g, g′) = zY′(h, αY′,ν(h
′)) · vY′(h′, ν)

= zY(α0(h), (α0 ◦ αY′,ν)(h
′)) · vY(α0(h

′), ν)

= zY(α0(h), (αY,ν ◦ α0)(h
′)) · vY(α0(h

′), ν)

= zY((α0(h), ν)Y, (α0(h
′), ν′)Y).

Since
α0(g) = h0 · h · dY′(ν) · h−1

0 = h0 · h · h−1
0 · dY(ν) = (α0(h), ν)Y,

the assertion follows. �
Put

μ(g) = zY(g, h
−1
0 ) · zY(h0, gh

−1
0 ) = zY′(h−1

0 gh0, h
−1
0 ) · zY′(h−1

0 , g)−1

for g ∈ GSp(V). Note that μ depends on the choice of h0. By a direct calculation,
one can see that

zY′(g, g′) = zY(g, g
′) · μ(gg′) · μ(g)−1 · μ(g′)−1

for g, g′ ∈ GSp(V). Thus we obtain an isomorphism

GMp(V)Y −→ GMp(V)Y′ .

(g, z) �−→ (g, z · μ(g))





APPENDIX C

Splittings: The Case dimB V = 2 and dimB W = 1

In this section, we construct a splitting of the metaplectic cover over GU(V )0×
GU(W ), where V is the 2-dimensional skew-hermitian B-space given in §2.2 and
W is the 1-dimensional hermitian B-space given in §3.3.1, and show that it satisfies
natural properties. In particular, we prove the product formula (Proposition C.4.4),
which plays a crucial role in the definition of the global theta lift.

C.1. Setup

Let F be a number field. Recall that

E = F + F i, B = E + Ej, B1 = E + Ej1, B2 = E + Ej2,

u := i2, J := j2, J1 := j21, J2 := j22,

where

J = J1J2.

Recall that

V = B1 ⊗E B2 and W = B

are a right skew-hermitian B-space and a left hermitian B-space respectively, and

V = V ⊗B W

is an F -space with a symplectic form

〈〈·, ·〉〉 = 1

2
trB/F (〈·, ·〉 ⊗ 〈·, ·〉∗).

Recall that V = X+ Y is a complete polarization, where

X = Fe1 + Fe2 + Fe3 + Fe4, Y = Fe∗1 + Fe∗2 + Fe∗3 + Fe∗4.

The actions of B, B1, B2 on V are given as follows:

• B-action

e1i = ue∗1 e2i = −uJ1e∗2 e3i = −uJ2e∗3 e4i = uJe∗4

e∗1i = e1 e∗2i = −
1

J1
e2 e∗3i = −

1

J2
e3 e∗4i =

1

J
e4

e1j = e4 e2j = J1e3 e3j = J2e2 e4j = Je1

e∗1j = −Je∗4 e∗2j = −J2e∗3 e∗3j = −J1e∗2 e∗4j = −e∗1
e1ij = −uJe∗4 e2ij = uJe∗3 e3ij = uJe∗2 e4ij = −uJe∗1
e∗1ij = e4 e∗2ij = −e3 e∗3ij = −e2 e∗4ij = e1

153
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• B1-action

ie1 = ue∗1 ie2 = uJ1e
∗
2 ie3 = −uJ2e∗3 ie4 = −uJe∗4

ie∗1 = e1 ie∗2 =
1

J1
e2 ie∗3 = − 1

J2
e3 ie∗4 = − 1

J
e4

j1e1 = e2 j1e2 = J1e1 j1e3 = e4 j1e4 = J1e3

j1e
∗
1 = −J1e∗2 j1e

∗
2 = −e∗1 j1e

∗
3 = −J1e∗4 j1e

∗
4 = −e∗3

ij1e1 = uJ1e
∗
2 ij1e2 = uJ1e

∗
1 ij1e3 = −uJe∗4 ij1e4 = −uJe∗3

ij1e
∗
1 = −e2 ij1e

∗
2 = −e1 ij1e

∗
3 =

1

J2
e4 ij1e

∗
4 =

1

J2
e3

• B2-action

ie1 = ue∗1 ie2 = −uJ1e∗2 ie3 = uJ2e
∗
3 ie4 = −uJe∗4

ie∗1 = e1 ie∗2 = − 1

J1
e2 ie∗3 =

1

J2
e3 ie∗4 = − 1

J
e4

j2e1 = e3 j2e2 = e4 j2e3 = J2e1 j2e4 = J2e2

j2e
∗
1 = −J2e∗3 j2e

∗
2 = −J2e∗4 j2e

∗
3 = −e∗1 j2e

∗
4 = −e∗2

ij2e1 = uJ2e
∗
3 ij2e2 = −uJe∗4 ij2e3 = uJ2e

∗
1 ij2e4 = −uJe∗2

ij2e
∗
1 = −e3 ij2e

∗
2 =

1

J1
e4 ij2e

∗
3 = −e1 ij2e

∗
4 =

1

J1
e2

Let αi ∈ B×
i and α ∈ B×. We write

α1 = a1 + b1i+ c1j1 + d1ij1,

α2 = a2 + b2i+ c2j2 + d2ij2,

α = a+ bi+ cj+ dij,

where ai, a, bi, b, ci, c, di, d ∈ F . Then we have

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1e1
α1e2
α1e3
α1e4
α1e

∗
1

α1e
∗
2

α1e
∗
3

α1e
∗
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= g1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α2e1
α2e2
α2e3
α2e4
α2e

∗
1

α2e
∗
2

α2e
∗
3

α2e
∗
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= g2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1α
e2α
e3α
e4α
e∗1α
e∗2α
e∗3α
e∗4α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= g

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where

g1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c1 b1u d1uJ1
c1J1 a1 d1uJ1 b1uJ1

a1 c1 −b1uJ2 −d1uJ
c1J1 a1 −d1uJ −b1uJ

b1 −d1 a1 −c1J1
−d1 b1

J1
−c1 a1

− b1
J2

d1

J2
a1 −c1J1

d1

J2
− b1

J −c1 a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

g2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 c2 b2u d2uJ2
a2 c2 −b2uJ1 −d2uJ

c2J2 a2 d2uJ2 b2uJ2
c2J2 a2 −d2uJ −b2uJ

b2 −d2 a2 −c2J2
− b2

J1

d2

J1
a2 −c2J2

−d2 b2
J2

−c2 a2
d2

J1
− b2

J −c2 a2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

g =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a c bu −duJ
a cJ1 −buJ1 duJ
cJ2 a duJ −buJ2

cJ a −duJ buJ
b d a −cJ
− b

J1
−d a −cJ2

−d − b
J2

−cJ1 a

d b
J −c a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For a ∈ GL4(F ) and b ∈ Sym4(F ), put

m(a) :=

(
a

ta−1

)
, n(b) :=

(
14 b

14

)
.

Fix a place v of F . In §§C.2, C.3, we shall suppress the subscript v from the
notation. Thus F = Fv will be a local field of characteristic zero.

C.2. The case u ∈ (F×)2 or J ∈ (F×)2

First we explicate Morita theory. Fix an isomorphism

i : B −→ M2(F )

of F -algebras such that

i(α∗) = i(α)∗

for α ∈ B. Put

e := i−1

(
1 0
0 0

)
, e′ := i−1

(
0 1
0 0

)
, e′′ := i−1

(
0 0
1 0

)
.

Then we have

e∗ = i
−1

(
0 0
0 1

)
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and

e2 = e, ee′ = e′, ee′′ = 0, ee∗ = 0,

e′e = 0, (e′)2 = 0, e′e′′ = e, e′e∗ = e′,

e′′e = e′′, e′′e′ = e∗, (e′′)2 = 0, e′′e∗ = 0,

e∗e = 0, e∗e′ = 0, e∗e′′ = e′′, (e∗)2 = e∗.

Thus we obtain

B = Fe+ Fe′ + Fe′′ + Fe∗, eB = Fe+ Fe′, Be = Fe+ Fe′′, eBe = Fe

and [
e ·α
e′ ·α

]
= i(α) ·

[
e
e′

]
for α ∈ B.

Now we consider an F -space W † := eW . Since eBe∗ = Fe′ and (e′)∗ = −e′,
we have

〈x, y〉 ∈ Fe′, 〈y, x〉 = −〈x, y〉
for x, y ∈W †. Hence we can define a symplectic form

〈·, ·〉† : W † ×W † −→ F

by

〈x, y〉∗ = 〈x, y〉† · e′

for x, y ∈W †. Moreover, we see that 〈·, ·〉† is non-degenerate.
We have W † = Fe+ Fe′ and

〈e, e〉† = 〈e′, e′〉† = 0, 〈e, e′〉† = 1.

Thus we may identify W † with the space of row vectors F 2 so that

〈x, y〉† = x1y2 − x2y1

for x = (x1, x2), y = (y1, y2) ∈W †.

Lemma C.2.1. The restriction to W † induces an isomorphism

GU(W )
∼=−→ GSp(W †).

Proof. One can see that the restriction to W † induces a homomorphism
GU(W )→ GSp(W †). Since

B ·W † = B · eW = BeB ·W = B ·W = W,

this homomorphism is injective. Let h ∈ GSp(W †). Since W = W †⊕ e′′W , we can

define a map h̃ : W →W by

h̃(x) =

{
h(x) if x ∈W †,

e′′h(e′x) if x ∈ e′′W .

Then one can check that h̃ ∈ GU(W ). This yields the lemma. �



C.2. THE CASE u ∈ (F×)2 OR J ∈ (F×)2 157

Thus we may identify GU(W ) with GSp(W †). Similarly, we consider an F -
space V † := V e with a non-degenerate symmetric bilinear form

〈·, ·〉† : V † × V † −→ F

defined by
1

2
· 〈x, y〉 = 〈x, y〉† · e′′

for x, y ∈ V †. As in Lemma C.2.1, the restriction to V † induces an isomorphism

GU(V )
∼=−→ GO(V †).

Thus we may identify GU(V ) with GO(V †).
One can see that the natural map

V † ⊗F W † −→ V ⊗B W

is an isomorphism. Thus we may identify V with V † ⊗F W †.

Lemma C.2.2. We have

〈〈·, ·〉〉 = 〈·, ·〉† ⊗ 〈·, ·〉†.

Proof. Let a = 〈x, x′〉† and b = 〈y, y′〉† for x, x′ ∈ V † and y, y′ ∈ W †. Then
we have

〈〈x⊗ y, x′ ⊗ y′〉〉 = 1

2
· trB/F (〈x, x′〉 · 〈y, y′〉∗)

= trB/F (ae
′′ · be′)

= ab · trB/F (e
∗)

= ab. �

Thus we obtain a commutative diagram

GU(V )×GU(W ) ��

��

GSp(V)

GO(V †)×GSp(W †) �� GSp(V)

.

Let W † = X + Y be a complete polarization given by

X = Fe, Y = Fe′.

Put

X′ = V † ⊗F X, Y′ = V † ⊗F Y.

Then we have a complete polarization V = X′ + Y′. Put

s′(h) := γj(h)

for h ∈ GSp(W †), where

γ =

{
1 if B1 and B2 are split,

−1 if B1 and B2 are ramified,

and

j(h) =

{
0 if i(h) = ( ∗ ∗

0 ∗ ),

1 otherwise.
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Lemma C.2.3. We have

zY′(h, h′) = s′(hh′) · s′(h)−1 · s′(h′)−1

for h, h′ ∈ GSp(W †).

Proof. The lemma follows from [40, Theorem 3.1, case 1+] and [66, Propo-
sition 2.1]. We shall give a proof for the sake of completeness.

Recall that dimF V † = 4 and detV † = 1. By [40, Theorem 3.1, case 1+], we
have

(C.1) zY′(h, h′) = s′(hh′) · s′(h)−1 · s′(h′)−1

for h, h′ ∈ Sp(W †).
Let g, g′ ∈ GSp(W †). For ν ∈ F×, put

d(ν) =

(
1

ν

)
∈ GSp(W †).

We write
g = h · d(ν), g′ = h′ · d(ν′)

with h, h′ ∈ Sp(W †) and ν, ν′ ∈ F×. Then we have

zY′(g, g′) = zY′(h, h′′) · vY′(h′, ν),

where
h′′ = d(ν) · h′ · d(ν)−1.

By (C.1), we have

zY′(h, h′′) = s′(hh′′) · s′(h)−1 · s′(h′′)−1.

We have s′(h) = s′(g), and since j(h′′) = j(h′), we have s′(h′′) = s′(h′) = s′(g′).
Moreover, since gg′ = hh′′ · d(νν′), we have s′(hh′′) = s′(gg′). Thus we obtain

zY′(h, h′′) = s′(gg′) · s′(g)−1 · s′(g′)−1.

By Lemma B.2.1, we have

vY′(h′, ν) = (xY′(h′), ν)F · γF (ν,
1

2
ψ)−jY′ (h

′),

where xY′ and jY′ are as in §B.1 with respect to the complete polarization V =
X′+Y′. Since dimF V † = 4 and detV † = 1, one can see that xY′(h′) ≡ 1 mod (F×)2

and jY′(h′) = 4 · j(h′). Hence we have

vY′(h′, ν) = 1.

This completes the proof. �

Lemma C.2.4. We have
zY′(g, g′) = 1

for g, g′ ∈ GO(V †)0.

Proof. For g, g′ ∈ GO(V †)0, we have

zY′(g, g′) = zY′(h, h′′) · vY′(h′, ν),

where

h = g · dY′(ν)−1, h′ = g′ · dY′(ν′)−1, h′′ = dY′(ν) · h′ · dY′(ν)−1,

ν = ν(g), ν′ = ν(g′).
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We have h, h′ ∈ PY′ and zY′(h, h′′) = 1. Since g′ ∈ GO(V †)0, we have

xY′(h′) ≡ det g′ ≡ 1 mod (F×)2,

so that vY′(h′, ν) = 1 by Lemma B.2.1. This completes the proof. �

Lemma C.2.5. We have

zY′(g, h) = zY′(h, g) = 1

for g ∈ GO(V †)0 and h ∈ GSp(W †).

Proof. See [2, Proposition 2.2.A]. We shall give a proof for the sake of com-
pleteness.

For g ∈ GO(V †)0 and h ∈ GSp(W †), we have

zY′(g, h) = zY′(g′, h′′) · vY′(h′, ν), zY′(h, g) = zY′(h′, g′′) · vY′(g′, ν′),

where

g′ = g · dY′(ν)−1, g′′ = dY′(ν′) · g′ · dY′(ν′)−1, ν = ν(g),

h′ = h · d(ν′)−1, h′′ = d(ν) · h′ · d(ν)−1, ν′ = ν(h).

Since g′, g′′ ∈ PY′ , we have zY′(g′, h′′) = zY′(h′, g′′) = 1. As in the proof of Lemma
C.2.3, we have vY′(h′, ν) = 1. As in the proof of Lemma C.2.4, we have vY′(g′, ν′) =
1. This completes the proof. �

We define a map s′ : GO(V †)0 ×GSp(W †)→ C1 by

s′(g) = γj(h)

for g = (g, h) ∈ GO(V †)0×GSp(W †). By Lemmas C.2.3, C.2.4, C.2.5, we see that

zY′(g,g′) = s′(gg′) · s′(g)−1 · s′(g′)−1

for g,g′ ∈ GO(V †)0 ×GSp(W †).
Recall that we have two complete polarizations V = X+ Y = X′ + Y′, where

X = Fe1 + Fe2 + Fe3 + Fe4, Y = Fe∗1 + Fe∗2 + Fe∗3 + Fe∗4,

X′ = Fe1e+ Fe1e
′′ + Fe2e+ Fe2e

′′, Y′ = Fe1e
′ + Fe1e

∗ + Fe2e
′ + Fe2e

∗.

Fix h0 ∈ Sp(V) such that X′ = Xh0 and Y′ = Yh0, and put

s(g) := s′(g) · μ(g),

where

μ(g) := zY(h0gh
−1
0 ,h0) · zY(h0,g)

−1

for g ∈ GU(V )0 ×GU(W ). Then we have

zY(g,g
′) = s(gg′) · s(g)−1 · s(g′)−1

for g,g′ ∈ GU(V )0 ×GU(W ).
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C.2.1. The case u ∈ (F×)2. Choose t ∈ F× such that u = t2. We take an
isomorphism i : B → M2(F ) determined by

i(1) =

(
1

1

)
, i(i) =

(
t
−t

)
, i(j) =

(
1

J

)
, i(ij) =

(
t

−tJ

)
.

Then we have

e =
1

2
+

1

2t
i, e′ =

1

2
j+

1

2t
ij, e′′ =

1

2J
j− 1

2tJ
ij, e∗ =

1

2
− 1

2t
i.

Put

h0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2t − 1

2
1

2tJ1
− 1

2
1

2tJ2
− 1

2

− 1
2tJ − 1

2
1 −t

1 tJ1
1 tJ2

1 −tJ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Sp(V).

Then we have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
t e1e

1
tJ1

e2e
1
t e2e

′′

− 1
t e1e

′′

2e1e
∗

2e2e
∗

2
J1
e2e

′

2e1e
′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= h0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and hence X′ = Xh0 and Y′ = Yh0.

Lemma C.2.6. Let gi := α−1
i ∈ GU(V )0 with αi = ai + bii+ ciji + diiji ∈ B×

i .
Then we have

μ(gi) =

⎧⎪⎨⎪⎩
1 if bi = di = 0,

γF (Jj ,
1
2ψ) · ((aibi + cidiJi)νiJi, Jj)F if (bi, di) �= (0, 0), b2i − d2i Ji = 0,

(−(b2i − d2i Ji)νiJi, Jj)F if (bi, di) �= (0, 0), b2i − d2i Ji �= 0,

where νi = ν(αi) and {i, j} = {1, 2}.

Proof. We only consider the case i = 1; the other case is similar. Put d :=
dY(ν1) ∈ GSp(V). We have

zY(h0g1h
−1
0 ,h0) = zY(h0g1h

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν1).

Since Y′g1 = Y′, we have h0g1h
−1
0 · d−1 ∈ PY and hence

zY(h0g1h
−1
0 · d−1,d · h0 · d−1) = 1.
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We have h0 = n(b1) · τ4 · n(b2), where

b1 =
1

2tJ
·

⎛⎜⎜⎝
−J

J2
J1

−1

⎞⎟⎟⎠ ,

b2 = t ·

⎛⎜⎜⎝
−1

J1
J2

−J

⎞⎟⎟⎠ ,

so that xY(h0) ≡ 1 mod (F×)2 and jY(h0) = 4. Hence we have vY(h0, ν1) = 1.
Thus we obtain

zY(h0g1h
−1
0 ,h0) = 1.

Now we compute zY(h0,g1). We have

zY(h0,g1) = zY(h0,g1 · d−1).

First assume that b1 = d1 = 0. Then we have g1 · d−1 ∈ PY and hence

zY(h0,g1 · d−1) = 1.

Next assume that (b1, d1) �= (0, 0) and b21− d21J1 = 0. Then we have b1 �= 0, d1 �= 0,
and ν1 = a21 − c21J1 �= 0. Since

(a1d1 − b1c1) · (a1b1 + c1d1J1) = a21b1d1 + a1c1d
2
1J1 − a1b

2
1c1 − b1c

2
1d1J1

= a21b1d1 − b1c
2
1d1J1

= ν1b1d1

�= 0,

we have a1d1 − b1c1 �= 0 and a1b1 + c1d1J1 �= 0. We have g1 ·d−1 ∈m(a1) ·n(b3) ·
τ2 · PY, where

a1 =

⎛⎜⎜⎝
b1

d1J1 1
b1

d1J1 1

⎞⎟⎟⎠ ,

b3 =
a1d1 − b1c1

b1d1
·

⎛⎜⎜⎝
0

0
J1
−J

⎞⎟⎟⎠ .

Hence we have

zY(h0,g1 · d−1) = zY(τ4 · n(b2),m(a1) · n(b3) · τ2)
= zY(τ4 ·m(a1),m(a1)

−1 · n(b2) ·m(a1) · n(b3) · τ2)
= zY(τ4,n(b4 + b3) · τ2),

where

b4 = a−1
1 · b2 · ta−1

1 =
t

b21
·

⎛⎜⎜⎝
−1 d1J1

J2 −d1J
d1J1

−d1J

⎞⎟⎟⎠ .
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Since τ−1
2 · n(b4) · τ2 ∈ PY, we have

zY(h0,g1 · d−1) = zY(τ4,n(b3) · τ2) = γF (
1

2
ψ ◦ q1),

where q1 is a non-degenerate symmetric bilinear form associated to

a1d1 − b1c1
b1d1

·
(
J1
−J

)
.

Since det q1 ≡ −J2 mod (F×)2 and hF (q1) = (a1d1−b1c1
b1d1

· J1, J2)F , we have

γF (
1

2
ψ ◦ q1) = γF (

1

2
ψ)2 · γF (−J2,

1

2
ψ) · (a1d1 − b1c1

b1d1
· J1, J2)F

= γF (J2,
1

2
ψ)−1 · (a1d1 − b1c1

b1d1
· J1, J2)F

= γF (J2,
1

2
ψ)−1 · ( ν1

a1b1 + c1d1J1
· J1, J2)F

= γF (J2,
1

2
ψ)−1 · ((a1b1 + c1d1J1)ν1J1, J2)F .

Finally assume that (b1, d1) �= (0, 0) and b21 − d21J1 �= 0. We have g1 · d−1 ∈
n(b5) · τ4 · PY, where

b5 =

(
q
−J2 · q

)
with

q =
1

b21 − d21J1
·
(

a1b1 + c1d1J1 (a1d1 + b1c1)J1
(a1d1 + b1c1)J1 (a1b1 + c1d1J1)J1

)
.

Hence we have

zY(h0,g1 · d−1) = zY(τ4 · n(b2),n(b5) · τ4)
= zY(τ4,n(b2) · n(b5) · τ4)

= γF (
1

2
ψ ◦ q2),

where q2 is a non-degenerate symmetric bilinear form associated to b2 + b5. We
have

b2 + b5 =

(
q′

−J2 · q′

)
,

where

q′ = t ·
(
−1

J1

)
+

1

b21 − d21J1
·
(

a1b1 + c1d1J1 (a1d1 + b1c1)J1
(a1d1 + b1c1)J1 (a1b1 + c1d1J1)J1

)
.

Since

detq′ =
ν1J1

b21 − d21J1
�= 0,

we have det q2 ≡ 1 mod (F×)2 and

hF (q2) = (detq′, J2)F · (−1,−J2)F

= (− ν1J1
b21 − d21J1

, J2)F · (−1,−1)F .
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Hence we have

γF (
1

2
ψ ◦ q2) = γF (

1

2
ψ)4 · (− ν1J1

b21 − d21J1
, J2)F · (−1,−1)F

= (−(b21 − d21J1)ν1J1, J2)F .

This completes the proof. �

Lemma C.2.7. Let g := α ∈ GU(W ) with α = a + bi + cj + dij ∈ B×. Then
we have

μ(g) =

⎧⎪⎨⎪⎩
(ν, J1)F if b = d = 0,

γF (J1,
1
2ψ) · (ab− cdJ, J1)F if (b, d) �= (0, 0), b2 − d2J = 0,

(−(b2 − d2J)J, J1)F if (b, d) �= (0, 0), b2 − d2J �= 0,

where ν = ν(α).

Proof. Put d := dY(ν) ∈ GSp(V). We have

zY(h0gh
−1
0 ,h0) = zY(h0gh

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν).

As in the proof of Lemma C.2.6, we have vY(h0, ν) = 1. We have

h0gh
−1
0 =

(
(a+ bt) · 14

c+dt
2t · y

2(c− dt)tJ · y−1 (a− bt) · 14

)
,

where

y =

⎛⎜⎜⎝
−1

1
1

−1

⎞⎟⎟⎠ .

If c− dt = 0, then we have h0gh
−1
0 · d−1 ∈ PY and hence zY(h0gh

−1
0 · d−1,d · h0 ·

d−1) = 1. If c− dt �= 0, then we have h0gh
−1
0 · d−1 ∈ PY · τ4 · n(b6), where

b6 =
a− bt

2νtJ(c− dt)
· y.

We have d · h0 · d−1 ∈ n(ν−1 · b1) · τ4 · PY, where b1 is as in the proof of Lemma
C.2.6. Hence we have

zY(h0gh
−1
0 · d−1,d · h0 · d−1) = zY(τ4 · n(b6),n(ν

−1 · b1) · τ4)
= zY(τ4,n(b7) · τ4),

where b7 = ν−1 · b1 + b6. Put r = a−bt
c−dt . We have

b7 =
1

2νtJ
·

⎛⎜⎜⎝
−J −r

J2 r
r J1

−r −1

⎞⎟⎟⎠ = a2 · b8 · ta2,
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where

a2 =

⎛⎜⎜⎝
1

r
J1

1

1
r
J 1

⎞⎟⎟⎠ ,

b8 =
1

2νtJ
·

⎛⎜⎜⎝
−J

r2

J − 1
J1

J2 − r2

J1

⎞⎟⎟⎠ ,

and hence

zY(τ4,n(b7) · τ4) = zY(τ4,m(a2) · n(b8) ·m(a−1
2 ) · τ4)

= zY(τ4,n(b8) · τ4).

If J − r2 = 0, then we have zY(τ4,n(b8) · τ4) = γF (
1
2ψ ◦ q3), where q3 is a non-

degenerate symmetric bilinear form associated to

1

2νtJ
·
(
−J

J1

)
.

We have det q3 ≡ −J2 mod (F×)2 and

hF (q3) = (− 1

2νt
,

1

2νtJ2
)F = (−2νt, J2)F .

Hence we have

γF (
1

2
ψ ◦ q3) = γF (

1

2
ψ)2 · γF (−J2,

1

2
ψ) · (−2νt, J2)F = γF (J2,

1

2
ψ) · (2νt, J2)F .

Note that γF (J1,
1
2ψ) = γF (J2,

1
2ψ) and (2νt, J1)F = (2νt, J2)F since J = r2 ∈

(F×)2. If J − r2 �= 0, then we have zY(τ4,n(b8) · τ4) = γF (
1
2ψ ◦ q4), where q4

is a non-degenerate symmetric bilinear form associated to b8. We have det q4 ≡
1 mod (F×)2 and

hF (q4) = (det q4,
1

2νtJ
)F · (−J,

r2

J
− 1)F

× (−J(r
2

J
− 1), J1(J2 −

r2

J1
))F · (J1, J2 −

r2

J1
)F

= (−J, J − r2)F · (−J,−
1

J
)F

× (J − r2, J − r2)F · (J1, J − r2)F · (J1,
1

J1
)F

= (−J, J − r2)F · (−J,−1)F
× (J − r2,−1)F · (J1, J − r2)F · (J1,−1)F

= (JJ1, J − r2)F · (−JJ1,−1)F
= (J2, J − r2)F · (J2,−1)F · (−1,−1)F
= (J2, r

2 − J)F · (−1,−1)F .
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Note that (J1, r
2 − J)F = (J2, r

2 − J)F since (J, r2 − J)F = 1. Hence we have

γF (
1

2
ψ ◦ q4) = γF (

1

2
ψ)4 · (J2, r2 − J)F · (−1,−1)F

= (J2, r
2 − J)F .

Thus we obtain

zY(h0gh
−1
0 ,h0)

=

⎧⎪⎨⎪⎩
1 if c− dt = 0,

γF (J1,
1
2ψ) · (2νt, J1)F if c− dt �= 0, (a− bt)2 − (c− dt)2J = 0,

((a− bt)2 − (c− dt)2J, J1)F if c− dt �= 0, (a− bt)2 − (c− dt)2J �= 0.

Now we compute zY(h0,g). We have

zY(h0,g) = zY(h0,g · d−1).

First assume that b = d = 0. Then we have g · d−1 ∈ PY and hence

zY(h0,g · d−1) = 1.

Next assume that (b, d) �= (0, 0) and b2 − d2J = 0. Then we have b �= 0 and d �= 0.
We have g · d−1 ∈m(a3) · n(b9) · τ2 · PY, where

a3 =

⎛⎜⎜⎝
b

b
−dJ2 1

−dJ 1

⎞⎟⎟⎠ ,

b9 =
ad+ bc

bd
·

⎛⎜⎜⎝
0

0
−J2

J

⎞⎟⎟⎠ .

Hence we have

zY(h0,g · d−1) = zY(τ4 · n(b2),m(a3) · n(b9) · τ2)
= zY(τ4 ·m(a3),m(a3)

−1 · n(b2) ·m(a3) · n(b9) · τ2)
= zY(τ4,n(b10 + b9) · τ2),

where b2 is as in the proof of Lemma C.2.6 and

b10 = a−1
3 · b2 · ta−1

3 =
t

b2
·

⎛⎜⎜⎝
−1 −dJ

J1 dJ
dJ 2b2J2

−dJ −2b2J

⎞⎟⎟⎠ .

Put

r′ = 2t− ad+ bc

bd
.
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We write b9 + b10 = b11 + b12, where

b11 =
t

b2
·

⎛⎜⎜⎝
−1 −dJ

J1 dJ
dJ

−dJ

⎞⎟⎟⎠ ,

b12 = r′ ·

⎛⎜⎜⎝
0

0
J2
−J

⎞⎟⎟⎠ .

Since τ−1
2 · n(b11) · τ2 ∈ PY, we have

zY(h0,g · d−1) = zY(τ4,n(b12) · τ2).

If r′ = 0, then we have zY(τ4,n(b12) · τ2) = zY(τ4, τ2) = 1. If r′ �= 0, then we have
zY(τ4,n(b12) · τ2) = γF (

1
2ψ ◦ q5), where q5 is a non-degenerate symmetric bilinear

form associated to

r′ ·
(
J2
−J

)
.

Since det q5 ≡ −J1 mod (F×)2 and hF (q5) = (r′ · J2, J1)F , we have

γF (
1

2
ψ ◦ q5) = γF (

1

2
ψ)2 · γF (−J1,

1

2
ψ) · (r′ · J2, J1)F

= γF (J1,
1

2
ψ)−1 · (r′ · J2, J1)F .

Finally assume that (b, d) �= (0, 0) and b2−d2J �= 0. We have g·d−1 ∈ n(b13)·τ4·PY,
where

b13 =
1

b2 − d2J
·

⎛⎜⎜⎝
ab− cdJ −(ad− bc)J

−(ab− cdJ)J1 (ad− bc)J
(ad− bc)J −(ab− cdJ)J2

−(ad− bc)J (ab− cdJ)J

⎞⎟⎟⎠ .

Hence we have

zY(h0,g · d−1) = zY(τ4 · n(b2),n(b13) · τ4)
= zY(τ4,n(b2 + b13) · τ4).

Put

l = ab− cdJ − (b2 − d2J)t,

l′ = (ad− bc)J,

r′′ =
l2J − l′2

(b2 − d2J)2
=

((a− bt)2 − (c− dt)2J)J

b2 − d2J
.

We have

b2 + b13 =
1

b2 − d2J
·

⎛⎜⎜⎝
l −l′
−lJ1 l′

l′ −lJ2
−l′ lJ

⎞⎟⎟⎠ ,
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and if l �= 0, then we have b2 + b13 = a4 · b14 · ta4, where

a4 =
1

l
·

⎛⎜⎜⎝
l

l

− 1
J1
− l′

J1

−l′ 1

⎞⎟⎟⎠ ,

b14 =
1

b2 − d2J
·

⎛⎜⎜⎝
l

(l2J − l′2)l
−(l2J − l′2)lJ1

−lJ1

⎞⎟⎟⎠ .

If l = l′ = 0, then we have zY(τ4,n(b2 +b13) · τ4) = zY(τ4, τ4) = 1. If (l, l′) �= (0, 0)
and r′′ = 0, then we have l �= 0 and l′ �= 0, so that zY(τ4,n(b2 + b13) · τ4) =
γF (

1
2ψ ◦ q6), where q6 is a non-degenerate symmetric bilinear form associated to

l

b2 − d2J
·
(
1
−J1

)
.

We have det q6 ≡ −J1 mod (F×)2 and

hF (q6) = (
l

b2 − d2J
, J1)F = (

ab− cdJ

b2 − d2J
− t, J1)F .

Hence we have

γF (
1

2
ψ ◦ q6) = γF (

1

2
ψ)2 · γF (−J1,

1

2
ψ) · (ab− cdJ

b2 − d2J
− t, J1)F

= γF (J1,
1

2
ψ)−1 · (ab− cdJ

b2 − d2J
− t, J1)F .

Note that γF (J1,
1
2ψ) = γF (J2,

1
2ψ) and (ab−cdJ

b2−d2J − t, J1)F = (ab−cdJ
b2−d2J − t, J2)F since

r′′ = 0 and hence J ∈ (F×)2. If r′′ �= 0, then we have zY(τ4,n(b2 + b13) · τ4) =
γF (

1
2ψ ◦ q7), where q7 is a non-degenerate symmetric bilinear form associated to

b2 + b13. We have det q7 ≡ 1 mod (F×)2. Also, we have

hF (q7) = (
l

b2 − d2J
,
(l2J − l′2)l

b2 − d2J
)F

× (
(l2J − l′2)l2

(b2 − d2J)2
,
(l2J − l′2)l2J2

1

(b2 − d2J)2
)F · (−

(l2J − l′2)lJ1
b2 − d2J

,− lJ1
b2 − d2J

)F

= (
l

b2 − d2J
,−(l2J − l′2))F

× (l2J − l′2, l2J − l′2)F · (−(l2J − l′2),− lJ1
b2 − d2J

)F

= (−J1,−(l2J − l′2))F · (−1, l2J − l′2)F

= (J1,−(l2J − l′2))F · (−1,−1)F
= (J1,−r′′) · (−1,−1)F

if l �= 0, and

hF (q7) = (−1,−1)F = (J1,−r′′) · (−1,−1)F
if l = 0. Hence we have

γF (
1

2
ψ ◦ q7) = γF (

1

2
ψ)4 · (J1,−r′′) · (−1,−1)F = (J1,−r′′).
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Note that (J1,−r′′) = (J2,−r′′) since (J,−r′′) = (J, l′2− l2J) = 1. Thus we obtain

zY(h0,g)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if b = d = 0,

1 if (b, d) �= (0, 0), b2 − d2J = 0,

ad+ bc− 2bdt = 0,

γF (J1,
1
2ψ)

−1 · ((2t− ad+bc
bd ) · J2, J1)F if (b, d) �= (0, 0), b2 − d2J = 0,

ad+ bc− 2bdt �= 0,

1 if (b, d) �= (0, 0), b2 − d2J �= 0,

ab− cdJ − (b2 − d2J)t = 0,

ad− bc = 0,

γF (J1,
1
2ψ)

−1 · (ab−cdJ
b2−d2J − t, J1)F . if (b, d) �= (0, 0), b2 − d2J �= 0,

(ab− cdJ − (b2 − d2J)t, ad− bc)

�= (0, 0),

(a− bt)2 − (c− dt)2J = 0,

(− ((a−bt)2−(c−dt)2J)J
b2−d2J , J1)F if (b, d) �= (0, 0), b2 − d2J �= 0,

(a− bt)2 − (c− dt)2J �= 0.

Now we compute μ(g) = zY(h0gh
−1
0 ,h0) · zY(h0,g)

−1. Recall that u = t2 and
ν = a2 − b2u− c2J + d2uJ �= 0. We have

(a− bt)2 − (c− dt)2J = a2 + b2u− c2J − d2uJ − 2t(ab− cdJ).

First assume that b = d = 0. Then we have c− dt = c and

(a− bt)2 − (c− dt)2J = a2 − c2J = ν �= 0.

Hence we have

μ(g) = 1 · 1 = (ν, J1)F

if c = 0, and

μ(g) = ((a− bt)2 − (c− dt)2J, J1)F · 1 = (ν, J1)F

if c �= 0. Next assume that (b, d) �= (0, 0) and b2 − d2J = 0. Then we have
b �= 0, d �= 0, ν = a2 − c2J �= 0, and J ∈ (F×)2. Since (a − bt)2 − (c − dt)2J =
a2 − c2J − 2t(ab− cdJ) and

((a− bt)2 − (c− dt)2J) · bd− (ad+ bc− 2bdt) · (ab− cdJ)

= (a2 − c2J − 2abt+ 2cdtJ) · bd
− (a2bd+ ab2c− 2ab2dt− acd2J − bc2dJ + 2bcd2tJ)

= −ab2c+ acd2J

= 0,

we have

(a− bt)2 − (c− dt)2J = 0⇐⇒ ad+ bc− 2bdt = 0.
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If c− dt = 0, then we have ν = a2 − b2u = (a+ bt)(a− bt) �= 0, so that (a− bt)2 −
(c− dt)2J �= 0. Hence we have

μ(g) = 1 · γF (J1,
1

2
ψ) · ((2t− ad+ bc

bd
) · J2, J1)F

= γF (J1,
1

2
ψ) · ((2c

d
− ad+ bc

bd
) · J2, J1)F

= γF (J1,
1

2
ψ) · (ad− bc

bd
, J1)F

= γF (J1,
1

2
ψ) · (abd− b2c

d
, J1)F

= γF (J1,
1

2
ψ) · (ab− cdJ, J1)F .

If c− dt �= 0 and (a− bt)2 − (c− dt)2J = 0, then we have

ν − 2t(ab− cdJ) = (a− bt)2 − (c− dt)2J = 0

and hence

μ(g) = γF (J1,
1

2
ψ) · (2νt, J1)F · 1 = γF (J1,

1

2
ψ) · (ab− cdJ, J1)F .

If c− dt �= 0 and (a− bt)2 − (c− dt)2J �= 0, then we have

(a− bt)2 − (c− dt)2J = (
ad+ bd

bd
− 2t) · (ab− cdJ)

and hence

μ(g) = ((a− bt)2 − (c− dt)2J, J1)F · γF (J1,
1

2
ψ) · ((2t− ad+ bc

bd
) · J2, J1)F

= γF (J1,
1

2
ψ) · (−(ab− cdJ) · J2, J1)F

= γF (J1,
1

2
ψ) · (ab− cdJ, J1)F .

Finally assume that (b, d) �= (0, 0) and b2 − d2J �= 0. Recall that

(ab− cdJ − (b2 − d2J)t)2 − (ad− bc)2J = ((a− bt)2 − (c− dt)2J) · (b2 − d2J).

If c− dt = 0, then we have ν = a2 − b2u = (a+ bt)(a− bt) �= 0 and

(a− bt)2 − (c− dt)2J = (a− bt)2 �= 0.

Hence we have

μ(g) = 1 · (− ((a− bt)2 − (c− dt)2J)J

b2 − d2J
, J1)F

= (− (a− bt)2J

b2 − d2J
, J1)F

= (−(b2 − d2J)J, J1)F .

If c− dt �= 0 and (a− bt)2 − (c− dt)2J = 0, then we have

ν + 2(b2 − d2J)u = a2 + b2u− c2J − d2uJ = 2(ab− cdJ)t,

so that
ab− cdJ − (b2 − d2J)t �= 0.
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Hence we have

μ(g) = γF (J1,
1

2
ψ) · (2νt, J1)F · γF (J1,

1

2
ψ) · (ab− cdJ

b2 − d2J
− t, J1)F

= (−1, J1)F · (
2(ab− cdJ)t

b2 − d2J
· ν − 2νu, J1)F

= (−1, J1)F · (
ν + 2(b2 − d2J)u

b2 − d2J
· ν − 2νu, J1)F

= (−1, J1)F · (
ν2

b2 − d2J
, J1)F

= (−(b2 − d2J), J1)F

= (−(b2 − d2J)J, J1)F .

If c− dt �= 0 and (a− bt)2 − (c− dt)2J �= 0, then we have

μ(g) = ((a− bt)2 − (c− dt)2J, J1)F · (−
((a− bt)2 − (c− dt)2J)J

b2 − d2J
, J1)F

= (− J

b2 − d2J
, J1)F

= (−(b2 − d2J)J, J1)F .

This completes the proof. �

C.2.2. The case J ∈ (F×)2. Choose t ∈ F× such that J = t2. We take an
isomorphism i : B → M2(F ) determined by

i(1) =

(
1

1

)
, i(i) =

(
1

u

)
, i(j) =

(
t
−t

)
, i(ij) =

(
−t

tu

)
.

Then we have

e =
1

2
+

1

2t
j, e′ =

1

2
i− 1

2t
ij, e′′ =

1

2u
i+

1

2tu
ij, e∗ =

1

2
− 1

2t
j.

Put

h0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

t
2J

1
2

t
2J2

− 1
2

t
2

− 1
2

t
2J1

1 t
1 t

J1

1 − t
J

1 − t
J2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Sp(V).

Then we have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1e
e2e
−e1e′′
1
J1
e2e

′′
2
ue1e

′

− 2
uJ1

e2e
′

2e1e
∗

2e2e
∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= h0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and hence X′ = Xh0 and Y′ = Yh0.
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Lemma C.2.8. Let gi := α−1
i ∈ GU(V )0 with αi = ai + bii+ ciji + diiji ∈ B×

i .
Then we have

μ(gi) =

⎧⎪⎨⎪⎩
1 if bi = di = 0,

γF (Jj ,
1
2ψ) · ((aibi + cidiJi)νiJi, Jj)F if (bi, di) �= (0, 0), b2i − d2i Ji = 0,

(−(b2i − d2i Ji)νiJi, Jj)F if (bi, di) �= (0, 0), b2i − d2i Ji �= 0,

where νi = ν(αi) and {i, j} = {1, 2}.

Proof. We only consider the case i = 1; the other case is similar. Note that
J1 ≡ J2 mod (F×)2 since J ∈ (F×)2. Put d := dY(ν1) ∈ GSp(V). We have

zY(h0g1h
−1
0 ,h0) = zY(h0g1h

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν1).

Since Y′g1 = Y′, we have h0g1h
−1
0 · d−1 ∈ PY and hence

zY(h0g1h
−1
0 · d−1,d · h0 · d−1) = 1.

We have h0 = m(a5) · n(b15) · τ2 ·m(a6), where

a5 =

⎛⎜⎜⎝
1

1
−t

− t
J1

⎞⎟⎟⎠ ,

b15 =
1

2t
·

⎛⎜⎜⎝
1

J1
J1

1

⎞⎟⎟⎠ ,

a6 =

⎛⎜⎜⎝
1

1
− t

J1
1

−t 1

⎞⎟⎟⎠ ,

so that xY(h0) ≡ −J1 mod (F×)2 and jY(h0) = 2. Hence we have

vY(h0, ν1) = (−J1, ν1)F · γF (ν1,
1

2
ψ)−2 = (J1, ν1)F .

Thus we obtain

zY(h0g1h
−1
0 ,h0) = (J1, ν1)F = (J2, ν1)F .

Moreover, if b1 = d1 = 0, then we have

(J1, ν1)F = (J1, a
2
1 − c21J1)F = 1.

Now we compute zY(h0,g1). We have

zY(h0,g1) = zY(h0,g1 · d−1).

First assume that b1 = d1 = 0. Then we have g1 · d−1 ∈ PY and hence

zY(h0,g1 · d−1) = 1.

Next assume that (b1, d1) �= (0, 0) and b21 − d21J1 = 0. Then we have b1 �= 0 and
d1 �= 0. As in the proof of Lemma C.2.6, we have a1b1 + c1d1J1 �= 0. We have
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g1 · d−1 ∈ m(a1) · n(b3) · τ2 · PY, where a1 and b3 are as in the proof of Lemma
C.2.6. Hence we have

zY(h0,g1 · d−1) = zY(τ2 ·m(a6),m(a1) · n(b3) · τ2)
= zY(τ2,m(a6) ·m(a1) · n(b3) · τ2).

We have
m(a6) ·m(a1) · n(b3) · τ2 ∈m(a7) · n(b16) · τ ′ · PY,

where

a7 =

⎛⎜⎜⎝
b1

d1J1 1
b1

d1J1 1

⎞⎟⎟⎠ ,

b16 =
(a1d1 − b1c1)J1

b1
·

⎛⎜⎜⎝
0

1
d1

t
b1

0
t
b1

0

⎞⎟⎟⎠ ,

τ ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 −1

1
0 −1

1
1 0

1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence we have

zY(τ2,m(a6) ·m(a1) · n(b3) · τ2) = zY(τ2,m(a7) · n(b16) · τ ′)
= zY(τ2 ·m(a7) · n(b16), τ

′).

Since τ2 ·m(a7) · n(b16) · τ−1
2 ∈ PY, we have

zY(τ2 ·m(a7) · n(b16), τ
′) = zY(τ2, τ

′) = 1.

On the other hand, since J ∈ (F×)2 and J1 ∈ (F×)2, we have γF (J2,
1
2ψ) = 1 and

((a1b1 + c1d1J1)J1, J2)F = 1.

Finally assume that (b1, d1) �= (0, 0) and b21 − d21J1 �= 0. We have g1 · d−1 ∈
n(b5) · τ4 · PY, where b5 is as in the proof of Lemma C.2.6. Hence we have

zY(h0,g1 · d−1) = zY(τ2 ·m(a6),n(b5) · τ4)
= zY(τ2 ·m(a6),n(b5) ·m(a6)

−1 · τ4)
= zY(τ2 ·m(a6) · n(b5) ·m(a6)

−1, τ4).

Since τ2 ·m(a6) · n(b5) ·m(a6)
−1 · τ−1

2 ∈ PY, we have

zY(h0,g1 · d−1) = zY(τ2, τ4) = 1.

On the other hand, we have

(−(b21 − d21J1)J1, J2)F = (d21J
2
1 − b21J1, J1)F = 1.

This competes the proof. �
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Lemma C.2.9. Let g := α ∈ GU(W ) with α = a + bi + cj + dij ∈ B×. Then
we have

μ(g) =

⎧⎪⎨⎪⎩
(ν, J1)F if b = d = 0,

γF (J1,
1
2ψ) · (ab− cdJ, J1)F if (b, d) �= (0, 0), b2 − d2J = 0,

(−(b2 − d2J)J, J1)F if (b, d) �= (0, 0), b2 − d2J �= 0,

×
{
1 if b+ dt = 0,

(u, J1)F if b+ dt �= 0,

where ν = ν(α).

Proof. Put d := dY(ν) ∈ GSp(V). We have

zY(h0gh
−1
0 ,h0) = zY(h0gh

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν).

As in the proof of Lemma C.2.8, we have vY(h0, ν) = (ν, J1)F . We have

h0gh
−1
0 =

(
(a+ ct) · 14

(b−dt)u
2 · y

2(b+ dt) · y−1 (a− ct) · 14

)
,

where

y =

⎛⎜⎜⎝
1
−J1

− 1
u

1
uJ1

⎞⎟⎟⎠ .

If b+ dt = 0, then we have h0gh
−1
0 · d−1 ∈ PY and hence zY(h0gh

−1
0 · d−1,d · h0 ·

d−1) = 1. If b+ dt �= 0, then we have h0gh
−1
0 · d−1 ∈ PY · τ4 · n(b17), where

b17 =
a− ct

2ν(b+ dt)
· y.

We have d · h0 · d−1 ∈m(a5) · n(ν−1 · b15) · τ2 · PY, where a5 and b15 are as in the
proof of Lemma C.2.8. Hence we have

zY(h0gh
−1
0 · d−1,d · h0 · d−1)

= zY(τ4 · n(b17),m(a5) · n(ν−1 · b15) · τ2)
= zY(τ4 ·m(a5),m(a5)

−1 · n(b17) ·m(a5) · n(ν−1 · b15) · τ2)
= zY(τ4,n(b18) · τ2),

where b18 = ν−1 · b15 + a−1
5 · b17 · ta−1

5 . Put r = a−ct
b+dt . We have

b18 =
1

2νt
·

⎛⎜⎜⎝
rt 1
−rtJ1 J1
J1

rJ1

tu
1 − r

tu

⎞⎟⎟⎠ .
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We write b18 = b19 + b20, where

b19 =
1

2νt
·

⎛⎜⎜⎝
rt 1
−rtJ1 J1
J1

1

⎞⎟⎟⎠ ,

b20 =
r

2νuJ
·

⎛⎜⎜⎝
0

0
J1

−1

⎞⎟⎟⎠ .

Since τ−1
2 · n(b19) · τ2 ∈ PY, we have

zY(τ4,n(b18) · τ2) = zY(τ4,n(b20) · τ2).

If r = 0, then we have zY(τ4,n(b20) · τ2) = zY(τ4, τ2) = 1. If r �= 0, then we have
zY(τ4,n(b20) · τ2) = γF (

1
2ψ ◦ q8), where q8 is a non-degenerate symmetric bilinear

form associated to
r

2νuJ
·
(
J1

−1

)
.

We have det q8 ≡ −J1 mod (F×)2 and

hF (q8) = (
rJ1
2νuJ

,− r

2νuJ
)F = (J1,−2νru)F .

Hence we have

γF (
1

2
ψ ◦ q8) = γF (

1

2
ψ)2 · γF (−J1,

1

2
ψ) · (J1,−2νru)F

= γF (J1,
1

2
ψ) · (J1, 2νru)F .

Thus we obtain

zY(h0gh
−1
0 ,h0) =

⎧⎪⎨⎪⎩
(ν, J1)F if b+ dt = 0,

(ν, J1)F if b+ dt �= 0, a− ct = 0,

γF (J1,
1
2ψ) · (2u ·

a−ct
b+dt , J1)F if b+ dt �= 0, a− ct �= 0.

Now we compute zY(h0,g). We have

zY(h0,g) = zY(h0,g · d−1).

First assume that b = d = 0. Then we have g · d−1 ∈ PY and hence

zY(h0,g · d−1) = 1.

Next assume that (b, d) �= (0, 0) and b2 − d2J = 0. Then we have b �= 0, d �= 0, and
ν = a2 − c2J �= 0. Since

(ad+ bc) · (ab− cdJ) = a2bd− acd2J + ab2c− bc2dJ

= a2bd− bc2dJ

= νbd

�= 0,
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we have ad + bc �= 0 and ab − cdJ �= 0. We have g · d−1 ∈ m(a3) · n(b9) · τ2 · PY,
where a3 and b9 are as in the proof of Lemma C.2.7. Hence we have

zY(h0,g · d−1) = zY(τ2 ·m(a6),m(a3) · n(b9) · τ2)
= zY(τ2 ·m(a8),n(b9) · τ2),

where a6 is as in the proof of Lemma C.2.8 and

a8 = a6 · a3 =

⎛⎜⎜⎝
b

b

− (b+dt)t
J1

1

−(b+ dt)t 1

⎞⎟⎟⎠ .

If b+ dt = 0, then we have τ2 ·m(a8) · τ−1
2 ∈ PY and hence

zY(τ2 ·m(a8),n(b9) · τ2) = zY(τ2,n(b9) · τ2) = γF (
1

2
ψ ◦ q9),

where q9 is a non-degenerate symmetric bilinear form associated to

ad+ bc

bd
·
(
−J2

J

)
.

We have det q9 ≡ −J1 mod (F×)2 and

hF (q9) = (−ad+ bc

bd
· J2,

ad+ bc

bd
· J)F

= (J2,
ad+ bc

bd
)F

= (J2,
ν

ab− cdJ
)F .

Hence we have

γF (
1

2
ψ ◦ q9) = γF (

1

2
ψ)2 · γF (−J1,

1

2
ψ) · (J2,

ν

ab− cdJ
)F

= γF (J1,
1

2
ψ)−1 · (J1, (ab− cdJ)ν)F .

If b+ dt �= 0, then we have

m(a8) · n(b9) · τ2 ∈m(a9) · n(b21) · τ ′′ · PY,

where

a9 =

⎛⎜⎜⎝
1 −1

1 −1
(b+dt)t

bJ1
(b+dt)t

b

⎞⎟⎟⎠ ,

b21 =
(ad+ bc)b

(b+ dt)2d
·

⎛⎜⎜⎝
1 1
−J1

0
1 0

⎞⎟⎟⎠ ,

τ ′′ =

⎛⎜⎜⎝
−12

12

12

12

⎞⎟⎟⎠ .
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Since τ2 ·m(a9) · n(b21) · τ−1
2 ∈ PY, we have

zY(τ2 ·m(a8),n(b9) · τ2) = zY(τ2,m(a9) · n(b21) · τ ′′) = zY(τ2, τ
′′) = 1.

Finally assume that (b, d) �= (0, 0) and b2−d2J �= 0. We have g·d−1 ∈ n(b13)·τ4·PY,
where b13 is as in the proof of Lemma C.2.7. Hence we have

zY(h0,g · d−1) = zY(τ2 ·m(a6),n(b13) · τ4) = zY(τ2,n(b22) · τ4),

where

b22 = a6 · b13 · ta6 =
1

b2 − d2J
·

⎛⎜⎜⎝
l −l′t

−lJ1 l′t
l′t −2l′J2

−l′t 2l′J

⎞⎟⎟⎠
with

l = ab− cdJ, l′ = (a− ct)(b+ dt).

We write b22 = b23 + b24, where

b23 =
1

b2 − d2J
·

⎛⎜⎜⎝
l −l′t

−lJ1 l′t
l′t

−l′t

⎞⎟⎟⎠ ,

b24 =
2(a− ct)

b− dt
·

⎛⎜⎜⎝
0

0
−J2

J

⎞⎟⎟⎠ .

Since τ2 · b23 · τ−1
2 ∈ PY, we have zY(τ2,n(b22) · τ4) = zY(τ2,n(b24) · τ4). If

a− ct = 0, then we have zY(τ2,n(b24) · τ4) = zY(τ2, τ4) = 1. If a− ct �= 0, then we
have zY(τ2,n(b24) · τ4) = γF (

1
2ψ ◦ q10), where q10 is a non-degenerate symmetric

bilinear form associated to

2(a− ct)

b− dt
·
(
−J2

J

)
.

We have det q10 ≡ −J1 mod (F×)2 and

hF (q10) = (−2(a− ct)

b− dt
· J2,

2(a− ct)

b− dt
· J)F

= (J2,
2(a− ct)

b− dt
)F .

Hence we have

γF (
1

2
ψ ◦ q10) = γF (

1

2
ψ)2 · γF (−J1,

1

2
ψ) · (J2,

2(a− ct)

b− dt
)F

= γF (J1,
1

2
ψ)−1 · (J1,

2(a− ct)

b− dt
)F .
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Thus we obtain

zY(h0,g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if b = d = 0,

γF (J1,
1
2ψ)

−1 · (J1, (ab− cdJ)ν)F if (b, d) �= (0, 0),

b2 − d2J = 0, b+ dt = 0,

1 if (b, d) �= (0, 0),

b2 − d2J = 0, b+ dt �= 0,

1 if (b, d) �= (0, 0),

b2 − d2J �= 0, a− ct = 0,

γF (J1,
1
2ψ)

−1 · (J1, 2(a−ct)
b−dt )F if (b, d) �= (0, 0),

b2 − d2J �= 0, a+ ct �= 0.

Now we compute μ(g) = zY(h0gh
−1
0 ,h0) · zY(h0,g)

−1. Recall that J = t2 and
ν = a2 − b2u− c2J + d2uJ �= 0. First assume that b = d = 0. Then we have

μ(g) = (ν, J1)F · 1 = (ν, J1)F .

Next assume that (b, d) �= (0, 0) and b2 − d2J = 0. Then we have ν = a2 − c2J =
(a+ ct)(a− ct) �= 0. Since b2 − d2J = (b+ dt)(b− dt), we have

b+ dt = 0⇐⇒ b− dt �= 0.

If b+ dt = 0, then we have

μ(g) = (ν, J1)F · γF (J1,
1

2
ψ) · (J1, (ab− cdJ)ν)F

= γF (J1,
1

2
ψ) · (J1, ab− cdJ)F .

If b+ dt �= 0, then we have

(a− ct)(b+ dt) = 2(a− ct)dt = 2(adt− cdJ) = 2(ab− cdJ).

Hence we have

μ(g) = γF (J1,
1

2
ψ) · (2u · a− ct

b+ dt
, J1)F · 1

= γF (J1,
1

2
ψ) · (2(a− ct)(b+ dt), J1)F · (u, J1)F

= γF (J1,
1

2
ψ) · (ab− cdJ, J1)F · (u, J1)F .

Finally assume that (b, d) �= (0, 0) and b2 − d2J �= 0. Then we have b + dt �= 0. If
a− ct = 0, then we have ν = −b2u+ d2uJ and hence

μ(g) = (ν, J1)F · 1
= (−b2 + d2J, J1)F · (u, J1)F
= (−(b2 − d2J)J, J1)F · (u, J1)F .
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If a− ct �= 0, then we have

μ(g) = γF (J1,
1

2
ψ) · (2u · a− ct

b+ dt
, J1)F · γF (J1,

1

2
ψ) · (J1,

2(a− ct)

b− dt
)F

= γF (J1,
1

2
ψ)2 · (u(b+ dt)(b− dt), J1)F

= (−1, J1)F · (b2 − d2J, J1)F · (u, J1)F
= (−(b2 − d2J)J, J1)F · (u, J1)F .

This completes the proof. �

C.3. The case Ji ∈ (F×)2

We only consider the case i = 1; the other case is similar. Choose t ∈ F× such
that J1 = t2. We take an isomorphism

i1 : B1 −→ M2(F )

of F -algebras determined by

i1(1) =

(
1

1

)
, i1(i) =

(
2

u
2

)
, i1(j1) =

(
t
−t

)
, i1(ij1) =

(
−2t

tu
2

)
.

Note that
i1(α

∗
1) = i1(α1)

∗

for α1 ∈ B1. Let

v :=
1

2
e1 +

1

2t
e2, v∗ := e∗1 + te∗2 =

1

u
e1i−

1

tu
e2i.

Then we have
V = vB + v∗B

and
〈v,v〉 = 〈v∗,v∗〉 = 0, 〈v,v∗〉 = 1.

Moreover, we see that [
α1 · v α1 · v∗] = [v v∗] · i1(α1)

for α1 ∈ B1, and [
α2 · v α2 · v∗] = [v v∗] · (α+

β

t
j)

for α2 = α+ βj2 ∈ B2 with α, β ∈ E.
We regard V ′ := V as a left B-space by putting

α · x′ := (x ·α∗)′

for α ∈ B and x′ ∈ V ′. Here we let x′ denote the element in V ′ corresponding to
x ∈ V . We let GL(V ′) act on V ′ on the right. We define a skew-hermitian form

〈·, ·〉′ : V ′ × V ′ −→ B

by
〈x′, y′〉′ := 〈x, y〉.

Note that
〈αx′,βy′〉′ = α〈x′, y′〉′β∗

for α,β ∈ B. For x′ ∈ V ′ and g ∈ GL(V ), put

x′ · g := (g−1 · x)′.
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Then we have an isomorphism

GL(V ) −→ GL(V ′),

g �−→ [x′ �→ x′ · g]

so that we may identify GU(V ) with GU(V ′) via this isomorphism. Let V ′ = X ′+Y ′

be a complete polarization given by

X ′ = B · v′, Y ′ = B · (v∗)′.

Note that [
v′ ·α

(v∗)′ ·α

]
= ti1(α)−1 ·

[
v′

(v∗)′

]
for α ∈ B1. We may identify V ′ with the space of row vectors B2 so that

〈x′, y′〉′ = x1y
∗
2 − x2y

∗
1

for x′ = (x1, x2), y
′ = (y1, y2) ∈ V ′. Then we may write

GU(V ′) =

{
g ∈ GL2(B)

∣∣∣∣ g( 1
−1

)
tg∗ = ν(g) ·

(
1

−1

)}
.

Similarly, we have a right B-space W ′ := W with a hermitian form

〈·, ·〉′ : W ′ ×W ′ −→ B.

We let GL(W ′) act on W ′ on the left. Now we consider an F -space

V′ := W ′ ⊗B V ′

with a symplectic form

〈〈·, ·〉〉′ := 1

2
trB/F (〈·, ·〉′ ⊗ 〈·, ·〉′∗).

We let GL(V′) act on V′ on the right. For x = x⊗ y ∈ V and g ∈ GL(V), put

x′ := y′ ⊗ x′ ∈ V′

and

x′ · g := (x · g)′.

Lemma C.3.1. We have an isomorphism

GSp(V) −→ GSp(V′).

g �−→ [x′ �→ x′ · g]

Moreover, this isomorphism induces a commutative diagram

GU(V )×GU(W ) ��

��

GSp(V)

��

GU(W ′)×GU(V ′) �� GSp(V′)

.
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Proof. For x1, x2 ∈ V and y1, y2 ∈W , we have

〈〈y′1 ⊗ x′
1, y

′
2 ⊗ x′

2〉〉′ =
1

2
trB/F (〈y′1, y′2〉′ · 〈x′

1, x
′
2〉′∗)

=
1

2
trB/F (〈y1, y2〉 · 〈x1, x2〉∗)

=
1

2
trB/F (〈x1, x2〉 · 〈y1, y2〉∗)

= 〈〈x1 ⊗ y1, x2 ⊗ y2〉〉.
Also, for g = (g, h) ∈ GL(V )×GL(W ) and x = x⊗ y ∈ V, we have

x′ · g = ((x⊗ y) · (g, h))′ = (g−1x⊗ yh)′

= (yh)′ ⊗ (g−1x)′ = h−1y′ ⊗ x′g.

This completes the proof. �

Thus we may identify GSp(V) with GSp(V′), and GU(V ) × GU(W ) with
GU(W ′)×GU(V ′).

Let V′ = X′ + Y′ be a complete polarization given by

X′ = W ′ ⊗B X ′, Y′ = W ′ ⊗B Y ′.

Put

s′(g) := γj(g)

for g ∈ GU(V ′)0, where

γ =

{
1 if B and B2 are split,

−1 if B and B2 are ramified,

and

j(g) =

{
0 if g = ( ∗ ∗

0 ∗ ),

1 othersiwe.

Lemma C.3.2. We have

zY′(g, g′) = s′(gg′) · s′(g)−1 · s′(g′)−1

for g, g′ ∈ GU(V )0.

Proof. The proof is similar to that of Lemma C.2.3. If B is ramified, then we
have

(C.2) zY′(g, g′) = s′(gg′) · s′(g)−1 · s′(g′)−1

for g, g′ ∈ U(V )0 by [40, Theorem 3.1, case 2+]. If B is split, then we see that
(C.2) also holds by using Morita theory as in §C.2 and [40, Theorem 3.1, case 1−].

Let g, g′ ∈ GU(V )0. For ν ∈ F×, put

d(ν) =

(
1

ν

)
∈ GU(V )0.

We write

g = h · d(ν), g′ = h′ · d(ν′)
with h, h′ ∈ U(V )0 and ν, ν′ ∈ F×. Then we have

zY′(g, g′) = zY′(h, h′′) · vY′(h′, ν),
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where

h′′ = d(ν) · h′ · d(ν)−1.

By (C.2), we have

zY′(h, h′′) = s′(hh′′) · s′(h)−1 · s′(h′′)−1.

We have s′(h) = s′(g), and since j(h′′) = j(h′), we have s′(h′′) = s′(h′) = s′(g′).
Moreover, since gg′ = hh′′ · d(νν′), we have s′(hh′′) = s′(gg′). Thus we obtain

zY′(h, h′′) = s′(gg′) · s′(g)−1 · s′(g′)−1.

By Lemma B.2.1, we have

vY′(h′, ν) = (xY′(h′), ν)F · γF (ν,
1

2
ψ)−jY′ (h

′),

where xY′ and jY′ are as in §B.1 with respect to the complete polarization V′ =
X′+Y′. Since the determinant over F of the automorphism x �→ x ·α of B is ν(α)2

for α ∈ B×, we have xY′(h′) ≡ 1 mod (F×)2. Noting that either c = 0 or c ∈ B×

for h′ =
(
a b
c d

)
, one can see that jY′(h′) = 4 · j(h′). Hence we have

vY′(h′, ν) = 1.

This completes the proof. �

Lemma C.3.3. We have

zY′(h, h′) = 1

for h, h′ ∈ GU(W ).

Proof. The proof is similar to that of Lemma C.2.4.
For g, g′ ∈ GU(W ), we have

zY′(g, g′) = zY′(h, h′′) · vY′(h′, ν),

where

h = g · dY′(ν)−1, h′ = g′ · dY′(ν′)−1, h′′ = dY′(ν) · h′ · dY′(ν)−1,

ν = ν(g), ν′ = ν(g′).

We have h, h′ ∈ PY′ and zY′(h, h′′) = 1. Since the determinant over F of the
automorphism x �→ α ·x of B is ν(α)2 for α ∈ B×, we have xY′(h′) ≡ 1 mod (F×)2,
so that vY′(h′, ν) = 1 by Lemma B.2.1. This completes the proof. �

Lemma C.3.4. We have

zY′(g, h) = zY′(h, g) = 1

for g ∈ GU(V )0 and h ∈ GU(W ).

Proof. The proof is similar to that of Lemma C.2.5.
For g ∈ GU(V )0 and h ∈ GU(W ), we have

zY′(g, h) = zY′(g′, h′′) · vY′(h′, ν), zY′(h, g) = zY′(h′, g′′) · vY′(g′, ν′),

where

g′ = g · d(ν)−1, g′′ = d(ν′) · g′ · d(ν′)−1, ν = ν(g),

h′ = h · dY′(ν′)−1, h′′ = dY′(ν) · h′ · dY′(ν)−1, ν′ = ν(h).
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Since h′, h′′ ∈ PY′ , we have zY′(g′, h′′) = zY′(h′, g′′) = 1. As in the proof of
Lemma C.3.3, we have vY′(h′, ν) = 1. As in the proof of Lemma C.3.2, we have
vY′(g′, ν′) = 1. This completes the proof. �

We define a map s′ : GU(V )0 ×GU(W )→ C1 by

s′(g) = γj(g)

for g = (g, h) ∈ GU(V )0 ×GU(W ). By Lemmas C.3.2, C.3.3, C.3.4, we see that

zY′(g,g′) = s′(gg′) · s′(g)−1 · s′(g′)−1

for g,g′ ∈ GU(V )0 ×GU(W ).
Recall that we may identify V with V′, and we have two complete polarizations

V = X+ Y = X′ + Y′, where

X = Fe1 + Fe2 + Fe3 + Fe4, Y = Fe∗1 + Fe∗2 + Fe∗3 + Fe∗4,

X′ = v ·B, Y′ = v∗ ·B.

Put

h0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2t

1
2

1
2t

− 1
2

t
2
− 1

2
t
2

1 t
1 t

1 − 1
t

1 − 1
t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ Sp(V).

Then we have ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v
1
tvj
− 1

uvi
− t

uJ vij
v∗

− t
J v

∗j
v∗i
− 1

tv
∗ij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= h0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
e2
e3
e4
e∗1
e∗2
e∗3
e∗4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and hence X′ = Xh0 and Y′ = Yh0. Put

s(g) := s′(g) · μ(g),

where

μ(g) := zY(h0gh
−1
0 ,h0) · zY(h0,g)

−1

for g ∈ GU(V )0 ×GU(W ). Then we have

zY(g,g
′) = s(gg′) · s(g)−1 · s(g′)−1

for g,g′ ∈ GU(V )0 ×GU(W ).
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Lemma C.3.5. Let g1 := α−1
1 ∈ GU(V )0 with α1 = a1+b1i+c1j1+d1ij1 ∈ B×

1 .
Then we have

μ(g1)

=

⎧⎪⎨⎪⎩
1 if b1 = d1 = 0,

γF (J2,
1
2ψ) · ((a1b1 + c1d1J1)ν1J1, J2)F if (b1, d1) �= (0, 0), b21 − d21J1 = 0,

(−(b21 − d21J1)ν1J1, J2)F if (b1, d1) �= (0, 0), b21 − d21J1 �= 0,

×
{
1 if b1 − d1t = 0,

(u, J)F if b1 − d1t �= 0,

where ν1 = ν(α1).

Proof. Put d := dY(ν1) ∈ GSp(V). We have

zY(h0g1h
−1
0 ,h0) = zY(h0g1h

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν1).

We have h0 = τ2 ·m(a10), where

a10 =

⎛⎜⎜⎝
1
2

1
2t

1
2

1
2t

1 − 1
t

1 − 1
t

⎞⎟⎟⎠ ,

so that xY(h0) ≡ −1 mod (F×)2 and jY(h0) = 2. Hence we have

vY(h0, ν1) = (−1, ν1)F · γF (ν1,
1

2
ψ)−2 = 1.

We have

h0g1h
−1
0 =

(
(a1 + c1t) · 14

(b1+d1t)u
2 · y

2(b1 − d1t) · y−1 (a1 − c1t) · 14

)
,

where

y =

⎛⎜⎜⎝
1
−J2

− 1
u

1
uJ2

⎞⎟⎟⎠ .

If b1 − d1t = 0, then we have h0g1h
−1
0 · d−1 ∈ PY and hence zY(h0g1h

−1
0 · d−1,d ·

h0 ·d−1) = 1. If b1 − d1t �= 0, then we have h0g1h
−1
0 ·d−1 ∈ PY · τ4 ·n(b25), where

b25 =
a1 − c1t

2ν1(b1 − d1t)
· y.

Since d · h0 · d−1 ∈ τ2 · PY, we have

zY(h0g1h
−1
0 · d−1,d · h0 · d−1) = zY(τ4 · n(b25), τ2).

If a1−c1t = 0, then we have zY(τ4 ·n(b25), τ2) = zY(τ4, τ2) = 1. If a1−c1t �= 0, then
we have zY(τ4 ·n(b25), τ2) = γF (

1
2ψ ◦q11), where q11 is a non-degenerate symmetric

bilinear form associated to

a1 − c1t

2ν1(b1 − d1t)
·
(
− 1

u
1

uJ2

)
.
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We have det q11 ≡ −J2 mod (F×)2 and

hF (q11) = (− a1 − c1t

2ν1u(b1 − d1t)
,

a1 − c1t

2ν1uJ2(b1 − d1t)
)F

= (− a1 − c1t

2ν1u(b1 − d1t)
, J2)F .

Hence we have

γF (
1

2
ψ ◦ q11) = γF (

1

2
ψ)2 · γF (−J2,

1

2
ψ) · (− a1 − c1t

2ν1u(b1 − d1t)
, J2)F

= γF (J2,
1

2
ψ) · ( a1 − c1t

2ν1u(b1 − d1t)
, J2)F .

Thus we obtain

zY(h0g1h
−1
0 ,h0)

=

⎧⎪⎨⎪⎩
1 if b1 − d1t = 0,

1 if b1 − d1t �= 0, a1 − c1t = 0,

γF (J2,
1
2ψ) · (

a1−c1t
2ν1u(b1−d1t)

, J2)F if b1 − d1t �= 0, a1 − c1t �= 0.

Now we compute zY(h0,g1). We have

zY(h0,g1) = zY(h0,g1 · d−1).

First assume that b1 = d1 = 0. Then we have g1 · d−1 ∈ PY and hence

zY(h0,g1 · d−1) = 1.

Next assume that (b1, d1) �= (0, 0) and b21 − d21J1 = 0. Then we have b1 �= 0 and
d1 �= 0. As in the proof of Lemma C.2.6, we have

(a1d1 − b1c1) · (a1b1 + c1d1J1) = ν1b1d1 �= 0.

We have g1 · d−1 ∈ m(a1) · n(b3) · τ2 · PY, where a1 and b3 are as in the proof of
Lemma C.2.6. Hence we have

zY(h0,g1 · d−1) = zY(τ2 ·m(a10),m(a1) · n(b3) · τ2)
= zY(τ2 ·m(a11),n(b3) · τ2),

where

a11 = a10 · a1 =

⎛⎜⎜⎝
b1+d1t

2
1
2t

b1+d1t
2

1
2t

b1 − d1t − 1
t

b1 − d1t − 1
t

⎞⎟⎟⎠ .

If b1 − d1t = 0, then we have τ2 ·m(a11) · τ−1
2 ∈ PY and hence

zY(τ2 ·m(a11),n(b3) · τ2) = zY(τ2,n(b3) · τ2) = γF (
1

2
ψ ◦ q12),

where q12 is a non-degenerate symmetric bilinear form associated to

a1d1 − b1c1
b1d1

·
(
J1
−J

)
.
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We have det q12 ≡ −J2 mod (F×)2 and

hF (q12) = (
a1d1 − b1c1

b1d1
· J1,−

a1d1 − b1c1
b1d1

· J)F

= (
a1d1 − b1c1

b1d1
, J)F

= (
ν1

a1b1 + c1d1J1
, J)F .

Hence we have

γF (
1

2
ψ ◦ q12) = γF (

1

2
ψ)2 · γF (−J2,

1

2
ψ) · ( ν1

a1b1 + c1d1J1
, J)F

= γF (J2,
1

2
ψ)−1 · ((a1b1 + c1d1J1)ν1, J2)F .

If b1 − d1t �= 0, then we have

m(a11) · n(b3) · τ2 ∈ n(b26) · τ ′′ · PY,

where

b26 =
b1

2(b1 − d1t)
·

⎛⎜⎜⎝
1
−J2

0
0

⎞⎟⎟⎠
and τ ′′ is as in the proof of Lemma C.2.9. Since τ2 · n(b26) · τ−1

2 ∈ PY, we have

zY(τ2 ·m(a11),n(b3) · τ2) = zY(τ2,n(b26) · τ ′′) = zY(τ2, τ
′′) = 1.

Finally assume that (b1, d1) �= (0, 0) and b21 − d21J1 �= 0. We have g1 · d−1 ∈
n(b5) · τ4 · PY, where b5 is as in the proof of Lemma C.2.6. Hence we have

zY(h0,g · d−1) = zY(τ2 ·m(a10),n(b5) · τ4) = zY(τ2,n(b27) · τ4),
where

b27 = a10 · b5 · ta10 =
1

b21 − d21J1
·

⎛⎜⎜⎝
l
2

− lJ2

2
2l′

−2l′J2

⎞⎟⎟⎠
with

l = (a1 + c1t)(b1 + d1t), l′ = (a1 − c1t)(b1 − d1t).

We write b27 = b28 + b29, where

b28 =
a1 + c1t

2(b1 − d1t)
·

⎛⎜⎜⎝
1
−J2

0
0

⎞⎟⎟⎠ ,

b29 =
2(a1 − c1t)

b1 + d1t
·

⎛⎜⎜⎝
0

0
1
−J2

⎞⎟⎟⎠ .

Since τ2 · b28 · τ−1
2 ∈ PY, we have zY(τ2,n(b27) · τ4) = zY(τ2,n(b29) · τ4). If

a1 − c1t = 0, then we have zY(τ2,n(b29) · τ4) = zY(τ2, τ4) = 1. If a1 − c1t �= 0, then
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we have zY(τ2,n(b29) · τ4) = γF (
1
2ψ ◦q13), where q13 is a non-degenerate symmetric

bilinear form associated to

2(a1 − c1t)

b1 + d1t
·
(
1
−J2

)
.

We have det q13 ≡ −J2 mod (F×)2 and

hF (q13) = (
2(a1 − c1t)

b1 + d1t
,−2(a1 − c1t)

b1 + d1t
· J2)F

= (
2(a1 − c1t)

b1 + d1t
, J2)F .

Hence we have

γF (
1

2
ψ ◦ q13) = γF (

1

2
ψ)2 · γF (−J2,

1

2
ψ) · (2(a1 − c1t)

b1 + d1t
, J2)F

= γF (J2,
1

2
ψ)−1 · (2(a1 − c1t)

b1 + d1t
, J2)F .

Thus we obtain

zY(h0,g1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if b1 = d1 = 0,

γF (J2,
1
2ψ)

−1 · ((a1b1 + c1d1J1)ν1, J2)F if (b1, d1) �= (0, 0),

b21 − d21J1 = 0, b1 − d1t = 0,

1 if (b1, d1) �= (0, 0),

b21 − d21J1 = 0, b1 − d1t �= 0,

1 if (b1, d1) �= (0, 0),

b21 − d21J1 �= 0, a1 − c1t = 0,

γF (J2,
1
2ψ)

−1 · ( 2(a1−c1t)
b1+d1t

, J2)F if (b1, d1) �= (0, 0),

b21 − d21J1 �= 0, a1 − c1t �= 0.

Now we compute μ(g1) = zY(h0g1h
−1
0 ,h0) · zY(h0,g1)

−1. Recall that J1 = t2

and ν1 = a21 − b21u − c21J1 + d21uJ1 �= 0. First assume that b1 = d1 = 0. Then we
have

μ(g1) = 1 · 1 = 1.

Next assume that (b1, d1) �= (0, 0) and b21−d21J1 = 0. Then we have ν1 = a21−c21J1 =
(a1 + c1t)(a1 − c1t) �= 0. Since b21 − d21J1 = (b1 + d1t)(b1 − d1t), we have

b1 − d1t = 0⇐⇒ b1 + d1t �= 0.

If b1 − d1t = 0, then we have

μ(g1) = 1 · γF (J2,
1

2
ψ) · ((a1b1 + c1d1J1)ν1, J2)F

= γF (J2,
1

2
ψ) · ((a1b1 + c1d1J1)ν1J1, J2)F .

If b1 − d1t �= 0, then we have

(a1 − c1t)(b1 − d1t) = −2(a1 − c1t)d1t

= 2(−a1d1t+ c1d1J1)

= 2(a1b1 + c1d1J1).
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Hence we have

μ(g1) = γF (J2,
1

2
ψ) · ( a1 − c1t

2ν1u(b1 − d1t)
, J2)F · 1

= γF (J2,
1

2
ψ) · (2ν1(a1 − c1t)(b1 − d1t), J2)F · (u, J2)F

= γF (J2,
1

2
ψ) · ((a1b1 + c1d1J1)ν1, J2)F · (u, J2)F

= γF (J2,
1

2
ψ) · ((a1b1 + c1d1J1)ν1J1, J2)F · (u, J)F .

Finally assume that (b1, d1) �= (0, 0) and b21− d21J1 �= 0. Then we have b1− d1t �= 0.
If a1 − c1t = 0, then we have

μ(g1) = 1 · 1 = 1.

On the other hand, since ν1 = −b21u+ d21uJ1, we have

(−(b21 − d21J1)ν1J1, J2)F · (u, J)F = (
ν1
u
· ν1J1, J2)F · (u, J2)F

= (ν21J1, J2)F

= 1.

If a1 − c1t �= 0, then we have

μ(g1) = γF (J2,
1

2
ψ) · ( a1 − c1t

2ν1u(b1 − d1t)
, J2)F · γF (J2,

1

2
ψ) · (2(a1 − c1t)

b1 + d1t
, J2)F

= γF (J2,
1

2
ψ)2 · (ν1u(b1 + d1t)(b1 − d1t), J2)F

= (−1, J2) · ((b21 − d21J1)ν1, J2)F · (u, J2)F
= (−(b21 − d21J1)ν1, J2)F · (u, J2)F
= (−(b21 − d21J1)ν1J1, J2)F · (u, J)F .

This completes the proof. �

Lemma C.3.6. Let g2 := α−1
2 ∈ GU(V )0 with α2 = a2+b2i+c2j2+d2ij2 ∈ B×

2 .
Then we have

μ(g2)

=

⎧⎪⎨⎪⎩
1 if b2 = d2 = 0,

γF (J1,
1
2ψ) · ((a2b2 + c2d2J2)ν2J2, J1)F if (b2, d2) �= (0, 0), b22 − d22J2 = 0,

(−(b22 − d22J2)ν2J2, J1)F if (b2, d2) �= (0, 0), b22 − d22J2 �= 0,

where ν2 = ν(α2).

Proof. Put d := dY(ν2) ∈ GSp(V). We have

zY(h0g2h
−1
0 ,h0) = zY(h0g2h

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν2).

Since Y′g2 = Y′, we have h0g2h
−1
0 · d−1 ∈ PY and hence

zY(h0g2h
−1
0 · d−1,d · h0 · d−1) = 1.

As in the proof of Lemma C.3.5, we have vY(h0, ν2) = 1. Thus we obtain

zY(h0g2h
−1
0 ,h0) = 1.
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Now we compute zY(h0,g2). We have

zY(h0,g2) = zY(h0,g2 · d−1).

First assume that b2 = d2 = 0. Then we have g2 · d−1 ∈ PY and hence

zY(h0,g2 · d−1) = 1.

Next assume that (b2, d2) �= (0, 0) and b22 − d22J2 = 0. Then we have b2 �= 0 and
d2 �= 0. As in the proof of Lemma C.2.6, we have a2b2 + c2d2J2 �= 0. We have
g2 · d−1 ∈m(a12) · n(b30) · τ2 · PY, where

a12 =

⎛⎜⎜⎝
d2

d2
b2 1

b2 1

⎞⎟⎟⎠ ,

b30 =
a2d2 − b2c2

b2d2
·

⎛⎜⎜⎝
0

0
J2
−J

⎞⎟⎟⎠ .

Hence we have

zY(h0,g2 · d−1) = zY(τ2 ·m(a10),m(a12) · n(b30) · τ2)
= zY(τ2,m(a10) ·m(a12) · n(b30) · τ2),

where a10 is as in the proof of Lemma C.3.5. We have

m(a10) ·m(a12) · n(b30) · τ2 ∈m(a13) · n(b31) · τ ′ · PY,

where

a13 =

⎛⎜⎜⎝
d2
b2 1

d2
b2 1

⎞⎟⎟⎠ ,

b31 =
(a2d2 − b2c2)J2

b2d2
·

⎛⎜⎜⎝
0

0 1
0

1 0

⎞⎟⎟⎠ ,

and τ ′ is as in the proof of Lemma C.2.8. Hence we have

zY(τ2,m(a10) ·m(a12) · n(b30) · τ2) = zY(τ2,m(a13) · n(b31) · τ ′)
= zY(τ2 ·m(a13) · n(b31), τ

′).

Since τ2 ·m(a13) · n(b31) · τ−1
2 ∈ PY, we have

zY(τ2 ·m(a13) · n(b31), τ
′) = zY(τ2, τ

′) = 1.

On the other hand, since J1 ∈ (F×)2, we have γF (J1,
1
2ψ) = 1 and

((a2b2 + c2d2J2)ν2J2, J1)F = 1.
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Finally assume that (b2, d2) �= (0, 0) and b22 − d22J2 �= 0. We have g2 · d−1 ∈
n(b32) · τ4 · PY, where

b32 =
1

b22 − d22J2
·

⎛⎜⎜⎝
l l′

−lJ1 −l′J1
l′ lJ2
−l′J −lJ

⎞⎟⎟⎠
with

l = a2b2 + c2d2J2, l′ = (a2d2 + b2c2)J2.

Hence we have

zY(h0,g2 · d−1) = zY(τ2 ·m(a10),n(b32) · τ4)
= zY(τ2 ·m(a10),n(b32) ·m(a10)

−1 · τ4)
= zY(τ2 ·m(a10) · n(b32) ·m(a10)

−1, τ4).

Since τ2 ·m(a10) · n(b32) ·m(a10)
−1 · τ−1

2 ∈ PY, we have

zY(h0,g2 · d−1) = zY(τ2, τ4) = 1.

On the other hand, since J1 ∈ (F×)2, we have

(−(b22 − d22J2)ν2J2, J1)F = 1.

This completes the proof. �

Lemma C.3.7. Let g := α ∈ GU(W ) with α = a + bi + cj + dij ∈ B×. Then,
for any i ∈ {1, 2}, we have

μ(g) =

⎧⎪⎨⎪⎩
(ν, Ji)F if b = d = 0,

γF (Ji,
1
2ψ) · (ab− cdJ, Ji)F if (b, d) �= (0, 0), b2 − d2J = 0,

(−(b2 − d2J)J, Ji)F if (b, d) �= (0, 0), b2 − d2J �= 0,

where ν = ν(α).

Proof. Put d := dY(ν) ∈ GSp(V). We have

zY(h0gh
−1
0 ,h0) = zY(h0gh

−1
0 · d−1,d · h0 · d−1) · vY(h0, ν).

Since Y′g = Y′, we have h0gh
−1
0 · d−1 ∈ PY and hence

zY(h0gh
−1
0 · d−1,d · h0 · d−1) = 1.

As in the proof of Lemma C.3.5, we have vY(h0, ν) = 1. Thus we obtain

zY(h0gh
−1
0 ,h0) = 1.

Now we compute zY(h0,g). We have

zY(h0,g) = zY(h0,g · d−1).

First assume that b = d = 0. Then we have g · d−1 ∈ PY and hence

zY(h0,g · d−1) = 1.

On the other hand, since J1 ∈ (F×)2, we have (ν, J1)F = 1 and

(ν, J2)F = (ν, J)F = (a2 − c2J, J)F = 1.

Next assume that (b, d) �= (0, 0) and b2 − d2J = 0. Then we have b �= 0 and
d �= 0. As in the proof of Lemma C.2.9, we have ab− cdJ �= 0. We have g · d−1 ∈
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m(a3) ·n(b9) · τ2 ·PY, where a3 and b9 are as in the proof of Lemma C.2.7. Hence
we have

zY(h0,g · d−1) = zY(τ2 ·m(a10),m(a3) · n(b9) · τ2)
= zY(τ2,m(a10) ·m(a3) · n(b9) · τ2),

where a10 is as in the proof of Lemma C.3.5. We have

m(a10) ·m(a3) · n(b9) · τ2 ∈m(a14) · n(b33) · τ ′ · PY,

where

a14 =

⎛⎜⎜⎝
bt
−dJ 1

bt
dJ 1

⎞⎟⎟⎠ ,

b33 = − (ad+ bc)J2
bd

·

⎛⎜⎜⎝
0

0 1
0

1 0

⎞⎟⎟⎠ ,

and τ ′ is as in the proof of Lemma C.2.8. Hence we have

zY(τ2,m(a10) ·m(a3) · n(b9) · τ2) = zY(τ2,m(a14) · n(b33) · τ ′)
= zY(τ2 ·m(a14) · n(b33), τ

′).

Since τ2 ·m(a14) · n(b33) · τ−1
2 ∈ PY, we have

zY(τ2 ·m(a14) · n(b33), τ
′) = zY(τ2, τ

′) = 1.

On the other hand, since J1 ∈ (F×)2 and J ∈ (F×)2, we have γF (J1,
1
2ψ) =

γF (J2,
1
2ψ) = 1 and

(ab− cdJ, J1)F = (ab− cdJ, J2)F = 1.

Finally assume that (b, d) �= (0, 0) and b2−d2J �= 0. We have g·d−1 ∈ n(b13)·τ4·PY,
where b13 is as in the proof of Lemma C.2.7. Hence we have

zY(h0,g · d−1) = zY(τ2 ·m(a10),n(b13) · τ4)
= zY(τ2 ·m(a10),n(b13) ·m(a10)

−1 · τ4)
= zY(τ2 ·m(a10) · n(b13) ·m(a10)

−1, τ4).

Since τ2 ·m(a10) · n(b13) ·m(a10)
−1 · τ−1

2 ∈ PY, we have

zY(h0,g · d−1) = zY(τ2, τ4) = 1.

On the other hand, since J1 ∈ (F×)2, we have (−(b2 − d2J)J, J1)F = 1 and

(−(b2 − d2J)J, J2)F = (−(b2 − d2J)J, J)F = (b2 − d2J, J)F = 1.

This completes the proof. �
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C.4. The product formula

Suppose that F is a number field. First we fix quaternion algebras B1 and B2

over F . Next we fix a quadratic extension E of F such that E embeds into B1 and
B2. Let B be the quaternion algebra over F which is the product of B1 and B2 in
the Brauer group. Then E also embeds into B.

Fix a finite set Σ of places of F containing

Σ∞ ∪ Σ2 ∪ ΣE ∪ ΣB ∪ ΣB1
∪ ΣB2

.

Here Σ∞ is the set of archimedean places of F , Σ2 is the set of places of F lying
above 2, and Σ• is the set of places v of F such that •v is ramified over Fv for
• = E, B, B1, B2.

We write Bi = E+Eji. Put Ji = j2i and J = J1J2. We may write B = E+Ej
such that j2 = J . Then, for each place v of F , we have

• J ∈ NEv/Fv
(E×

v ) if v /∈ ΣB,

• J1 ∈ NEv/Fv
(E×

v ) if v /∈ ΣB1
,

• J2 ∈ NEv/Fv
(E×

v ) if v /∈ ΣB2
.

By using the weak approximation theorem and replacing ji by αiji with some
αi ∈ E× if necessary, we may assume that

J ∈ (F×
v )2 or J1 ∈ (F×

v )2 or J2 ∈ (F×
v )2

for all v ∈ Σ.

Lemma C.4.1. We have

u ∈ (F×
v )2 or J ∈ (F×

v )2 or J1 ∈ (F×
v )2 or J2 ∈ (F×

v )2

for all v /∈ Σ.

Proof. Let v /∈ Σ. We may assume that v is inert in E. Assume that Ji /∈
(F×

v )2 for i = 1, 2. Since Ji ∈ NEv/Fv
(E×

v ), we have Ji ∈ ε · (F×
v )2 for i = 1, 2,

where ε ∈ o
×
Fv

but ε /∈ (F×
v )2. Hence we have

J = J1J2 ∈ (F×
v )2.

This yields the lemma. �

Thus, for each place v of F , we can define a map

sv : GU(Vv)
0 ×GU(Wv) −→ C1

by sv := s′v · μv, where s′v and μv are as in §§C.2, C.3. Here, for • = u, J , J1, J2
with • ∈ (F×

v )2, we have chosen t ∈ F×
v such that • = t2. Recall that

zYv
(g,g′) = sv(gg

′) · sv(g)−1 · sv(g′)−1

for g,g′ ∈ GU(Vv)
0 ×GU(Wv).

Proposition C.4.2. (i) Let gi := α−1
i ∈ GU(Vv)

0 with αi = ai + bii + ciji +
diiji ∈ B×

i,v. Then we have

sv(gi)

=

⎧⎪⎨⎪⎩
1 if bi = di = 0,

γFv
(Jj ,

1
2ψv) · ((aibi + cidiJi)νiJi, Jj)Fv

if (bi, di) �= (0, 0), b2i − d2i Ji = 0,

(−(b2i − d2i Ji)νiJi, Jj)Fv
if (bi, di) �= (0, 0), b2i − d2i Ji �= 0,
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where νi = ν(αi) and {i, j} = {1, 2}.
(ii) Let g := α ∈ GU(Wv) with α = a+ bi+ cj+ dij ∈ B×

v . Then we have

sv(g) =

⎧⎪⎨⎪⎩
(ν, J1)Fv

if b = d = 0,

γFv
(J1,

1
2ψv) · (ab− cdJ, J1)Fv

if (b, d) �= (0, 0), b2 − d2J = 0,

(−(b2 − d2J)J, J1)Fv
if (b, d) �= (0, 0), b2 − d2J �= 0,

where ν = ν(α).

Proof. If u ∈ (F×
v )2, then Bi,v is split and the assertion follows from Lemmas

C.2.6 and C.2.7.
Assume that J ∈ (F×

v )2. Let i : Bv → M2(Fv) be the isomorphism as in §C.2.
Since

i(α) =

(
a+ ct b− dt

u(b+ dt) a− ct

)
,

we have

j(g) =

{
0 if b+ dt = 0,

1 if b+ dt �= 0.

Since

(u, J1)Fv
=

{
1 if B1,v is split,

−1 if B1,v is ramified,

the assertion follows from Lemmas C.2.8 and C.2.9.
Assume that Ji ∈ (F×

v )2. We only consider the case i = 1; the other case is
similar. Let i1 : B1,v → M2(Fv) be the isomorphism as in §C.3. Since

t
i1(α1) =

(
a1 + c1t

u
2 (b1 + d1t)

2(b1 − d1t) a1 − c1t

)
,

we have

j(g1) =

{
0 if b1 − d1t = 0,

1 if b1 − d1t �= 0.

Also, we have j(g2) = 0. Since

(u, J)Fv
=

{
1 if Bv is split,

−1 if Bv is ramified,

the assertion follows from Lemmas C.3.5, C.3.6, and C.3.7. �

Recall that, for almost all v, we have a maximal compact subgroup Kv of
Sp(Vv) and a map sYv

: Kv → C1 such that

zYv
(k, k′) = sYv

(kk′) · sYv
(k)−1 · sYv

(k′)−1

for k, k′ ∈ Kv. Put

Kv := G(U(Vv)× U(Wv))
0 ∩Kv.

Then Kv is a maximal compact subgroup of G(U(Vv)×U(Wv))
0 for almost all v.

Lemma C.4.3. We have

sv|Kv
= sYv

|Kv

for almost all v.



C.4. THE PRODUCT FORMULA 193

Proof. Recall that sv(g) = s′v(g) · μv(g) for g ∈ GU(Vv)
0 ×GU(Wv), where

s′v : GU(Vv)
0 ×GU(Wv) −→ C1

is the map as in §§C.2, C.3 and

μv(g) = zYv
(h0gh

−1
0 ,h0) · zYv

(h0,g)
−1

for g ∈ GSp(Vv) with some h0 ∈ Sp(Vv) such that X′
v = Xvh0 and Y′

v = Yvh0. By
the uniqueness of the splitting, we have

sYv
= sY′

v
· μv|Kv

for almost all v. On the other hand, by definition, one can see that

s′v|Kv
= sY′

v
|Kv

for almost all v. This yields the lemma. �
Proposition C.4.4. Let γ ∈ GU(V )0(F )×GU(W )(F ). Then we have sv(γ) =

1 for almost all v and ∏
v

sv(γ) = 1.

Proof. Let γ1, γ2 ∈ GU(V )0(F ) × GU(W )(F ). Suppose that sv(γi) = 1 for
almost all v and

∏
v sv(γi) = 1 for i = 1, 2. Since sv(γ1γ2) = sv(γ1) · sv(γ2) ·

zYv
(γ1, γ2), the product formulas for the quadratic Hilbert symbol and the Weil

index imply that sv(γ1γ2) = 1 for almost all v and
∏

v sv(γ1γ2) = 1. Hence the
assertion follows from Proposition C.4.2. �





APPENDIX D

Splittings for the Doubling Method: Quaternionic
Unitary Groups

In this section, we show that the splitting constructed in Appendix C is com-
patible with the one constructed in [40, §4] via the doubling method. This com-
patibility (Lemma D.4.2) is used in Chapter 4 to prove the Rallis inner product
formula.

D.1. Setup

Let F be a number field and B a quaternion algebra over F . Recall that

• V is a 2-dimensional right skew-hermitian B-space with detV = 1,
• W is a 1-dimensional left hermitian B-space,
• V := V ⊗B W is an 8-dimensional symplectic F -space,
• V = X⊕ Y is a complete polarization over F .

We consider a 2-dimensional left B-space W� := W⊕W equipped with a hermitian
form

〈(x, x′), (y, y′)〉 := 〈x, y〉 − 〈x′, y′〉
for x, x′, y, y′ ∈W . PutW+ := W⊕{0} andW− := {0}⊕W . We regard GU(W±) as
a subgroup of GL(W ) and identify it with GU(W ) via the identity map. Note that
the identity map GU(W−) → GU(W ) is induced by an anti-isometry W− → W .
We have a natural map

ι : G(U(W )×U(W )) −→ GU(W�)

and seesaw dual pairs

GU(W�)

����
����

����
���

G(U(V )×U(V ))

���
���

���
���

��

G(U(W )×U(W )) GU(V )

.

Put

W� := {(x, x) ∈W� |x ∈W},
W� := {(x,−x) ∈W� |x ∈W}.

Then W� = W�⊕W� is a complete polarization over B. Choosing a basis w,w∗

of W� such that

W� = Bw, W� = Bw∗, 〈w,w∗〉 = 1,

195
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we may write

GU(W�) =
{
g ∈ GL2(B)

∣∣∣∣ g( 1
1

)
tg∗ = ν(g) ·

(
1

1

)}
.

For ν ∈ F×, put

d(ν) = dW�(ν) :=

(
1

ν

)
∈ GU(W�).

Similarly, we consider a 16-dimensional F -space V� := V ⊗B W� = V ⊕ V
equipped with a symplectic form

(D.1) 〈〈(x, x′), (y, y′)〉〉 := 〈〈x, y〉〉 − 〈〈x′, y′〉〉
for x, x′, y, y′ ∈ V. Put V+ := V⊕{0} and V− := {0}⊕V. We regard Sp(V±) as a
subgroup of GL(V) and identify it with Sp(V) via the identity map. Note that the
identity map Sp(V−)→ Sp(V) is induced by an anti-isometry V− → V. We have a
natural map

ι : Sp(V)× Sp(V) −→ Sp(V�).

Put

V� := V ⊗B W� = {(x, x) ∈ V� |x ∈ V}, X� := X⊕ X,

V� := V ⊗B W� = {(x,−x) ∈ V� |x ∈ V}, Y� := Y⊕ Y.

Then V� = V� ⊕ V� = X� ⊕ Y� are complete polarizations over F .
For the rest of this section, we fix a place v of F and suppress the subscript v

from the notation. Thus F = Fv will be a local field of characteristic zero. We may
lift the natural map ι : Sp(V)× Sp(V)→ Sp(V�) to a unique homomorphism

ι̃ : Mp(V)×Mp(V) −→ Mp(V�)

such that ι̃(z1, z2) = z1z
−1
2 for z1, z2 ∈ C1.

D.2. Splitting zV�

First assume that B is split. Fix an isomorphism i : B → M2(F ). Put e =
i−1 ( 1 0

0 0 ) and e′ = i−1 ( 0 1
0 0 ). Then W�† := eW� is a 4-dimensional symplectic

F -space and the restriction GU(W�) → GSp(W�†) is an isomorphism. Using a
basis ew, e′w, e′w∗,−ew∗ of W�†, we write

GSp(W�†) =

{
h ∈ GL4(F )

∣∣∣∣h( 12

−12

)
th = ν(h) ·

(
12

−12

)}
.

Then the restriction GU(W�)→ GSp(W�†) is given by(
a b
c d

)
�→
(
12

τ−1

)
·
(
i(a) i(b)
i(c) i(d)

)
·
(
12

τ

)
,

where τ = τ1 =
( −1
1

)
. Note that x∗ = τ · tx · τ−1 for x ∈ M2(F ). Also, W † := eW

is a 2-dimensional symplectic F -space and V † := V e is a 4-dimensional quadratic
F -space. We define a map

ŝ : G(U(V )×U(W�)) −→ C1

by

ŝ(g) = γ ĵ(h)
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for g = (g, h) ∈ G(U(V )×U(W�)), where

γ =

{
1 if V † is isotropic,

−1 if V † is anisotropic,

and

ĵ(h) =

⎧⎪⎨⎪⎩
0 if c = 0,

1 if c �= 0, det c = 0,

2 if det c �= 0,

h =

(
a b
c d

)
∈ GSp(W�†).

Since dimF V † = 4 and detV † = 1, we have

zV�(h, h′) = ŝ(hh′) · ŝ(h)−1 · ŝ(h′)−1

for h, h′ ∈ U(W�) by [40, Theorem 3.1, case 1+].
Next assume that B is ramified. We define a map

ŝ : G(U(V )×U(W�)) −→ C1

by

ŝ(g) = 1

for g ∈ G(U(V )×U(W�)). Since dimB V = 2 and detV = 1, we have

zV�(h, h′) = ŝ(hh′) · ŝ(h)−1 · ŝ(h′)−1

for h, h′ ∈ U(W�) by [40, Theorem 3.1, case 2−].

Lemma D.2.1. We have

zV�(g,g′) = ŝ(gg′) · ŝ(g)−1 · ŝ(g′)−1

for g,g′ ∈ G(U(V )×U(W�)).

Proof. Let gi = (gi, hi) ∈ G(U(V )× U(W�)) and put h′
i = hi · d(ν(hi))

−1 ∈
U(W�). Then we have h1h2 = h′

1h
′′
2 · d(ν(h1h2)), where h′′

2 = d(ν(h1)) · h′
2 ·

d(ν(h1))
−1. Since

V� · g = V�, V� · d(ν) = V�

for g ∈ GU(V ) and ν ∈ F×, we have

V� · g−1
1 = V� · h−1

1 = V� · h′−1
1 ,

V� · g−1
2 g−1

1 = V� · h−1
2 h−1

1 = V� · h′′−1
2 h′−1

1 .

Hence we have

q(V�,V� · g−1
2 ,V� · g1) = q(V� · g−1

1 ,V� · g−1
2 g−1

1 ,V�)

= q(V� · h′−1
1 ,V� · h′′−1

2 h′−1
1 ,V�)

= q(V�,V� · h′′−1
2 ,V� · h′

1),

so that

zV�(g1,g2) = zV�(h′
1, h

′′
2) = ŝ(h′

1h
′′
2) · ŝ(h′

1)
−1 · ŝ(h′′

2)
−1.

By definition, we have ŝ(h′
1) = ŝ(g1), ŝ(h

′′
2) = ŝ(h′

2) = ŝ(g2), and

ŝ(h′
1h

′′
2) = ŝ(h1h2 · d(ν(h1h2))

−1) = ŝ(g1g2).

This completes the proof. �
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D.3. Splitting zY′�

Let V = X′ ⊕ Y′ be the complete polarization given in §C.2, C.3. Put
X′� := X′ ⊕ X′, Y′� := Y′ ⊕ Y′.

Then V� = X′�⊕Y′� is a complete polarization. Noting that the symplectic form
on V� = V⊕ V is given by (D.1), we have

zY′�,ψ(ι(g1, g2), ι(g
′
1, g

′
2)) = zY′,ψ(g1, g

′
1) · zY′,ψ−1(g2, g

′
2)

= zY′,ψ(g1, g
′
1) · zY′,ψ(g2, g

′
2)

−1

for gi, g
′
i ∈ Sp(V), where we write zY′ = zY′,ψ to indicate the dependence of the

2-cocycle on ψ. The Weil representation ω�
ψ of Mp(V�) can be realized on the

Schwartz space
S(X′�) = S(X′)⊗ S(X′).

As representations of Mp(V)Y′ ×Mp(V)Y′ , we have

ω�
ψ ◦ ι̃ = ωψ ⊗ (ωψ ◦ j̃Y′),

where j̃Y′ is the automorphism of Mp(V)Y′ = Sp(V)× C1 defined by

j̃Y′(g, z) = (jY′(g), z−1), jY′(g) = dY′(−1) · g · dY′(−1).
Fix h′

0 ∈ Sp(V�) such that X′� = V� · h′
0 and Y′� = V� · h′

0. Put

μ′(g) = zV�(g,h′−1
0 ) · zV�(h′−1

0 ,h′
0gh

′−1
0 )−1

for g ∈ Sp(V�). Then we have

zY′�(g, g′) = zV�(g, g′) · μ′(gg′) · μ′(g)−1 · μ′(g′)−1

for g, g′ ∈ Sp(V�). Put

G := {(g, h1, h2) ∈ GU(V )0 ×GU(W )×GU(W ) | ν(g) = ν(h1) = ν(h2)}.
We have natural maps

G ↪→ G(U(V )×U(W�)),

G ↪→ G(U(V )0 ×U(W ))×G(U(V )0 ×U(W )).

Lemma D.3.1. We have

ŝ · μ′ = s′ ⊗ (s′ ◦ jY′)

on G, where s′ : GU(V )0 ×GU(W )→ C1 is the map defined in §C.2, C.3.
The proof of this lemma will be given in the next two sections.

D.3.1. The case u ∈ (F×)2 or J ∈ (F×)2. Recall that X′ = V † ⊗F X and
Y′ = V † ⊗F Y , where X = Fe and Y = Fe′, and W † = X + Y is a complete
polarization over F . We have

X′� = V † ⊗F X�, Y′� = V † ⊗F Y �,

where X� = X ⊕ X and Y � = Y ⊕ Y . We have dY′(−1) = id ⊗ dY (−1) and
jY′ = id⊗ jY , where

dY (ν) =

(
1

ν

)
∈ GSp(W †)

and jY (h) = dY (−1) · h · dY (−1) for h ∈ GSp(W †). In particular, we have

jY′(G(U(V )0 ×U(W ))) = G(U(V )0 ×U(W )).
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Let ι : G(Sp(W †)× Sp(W †))→ GSp(W�†) be the natural map. We may take

w =
1

2
(1,−1), w∗ = (1, 1).

Since ⎡⎢⎢⎣
(e, 0)
(0, e)
(e′, 0)
(0,−e′)

⎤⎥⎥⎦ = h0 ·

⎡⎢⎢⎣
ew
e′w
e′w∗

−ew∗

⎤⎥⎥⎦ , h0 =

⎛⎜⎜⎝
1 − 1

2
−1 − 1

2
1 1

2
1 − 1

2

⎞⎟⎟⎠ ∈ Sp(W�†),

we have

ι(h1, h2) = h−1
0 · ι�(h1, jY (h2)) · h0.

Here, using a basis e, e′ of W †, we identify GSp(W †) with GL2(F ) and put

ι�(h1, h2) =

⎛⎜⎜⎝
a1 b1

a2 b2
c1 d1

c2 d2

⎞⎟⎟⎠ , hi =

(
ai bi
ci di

)
.

Since X� = eW� · h0 and Y � = eW� · h0, we may take h′
0 = id⊗ h0.

Proof of Lemma D.3.1. Let g = (g, h1, h2) ∈ G and ν = ν(g). Put gi =
(g, hi) ∈ G(U(V )0 ×U(W )). By definition, we have

s′(g1) · s′(jY′(g2)) = γj(h1) · γj(jY (h2)),

where j is as in §C.2.
Put h = ι(h1, h2) ∈ GU(W�). We identify g with (g, h) ∈ G(U(V )0×U(W�)).

Since ĵ(h) = ĵ(d(ν)−1 · h), we have

ŝ(g) = ŝ(d(ν)−1 · h).

Put g′ = (g, d(ν)) ∈ G(U(V )0 ×U(W�)). Then we have V� · g′ = V� and

g = g′ · d(ν)−1 · h,
h′
0gh

′−1
0 = h0hh

−1
0 · g = h0hh

−1
0 · d(ν)−1 · g′.

Hence, by Lemma D.2.1, we have

zV�(g,h′−1
0 ) = zV�(d(ν)−1 · h, h−1

0 )

= ŝ(d(ν)−1 · hh−1
0 ) · ŝ(d(ν)−1 · h)−1 · ŝ(h−1

0 )−1,

zV�(h′−1
0 ,h′

0gh
′−1
0 ) = zV�(h−1

0 , h0hh
−1
0 · d(ν)−1)

= ŝ(hh−1
0 · d(ν)−1) · ŝ(h−1

0 )−1 · ŝ(h0hh
−1
0 · d(ν)−1)−1.

Since ĵ(d(ν)−1 · hh−1
0 ) = ĵ(hh−1

0 · d(ν)−1), we have

ŝ(d(ν)−1 · hh−1
0 ) = ŝ(hh−1

0 · d(ν)−1).

Since h0hh
−1
0 = ι�(h1, jY (h2)), we have ĵ(h0hh

−1
0 · d(ν)−1) = j(h1) + j(jY (h2)) and

ŝ(h0hh
−1
0 · d(ν)−1) = γj(h1)+j(jY (h2)).
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Thus we obtain

ŝ(g) · μ′(g) = ŝ(d(ν)−1 · h) · zV�(g,h′−1
0 ) · zV�(h′−1

0 ,h′
0gh

′−1
0 )−1

= ŝ(h0hh
−1
0 · d(ν)−1)

= γj(h1)+j(jY (h2)).

This completes the proof. �
D.3.2. The case Ji ∈ (F×)2. We only consider the case i = 1; the other case

is similar. As in §C.3, we regard V and W as left and right B-spaces, respectively.
Recall that X′ = W ⊗B X and Y′ = W ⊗B Y , where X = Bv and Y = Bv∗,
and V = X + Y is a complete polarization over B. As in §D.1, we define a 4-
dimensional left skew-hermitian B-space V � = V ⊕ V and a complete polarization
V � = V � ⊕ V � over B. Using a basis

v1 :=
1

2
(v,−v), v2 :=

1

2
(v∗,−v∗), v∗

1 := (v∗,v∗), v∗
2 := (−v,−v)

of V �, we write

GU(V �) =
{
g ∈ GL4(B)

∣∣∣∣ g( 12

−12

)
tg∗ = ν(g) ·

(
12

−12

)}
.

We may identify V� with W ⊗B V �. Under this identification, we have

V� = W ⊗B V �, X′� = W ⊗B X�,

V� = W ⊗B V �, Y′� = W ⊗B Y �,

where X� = X ⊕ X and Y � = Y ⊕ Y . We have dY′(−1) = id ⊗ dY (−1) and
jY′ = id⊗ jY , where

dY (ν) =

(
1

ν

)
∈ GU(V )0

and jY (g) = dY (−1) · g · dY (−1) for g ∈ GU(V ). In particular, we have

jY′(G(U(V )0 ×U(W ))) = G(U(V )0 ×U(W )).

Let ι : G(U(V )×U(V ))→ GU(V �) be the natural map. Since⎡⎢⎢⎣
(v, 0)
(0,v)
(v∗, 0)
(0,−v∗)

⎤⎥⎥⎦ = g0 ·

⎡⎢⎢⎣
v1

v2

v∗
1

v∗
2

⎤⎥⎥⎦ , g0 =

⎛⎜⎜⎝
1 − 1

2
−1 − 1

2
1 1

2
1 − 1

2

⎞⎟⎟⎠ ∈ U(V �),

we have
ι(g1, g2) = g−1

0 · ι�(g1, jY (g2)) · g0.
Here, regarding V as a left B-space and using a basis v,v∗ of V , we identify GU(V )
with a subgroup of GL2(B) and put

ι�(g1, g2) =

⎛⎜⎜⎝
a1 b1

a2 b2
c1 d1

c2 d2

⎞⎟⎟⎠ , gi =

(
ai bi
ci di

)
.

Since X� = V � · g0 and Y � = V � · g0, we may take h′
0 = id⊗ g0.

When B is split, we define a map

ŝ′ : U(V �) −→ C1
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by

ŝ′(g) = 1

for g ∈ U(V �). Then we have

zV�(g, g′) = ŝ′(gg′) · ŝ′(g)−1 · ŝ′(g′)−1

for g, g′ ∈ U(W�) by [40, Theorem 3.1, case 1−]. When B is ramified, we define a
map

ŝ′ : U(V �) −→ C1

by

ŝ′(g) = (−1)ĵ′(g)

for g ∈ U(V �), where

ĵ′(g) =

⎧⎪⎨⎪⎩
0 if c = 0,

1 if c �= 0, ν(c) = 0,

2 if ν(c) �= 0,

g =

(
a b
c d

)
∈ U(V �),

and ν : M2(B)→ F is the reduced norm. Since dimB W = 1, we have

zV�(g, g′) = ŝ′(gg′) · ŝ′(g)−1 · ŝ′(g′)−1

for g, g′ ∈ U(W�) by [40, Theorem 3.1, case 2+].

Proof of Lemma D.3.1. Let g = (g, h1, h2) ∈ G and ν = ν(g). Put gi =
(g, hi) ∈ G(U(V )0 × U(W )). By definition, we have j(jY (g)) = j(g), where j is as
in §C.3. Hence we have

s′(g1) · s′(jY′(g2)) = γj(g) · γj(jY (g)) = 1.

Here

γ =

{
1 if B is split,

−1 if B is ramified.

Also, by definition, we have

ŝ(g) = 1.

Now we compute zV�(g,h′−1
0 ). We identify g with (g, ι(h1, h2)) ∈ G(U(V )0 ×

U(W�)), where ι : G(U(W ) × U(W )) → GU(W�) is the natural map. Put g′ =
(g, ι(h2, h2)) ∈ G(U(V )0 × U(W�)) and h = h−1

1 h2 ∈ U(W ). Then we have g =

g′ · ι(h−1, 1). Via the identification V� = V ⊗B W� = W ⊗B V �, we identify g′

with (h2, ι(g, g)) ∈ G(U(W )×U(V �)). Since V� · g′ = V�, we have

zV�(g,h′−1
0 ) = zV�(ι(h−1, 1), g−1

0 ).

Put

τ :=

⎛⎜⎜⎝
1

−1
1

1

⎞⎟⎟⎠ ∈ U(V �).

Then we have

g0τ =

⎛⎜⎜⎝
1 − 1

2
−1 − 1

2
1
2 −1
− 1

2 −1

⎞⎟⎟⎠
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and V� · τ−1g−1
0 = V�, so that

zV�(ι(h−1, 1), g−1
0 ) = zV�(ι(h−1, 1), τ ).

Under the identification V� = V⊕ V = W ⊗B V �, we have

x⊗ (y,±y) · ι(h−1, 1)

= (x⊗ y,±x⊗ y) · ι(h−1, 1)

= (hx⊗ y,±x⊗ y)

=
1

2
((h± 1)x⊗ y, (h± 1)x⊗ y) +

1

2
((h∓ 1)x⊗ y,−(h∓ 1)x⊗ y)

=
1

2
(h± 1)x⊗ (y, y) +

1

2
(h∓ 1)x⊗ (y,−y)

for x ∈W and y ∈ V . Thus we obtain

x⊗ v1 · ι(h−1, 1) =
1

2
(h+ 1)x⊗ v1 −

1

4
(h− 1)x⊗ v∗

2,

x⊗ v2 · ι(h−1, 1) =
1

2
(h+ 1)x⊗ v2 +

1

4
(h− 1)x⊗ v∗

1,

x⊗ v∗
1 · ι(h−1, 1) =

1

2
(h+ 1)x⊗ v∗

1 + (h− 1)x⊗ v2,

x⊗ v∗
2 · ι(h−1, 1) =

1

2
(h+ 1)x⊗ v∗

2 − (h− 1)x⊗ v1.

First assume that B is split. Fix an isomorphism i : B → M2(F ). Put e =
i−1 ( 1 0

0 0 ), e
′ = i−1 ( 0 1

0 0 ), and e′′ = i−1 ( 0 0
1 0 ). Then W † := We is a 2-dimensional

symplectic F -space and the restriction GU(W ) → GSp(W †) is an isomorphism.
Also, V �† := eV � is an 8-dimensional quadratic F -space. We identify V� with
W † ⊗F V �†. Put f := 2e′′ and

x1 := ev1, x2 := e′v1, x3 := ev2, x4 := e′v2,

y1 := e′v∗
1, y2 := −ev∗

1, y3 := e′v∗
2, y4 := −ev∗

2 .

Using a basis

e⊗ x1, f ⊗ x1, . . . , e⊗ x4, f ⊗ x4, f ⊗ y1,−e⊗ y1, . . . , f ⊗ y4,−e⊗ y4

of V�, we identify Sp(V�) with Sp16(F ). We define h ∈ GL2(F ) by[
he
hf

]
= h ·

[
e
f

]
and put

ḣ =
1

2
(h+ 12), ḧ =

1

2
(h− 12).

Then we have h · a · th = a, where

a =

(
−1

1

)
∈ GL2(F ).
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Moreover, we have ι(h−1, 1) = d−1 · h′ · d and

τ = d−1 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12

12

02 12

02 −12

12

12

12 02

−12 02

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· d

= τ4 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12

12

−a
a

12

12

−a
a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12

12

12

12

a
a

a
a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

h′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ḣ 1
2 ḧ

ḣ − 1
2 ḧ

ḣ − 1
2 ḧ

ḣ 1
2 ḧ

2ḧ ḣ

−2ḧ ḣ

−2ḧ ḣ

2ḧ ḣ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

τ4 =

⎛⎜⎜⎝
14

−14

14

14

⎞⎟⎟⎠ .

If h = 1, then we have zV�(ι(h−1, 1), τ ) = zV�(1, τ ) = 1. Assume that h �= 1 and

det ḧ = 0. Since deth = 1, we have tr ḧ = 0. Hence we may take a1 ∈ SL2(F ) such

that a1 · ḧ · a−1
1 = x, where

x =

(
0 x
0 0

)
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with some x �= 0. Put

m1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a1

a1
a1

ta−1
1

ta−1
1

ta−1
1

ta−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Noting that a1 · ḣ · a−1
1 = x+ 12 and a · ta−1

1 · a−1 = a1, we have

m1 · ι(h−1, 1) ·m−1
1 = d−1 · h′′ · d,

where

h′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x+ 12
1
2x

x+ 12 − 1
2x

x+ 12 − 1
2x

x+ 12
1
2x

2x x+ 12

−2x x+ 12

−2x x+ 12

2x x+ 12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have

zV�(ι(h−1, 1), τ ) = zV�(ι(h−1, 1), τ4)

= zV�(m1 · ι(h−1, 1), τ4 · τ−1
4 ·m−1

1 · τ4)
= zV�(m1 · ι(h−1, 1) ·m−1

1 , τ4)

= zV�(d−1 · h′′ · d, τ4).

Put

e =

(
1

0

)
, e∗ =

(
0

1

)
, a2 =

(
−x−1

−x

)
,

so that

a2 · x · a = −e, ta−1
2 · a−1 · x = e∗.

Put

x′ = −ea−1 + a2, x′′ = e∗a+ ta−1
2 ,

and

m2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2a2
−2a2

−2a2
2a2

1
2
ta−1

2

− 1
2
ta−1

2

− 1
2
ta−1

2
1
2
ta−1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Then we have m2 · d−1 · h′′ · d = h′′′, where

h′′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2x′ −e
−2x′ −e

−2x′ −e
2x′ −e
e∗ 1

2x
′′

e∗ − 1
2x

′′

e∗ − 1
2x

′′

e∗ 1
2x

′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have

zV�(d−1 · h′′ · d, τ4) = zV�(m2 · d−1 · h′′ · d, τ4) = zV�(h′′′, τ4).

Put

b =

(
0

x−1

)
and

n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12
1
2b

12 − 1
2b

12 − 1
2b

12
1
2b
12

12

12

12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We have

h′′′ · n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2x′ x̃′

−2x′ x̃′

−2x′ x̃′

2x′ x̃′

e∗ 1
2 x̃

′′

e∗ − 1
2 x̃

′′

e∗ − 1
2 x̃

′′

e∗ 1
2 x̃

′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where x̃′ = x′b− e and x̃′′ = e∗b+ x′′. Since

x̃′′ =

(
−x 0
1 0

)
,

we have V� · h′′′ · n · τ−1 = V�, where

τ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e −e∗
e −e∗

e −e∗
e −e∗

e∗ e
e∗ e

e∗ e
e∗ e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Hence we have

zV�(h′′′, τ4) = zV�(h′′′, τ4 · τ−1
4 · n · τ4)

= zV�(h′′′ · n, τ4)
= zV�(τ , τ4)

= 1.

Assume that h �= 1 and det ḧ �= 0. Put

k1 = tatḧ−1, k2 = a−1ḧ, k3 = ḧ−1ḣa.

We have

ι(h−1, 1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2k1 ḣ

− 1
2k1 ḣ

− 1
2k1 ḣ

1
2k1 ḣ

2k2

−2k2

−2k2

2k2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
· τ8 · n,

where

τ8 =

(
−18

18

)
,

n =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12
1
2k3

12 − 1
2k3

12 − 1
2k3

12
1
2k3

12

12

12

12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence we have

zV�(ι(h−1, 1), τ ) = zV�(τ8 · n, τ4) = zV�(τ8,n · τ4).
Since V� · τ−1

4 nτ4 = V�, we have

zV�(τ8,n · τ4) = zV�(τ8, τ4) = 1.

Thus we obtain
zV�(g,h′−1

0 ) = 1.

Next assume that B is ramified. Choose a basis e1, e2, e3, e4 of W over F . We
may assume that 1

2 trB/F (〈ei, ej〉) = ai · δij with some ai ∈ F×. Put e′i := ei · a−1
i .

Using a basis

e1 ⊗ v1, . . . , e4 ⊗ v1, e1 ⊗ v2, . . . , e4 ⊗ v2, e
′
1 ⊗ v∗

1, . . . , e
′
4 ⊗ v∗

1, e
′
1 ⊗ v∗

2, . . . , e
′
4 ⊗ v∗

2

of V�, we identify Sp(V�) with Sp16(F ). We define h ∈ GL4(F ) by⎡⎢⎢⎣
he1
he2
he3
he4

⎤⎥⎥⎦ = h ·

⎡⎢⎢⎣
e1
e2
e3
e4

⎤⎥⎥⎦
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and put

ḣ =
1

2
(h+ 14), ḧ =

1

2
(h− 14).

Then we have h · a · th = a, where

a :=

⎛⎜⎜⎝
a1

a2
a3

a4

⎞⎟⎟⎠ ∈ GL4(F ).

Moreover, we have ι(h−1, 1) = d−1 · h′ · d and

τ = d−1 · τ4 · d = τ4 ·

⎛⎜⎜⎝
14

a−1

14

a

⎞⎟⎟⎠ ,

where

d =

⎛⎜⎜⎝
14

14

a
a

⎞⎟⎟⎠ ,

h′ =

⎛⎜⎜⎝
ḣ − 1

2 ḧ

ḣ 1
2 ḧ

2ḧ ḣ

−2ḧ ḣ

⎞⎟⎟⎠ ,

τ4 =

⎛⎜⎜⎝
14

−14

14

14

⎞⎟⎟⎠ .

If h = 1, then we have zV�(ι(h−1, 1), τ ) = zV�(1, τ ) = 1. Assume that h �= 1.
Since B is ramified, h− 1 is given by the automorphism x �→ α · x of B with some
α ∈ B×. In particular, we have ḧ ∈ GL4(F ). Put

k1 = atḧ−1, k2 = a−1ḧ, k3 = ḧ−1ḣa.

We have

ι(h−1, 1) =

⎛⎜⎜⎝
1
2k1 ḣ

− 1
2k1 ḣ

2k2

−2k2

⎞⎟⎟⎠ · τ8 · n,
where

τ8 =

(
−18

18

)
,

n =

⎛⎜⎜⎝
14 − 1

2k3

14
1
2k3

14

14

⎞⎟⎟⎠ .

Hence we have

zV�(ι(h−1, 1), τ ) = zV�(τ8 · n, τ4) = zV�(τ8,n · τ4).
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Since V� · τ−1
4 nτ4 = V�, we have

zV�(τ8,n · τ4) = zV�(τ8, τ4) = 1.

Thus we obtain

zV�(g,h′−1
0 ) = 1.

Now we compute zV�(h′−1
0 ,h′

0gh
′−1
0 ). Put g′′ = (dY (ν), ι(h1, h2)) ∈ G(U(V )0×

U(W�)) and g′ = g · dY (ν)−1 ∈ U(V )0. Then we have g = g′ · g′′. Via the identifi-
cation V� = V ⊗B W� = W ⊗B V �, we identify g′ with ι(g′, g′) ∈ U(V �). Since
V� · h′

0 = Y′� = Y ⊗B W�, we have V� · h′
0g

′′h′−1
0 = V� and hence

zV�(h′−1
0 ,h′

0gh
′−1
0 ) = zV�(g−1

0 , g0 · ι(g′, g′) · g−1
0 )

= ŝ′(ι(g′, g′) · g−1
0 ) · ŝ′(g−1

0 )−1 · ŝ′(g0 · ι(g′, g′) · g−1
0 )−1.

Hence, if B is split, then we have

zV�(h′−1
0 ,h′

0gh
′−1
0 ) = 1.

Assume that B is ramified. We write g′ =
(
a b
c d

)
. Since

g−1
0 =

⎛⎜⎜⎝
1
2 − 1

2
1
2

1
2

1 −1
−1 −1

⎞⎟⎟⎠ ,

g0 · ι(g′, g′) · g−1
0 = ι�(g′, j′Y (g

′)) =

⎛⎜⎜⎝
a b

a −b
c d
−c d

⎞⎟⎟⎠ ,

ι(g′, g′) · g−1
0 =

⎛⎜⎜⎝
a
2 −a

2
b
2

b
2

c
2 − c

2
d
2

d
2

c c d −d
−a −a −b b

⎞⎟⎟⎠ ,

we have

ŝ′(g−1
0 ) = −1,

ŝ′(g0 · ι(g′, g′) · g−1
0 ) = 1,

ŝ′(ι(g′, g′) · g−1
0 ) = −1.

Hence we have

zV�(h′−1
0 ,h′

0gh
′−1
0 ) = 1.

Thus we obtain

μ′(g) = zV�(g,h′−1
0 ) · zV�(h′−1

0 ,h′
0gh

′−1
0 )−1 = 1.

This completes the proof. �
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D.4. Splitting zY�

Let V = X⊕ Y be the complete polarization given in §C.1. Put
X� := X⊕ X, Y� := Y⊕ Y.

Then V� = X� ⊕ Y� is a complete polarization. As in §D.3, we have

zY�(ι(g1, g2), ι(g
′
1, g

′
2)) = zY(g1, g

′
1) · zY(g2, g′2)−1

for gi, g
′
i ∈ Sp(V). The Weil representation ω�

ψ of Mp(V�) can be realized on the
Schwartz space

S(X�) = S(X)⊗ S(X).
As representations of Mp(V)Y ×Mp(V)Y, we have

ω�
ψ ◦ ι̃ = ωψ ⊗ (ωψ ◦ j̃Y),

where j̃Y is the automorphism of Mp(V)Y = Sp(V)× C1 defined by

j̃Y(g, z) = (jY(g), z
−1), jY(g) = dY(−1) · g · dY(−1).

Put J := ((j1, j2), j). Here we view (j1, j2) ∈ GU(V )0 and j ∈ GU(W ).

Lemma D.4.1. We have

jY(g) = J · g · J−1

for g ∈ GU(V )0 ×GU(W ). In particular, we have

jY(G(U(V )0 ×U(W ))) = G(U(V )0 ×U(W )).

Proof. Let g = ((α−1
1 ,α−1

2 ),α) ∈ GU(V )0 × GU(W ) with αi = ai + bii +
ciji + diiji ∈ B×

i and α = a + bi + cj + dij ∈ B×. By §C.1, we see that jY(g) =

((β−1
1 ,β−1

2 ),β), where

βi = ai − bii+ ciji − diiji, β = a− bi+ cj− dij.

On the other hand, since jii = −iji and ji = −ij, we have ji · αi · j−1
i = βi and

j ·α · j−1 = β. This yields the lemma. �
As in §C.2, C.3, fix h0 ∈ Sp(V) such that X′ = Xh0 and Y′ = Yh0, and define

a map s : GU(V )0 ×GU(W )→ C1 by s := s′ · μ, where
μ(g) = zY(h0gh

−1
0 ,h0) · zY(h0, g)

−1.

Put ĥ0 := h′
0 · ι(h0,h0)

−1 ∈ Sp(V�). Then we have

V� · ĥ0 = X′� · ι(h0,h0)
−1 = X�,

V� · ĥ0 = Y′� · ι(h0,h0)
−1 = Y�.

Put
μ̂(g) = zV�(g, ĥ−1

0 ) · zV�(ĥ−1
0 , ĥ0gĥ

−1
0 )−1

for g ∈ Sp(V�). Then we have

zY�(g, g′) = zV�(g, g′) · μ̂(gg′) · μ̂(g)−1 · μ̂(g′)−1

for g, g′ ∈ Sp(V�).

Lemma D.4.2. We have

ŝ · μ̂ = s⊗ (s ◦ jY)
on G.
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Proof. For g = (g, h1, h2) ∈ G, we identify g with ι(g1,g2) ∈ Sp(V�), where
gi = (g, hi) ∈ G(U(V )0 × U(W )) ⊂ Sp(V). Then, by a direct calculation, one can
see that

μ̂(g) · μ′(g)−1

= zY�(ι(h0,h0) · g · ι(h0,h0)
−1, ι(h0,h0)) · zY�(ι(h0,h0),g)

−1

= zY(h0g1h
−1
0 ,h0) · zY(h0g2h

−1
0 ,h0)

−1 · zY(h0,g1)
−1 · zY(h0,g2)

= μ(g1) · μ(g2)
−1.

Hence, by Lemma D.3.1, we have

ŝ · μ̂ = ŝ · μ′ · (μ⊗ μ−1) = (s′ · μ)⊗ ((s′ ◦ jY′) · μ−1)

on G. Since s′ ◦ jY′ = s′ = s′−1, we have

ŝ · μ̂ = s⊗ s−1

on G. By Proposition C.4.2 and Lemma D.4.1, we have s(jY(g)) = s(g)−1 for
g = α−1

i ∈ GU(V )0 with αi ∈ B×
i and g = α ∈ GU(W ) with α ∈ B×. Also,

we have zY(jY(g1), jY(g2)) = zY(g1, g2)
−1 for g1, g2 ∈ GSp(V). Since s(g1g2) =

s(g1) · s(g2) · zY(g1,g2) for g1,g2 ∈ GU(V )0 ×GU(W ), we have

s ◦ jY = s−1

on GU(V )0 ×GU(W ). This completes the proof. �
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[14] M. Eichler, Über die Idealklassenzahl total definiter Quaternionenalgebren (German), Math.
Z. 43 (1938), no. 1, 102–109, DOI 10.1007/BF01181088. MR1545717

[15] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern (German), Invent.
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