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To my parents.

Abstract. We prove that the theta correspondence for the dual pair (˜SL2,

PB×), for B an indefinite quaternion algebra over Q, acting on modular
forms of odd square-free level, preserves rationality and p-integrality in both
directions. As a consequence, we deduce the rationality of certain period
ratios of modular forms and even p-integrality of these ratios under the as-
sumption that p does not divide a certain L-value. The rationality is applied
to give a direct construction of isogenies between new quotients of Jacobians
of Shimura curves, completely independent of Faltings’ isogeny theorem.
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1. Introduction

In his seminal paper [27], Shimura initiated the systematic study of holo-
morphic modular forms of half-integral weight and showed that one could
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associate to a Hecke eigenform h of half-integral weight k + 1
2 a Hecke

eigenform f of integral weight 2k such that the p2-th Fourier coefficient of
h is closely related to the p-th Fourier coefficient of f . The correspondence
which associates f to h is often described as the Shimura correspondence,
and f is called the Shimura lift of h. Later, Shintani [33] described a method
to go in the other direction, namely construct modular forms of half-integral
weight beginning with forms of integral weight using the theta correspon-
dence. At around the same time, Niwa [21] also explained the original
Shimura lift in terms of theta lifts. (In the case of Maass forms, there is
a much earlier construction due to Maass [20] of the lift to forms of half-
integral weight; see [8] for an exposition.)

The relation between f and the square-free Fourier coefficients aν(h)
of h remained highly mysterious, but for a suggestion of Shimura [29] that
these should somehow be related to special values of L-functions associated
to f . In two remarkable articles [36,37] Waldspurger settled this question,
showing (roughly) that aν(h)2 is proportional (as ν varies) to the value
L(k, f ⊗χν) where χν is the quadratic character associated to the field
Q(

√
ν). A central tool that Waldspurger employs is the theta correspondence

between the groups ˜SL2 and PGL2 as in the work of Shintani and Niwa.
In a later article [38], Waldspurger also studied the theta correspondence
for the pair (˜SL2, PB×) for B a quaternion algebra, and its relation to the
Jacquet–Langlands correspondence between PGL2 and PB×.

Waldspurger’s results are representation-theoretic in nature. In particu-
lar, he does not study the arithmetic properties of the theta-lifts in either
direction. This issue was however considered by Shimura [31], who showed
that (for suitable choices of theta function) the theta lift from ˜SL2 to PB×
is algebraic and further, in the opposite direction, there is a canonical tran-
scendental period modulo which the theta lift is algebraic. In this article, we
will prove analogs of Shimura’s results for rationality over specified number
fields and also p-adic integrality. As a consequence we deduce several re-
sults relating periods of modular forms on different Shimura curves. These
results, in fact, constituted the main motivation for this article and we begin
by describing them in more detail.

Let N = N+N− be an odd square-free integer with N− a product of an
even number of primes. Let f be a holomorphic newform of even weight
2k on Γ0(N), g a holomorphic newform with respect to the unit group
of an Eichler order O′ of level N+ in the indefinite quaternion algebra B
ramified at the primes dividing N−, and with the same Hecke eigenvalues
as f . Let (F0,Φ) be a pair consisting of a Galois extension of Q that splits
B along with a suitable splitting Φ : B ⊗ F0 � M2(F0) (see Sect. 2.2.1).
Set F̃0 = Q if 2k = 2 and F̃0 = F0 otherwise. Let F be any number
field containing F̃0 and all the Hecke eigenvalues of f , let p be a prime
not dividing N and λ a prime in F lying over p. As shown in [22] and
as will be recalled below, f and g may be normalized canonically up
to λ-adic units in F. One has attached to f and g, canonical fundamental
periods u±( f, F, λ) and u±(g, F, λ), well defined up to λ-adic units in F. For
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σ ∈ Aut(C/F̃0), let u±( f σ, Fσ , λσ) and u±(gσ , Fσ , λσ) be the fundamental
periods attached to f σ and gσ . These periods are chosen such that the
period pair (u±( f, F, λ), u±( f σ, Fσ , λσ)) gives a well defined element in
(C× × C×)/(1, σ)F× (and likewise with f replaced by g). To begin with,
we have the following theorem on rationality of period ratios.

Theorem 1.1.
(

u±( f, F, λ)

u±(g, F, λ)

)σ

= u±( f σ , Fσ , λσ )

u±(gσ , Fσ , λσ)
.

In the special case k = 2, the above theorem can be used to construct
directly isogenies defined over Q between quotients of Jacobians of differ-
ent Shimura curves, without the crutch of Faltings’ isogeny theorem. This
application is treated in the last section of the article. (The idea that one
should be able to construct such isogenies by proving the rationality of
period ratios was suggested by Shimura [31].) In the case of higher weight,
one might be able to use Theorem 1.1 to derive relations between the mo-
tives associated to the forms f and g, but we have not pursued this theme
further in this article.

Indeed, our main interest is in integrality results for the ratios appear-
ing above. With this in mind, let us define u±( f ) (resp. u±(g)) to be
u±( f, F, λ) (resp. u±(g, F, λ) for any choice of F, so that both periods
are well defined up to λ-adic units. Let ν be a quadratic discriminant and
χν the quadratic character

(

ν
·
)

. It is known under rather general condi-
tions (see [34]) that A( f, ν) := |ν|k−1g(χν)(2πi)−k L(k, f, χν)/u±( f ) =
|ν|k−1g(χν)(2πi)−k L( 1

2 , πf ⊗χν)/u±( f ) is a λ-adic integer, where g(χν) is
the Gauss sum attached to χν and the ± sign holds according as χν(−1) ·
(−1)k = ±1. Here πf denotes the automorphic representation of PGL2 at-
tached to f and the L-function is being evaluated at the center of the critical
strip, this being the point s = k in the classical normalization and s = 1/2
in the automorphic normalization.

The integrality result we have in mind is motivated by the following
observation. If f has weight 2, and λ is not Eisenstein for f (i.e. the mod λ
Galois representation associated to f is irreducible), one may show, again
using Faltings’ isogeny theorem that u±( f )/u±(g) is a λ-adic unit. So it
is reasonable to ask if such a result holds for arbitrary even weights. The
following theorem provides a conditional result in that direction.

Theorem 1.2. Suppose p > 2k+1 and p � Ñ := ∏

q | N q(q+1)(q−1). Let
χν be the quadratic character associated to an odd fundamental quadratic
discriminant ν and set ε = sign((−1)kν). Suppose A( f, ν) �≡ 0 mod λ.
Then

vλ

(

uε( f )

uε(g)

)

≥ 0.
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It is naturally of interest then to ask if there always exists a quadratic
discriminant ν with prescribed sign and parity such that A( f, ν) �≡ 0 mod λ.
This question in general seems to be extremely hard. However, as mentioned
above, in the case of weight 2 (for instance for elliptic curves) and non-
Eisenstein primes λ, we know a priori from Faltings’ isogeny theorem that
uε( f )/uε(g) is a λ-adic unit. Feeding this information into the methods and
results of this article, one obtains interesting applications to questions about
the p-divisibility of the central values of quadratic twists of f . Assuming
the exact form of the Birch–Swinnerton–Dyer conjecture for elliptic curves
of rank 0, one further gets applications to questions about p-torsion of
Tate–Shafarevich groups. These applications are treated in a subsequent
article ([24]), in which we also explain an intriguing relation between the
Waldspurger packet on ˜SL2 and congruences of modular forms of integral
and half-integral weight.

The reader will note that the statements of Theorems 1.1 and 1.2 do not
involve forms of half-integral weight. Nevertheless, their proof depends cru-
cially on arithmetic properties of the Shimura correspondence and of forms
of half-integral weight. We now give an introduction to our main theorems
regarding the Shimura correspondence and the methods of this article.

Suppose χ is a character of conductor N ′ dividing 4N with χ(−1) = 1
and set M = lcm(4, NN′). Set χ0 = χ · (−1

·
)k

, let χ = χ · (−1
·
)k+τ

(where
τ = 0 or 1) be such that χ is unramified at the prime 2, and use the same
symbols χ0 and χ to denote the associated adelic characters. Also suppose fχ
and gχ are newforms in π ⊗χ and π ′ ⊗χ respectively where π and π ′ are the
automorphic representations of GL2(A) and B×(A) associated to f and g.

It follows then from work of Waldspurger that the space Sk+ 1
2
(M,χ, fχ)

consisting of holomorphic forms of weight k + 1
2 on Γ0(M) with char-

acter χ, and whose Shimura lift is fχ , is two dimensional. Further this
space has a unique one dimensional subspace, called the Kohnen subspace
S+

k+ 1
2
(M,χ, fχ), consisting of forms whose only non vanishing Fourier co-

efficients aξ are (possibly) those such that (−1)τ ξ is congruent to 0, 1 mod 4.
Let us denote by hχ a nonzero vector in this subspace with algebraic Fourier
coefficients. We may normalize hχ to have all its Fourier coefficients be
λ-adic integers in Q( f, χ), and further so that at least one is a λ-adic unit.
Here Q( f, χ) is the field generated over Q by the Hecke eigenvalues of f
and the values of the character χ.

The form hχ may in fact be obtained as a theta lift from PB× as follows.
For q | N, denote by wq and w′

q the signs of the Atkin–Lehner involutions
acting on f and g respectively, so that wq = ±w′

q, the + (resp. −) sign
holding exactly when B is unramified (resp. ramified) at q. Fix ν, an odd
quadratic fundamental discriminant such that (−1)τ = sign(ν) and such
that the following local conditions are satisfied at the primes dividing N:

(a) If q | N but q � ν, χ0,q(−1) = w′
q · χν,q(q).

(b) If q | N and q | ν, χ0,q is ramified exactly when q | N− and for such q,
χ0,q(−1) = −1.
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Let us denote by g′ the form gχ ⊗ (χχν◦Nm)−1 ∈ π ′ ⊗χν . One now con-
siders the theta correspondence for the dual pair (˜SL2, PB×). It is shown in
Sect. 3 below that the conditions (a) and (b) above imply (again from work of
Waldspurger) that the form hχ occurs in the theta lift Θ(π ′ ⊗χν,ψ

′) where
ψ′ = ψ1/|ν| and ψ is the usual additive character on Q \ AQ. Let V be the
subspace of B consisting of the trace 0 elements. For an appropriate explicit
choice of Schwartz function ϕ ∈ V(A) (see Sect. 3), one has θϕ(g′) = α0hχ

and θ t
ϕ(hχ) = βg′ for scalars α0 and β. The arithmetic properties of the

complex numbers α0 and β are then of crucial importance. It will turn out
that β is algebraic, while α0 is an algebraic multiple of the period uε(g)
where ε = sign((−1)kν). In fact it is natural to write α0 = αg(χ)uε(g), and
ik+τβ = g(χ)−1β, where g(χ) is the Gauss sum attached to χ. The following
is one of our main theorems regarding the Shimura–Shintani–Waldspurger
correspondence.

Theorem 1.3. The complex numbers α,β are algebraic, and α ∈ F(χ),
β ∈ Q( f, χ). Further, assuming p > 2k + 1 and p � Ñ , we have

(a) vλ(α) ≥ 0,
(b) vλ(β) ≥ 0.

The algebraicity of α and β is due to Shimura [31]; our contribution is
the rationality of these over F(χ),Q( f, χ) respectively and the λ-adic inte-
grality. It turns out that the theorem for α is quite easy and with adequate
preparation, is almost tautological (see Sect. 4). On the other hand, the ra-
tionality and integrality of β is much harder and requires the very detailed
analysis of Sect. 5. Here is a brief description of the ideas involved. To
check for rationality or integrality of β, it suffices to evaluate θϕ(hχ) = βg′
at specific CM points j : K ↪→ B associated to an imaginary quadratic
field K and check that the resulting values are rational or integral multiples
of appropriate CM periods. From a computational point of view, it is easier
to compute a sum of values at all Galois conjugates of a Heegner point,
twisted by a Hecke character η′; the resulting sum is interpreted as a period
integral Lη′ on a torus. Now one applies see-saw duality. It turns out that
this is rather subtle, involving the choice of two characters κ,µ depending
on η′. Here κ is a Hecke character of K of weight (k, 0) at infinity, while µ is
a finite order character ofQ×

A
. Further the pair (µ, η) is only well defined up

to replacement by (κ · (ω ◦ NmK/Q), µ · ω2) for any finite order character ω

of Q×
A

. Let πµ denote the automorphic theta representation of ˜SL2(A) asso-
ciated to µ and πκ the automorphic representation of GL2(A) associated to
the Hecke character κ. Then by an application of see-saw duality one gets
roughly an expression for Lη′ as a triple integral

Lη′
(

θ t
ϕ(hχ)

) =
∫

SL2(Q)\SL2(A)

hχ(σ)θµ(σ)θκ(σ)dσ,(1.1)

for some vectors θµ and θκ lying in πµ and πκ respectively. Let K0 be the
trace 0 elements of K , and K⊥ the orthogonal complement to K for the
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norm form on B. With respect to the decomposition V = K0 + K⊥, the
Schwartz function ϕ ∈ V(A) splits up as a sum

∑

i∈I ϕ1,i ⊗ϕ2,i over an
indexing set I . More precisely, what one gets then is not a single integral of
the form (1.1) but in fact a sum of such integrals indexed by the set I and
depending on the splitting of the pure tensor ϕ as a sum of pure tensors.
The data of such splitting is in general highly ramified, as are the local
representations involved, and so one needs an elaborate argument to show
that the sum of integrals so obtained may indeed be replaced by a single
integral with convenient choices of vectors in πµ and πκ. This argument
occupies all of Sect. 5.2. We should remark here that the weights of hχ, θµ

and θκ are k + 1
2 ,

1
2 and k + 1 respectively. As for the possibilities for the

local representations at non-archimedean primes, many different types of
ramification could occur, including for instance the possibility that πµ and
πκ are both supercuspidal, even though we have restricted the ramification
of πf to be at worst Steinberg.1

The upshot of the argument is that one has an expression for the period
integral as c · 〈H, θκ〉 for some constant c (that depends on f, χ, κ, µ) and
a modular form H of weight k + 1 with coefficients that are λ-integral
and lie in Q( f, χ), 〈·, ·〉 being the usual Petersson inner product. (It is
at this point we make use of the appendix due to Brian Conrad; indeed
the form H is naturally presented as wQ H0 for a form H0 with λ-integral
Fourier coefficients and an Atkin–Lehner operator wQ with Q | N2. The
main theorem of the appendix guarantees then that H has λ-integral Fourier
coefficients as well.) Now one applies an argument similar to that of the
authors’ previous article [22] to show that c·〈H, θκ〉/Ω is a λ-adic integer for
a suitable CM period Ω. One needs to use here a refined study of congruences
between θκ and other forms as well as the main conjecture of Iwasawa theory
for the imaginary quadratic field K , which is a deep theorem of Rubin [25].
The constant c above arises from the delicate computations with the local
integrals mentioned above, and is a p-integer but not necessarily a p-unit.
Miraculously, its p-adic valuation turns out to be exactly what is needed to
make the argument using Iwasawa theory and congruences go through. One
needs to be particularly careful here since the choice of auxiliary quadratic
discriminant ν introduces extra level structure into the problem, and with an
eye on applications, one does not want to make any assumptions on ν other
than those in Theorem 1.2. The rationality proceeds somewhat differently:
the CM period must be chosen more carefully (to depend on κ), and one then
needs to apply the rationality results of Blasius [2] for the special values of
L-functions of Grossencharacters of K .

To use the integrality of α and β we need several formulas. In what
follows we will use the symbol ∼ to denote equality up to less important
factors, and refer the reader to the main text of the article for more explicit

1 If µ is the trivial character, θµ is an Eisenstein series. In this case, the integral (1.1) is
identified with the values at s = k (in the classical normalization) of the Rankin–Selberg
Dirichlet series D(s, hχ, θκ) associated by Shimura to the cusp forms hχ and θκ of weights
k + 1

2 and k + 1 respectively.
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equations. Crucial to us is a formula for the Fourier coefficients of the theta
lift θϕ(g′) that is proved in [23]. This formula states roughly that

∣

∣aξ

(

θϕ(g
′)
)∣

∣

2 ∼ L

(

1

2
, π ⊗ χν

)

L

(

1

2
, π ⊗ χξ0

) 〈g, g〉
〈 f, f 〉(1.2)

for ξ0 = (−1)τ ξ satisfying a particular set of congruence conditions. This
formula is used in two ways. Firstly it shows that the theta lift θϕ(g′)
is nonvanishing for the particular choice of Schwartz function ϕ since
L( 1

2 , π ⊗χν) �= 0 and we can find a ξ such that L( 1
2 , π ⊗χξ0) �= 0. Sec-

ondly, comparing it with the following formula of Baruch–Mao [1] which
is proved using the relative trace formula of Jacquet,

|aξ (hχ)|2
〈h, h〉 ∼ L

(

1
2 , π ⊗ ξ0

)

〈 f, f 〉 ,(1.3)

and applying see-saw duality
〈

θϕ(g
′), hχ

〉 = 〈

g′, θ t
ϕ(hχ)

〉

,(1.4)

one obtains the following important formula

L

(

1

2
, π ⊗ χν

)

∼ αβuε(g).(1.5)

The integrality of uε( f )/uε(g) follows immediately from (1.5) using the
integrality of α and β and the assumption on A( f, ν) being a p-unit. As
a bonus, if one combines (1.5) with (1.4), one gets

〈

θ t
ϕ(hχ), θ t

ϕ(hχ)
〉 ∼ L

(

1

2
, π ⊗ χν

)

〈hχ, hχ〉(1.6)

which is nothing but the explicit version of the Rallis inner product formula
in this situation, obtained in a completely different way than the original
method of Rallis!

It would be very interesting to generalize the results of this article to
totally real fields other thanQ, but this seems to be much harder. For instance,
for a real quadratic field, one would like integral period relations between
the periods usually denoted u++, u+−, u−+ and u−−. Another interesting
question is to study the integrality properties of theta lifts from ˜SL2 to PB×
for B a definite quaternion algebra over Q. Very surprisingly, this seems
harder than the indefinite case: the reader may find a discussion of the issues
involved in the article [24].

The article is organized as follows. Sect. 2 contains preliminaries on
modular forms of integral and half-integral weight and some results ex-
tracted from Waldspurger’s article [37]. In Sect. 3, we work out, using the
results of Waldspurger’s article [38], some facts regarding the theta corres-
pondence for (˜SL2, PB×) and study the same for a certain explicit choice
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of theta function. Sections 4 and 5 are devoted to proving the rationality
and integrality of the Shintani and Shimura lifts respectively. Finally, in
Sect. 6 we explain in more detail the various formulas mentioned above,
and discuss the applications to arithmeticity of period ratios and isogenies
between new-quotients of Jacobians of Shimura curves.

Acknowledgements. The author would like to thank Don Blasius, Haruzo Hida, Steve Kudla,
Jon Rogawski, Chris Skinner and Akshay Venkatesh for useful discussions, Peter Sarnak
for pointing out the work of Maass referred to above, Brian Conrad for very kindly agreeing
to provide the Appendix and Michael Harris for his comments and a correction to an earlier
version of this article. In addition, thanks are due to the anonymous referee for a careful
reading of the article and numerous comments towards improving it. Finally, it will be
clear to the reader that the author owes a tremendous intellectual debt to Shimura, Shintani
and especially Waldspurger, whose very powerful techniques and results provide a stepping
stone on which this article builds.

2. Modular forms of integral and half-integral weight

2.1. Preliminaries

2.1.1. Metaplectic groups. Here we follow the exposition and notations
of [37, II §4]. If v is a place of Q, let˜Sv denote the metaplectic (degree 2)
cover of SL2(Qv). Likewise, let˜SA denote the metaplectic (degree 2) cover
of SL2(A). We may identify ˜Sv (resp. ˜SA) with SL2(Qv) × {±1} (resp.
SL2(A)× {±1}), the product of two elements (σ, ε), (σ ′, ε′) being given by

(σ, ε)(σ ′, ε′) = (σσ ′, εε′β(σ, σ ′)),

where βv is defined as follows. For σ = ( a b
c d ) ∈ SL2(Qv), let x(σ) = c if

c �= 0, x(σ) = d, if c = 0. For v real, let sv(σ) = 1. For v = q a finite place,
let sv(σ) = (c, d)v if cd �= 0 and vq(c) is odd, sv(σ) = 1 otherwise. Here
(·, ·)v denotes the Hilbert symbol. Then

βv(σ, σ ′) = (x(σ), x(σ ′))v(−x(σ)x(σ ′), x(σσ ′))vsv(σ)sv(σ
′)sv(σσ ′).

If σ ∈ SL2(Qv), we denote also by the same symbol σ the element
(σ, 1) ∈ ˜Sv. The map σ �→ (σ,

∏

v(sv(σ))), σ ∈ SL2(Q) is a homomorph-
ism of SL2(Q) into˜SA, the image of which we denote by the symbol SQ.

For x ∈ Qv, α ∈ Q×
v , define n(x), n(x) and d(α) to be the elements of˜Sv

given by

n(x) =
(

1 x
0 1

)

, n(x) =
(

1 0
x 1

)

, d(α) =
(

α 0
0 α−1

)

.

Let w = ( 0 1
−1 0

) ∈˜Sv and notice that

n(x) = d(−1) · w · n(−x) · w,(2.1)

in˜Sv, a relation that we will use repeatedly.
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2.1.2. For t ∈ Q×
v and ψ an additive character of Qv, let γψ(t) be the

constant associated by Weil to the character ψ and the quadratic form tx2.
Recall that for v = q, a finite prime, γψ(t) may be computed to be

γψ(t) = lim
n→∞

∫

q−nZq

ψ(tx2)dt x,(2.2)

where dtx is Haar measure chosen to be autodual with respect to the pairing
(x, y) �→ ψ(txy). We denote γψ(1) simply by the symbol γψ . Define

µψ(t) = (t, t)vγψ(t)γψ(1)−1 = γψ(1)γψ(t)−1.(2.3)

Then one has the equalities:

µψ(tt′) = (t, t′)vµψ(t)µψ(t′).
µψ(t2) = 1.

Thus µψ defines a genuine character of Q×
v , the extension of Q×

v by
{±1} given by the Hilbert symbol. For α ∈ Q×

v , let ψα denote the character
defined by ψα(x) = ψ(αx). One checks easily that

µψα(t) = (α, t)vµψ(t).

2.1.3. Let (V, 〈, 〉) be a quadratic space overQv and ψ an additive character
of Qv. Suppose Q(x) := 1

2〈x, x〉 = ∑d
i=1 ai x2

i in terms of an orthogonal
basis for V , where d = dim(V ). Set

γψ,Q :=
d
∏

i=1

γψai .

DQ :=

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(−1)(d−1)/2
d
∏

i=1

ai if d is odd,

(−1)d/2−1
d
∏

i=1

ai if d is even.

Then there exists a representation rψ of˜Sv on Sψ(V ), the Schwartz space
of V , called the Weil representation, which is characterized by

rψ(n)ϕ(x) = ψ(nQ(x))ϕ(x),(2.4)

rψ(d(α))ϕ(x) = µψ(α)d(α, DQ)v|α|d/2ϕ(αx),(2.5)
rψ(w)ϕ(x) = γψ,QFψ(ϕ)(x),(2.6)

rψ(1, ε)ϕ(x) = εdϕ(x),(2.7)

where Fψ denotes the Fourier transform with respect to the pairing
(x1, x2) �→ ψ(〈x1, x2〉), the Haar measure on V being chosen such that
Fψ(Fψ(ϕ))(x) = ϕ(−x) for all ϕ ∈ Sψ(V ).
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2.1.4. Suppose q is an odd prime. Let ψ̂ be the character on Z/qZ given
by ψ̂(1) = e−2πi/q and χ̂ any character on (Z/qZ)×, extended to Z/qZ by
setting χ̂(0) = 0. Define the Gauss sum

G(χ̂, ψ̂a) =
∑

δ∈(Z/qZ)×
χ̂(δ)e−2πiaδ/q,

so that G(χ̂, ψ̂a) = χ̂−1(a)G(η, ψ̂). If � is the unique nontrivial quadratic
character of (Z/qZ)×,

G(�, ψ̂) =
{√

q, if q ≡ 1 mod 4.

i
√

q, if q ≡ 3 mod 4.

Hence G(�, ψ̂)2 = �(−1)q.

2.1.5. Let q be a fixed finite prime and ψ the character onQq with kernelZq

such that ψ( 1
qn ) = e−2πi/qn

. If q �= 2 and t ∈ Z×
q , one easily computes that

γψ(t) = 1 and µψ(t) = 1. Thus

µψα(t) = (α, t)v,(2.8)

for any α ∈ Q×
q . If q = 2, µψ(t) = 1

2 [1 − i + (1 + i)χ−1,2(t)] for t ∈ Z×
2 . In

particular, µψ(−1) = −i. Note that µψα(−1) = (−1, α)2 · i and µψ(α)3 =
(α, α)2µψ(α) = (−1, α)2µψ(α).

Suppose now that q is odd, and ψ′ = ψα with vq(α) = −1, qα ≡
a mod q, a ∈ (Z/qZ)×. Then set G(χ̂, ψ′) := G(χ̂, ψ̂a). One computes
from (2.2) that

γψ′ = q−1/2G(�, ψ̂a) = q−1/2G(�,ψ′) = �(a)q−1/2G(�, ψ̂).(2.9)

If q = ∞, and ψ(x) = e2πix we have µψ(−1) = i.

2.1.6. Let χ be a Dirichlet character of conductor M. We denote by χ

the associated Grossencharacter of Q×
A

, satisfying χq(q) = χ(q) for almost
all q. If χq is a character of Q×

q of conductor q, we denote (in Sect. 3.2
alone) by χ̂q the induced character on Z×

q /(1 + qZq) � (Z/qZ)×.

2.1.7. Measures. We use the same conventions here as in [22]. In the inter-
est of brevity, the reader is referred to Sect. 1 of that article for the measure
normalizations used on the different local and adelic groups, the only dif-
ference being that the indefinite quaternion algebra is called D in [22] as
opposed to B in the present article.

2.2. Modular forms of integral weight on an indefinite quaternion alge-
bra. There is nothing original in this section, the only purpose of which is
to set up notation.
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2.2.1. Classical and adelic modular forms. Let B be an indefinite quater-
nion algebra over Qwith discriminant N−, and O a maximal order in B. As
in [15] we pick once and for all a finite Galois extension F0/Q (contained
in C) that splits B and an isomorphism Φ : B ⊗ F0 � M2(F0) such that
Φ(B) ⊆ M2(F0 ∩ R) and Φ(O) ⊆ M2(R) where R is the ring of integers
of F0. Thus Φ induces an isomorphism Φ∞ : B ⊗R � M2(R). Let Nm
denote the reduced norm on B. Via Φ∞, the group of reduced norm 1 elem-
ents in B ⊗R is identified with SL2(R), hence acts in the usual way on the
complex upper half-plane H, the action being γ · z = (az + b)/(cz + d)

for γ = (

a b
c d

) ∈ SL2(R), z ∈ H. Set J(γ, z) = cz + d and j(γ, z) =
(det γ)−1/2(cz + d).

To define adelic modular forms, let ω be a finite order character and use
the same symbol ω to denote the associated Grossencharacter of Q×

A
. We

view B× as an algebraic group overQ; B×
A

, B×
A f

, B×
Q will denote its group of

adelic points, points over the finite adeles and rational points respectively.
Let L2(B×

Q \ B×
A
, ω) be the space of functions s : B×

A
→ C satisfying

s(γzβ) = ω(z)s(β) ∀γ ∈ B×
Q , z ∈ Q×

A
and having finite norm under

the inner product 〈s1, s2〉 = 1
2

∫

Q
×
A

B×
Q\B×

A

s1(β)s2(β)d×β. Also let A0(ω) =
L2

0(B×
Q \ B×

A
, ω) ⊆ L2(B×

Q \ B×
A
, ω) be the closed subspace consisting of

cuspidal functions.
For U any open compact subgroup of B×

A f
and ω̃ any character of U

whose restriction to U ∩Q×
A f

equals ω|U∩Q×
A f

, denote by Sk(U, ω̃) the set of

s ∈ A0(ω) satisfying s(xuκθ) = s(x)ω̃(u)eikθ for u ∈ U , κθ = ( cos θ sin θ

− sin θ cos θ

)

.
By strong approximation for B×

A
, there exist ti ∈ B×

A f
, i = 1, . . . , hU , such

that

B×
A

=
hU
⊔

i=1

B×tiU(B×
∞)+,(2.10)

where hU is the cardinality of Q× \ Q×
A
/ Nm(U)(Q×∞)+. Let Γi(U) =

B×
Q ∩ tiU(B×∞)+t−1

i and define ωi to be the character on Γi(U) defined
by ωi(γ) = ω̃−1(t−1

i γ ti). One defines the space Sk(Γi, ωi) to consist of
holomorphic functions f : H→ C satisfying

(i) g(γz) = j(γ, z)kωi(γ)g(z),
(ii) g vanishes at the cusps of Γi(U).

If ω̃ (resp. ωi) is the trivial character, we write simply Sk(U) (resp.
Sk(Γi(U))). Also, if hU = 1, we simply write Γ(U) instead of Γ1(U). Given
a collection of elements g = {gi}, gi ∈ Sk(Γi(U), ωi), define sg ∈ Sk(U, ω̃)

by sg(β) = gi(β∞(ı)) j(β∞, ı)−kω̃(u), if β = γ tiuβ∞, γ ∈ B×
Q , u ∈ U ,

β∞ ∈ (B×∞)+. This is easily seen to be independent of the choice of the
decomposition β = γ tiuβ∞. The assignment g �→ sg gives an isomorphism
⊕

i Sk(Γi(U), ωi) � Sk(U, ω̃).
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Remark 2.1. Suppose B = M(Q), ω has conductor M and U = ∏

Uq
where

U =
{(

a b
c d

)

∈ GL2(Zq), c ≡ 0 mod M

}

.

Then hU = 1, Γ(U) = Γ0(M), and the character ω on Γ(U) is iden-
tified with the character

( a b
c d

) �→ ω(d) on Γ0(M). Thus Sk(U, ω̃) �
Sk(Γ(U), ω) = Sk(Γ0(M), ω).

2.2.2. Shimura curves. Let H∗ = H if B �= M2(Q) and H∗ = H ∪ Q ∪ ∞
if B = M2(Q). Consider the analytic space

Y an
U = B× \ B×

A
/U · R× SO2(R) = B× \ H× B×

A f
/U,

and its compactification

Xan
U = B× \ H∗ × B×

A f
/U =

hU
⊔

i=i

Γi(U) \ H∗,

the last equality corresponding to the decomposition in (2.10). Shimura
has shown that Xan

U is the analytic space associated to a smooth curve XU
defined over Q. The curve XU is possibly disconnected, each component
being defined over the class field of Q, denoted QU , corresponding to the
open subgroup Q× Nm(U)(R×)+ of Q×

A
. The set of components of XU is

canonically identified with Gal(QU/Q).
Suppose g = {gi} ∈ ⊕

i S2k(Γi(U)). For each i, the differential form
(2πıdz)⊗ kgi(z) is Γi(U) invariant, hence descends to a section of Ωk on
Γi(U) \ H∗ (by the cuspidality of gi), which we denote by g̃i . Let g̃ be
the section of Ωk on XU that equals g̃i on the component Γi(U) \ H∗. The
assignment g �→ g̃ gives an isomorphism

⊕

i

S2k(Γi(U)) � H0(XU,C,Ω
k
)

.

2.2.3. Automorphic representations and newforms. Let π be any irreducible
representation of the Hecke algebra of B×

A
that occurs in A0(ω). It is well

known that π factors as an infinite tensor product π = ⊗

q≤∞ πq, where
πq is an irreducible representation of (the Hecke algebra of) B×(Qq). In
this article, we will only consider those π that satisfy the following two
conditions:

(∗) π∞ is the weight-2k discrete series representation σ(| · | 2k−1
2 , | · | 2k−1

2 )
of GL2(R).

(∗∗) If q | N−, πq is a one-dimensional representation of B×(Qq).

In this case, one may pick a distinguished line in π, defined to be the
span of a vector v = ⊗

q vq where the vq are defined as follows:
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(a) For any finite q � N−, by a theorem of Casselman [3], there exists
a unique power qnq such that the space of vectors in πq that is invariant
under

{

γ =
(

a b
c d

)

∈ GL2(Zq), c ≡ 0 mod qnq , d ≡ 1 mod qnq

}

is one-dimensional. We take vq to be any such non-zero vector. Note
that if nq ≥ 1, vq is the unique vector up to multiplication by a scalar
that transforms under

{

γ =
(

a b
c d

)

∈ GL2(Zq), c ≡ 0 mod qnq

}

by the character γ �→ ωq(d).
(b) For q | N−, we take vq to be any non-zero vector in the one-dimensional

representation πq.
(c) For q = ∞, the restriction of π∞ to SL2(R) splits as the direct sum

of the weight-2k holomorphic and antiholomorphic discrete series, and
we take v∞ to correspond to a lowest weight vector in the former.

Any multiple of v will be called a newform in π.

2.2.4. Some relevant open compact subgroups. We now pick some specific
examples of open compact U that will play an important role in this article.
We fix once and for all isomorphisms Φq : B ⊗Qq → M2(Qq) for q � N−
such that Φq(O ⊗Zq) = M2(Zq). Let N+ be an integer coprime to N− and
O′ the unique Eichler order of level N+ in B such that for q � N−

Φq
(

O′ ⊗ Zq
) =

{(

a b
c d

)

∈ M2(Zq), c ≡ 0 mod N+
}

,

and for q | N−, O′ ⊗Zq = O ⊗Zq.
Set N = N+N−. Let χ be a character of conductor Nχ dividing N. Let

O′(χ) be the unique Eichler order in B such that O′(χ)⊗Zq = O′ ⊗Zq,
unless q | Nχ and q | N+, in which case

Φq
(

O′(χ) ⊗ Zq
) =

{(

a b
c d

)

∈ M2(Zq), c ≡ 0 mod q2

}

.

We now define the following open compact subgroups of B×
A f

.

(1) U0 = ∏

q U0,q where U0,q = (O′ ⊗Zq)
×.

(2) U0(χ) = ∏

q U0,q(χ), where U0,q(χ) = (O′(χ)⊗Zq)
×.

(3) U1(χ) = ∏

q U1,q(χ), where U1,q(χ) = U0,q = U0,q(χ) if q � Nχ or if
q � N+, and

U1,q(χ) =
{(

a b
c d

)

∈ U0,q(χ), d ≡ 1 mod q

}

if q | Nχ, and q | N+.
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Let ωχ = χ2. We define below a character ω̃χ on U0(χ) such that
ω̃χ|
Ẑ× = ωχ|

Ẑ× . Firstly, for each q define ω̃χ,q on U0,q(χ) as follows:

• For q � Nχ , ω̃χ,q(u) = 1 for any u ∈ U0,q(χ).
• For q | Nχ and q | N+, ω̃χ,q(u) = χq(d)2 for u = (

a b
c d

) ∈ U0,q(χ).
• For q | Nχ and q | N−, ω̃χ,q(u) = χq(Nm(u)) for u ∈ U0,q(χ).

Then, set ω̃χ = ∏

q ω̃χ,q on U0(χ). Now letting Γ (resp. Γχ) be the group of
norm 1 units in O′ (resp. O′(χ)), we see from the previous section that we
have canonical isomorphisms

S2k
(

Γχ, χ ′) � S2k(U0(χ), ω̃χ)

S2k(Γ) � S2k(U0)
(2.11)

where χ ′ is defined to be the restriction of ω̃−1
χ to Γχ ⊆ U0,q. (Note that in

the case B = M2(Q), χ ′(γ) = χ2(d) for γ = (

a b
c d

) ∈ Γχ .)
Let Γ1

χ = B× ∩U1(χ)(B×∞)+. Since B×
A

= B×(U1(χ)(B×∞)+), and χ ′|Γ1
χ

is the trivial character, we have an isomorphism

S2k
(

Γ1
χ

) � S2k(U1(χ), ω̃χ).(2.12)

Let g ∈ S2k(Γ) = S2k(U0) be a newform. Denote by πg the automorphic
representation of B×

A
generated by sg. Since N is square-free, πg satisfies

both conditions (∗) and (∗∗), and sg is a newform in πg. For χ as above, we
denote by πg,χ the representation πg ⊗ (χ ◦ Nm). It is clear that πg,χ also
satisfies conditions (∗) and (∗∗), and it follows from Casselman’s theorem
mentioned above that there is a vector gχ ∈ S2k(U0(χ), ω̃χ), unique up to
scalar multiplication, such that sgχ

is a newform in πg,χ .
For the moment, g and gχ are only well defined up to scalars, but we

will see below that (at least for p � N) they may be canonically normalized
up to p-adic units in a suitable number field.

2.2.5. Complex conjugation and action of an element of negative norm.
For δ any unit in O′(χ) with reduced norm −1 and g′ ∈ S2k(Γχ, χ ′)
(resp. g′ ∈ S2k(Γχ, χ ′)), denote by g′|δ the form given by (g′|δ)(z) =
J(δ, z)−2kχ ′(δ)g′(δz) (resp. (g′|δ)(z) = J(δ, z)−2kχ ′(δ)g′(δz).) If δ′ is any
other such element, then γ := δδ′−1 ∈ Γχ , hence g′|δ is independent of the
choice of δ. Let g′c = g′|δ for any such choice of δ. If g′ ∈ S2k(Γχ, χ ′) (resp.
S2k(Γχ, χ ′)) then g′|δ ∈ S2k(Γχ, χ ′) (resp. S2k(Γχ, χ ′)) and g′c ∈ S2k(Γχ, χ ′)
(resp. S2k(Γχ, χ ′)). It is easy to check that (g′|δ)|δ = g′ and ((g′)c)c = g′.

Let J denote the element
( −1 0

0 1

) ∈ B×∞ = GL2(R) and let sJ
g′ be the

element of πg′ given by sJ
g′(β) = sg′(βJ). Let β ∈ B×

A
and suppose that
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β = γuβ∞ and βJ = γ ′u′β′∞ are decompositions given by (2.10) with
U = U0,χ. Thus γu = γ ′u′ and γβ∞ = γ ′β′∞J. Let δ = (γ ′)−1γ , so that
also δ = u′u−1 = β′∞Jβ−1∞ . Thus δ is a unit in O′

χ of negative reduced
norm, whence Nm(δ) = −1. Now, letting z = β∞ · ı, we see that

sg′(βJ)

= g′(β′
∞(ı)) j(β′

∞, ı)−2kω̃χ(u′)
= g′(β′

∞(ı))J(β′
∞, ı)−2k Nm(β′

∞)kω̃χ(u′)
= g′(δβ∞J(ı))J(δβ∞J, ı)−2k Nm(β∞)kω̃χ(δu)

= g′(δz)J(δ, z)−2k J(β∞,−ı)−2k Nm(β∞)k J(J, ı)−2k(χ ′)−1(δ)ω̃χ(u).

Thus

sJ
g′(β) = sg′(βJ) = J(δ, z)−2kχ ′(δ)g′(δz) j(β∞, ı)−2k(ω̃χ)−1(u) = sg′|δ(β),

so that sJ
g′ = sg′|δ.

2.2.6. Rational and integral structures. Let L := Lgχ
be the field generated

by the Hecke eigenvalues of gχ and let p be a prime not dividing N. Fix
once and for all an embedding λ : Q ↪→ Qp. The inclusion U1,χ

φ−→ U0,χ

yields an inclusion φ∗ : S2k(U0(χ), ω̃χ) ↪→ S2k(U1(χ), ω̃χ) = S2k(Γ
1
χ) �

H0(XU1(χ),Ω
k). The curve X := XU1(χ) has good reduction over Z[ 1

N ] and
hence in particular at p. Let X be the minimal regular model of X over Zp.
Thus we have inclusions

H0
(

XL,Ω⊗k
)

↪→ H0
(

XLλ
,Ω⊗k

) ←↩ H0
(

XOλ
,Ω⊗k

) =: ML,λ.

For any σ ∈ Gal(Q/Q), let (gχ)σ be the newform (defined up to a scalar)
whose Hecke eigenvalues are obtained by applying σ to the Hecke eigen-
values of gχ . We then normalize the collection {(gχ)σ } by requiring that
˜φ∗(s(gχ)σ ) ∈ H0(XLσ ,Ω⊗ k), be a primitive element in the lattice MLσ ,λ,

and further that the compatibility condition

φ̃∗(gχ)σ = φ̃∗(gχ)
σ

be satisfied for all σ . This defines s(gχ)σ up to an element of (Lσ )× that is
a unit at all primes above p.

When B = M2(Q), the rational and integral structures defined above
agree with the usual structures provided by the q-expansion principle. When
B �= M2(Q), no q-expansions are available; however evaluating at CM
points provides a suitable alternative criterion for rationality and integrality.
(See Proposition 5.1 for an exact statement.)
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2.3. Modular forms of half-integral weight: review of Waldspurger’s
work

2.3.1. Classical and adelic modular forms. For γ = (

a b
c d

) ∈ Γ0(4) and
z ∈ C, define

j̃(γ, z) =
( c

d

)

µψ,2(d)(cz + d)1/2,

so that j̃(γ, z)4 = j(γ, z)2. Here
( ·

·
)

denotes the Kronecker symbol as in [27,
p. 442]. Let M be a positive integer, divisible by 4, κ = 2k + 1 be an odd
positive integer and χ a Dirichlet character modulo M such that χ(−1) = 1.
Let χ0 = χ·(−1

·
)k

and use the same symbol χ0 to denote the associated adelic
character. We denote by Sκ/2(M,χ) the space of holomorphic functions h
on H, that satisfy

h(γ(z)) = j̃(γ, z)κχ(d)h(z)

for all γ = (

a b
c d

) ∈ Γ0(M), and that vanish at the cusps of Γ0(M).
We now review the adelic definition of forms of half-integral weight.

Let ρ̃ denote the right regular representation of the Hecke algebra of˜SA on
Ã0, the space of cusp forms on SQ \˜SA. Also let Γq = SL2(Zq) and Γq(n) =
{x = (

a b
c d

) ∈ Γq, d ≡ 0 mod qn}. We define, following Waldspurger [37],
Ãκ/2(M, χ0) to be the subspace of Ã0 consisting of elements t satisfying

(i) If q �M and σ ∈ Γq , ρ̃q(σ)t = t;
(ii) If q | M, q �= 2 and σ = (

a b
c d

) ∈ Γq(vq(M)), ρ̃q(σ)t = χ0,q(d)t;
(iii) For σ = (

a b
c d

) ∈ Γ2(v2(M)), ρ̃2(σ)t = ε̃2(σ)χ0,2(d)t;
(iv) If θ ∈ R, ρ̃R(κ̃(θ))(t) = eiκθ/2t;
(v) ρ̃R(D̃)t = [κ(κ − 4)/8]t;
where ρ̃q denotes the restriction of ρ to ˜Sq, D̃ is the Casimir element for
˜SR and ε̃2(σ), κ̃(θ) are defined on p. 382 of [37]. For z = u + iv ∈ H, let
b(z) ∈˜SA be the element which is 1 at all the non-archimedean places and
equal to

(

v1/2 uv−1/2

0 v−1/2

)

at the real place. If h ∈ Sκ/2(M), there exists a unique continuous function
th on SQ \˜SA, such that for all z ∈ H, θ ∈ R,

th(b(z)κ̃(θ)) = vκ/4eiκθ/2h(z).

Proposition 2.2 ([37, Proposition 3]). If h ∈ Sκ/2(M,χ), th ∈ Ãκ/2(M, χ0).
The assignment h �→ th gives an isomorphism Sκ/2(M,χ) � Ãκ/2(M, χ0).
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Remark 2.3. (a) Our χ and χ0 play the role of the symbols χ and χ0
respectively of Waldspurger’s article [37]. We will also use the symbol χ
below, but for a character that does not play any role in [37].

(b) When convenient, we identify Sκ/2(M,χ) and Ãκ/2(M, χ0) via the
isomorphism above.

2.3.2. Fourier coefficients: rational and integral structures. Let h ∈ Sκ/2(M).
Then h has a familiar q-expansion

h =
∑

ξ∈Z,ξ>0

aξ(h)qξ

where q = e2πiz . We say that h is algebraic (resp. F-rational, resp. λ-inte-
gral) if for all ξ the coefficients aξ(h) are algebraic (resp. lie in F, resp. are
λ-integral.) Further, h is said to be λ-adically normalized if it is λ-integral
and if at least one Fourier coefficient of h is a unit at λ.

Let t ∈ Ã0. Let ψ denote the usual additive character of Q \ A i.e.
ψ∞(x) = e2πix and ψq is the unique character on Qq with kernel Zq such
that ψq(x) = e−2πix for x ∈ Z[ 1

q ]. Define the ψξ -th Fourier coefficient of t

to be the function on˜SA given by

W(t, ψξ , σ) =
∫

Q\A
t(nσ)ψξ(−n)dn.

The relation between the classical and adelic Fourier coefficients is

Proposition 2.4 ([37, Lemma 3]). Let h ∈ Sκ/2(M). Then

aξ (h) = v−κ/4e2πξvW
(

th, ψ
ξ, dR(v1/2)

)

.

2.4. The Shimura correspondence. We now assume that N is odd and
fix, as in the introduction, a holomorphic newform f ∈ S2k(Γ0(N)). The
following proposition can be extracted from the main result of [37]. (The
form fχ that occurs below is a newform in πf ⊗χ as defined in Sect. 2.2.4.
Also the reader is referred to [37, Sect. I.2] for the definition of the space
Sk+ 1

2
(M,χ, fχ) in the statement of the proposition.)

Proposition 2.5. Let χ be a character of conductor dividing 4N with
χ(−1) = 1, N ′ := cond(χ), M := lcm(4, N ′N), and suppose χ :=
χ · (−1

·
)k+τ

is unramified at 2. Then Sk+ 1
2
(M,χ, fχ) ⊆ Ãk+ 1

2
(M, χ0) is

two dimensional. Further, it admits a unique one-dimensional subspace
S+

k+ 1
2
(M,χ, fχ), called the Kohnen subspace, consisting of forms h, all

whose nonzero Fourier coefficients aξ (h) satisfy χ0,2(−1)ξ ≡ 0, 1 mod 4
i.e. (−1)τ ξ ≡ 0, 1 mod 4.
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More precisely, if hχ denotes a non-zero vector in S+
k+ 1

2
(M,χ, fχ),

wq the eigenvalue of the Atkin–Lehner involution (at q) acting on f ,
ξ0 = (−1)τξ and aξ (hχ) denotes the ξ-th Fourier coefficient of hχ , then
aξ(hχ) = 0 unless the following conditions are satisfied:

(a) For all q | N, q � N ′, (
ξ0
q ) �= −wq.

(b) For all q | N ′, (
ξ0
q ) = χ0,q(−1)wq = χq(−1)wq.

(c) ξ0 ≡ 0, 1 mod 4.

If (a), (b), (c), are satisfied, and ξ0 is a fundamental quadratic discriminant,
then

aξ (hχ)2 = A · |ξ|k−1/2L

(

1

2
, π ⊗ χξ0

)

,

for a nonzero constant A depending on f, χ and the choice of hχ .

Proof. For the benefit of the reader, we indicate how this may be deduced
from [37]. We refer the reader to Sect. VIII of the same article for the
notations used in this proof. Recall that fχ is the newform of character χ2

associated to the representation π ⊗χ. Then cond( fχ) = M/4. Waldspurger
has defined for each q and each integer e, a set Uq(e, fχ) consisting of
functions on Q×

q with support in Z×
q and invariant by (Z×

q )2. Let E be any
integer and eq = vq(E). For A any function on the square-free integers and
cE = (cq) ∈ ∏

q Uq(eq, fχ), let

h(cE, A)(z) =
∞
∑

n=1

an(cE, A)e2πinz,

an(cE, A) = A(nsf)n(2k−1)/4
∏

q

cq(n),

where nsf denotes the square-free part of n. Let U(E, fχ, A) be the span of
all such functions h(cE, A) as cE varies. The main result of [37, Theorem 1,
p. 378], states that for any integer M′,

Sk+ 1
2

(

M′,χ, fχ
) =

⊕

M
4 | E | M′

U
(

E, fχ, A fχ
)

,

where A fχ is a function on the square-free positive integers satisfying

A fχ (ξ)2 = L
(

1/2, fχ ⊗ χ−1
0 χξ

)

ε
(

1/2, χ−1
0 χξ

)

= L(1/2, f ⊗ χξ0)ε
(

1/2, χ−1
0 χξ

)

.

It follows from this and the computations below (at the prime 2) that Sk+ 1
2

(M,χ, fχ) = U(M, fχ, A fχ ). To check that Sk+ 1
2
(M,χ, fχ) is two dimen-

sional, it is sufficient to check (with E = M) that Uq(eq, fχ) has cardinality
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equal to 1 for all q �= 2 and U2(e2, fχ) has cardinality equal to 2. As for
the statement about the Fourier coefficients one needs to review carefully
the definition of the sets Uq(eq, fχ) which may be found on pp. 454–455
of [37]. We consider various cases:

Case A. If q �= 2, q | N, q � N ′, we are in Case (4) of [37]: ñq = mq = e = 1,
λ′

q = −q−1/2χq(q)wq. Then Uq(e, fχ) = {cs
q[λ′

q]}. If u ∈ Z×
q ,

cs
q

[

λ′
q

]

(u) =

⎧

⎪

⎨

⎪

⎩

21/2 if (q, u)q = −q1/2χ0,q(q−1)λ′
q,

i.e. if (q, (−1)τu)q = wq,

0 otherwise, i.e. if (q, (−1)τu)q = −wq.

If u ∈ qZ×
q , then cs

q[λ′
q](u) = 1. Thus Uq(e, fχ) indeed consists of a single

element cq and cq(ξ) �= 0 if and only if ξ satisfies condition (a) of the
proposition.

Case B. If q �= 2, q | N ′, we are in Case (1) of [37]: mq = 2, λ′
q = 0,

e = ñq = 2. Let ε be a unit in Zq which is not a square. Note that
χq(−1) = χ0,q(−1). By [37, Proposition 19, p. 480],

ωq( fχ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

Q×
q /(Q×

q )2
) \ (−1)τε(Q×

q )2 if χq(−1) = χ0,q(−1) = 1,

wq = 1,
(

Q×
q /(Q×

q )2
) \ (−1)τ(Q×

q )2 if χq(−1) = χ0,q(−1) = 1,

wq = −1,

(−1)τε(Q×
q )2 if χq(−1) = χ0,q(−1) = −1,

wq = 1,

(−1)τ (Q×
q )2 if χq(−1) = χ0,q(−1) = −1,

wq = −1.

Hence Uq(e, fχ) = {γ [0, ν]; ν ∈ ωq( fχ), vq(ν) ≡ 0(2)} = {γ [0, u],
vq(u) = 0, ((−1)τu, q)q = χ0,q(−1) · wq}. Thus Uq(e, fχ) consists of
a single element cq and cq(ξ) �= 0 if and only if ξ satisfies condition (b) of
the proposition.

Case C. q = 2. We are now in Case (8) of [37]: m2 = 0, ñ2 = 2 and we
only need to consider e = 2. If α2 �= α′

2, U2(e, fχ) consists of two elements
δ1 = c′

2[α2], δ2 = c′
2[α′

2]. If c = δ1 − δ2, one checks that c(u) = 0 unless
(−1)τu ≡ 0, 1 mod 4, and that any linear combination of δ1, δ2 with this
property must be a scalar multiple of c. If α2 = α′

2 = α, say, U2(e, fχ)
consists again of two elements γ1 = c′

2[α], γ2 = c′′
2[α]. Now one checks

that γ2 satisfies γ2(u) = 0 unless (−1)τu ≡ 0, 1 mod 4, and that this is the
only linear combination of γ1 and γ2 with this property. ��



540 K. Prasanna

3. Explicit theta correspondence

3.1. Theta correspondence for the pair (˜SL2, PB×). Let ψ′ be any char-
acter of Q \ A. Let V ⊂ B be the subspace of trace 0 elements, thought
of as a quadratic space with Q(x) = − Nm(x) and let 〈, 〉 denote the as-
sociated bilinear form, 〈x, y〉 = −(xyi + yxi), i being the main involution.
The metaplectic cover ˜Sp(W ⊗ V ) splits over the orthogonal group O(V )
whose identity component is identified with PB×, the action of β ∈ PB×
on V being given by R(β)(v) = βvβ−1. Thus, for each place v of Q, the
Weil representation of ˜Sp(W ⊗ V )v yields a representation of˜Sv ×PB×

v on
Sψ′(V ⊗Qv) denoted ωψ′ . The restriction of ωψ′ to ˜Sv is a genuine repre-
sentation of˜Sv, denoted rψ′ , satisfying

rψ′(n)ϕ(x) = ψ′(nQ(x))ϕ(x),(3.1)

rψ′(d(a))ϕ(x) = µψ′(a)(a,−1)v|a|3/2ϕ(ax),(3.2)
rψ′(w, ε)ϕ(x) = εγψ′,QFψ′(ϕ),(3.3)

where we write ψ′ instead of ψ′
v. The Haar measure on V ⊗Qv is picked

to be autodual with respect to the pairing (x1, x2) �→ ψ′(〈x1, x2〉). Further,
ωψ′(σ, β) = rψ′(σ)R(β), where R(β)ϕ(x) = ϕ(β−1xβ).

For s ∈ A0, t ∈ Ã0, ϕ ∈ Sψ′(VA), define

θ(ψ′, ϕ, σ, β) =
∑

x∈V

rψ′(σ)R(β)ϕ(x),

tψ′(ϕ, σ, s) =
∫

PB×
Q\PB×

A

θ(ψ′, ϕ, σ, β)s(β)d×β,

Tψ′(ϕ, β, t) =
∫

SL2(Q)\SL2(A)

θ(ψ′, ϕ, σ, β)t(σ)dσ.

If V, Ṽ denote representations of the Hecke algebras of PB×
A

,˜SA respect-
ively, we set

Θ(V, ψ′) = {tψ′(ϕ, ·, s); s ∈ V, ϕ ∈ Sψ′(VA)},
Θ(Ṽ , ψ′) = {Tψ′(ϕ, ·, t); t ∈ Ṽ , ϕ ∈ Sψ′(VA)},

these being representation spaces for the Hecke algebras of˜SA, PB×
A

respect-
ively. If we need to work with PB× and PGL2 simultaneously, we write Θ0
instead of Θ for the lifts between ˜SL2 and PGL2 to distinguish these from
the lifts between ˜SL2 and PB×.

Let ν be an odd quadratic discriminant, δ = ν/|ν| and set ψ′ = ψ1/|ν| =
ψδ/ν. (In future we will write F (ϕ) for Fψ′(ϕ), with this choice of ψ′.) Also
let τ be such that δ = (−1)τ . For f as in the previous section let π denote
the automorphic representation of PGL2 corresponding to f and π ′ the cor-
responding representation of PB× associated by Jacquet–Langlands. Thus
π ′ = πg for a newform g ∈ S2k(Γ). We normalize g as in Sect. 2.2.6. We now
compute the central character of π̃ := Θ(π ′ ⊗χν,ψ

′) using results in [38].
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Lemma 3.1. Let γq be defined by ε(πq ⊗χν,q, 1/2) = γqχν,q(−1)ε(πq, 1/2).
Then

γq =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if q � N,

χν,q(q) if q | N, q � ν,
wq if q | N, q | ν,

sign(ν) if q = ∞.

Proof. For q � N, this is easy to check. Assume q | N. Let πq � σ(µ,µ−1)
and {1, η, q, ηq} with η a unit in Zq be a set of coset representatives for
Q×

q /(Q×
q )2. If µ �= | · |1/2, then wq = 1, and Qq(πq) = Q×

q \η(Q×
q )2 by [38,

Lemme 1, p. 226]. (We refer the reader to the same article for the definition
of Qv(πv).) If µ = | · |1/2, then wq = −1 and Qq(πq) = (Q×

q )2 by the same
lemma. Finally, Q∞(π∞) = R∗+. By [38, Theorem 2],

ε(πq ⊗ χν,q, 1/2) = ±χν,q(−1)ε(πq, 1/2),

where the + or − sign holds according as ν ∈ Qq(πq) or not. The lemma
follows. ��
Proposition 3.2. Let αq := ±1 according as q | N+ or q | N−. Then

π̃q(−1) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1 if q � 2N,

χν,q(q)w′
q if q | N, q � ν,

αq if q | N, q | ν,
(−1)ki if q = ∞,

−δi if q = 2.

Proof. Let π̃q = Θ(π ′
q ⊗χν,q, ψ

′
q). For convenience of notation we drop

the subscript q in the equations below.

π̃(−1) = ε(π̃, ψ′)µψ′(−1)

= ε(Θ(π ′ ⊗ χν,ψ
′), ψ′) · (δν,−1) · µψ(−1)

= α · (δν,−1) · µψ(−1) · ε(Θ(π ⊗ χν,ψ
′), ψ′)

([37, Theorem 2, p. 277])
= α · (δν,−1) · µψ(−1) · ε(π ⊗ χν, 1/2)

([37, Lemme 6, p. 234])
= α · γ · (δ,−1) · µψ(−1) · ε(π, 1/2)

= α · γ · (δ,−1) · µψ(−1) · w

= γ · (δ,−1) · µψ(−1)w′.

Note that for q = 2, γ = 1, µψ(−1) = −i and w′
2 = w2 = 1. The

proposition is now immediate from the preceding lemma. ��
We can now show that the form hχ can be constructed as a theta lift from

PB×. Indeed, we have the following proposition.
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Proposition 3.3. Suppose that L( 1
2 , π ⊗χν) �= 0 and that χ is a character

of conductor dividing 4N with χ(−1) = 1 and satisfying the following
conditions:

(a) If q | N, q � ν, χ0,q(−1) = χν,q(q)w′
q(= αqχν,q(q)wq).

(b) If q | N, q | ν, χ0,q(−1) = αq.

Then for χ = χ · (−1
·
)k+τ

, one has that χ is unramified at 2 and
Sk+ 1

2
(M,χ, fχ) ⊆ Θ(π ′ ⊗χν,ψ

′). In fact if π̃ denotes this last repre-
sentation, we have Sk+ 1

2
(M,χ, fχ) = Sk+ 1

2
(M,χ, π̃) (notation as in [37,

p. 391].)

Proof. We shall see below that χ is unramified at 2 and hence Sk+ 1
2
(M,χ, fχ)

is one dimensional by Proposition 2.5. Assuming this for the moment,
let h be any non zero form in Sk+ 1

2
(M,χ, fχ) and denote by T the auto-

morphic representation of˜SA generated by h. By [37, Proposition 4, p. 391],
V ′(ψ, T ) = V0 ⊗χ−1

0 where V0 is the automorphic representation of
GL2(A) generated by fχ . (See [36, p. 99] for the definition of V ′(ψ, T ).) If
Ṽ is the automorphic representation of PGL2(A) generated by f , we see that
V0 ⊗χ−1

0 = Ṽ ⊗χτ
−1. By the definition of V ′(ψ, T ), there exists α ∈ Q×

such that Θ0(T, ψα) = Ṽ ⊗χτ
−1 ⊗χα. (Here Θ0 denotes the lift to PGL2.)

Hence Θ0(Ṽ ⊗χτ
−1 ⊗χα,ψ

α) = T . Then π̃ = Θ(π ′ ⊗χτ
−1 ⊗χ|ν|, ψ|ν|) =

Θ(π ′ ⊗χν,ψ
′) is non-zero by [38, Proposition 22, p. 295] and is in the

same Waldspurger packet as T . By [38, Theorem 3, p. 381], to show that
π̃ = T , it suffices to show that their central characters agree i.e. that the
central character of h is equal to the central character of π̃. This is clear at
the finite places q, q �= 2 and for q = ∞ from the previous proposition and
from conditions (a) and (b). For q = 2 one notes that

ε

(

π ⊗ χν,
1

2

)

=
∏

q

ε

(

πq ⊗ χν,q,
1

2

)

=
∏

q | N,q � ν

(ν,−q)qwq ·
∏

q | N,q | ν
(−1, q)q · χν,2(−1) · (−1)k

=
∏

q | N,q � ν

(ν,−q)qαqwq ·
∏

q | N,q | ν
(−1, q)qαq ·χν,2(−1) · (−1)k

=
∏

q | N

χ0,q(−1) ·
∏

q | 2ν

χν,q(−1) · χ0,∞(−1)

=χ0,2(−1) · χν,∞(−1).

Since L( 1
2 , π ⊗χν) �= 0, χ0,2(−1) = χν,∞(−1) = δ. Thus π̃(−1) =

−δi = ε̃2(−1)χ0,2(−1), as required. This shows that T = π̃ and hence
Sk+ 1

2
(M,χ, fχ) ⊆ Sk+ 1

2
(M,χ, π̃). The other inclusion follows from [37,

Proposition 4 (ii), p. 391] since V ′(ψ, π̃) = V0 ⊗χ−1
0 . Finally, note that
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since χ = χ0 · (−1
·
)τ

, χ2(−1) = 1 and χ is unramified at 2 as promised
earlier in the proof. ��

In Sect. 3.2 we shall pick an explicit Schwartz function ϕ ∈ Sψ′(VA)
and a vector s ∈ π ′ ⊗χν such that tψ′(ϕ, ·, s) equals (some multiple of) hχ .

3.2. Explicit theta functions. For q | N−, let Lq be the unique unramified
extension of Qq of degree 2, π a uniformizer in Zq and Bπ the quaternion
algebra given by

Bπ = Lq + Lqu
um = mu for m ∈ L

u2 = π.

Fix once and for all an isomorphism B ⊗Qq � Bπ . This isomorphism
must necessarily identify O′ ⊗Zq with Rq + Rqu, where Rq is the ring of
integers of Lq. Also fix once and for all a unit ω ∈ Rq with ω2 ∈ Zq, such
that Rq = Zq + Zqω. Hence R0

q = Zqω.
Let χ, ν, χ0, χ,ψ′ be as in the previous section and suppose χ0,q is

unramified for q | gcd(ν, N+). Let sgχ
be a newform in π ′ ⊗χ = πg ⊗χ,

normalized as in Sect. 2.2.6, and sg,χ the unique element of πg such that
sg,χ(β) · χ(Nm(β)) = sgχ

(β) i.e. sg,χ ⊗ (χ ◦ Nm) = gχ . Also set s =
sg,χ ⊗ (χν ◦ Nm) ∈ πg ⊗χν.

We now make the following choice of Schwartz function ϕ = ϕ f,χ,ν ∈
Sψ′(VA): ϕ = ∏

v ϕv where:

(a) If q is odd and q � νN+N−, ϕq = I{x∈O′ ⊗Zq,tr(x)=0}.
(b) If q | ν, q � N, ϕq

(

b −a
c −b

)

= 0, unless a, b, c ∈ Zq, b2 − ac ∈ qZq, in
which case

ϕq

(

b −a
c −b

)

=
{

χν,q(a) (resp. χν,q(c)), if vq(a) = 0 (resp. vq(c) = 0),

0, otherwise i.e. if both vq(a) = 0 and vq(c) = 0.

(c1) If q | N+, q � ν, and χ0,q is unramified, ϕq = I{x∈O′ ⊗Zq,tr(x)=0}.
(c2) If q | N+, q � ν, and χ0,q is ramified, ϕq

(

b −a
c −b

)

= 0, unless a ∈ 1
qZq,

b ∈ Zq, c ∈ q2Zq in which case

ϕq

(

b −a
c −b

)

=
{(

χν,qχ
−1
0,q

)

(a′) = χ−1
0,q(a

′) if vq(a) = −1, a = a′/q,

0, if vq(a) ≥ 0.

(c3) If q | N+, q | ν, so that χ0,q is unramified, ϕq

(

b −a
c −b

)

= 0, unless
a ∈ Zq, b ∈ qZq, c ∈ qZq in which case

ϕq

(

b −a
c −b

)

=
{(

χν,qχ
−1
0,q

)

(a) = χν,q(a) if vq(a) = 0,

0, if vq(a) ≥ 1.
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(d1) If q | N−, q � ν, ϕq(a + bu) = 0 unless a ∈ R0
q, b ∈ Rq in which case

ϕq(a + bu) =
⎧

⎨

⎩

(

χν,qχ
−1
0,q

)

(a′), if χ0,q is ramified, and vq(a) = 0,

0, if χ0,q is ramified and vq(a) ≥ 1,

1, if χ0,q is unramified.

where a = a′ω.
(d2) If q | N−, q | ν, set π = νε where ε is chosen to be a unit in Z×

q

with (ε, q) = w′
q = −wq. Then ϕq(a + bu) = 0 unless a ∈ qRq ,

Nm(b) ∈ (Z×
q )2. In that case, write b = c· e

e for any c ∈ Z×
q and e ∈ R×

q .

Then set ϕq(a+bu) = (χν,qχ
−1
0,q)(c) ·χν(Nm(e)). If b = c · e

e = c1 · e1
e1

,

then setting e′ = e1/e, c′ = c1/c, we see that c′ = e′/e′, hence
(c′)2 = Nm(c′) = 1 ⇒ c′ = ±1. If c′ = 1, then e′ = e′ ⇒ e′ ∈ Zq ⇒
χν,q(Nm(e′)) = 1. If c′ = −1, (χν,qχ

−1
0,q)(c

′) = −χν,q(−1). Also

e′ = −e′ ⇒ e′ ∈ Z×
q ω ⇒ Nm(e′) ∈ (Z×

q )2 Nm(ω) = −(Z×
q )2ω2 ⇒

χν,q(Nm(e′)) = χν,q(−ω2) = −χν,q(−1). In any case, we see that
ϕq is well defined, i.e. independent of the choice of decomposition
b = c· e

e . Further, by a similar argument we may check that for a ∈ qRq ,
ϕq(a + bu) depends only on the congruence class of b mod q.

(e) q = 2. Set

ϕ2

(

b −a
c −b

)

= IZ2(b)I2Z2(a)I2Z2(c).

(f) If q = ∞, set

ϕ∞
(

b −a
c −b

)

= π

|ν|1/2
(a − 2ib − c)ke

− 2π
|ν|
(

a2
2 +b2+ c2

2

)

.

The choice of Schwartz function is crucial to what follows and is inspired
by computations in Shintani [33], Kohnen [18] and Waldspurger [37].

Proposition 3.4. Let t′ = tψ′(ϕ, σ, s). We have

(1) t′ ∈ Ãk+ 1
2
(M, χ0).

(2) Let h ′ ∈ Sk+ 1
2

be such that t′ = th′ . Then h ′ ∈ Sk+ 1
2
(M,χ, fχ).

Proof. It suffices to show that t′ ∈ Ãk+ 1
2
(M, χ0). For then from the result of

Proposition 3.3, t′ = th′ ∈ Ãk+ 1
2
(M, χ0) ∩ π̃, hence h ′ ∈ Sk+ 1

2
(M,χ, π̃) =

Sk+ 1
2
(M,χ, fχ). Let D denote the usual Casimir operator for PGL2(R).

By [36, Lemma 42, pp. 73–74], R∞(D)ϕ∞ = 4rψ′,∞(D̃)ϕ∞ + 3
2ϕ∞, hence

rψ′,∞(D̃)(t′) = [κ(κ − 4)/8]t′. It is enough then to check (i)–(iv) below.

(i) If q �M and σ ∈ Γq , rψ′,q(σ)(ϕq) = ϕq;
(ii) If q | M, q �= 2 and σ = (

a b
c d

) ∈ Γq(vq(M)), rψ′,q(σ)ϕq = χ0,q(d)ϕq
= χq(d)ϕq;
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(iii) If σ = ( a b
c d

) ∈ Γ2(v2(M)), rψ′,2(σ)ϕ2 = χ0,2(d)ϕ2;
(iv) If θ ∈ R, rψ′,∞(κ̃(θ))(ϕ∞) = eiκθ/2ϕ∞.

We may verify these using (3.1)–(3.3). We begin with the following
observation which will be used repeatedly in what follows: for n ≥ 1,

Γq(n) is generated by n(x), d(α), n(y), for x ∈ Zq, α ∈ Z×
q , y ∈ qnZq,

(3.4)

and for n = 0,

Γq(0) = Γq is generated by n(x), d(α),w, for x ∈ Zq, α ∈ Z×
q .(3.5)

(i) This is immediate for q � νM by (3.5), noting that Fϕq = ϕq for q � νM.
For q | ν, q � N, one first computes Fϕq:

Fϕq

(

b −a
c −b

)

= q3/2
∫

Z3
q

ϕq

(

y −x
z −y

)

ψ′(2by − az − cx)dxdydz.

Let a =
(

b −a
c −b

)

and x =
(

y −x
z −y

)

. Since ϕq is invariant under the

transformation x �→ x + q, y �→ y, z �→ z and under the symmetric
transformations sending y �→ y + q and z �→ z + q, one sees that
Fϕq(a) = 0 unless a, b, c ∈ Zq. Thus letting a, b, c ∈ Zq,

Fϕq(a) = q3/2
∑

α,β,γ∈Z/qZ

∫

x,y,z∈Zq
x≡α,y≡β,z≡γ(q)

ϕq(x)ψ′(2by − az − cx)dxdydz

= q−3/2
∑

α,β,γ∈Z/qZ

ψ′(2bβ − aγ − cα)ϕq

(

β −α
γ −β

)

= q−3/2

[

∑

α∈(Z/qZ)×
ψ′(−cα)ϕq

(

0 −α
0 0

)

+
∑

γ∈(Z/qZ)×
ψ′(−aγ)ϕq

(

0 0
γ 0

)

+
∑

α,β,γ∈(Z/qZ)×
ψ′(2bβ − aγ − cα)ϕq

(

β −α
γ −β

)]

= q−3/2
[

∑

γ∈(Z/qZ)×
ψ′(−aγ)χν,q(γ) +

∑

α∈(Z/qZ)×
ψ′(−cα)χν,q(α)

+
∑

α,δ∈(Z/qZ)×
ψ′(2bαδ − aαδ2 − cα)χν,q(α)

]

= q−3/2G(�,ψ′)
[

�(−a) + �(−c) +
∑

δ∈(Z/qZ)×
�(−aδ2 + 2bδ − c)

]

,
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where � denotes the unique nontrivial quadratic character of (Z/qZ)×.
Using the fact that

∑

δ∈Z/qZ

�(δ2 + x) =
{−1, if x �= 0,

q − 1, if x = 0,

we see that Fϕq = �(−1)q−1/2G(�,ψ′)ϕq. Now, from (2.9),

rψ′(w)(ϕq) = γψ′−1γ 2
ψ′ · �(−1)q−1/2G(�,ψ′)ϕq = ϕq.

Since q �= 2, rψ′(d(α))(ϕq) = γψ′(α)χ−1
ν,q(α)ϕq = ϕq (by (2.8)).

Finally, rψ′(n(x))ϕq = ϕq for x ∈ Zq. Thus, ϕq is indeed invariant
under Γq as required.

(ii) We need to work through the cases (c1)–(c4) and (d1)–(d2).

Case (c1). q | N+, q � ν and χ0,q unramified;

Fϕq

(

b −a
c −b

)

=
{

1, if vq(a) ≥ −1, vq(b) ≥ 0, vq(c) ≥ 0,

0, otherwise.

Thus Fϕq is invariant by n(y) for y ∈ qZq, hence using (2.1) and (3.4) one
sees that ϕq is invariant by Γq(1).

Case (c2). q | N+, q � ν and χ0,q ramified;

Fϕq

(

b −a
c −b

)

=

⎧

⎪

⎨

⎪

⎩

G
(

χ̂−1
q , (ψ′)−c/q)

, if vq(c) = 0, vq(b) ≥ 0,

vq(a) ≥ −2,

0, otherwise.

Thus Fϕq is invariant by n(x) for vq(x) ≥ 2. Since rψ′(d(α))(ϕq) =
χ−1

0,q(α)ϕq and ϕq is invariant by n(x) for x ∈ Zq, we see that ϕq transforms
as required under Γq(2).

Case (c3). q | N+, q | ν and χ0,q unramified;

Fϕq

(

b −a
c −b

)

=
{

G
(

χ̂−1
ν,q , (ψ

′)−c)
, if vq(c) = 0, vq(b) ≥ 0, vq(a) ≥ 0,

0, otherwise.

F (ϕq) is invariant by n(x) for vq(x) ≥ 1. Since ϕq is invariant by n(x) for
x ∈ Zq and rψ′(d(α))(ϕq) = χν,q(α)ϕq(α·) = ϕq , we see that ϕq transforms
as required under Γq(1).

Case (d1). For q | N−, q � ν and χ0,q unramified, ϕq is invariant under d(α)
and n(x), x ∈ Zq. Since

Fϕq(a + bu) = IR0
q+ 1

q Rq
(a + bu),

we see that rψ′,q(n(−y))Fϕq = Fϕq for y ∈ qZq, and consequently, ϕq is
invariant under Γq(1). Next let q | N−, q � ν with χ0,q ramified. Clearly ϕq
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is invariant under n(x) and transforms under d(α) by χ0,q(α
−1). One easily

computes that

Fϕ(a + bu) =

⎧

⎪

⎨

⎪

⎩

G(χ̂−1
q , (ψ′)−2a′ω2/q), if a ∈ 1

q R0
q \ R0

q, a = a′
q ω,

b ∈ 1
q Rq,

0, otherwise.

so that rψ′,q(n(−y))Fϕq = Fϕq for y ∈ q2Zq, which shows that ϕq trans-
forms as required under Γq(2).

Case (d2). q | N−, q | ν. In this case, necessarily χ0,q is ramified since
χ0,q(−1) = −1. ϕq is invariant under n(x), x ∈ Zq and transforms under
d(α) by χ−1

0,q(α). One checks also that Fϕq(a + bu) = 0 unless a ∈ Rq ,
b ∈ 1

q Rq. Thus rψ′,q(n(−y))Fϕq = Fϕq for y ∈ q2Zq, whence ϕq trans-
forms in the required manner under Γq(2).

(iii) We have ε̃2(n(x)) = ε̃2(n(y)) = 1 for x ∈ Z2, y ∈ 22Z2. Also
ε̃2(d(α)) = µψ(α−1), and rψ′(d(α))ϕ2(x) = µψ′(α)3ϕ2(αx). Note
that

µψ′(α)3 = ((ν0, α)2µψ(α))3 = (ν0, α)2µψ(α−1).

Thus in any case

rψ′(d(α))ϕ2 = ε̃2(d(α))(ν0, α)ϕ2(α·) = ε̃2(d(α))(ν0, α)χν,2(α)ϕ2

= ε̃2(d(α))((−1)τ , α)2ϕ2 = χ0,2(α)ε̃2(d(α))ϕ2.

Since

Fϕ2

(

b −a
c −b

)

= I 1
2Z2

(a)I 1
2Z2

(b)I 1
2Z2

(c),

rψ′(n(x))(ϕ2) = ϕ2 and rψ′(n(−y))Fϕ2 = Fϕ2 for x ∈ Z2, y ∈ 22Z2.
(iv) See [33, Remark 2.1, p. 105]. ��

We will show later in Sect. 4 (see Proposition 4.2 and the paragraph
following Theorem 4.5) that h ′, t′ �= 0 and also that some nonzero scalar
multiple of h ′ has Fourier coefficients inQ( f, χ), the field generated overQ
by the eigenvalues of f and the values of χ. Assuming this for the moment,
let hχ be a scalar multiple of h ′ with Fourier coefficients in Q( f, χ) and
suppose that we have chosen hχ to be λ-adically normalized i.e. the ideal
generated by the Fourier coefficients of hχ is an integral ideal in Q( f, χ)
and prime to λ. (Thus hχ is only well defined up to a λ-adic unit inQ( f, χ).)
Let t = thχ

and set s′ = Tψ′(ϕ, g, t).

Proposition 3.5. s′ = βs for some scalar β.

Proof. By [38, proof of Proposition 22, p. 295], one knows that Θ(π̃, ψ′) =
π ′ ⊗χν = πg ⊗χν, hence s′ ∈ πg ⊗χν . Recall that s was defined to be the
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unique vector in πg ⊗χν satisfying s ⊗ (χ−1
ν ◦ Nm)⊗ (χ ◦ Nm) = sgχ

where sgχ
is a λ-adically primitive newform in π ⊗χ. Recall also that sgχ

may be characterized (up to a scalar) as the unique vector v = ⊗

q vq where
vq ∈ π f,q ⊗χq satisfies

(a) v∞ is a lowest weight vector in the holomorphic discrete series repre-
sentation of weight 2k;

(b) For finite q, vq transforms under U0,q(χ) by ω̃χ,q.

It is easy to check that for κθ := ( cos θ sin θ

− sinθ cos θ

)

, R(κθ )ϕ∞ = e2ikθϕ∞. Thus
to establish the proposition, it suffices to show that ((χν,qχq) ◦ Nm(u)) ·
R(u)ϕ = ω̃(u) · ϕ for u ∈ U0,q(χ) i.e. for all finite q,

((χν,qχq) ◦ Nm(u)) · R(u)ϕq = ω̃χ,q(u) · ϕq for u ∈ U0,q(χ).(3.6)

One checks that

(i) For q � νN, u ∈ U0,q(χ), one has (χνχ)(Nm(u)) = 1, ω̃χ,q(u) = 1 and
R(u)ϕq = ϕq .

(ii) For q | ν, q � N, u ∈ U0,q(χ), (χν,qχq)(Nm(u)) = χν,q(Nm(u)),
R(u)ϕq = χν,q(Nm(u))ϕq, ω̃χ,q(u) = 1.

(iii) For q | N+ and u = ( a b
c d

) ∈ U0,q(χ), (χν,qχq)(Nm(u)) =
χν,q(ad)χ−1

q (ad), R(u)ϕq = (χν,qχ
−1
q )(d/a)ϕq , ω̃χ,q(u) = χq(d)2.

(iv) For q | N−, suppose u′ = α+β′u ∈ Uq. Then ω̃χ,q(u′) = χq(Nm(u′)).
Also

(u′)−1(a + bu)u′ = 1

Nm(u′)
(α − β′u)(a + bu)(α + β′u)

= 1

Nm(u′)
(Nm(α)a + (Nm(β′)a + bαβ̄′ − bαβ′)π

+ (2αβ′a + α2b − β′2πb)u).

Since Nm(u′) = Nm(α) − π Nm(β′), both Nm(u′) and Nm(α) are
units. Now, if q | ν, R(u′)ϕq(a + bu) = 0 unless a ∈ qRq and b ∈ Rq .
Since α2/ Nm(u′) = Nm(α)/ Nm(u′) · α/α and χν,q, χq both have
conductor q, we see that

R(u′)ϕq = (

χν,qχ
−1
q

)

(Nm(α)/ Nm(u′)) · χν,q(Nm(α))ϕq

= χν,q(Nm(α))ϕq = χν,q(Nm(u′))ϕq.

The verification that R(u′)ϕq = χν,q(Nm(u′))ϕq in the case q � ν is
simpler and is left to the reader.

(v) If q = 2, R(u)ϕ2 = ϕ2, χ2(Nm(u)) = χν(Nm(u)) = 1 and ω̃2(u) = 1.

We see in each case that (3.6) is verified. ��
It will be important for us to know that β �= 0. This will be established in

Proposition 4.2 (modulo the proof of Theorem 4.1, which appears in [23].)
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4. Arithmetic properties of the Shintani lift

4.1. Period integrals à la Shintani and Shimura. For w ∈ C and α ∈
V ⊗R C, define

[α,w] = (

w 1
)

(

0 1
−1 0

)

α

(

w
1

)

= cw2 − 2bw + a,

if α =
(

b −a
c −b

)

. For x ∈ V and any subgroup Γ′ ⊂ B(1), let Gx =
{h ∈ SL2(R), h−1xh = x}, Γ′

x = Gx ∩ Γ′. Suppose that g′ ∈ Sk(Γ
′, ω),

and ω|Γ′
x

is the trivial character. Then put, as in ([31, (2.5)]; see same refer-
ence for normalization of the measure below)

P(g′, x,Γ′) =
∫

Γ′
x\Gx

[x, hw]kg′(hw)d
(

Γ′
xh
)

for any w ∈ H. Denote by V ∗ the set of x ∈ V such that Nm(x) < 0 (i.e.
Q(x) = − Nm(x) > 0). By [31, Lemma 2.1], P(g′, x,Γ′) is independent
of the choice of w and is equal to 0 unless x ∈ V ∗. Let R(Γ′) be the
set of equivalence classes in V ∗ for the conjugation action of Γ′ and for
C ∈ R(Γ′), set N(C) = N(x) for any choice of x ∈ C. By [31, (2.6)],
P(g′, x,Γ′) only depends on the class of x in R(Γ′). Thus for C ∈ R(Γ′) we
may set P(g′,C,Γ′) = P(g′, x,Γ′) for any choice of x ∈ C.

4.2. Fourier coefficients and nonvanishing of the Shintani lift. Let ξ ∈ Q.
We now compute the ψξ -th Fourier coefficient of t′ = tψ′(ϕ, σ, s). As in [38,
p. 291], this is given by

W(t′, ψξ, σ)

= W(t′, (ψ′)|ν|ξ , σ)

=
∫

ZAB×
Q\B×

A

s(β)
∑

x∈V,q(x)=|ν|ξ
rψ′(σ)R(β)ϕ(x)d×β

=
∫

ZAB×
Q\B×

A

gχ(β)
(

χνχ
−1
)

(Nm(β))
∑

x∈V,q(x)=|ν|ξ
rψ′(σ)R(β)ϕ(x)d×β.

Since B×
A

= B×
Q · (U0(χ) × (B×∞)+) and gχ(β)(χνχ

−1)(Nm(β))R(β)ϕ is
invariant under β �→ βu for u ∈ U0(χ),

W(t′, ψξ, σ)

= vol(U0(χ))

∫

Γχ\SL2(R)

gχ(β∞) ·
∑

x∈V,q(x)=|ν|ξ
rψ′(σ)R(β∞)ϕ(x)d(1)β∞

= vol(U0(χ))
∑

C∈R(Γχ)

q(C)=|ν|ξ

∫

Γχ\SL2(R)

gχ(β∞)
∑

x∈C

rψ′(σ)R(β∞)ϕ(x)d(1)β∞.
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Now, put σ = dR(y1/2). Since vol(U0(χ)) = C/π2 for C =
6[U0 : U0(χ)]∏q | N+(q + 1)−1

∏

q | N−(q − 1)−1, we get

W(t′, ψξ, σ) = Cπ−2
∑

C∈R(Γχ)

q(C)=|ν|ξ

∑

x∈C

ϕfin(x)
∫

Γχ\SL2(R)

gχ(β∞)

· rψ′
(

dR(y1/2)
)

R(β∞)ϕ∞(x)d(1)β∞

= C
∑

C∈R(Γχ)

q(C)=|ν|ξ

ϕfin(x)I(x),

(4.1)

where x is any element in C, and

I(x) = 1

π2

∫

Γχ,x\SL2(R)

gχ(β∞)rψ′
(

dR(y1/2)
)

R(β∞)ϕ∞(x)d(1)β∞.(4.2)

Since ϕfin(γ
−1xγ) = χ ′(γ)ϕfin(x), we see that χ ′ restricted to Γχ,x is the

trivial character if ϕfin(x) �= 0, so that the integrand in (4.2) is indeed Γχ,x
invariant, and the product ϕfin(x)I(x) is independent of the choice of x ∈ C.

By [33, Sublemma on p. 102] and [31, (2.23)] (and taking into account
that our additive character is ψ′ instead of ψ),

I(x) = 1

π2
e−2πiξu

∫

Γχ,x\SL2(R)

gχ(β∞)rψ′(b(z))R(β∞)ϕ∞(x)d(1)β∞

= (|ν|ξ)−1/2v(2k+1)/4e−2πξv P(gχ, x,Γχ).

(4.3)

The formulas (4.1) and (4.3) above can be used to relate the Fourier co-
efficients aξ(h ′) to certain period integrals of gχ along tori embedded in B×.
Applying the method of Waldspurger [39], one can show the following

Theorem 4.1. If aξ (h ′) �= 0, then the following conditions must be satis-
fied:

(a) For all q | N, q � N ′, (
ξ0
q ) �= −wq.

(b) For all q | N ′, (
ξ0
q ) = χ0,q(−1)wq.

(c) ξ0 ≡ 0 or 1 mod 4.

Suppose that conditions (a), (b), (c) are satisfied. Then

∣

∣aξ(h
′)
∣

∣

2 = C( f, χ, ν)π−2k|νξ|k− 1
2 L

(

1

2
, πf ⊗ χν

)

L

(

1

2
, πf ⊗ χξ0

)

· 〈gχ, gχ〉
〈 fχ, fχ〉 ,

where C( f, χ, ν) ∈ Q and is a p-adic unit if p � Ñ := ∏

q | N q(q+1)(q−1).
(Recall that fχ is the Jacquet–Langlands lift of gχ to GL2, normalized to
have its first Fourier coefficient equal to 1.)
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The proof of the above theorem will appear in another article [23], since
it uses methods very different from those of the present article.

Let us set h ′ = α0hχ . Then we have

Proposition 4.2. α0, β �= 0.

Proof. One knows from Waldspurger [37] that there exists ξ such that
L( 1

2 , πf ⊗χξ0) �= 0. Further L( 1
2 , πf ⊗χν) �= 0. Hence |aξ(h ′)| �= 0 for

some ξ whence h ′, t′ �= 0 and α0 �= 0. By see-saw duality (see [19]),

〈α0hχ, hχ〉 = 〈gχ, βgχ〉,
so that β �= 0 also. ��

4.3. Fundamental periods of modular forms on quaternion algebras.
Let n = 2k − 2, so that n is a nonnegative integer. Set F̃0 = Q if n = 0 and
F̃0 = F0 if n > 0. For A any OF̃0

-algebra contained in C, let L(n, A) be the
A-module of homogenous polynomials in two variables (X, Y ) of degree n
with coefficients in A. There is a natural action of Γ1

χ on L(n, A) given by

(σn(γ)P)(X, Y ) = P(aX + cY, bX + dY ) if Φ(γ) =
(

a b
c d

)

.

Thus we can define the (parabolic) cohomology group H1
p(Γ

1
χ, L(n, A)),

following Shimura. Let Sn+2(Γ
1
χ) denote the space of antiholomorphic cusp

forms of weight n +2 on Γ1
χ . The theory of Eichler–Shimura gives for every

such n, a canonical isomorphism

c : Sn+2
(

Γ1
χ

) ⊕ Sn+2
(

Γ1
χ

) � H1
p

(

Γ1
χ, L(n,C)

)

.(4.4)

We recall the definition of the map c above. Put ω(g′) = g′(z)(Xz + Y )ndz
for g′ ∈ Sn+2(Γ

1
χ) and ω(g′) = g′(z)(Xz+Y )ndz for g′ ∈ Sn+2(Γ

1
χ). Define

for any such g′,

c(g′, γ) =
∫ γz0

z0

ω(g′)

for some choice of z0 ∈ H. The cohomology class of the map γ → c(g′, γ)
does not depend on the choice of z0, and is denoted c[g′].

Suppose now that g′ = gχ . Let T denote the Hecke algebra associ-
ated to the group Γ1

χ . Both sides of (4.4) carry a natural action of T
and the isomorphism (4.4) is in fact T-equivariant. In addition, both
sides of (4.4) carry natural involutions x �→ xc. On the left, this is de-
fined in Sect. 2.2.5. On the right, this may be defined as follows. First
pick a unit δ ∈ O(χ) of norm −1 and such that Φq(δ) ≡ ( 1 0

0 1

)

mod q
for q | gcd(Nχ, N+). Such a unit is known to exist by work of Eichler.
Then for c ∈ Z(Γ1

χ, L(n, A)), define (c|δ)(γ) = −σn(δ)c(δ
−1γδ). The
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assignment c �→ c|δ preserves B(Γ1
χ, L(n, A)), hence induces an invo-

lution of H1
P(Γ1

χ, L(n, A)), also denoted by the symbol δ. If δ′ is any other
choice of δ, then δ′ = δα for some α ∈ Γ1

χ . Now, writing γ ′ = δ−1γδ,
σn(δ

′)c((δ′)−1γδ′) = σn(δα)c(α−1δ−1γδα) = σn(δ)σn(α)c(α−1γ ′α). But

σn(α)c(α−1γ ′α) = σn(α)
[

c(α−1) + σn(α
−1)c(γ ′) + σn(α

−1γ ′)c(α)
]

= σn(α)c(α−1) + c(γ ′) + σn(γ
′)c(α)

= [c(1) − c(α)] + c(γ ′) + σn(γ
′)c(α)

= c(γ ′) + (σn(γ
′) − 1)c(α)

= c(γ ′) + σn(δ
−1)(σn(γ) − 1)σn(δ)c(α),

since c(1) = 0. Thus

σn(δ
′)c((δ′)−1γδ′) = σn(δ)c(δ

−1γδ) + (σn(γ) − 1)σn(δ)c(α),

whence the involution defined above on H1
p(Γ

1
χ, L(n, A)) is actually inde-

pendent of the choice of δ. We denote it by the symbol c. If g′ ∈ S2k(Γ
1
χ)

then

c(γ, g′c) =
∫ γz0

z0

g′(δz)J(δ, z)−2k(Xz + Y )ndz

=
∫ δγ z0

δz0

g′(z)J(δ, δ−1z)−2k(Xδ−1z + Y )n J(δ−1, z)−2 Nm(δ)dz

= −
∫ δγδ−1·δz0

δz0

g′(z)σn(δ
−1)(Xz + Y )ndz

= σn(δ
−1)c(δγδ−1, g′).

Thus [c(g′c)] = [c(g′)]c for g′ ∈ S2k(Γ
1
χ). Likewise one may check that

[c(g′c)] = [c(g′)]c for g′ ∈ S2k(Γ
1
χ), whence the map (4.4) commutes with

the involutions c. By multiplicity one, the maximal subspace of Sn+2(Γ
1
χ)⊕

Sn+2(Γ
1
χ) on which T acts by λgχ

is two dimensional, a basis for it being
given by {gχ, gc

χ}. The involution c preserves this subspace and acts diago-
nally, with eigenvectors {gχ + gc

χ, gχ − gc
χ}, the corresponding eigenvalues

being 1,−1 respectively.
Since (4.4) commutes with the actions of T and c, the subspace

H1
p(Γ

1
χ, L(2k−2,C))±,λgχ ⊂ H1

p(Γ
1
χ, L(2k−2,C)) on which T acts by the

eigencharacter λgχ
associated to gχ and c acts by ±1 is one-dimensional.

Let A be any OF̃0
-algebra in C that is a principal ideal domain and con-

tains all the eigenvalues of gχ . Let ξ±(gχ, A) be any generator of the free
rank one A-submodule H1

p(Γ
1
χ, L(2k −2, A))±,λgχ . If σ ∈ Aut(C/F̃0), then

Γ1
χσ = Γ1

χ and we may choose ξ±((gχ)σ , Aσ ) = (ξ±(gχ, A))σ .
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We can now define the fundamental periods u±(gχ, A), u±((gχ)σ , Aσ )
by

c[gχ ] ± c[gc
χ

] = u±(gχ, A)ξ±(gχ, A),

c
[

(gχ)σ
] ± c[((gχ)σ

)c] = u±
(

(gχ)σ , Aσ
)

ξ±
(

(gχ)σ , Aσ
)

.

Up to units in A, these periods are independent of the choice of Φ, gχ and
ξ±(gχ, A). For F any subfield of Q containing F̃0 and all the eigenvalues
of gχ , let AF,λ be the subring of elements in F with non-negative λ-adic
valuation. Define u±(gχ, F, λ) to be equal to u±(gχ, AF,λ). Also define
u±(gχ, λ) to be u±(gχ, F, λ) for any choice of F so that it is only well
defined up to a λ-adic unit in Q.

4.3.1. An auxiliary description of the fundamental periods. Let us write

VR =
{(

r s
t −r

)

, r, s, t ∈ R
}

.

Denote by P k−1
R be the vector space over R of R-valued homogeneous

functions h on VR of degree k − 1 satisfying (∂2/∂r2 + 4∂2/∂s∂t)h = 0. Let
P k−1
C = P k−1

R ⊗C and ρk−1 the representation of Γ1
χ on P k−1

C given by

[ρk−1(γ)h](x) = h(γ i xγ).

Finally, let σ2k−2 be the representation of Γ1
χ on L(2k − 2,C) defined in the

previous section. The following is well known.

Lemma 4.3. For h ∈ P k−1
C , define p(h) ∈ L(2k − 2,C) by

p(h)(X, Y ) = h
(

ε−1

[

X
Y

]

[

X Y
]

)

.

Then p gives an isomorphism of representations of Γ1
χ , (ρk−1,P

k−1
C ) �

(σ2k−2, L(2k − 2,C)) sending P k−1
R to L(2k − 2,R). This induces an iso-

morphism of cohomology groups

p∗ : H1
p

(

Γ1
χ,P k−1

C

) � H1
p

(

Γ1
χ, L(2k − 2,C)

)

.

One may define an involution c on H1
p(Γ

1
χ,P k−1

A ) as follows. For c′ ∈
Z(Γ1

χ,P k−1
A ) and ξ ∈ VC, set c′(γ, ξ) = (c′(γ))(ξ). For δ any unit as in the

previous section, and for c′ ∈ Z(Γ1
χ,P k−1

A ) define c′|δ by

(c′|δ)(γ, ξ) = (−1)k
c
′(δ−1γδ, δ−1ξδ).

Since ε−1δtε = δi = −δ−1, for c′ ∈ Z(Γ1
χ,P k−1

C ), we get

((p∗(c′))|δ)(γ)(X, Y ) = −σn(δ)(p∗c′)
(

δ−1γδ,
[

X Y
] )

= −p∗c′
(

δ−1γδ,
[

X Y
]

δ
)
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= −c′
(

δ−1γδ, ε−1δt

[

X
Y

]

[

X Y
]

δ

)

= −c′
(

δ−1γδ,−δ−1ε−1

[

X
Y

]

[

X Y
]

δ

)

= p∗(c′|δ)(γ)(X, Y ).

Thus p∗(c′|δ) = (p∗(c′)|δ), whence the assignment c′ �→ c′|δ induces an
involution on the cohomology group H1

p(Γ
1
χ,P k−1

C ) that is independent of
the choice of δ. We denote this involution also by the symbol c.

Given z, z0 ∈ H, and x ∈ V , define

X(z, z0, x, gχ) =
∫ z

z0

[x, w]k−1gχ(w)dw,

r(γ, z0, x, gχ) = X(γz0, z0, x, gχ).

One checks easily that r(γ, z0, x, gχ) as a function of (γ, x) lies in
Z(Γ1

χ,P k−1
C ) and its cohomology class in H1

p(Γ
1
χ,P k−1

C ) is independent
of the choice of z0. We denote this cohomology class by c′[gχ ] and note
that p∗(c′[gχ ]) = c[gχ]. Now let P k−1

A denote the sub-A-module of P k−1
C

consisting of those h whose coefficients lie in A and note that c preserves
H1

p(Γ
1
χ,P k−1

A ). We may thus define another set of fundamental periods
u′±(gχ, A) (well defined up to elements of A×) by

c
′[gχ] ± c′[gc

χ

] = u′
±(gχ, A)ξ ′

±(gχ, A),

c
′[gσ

χ

] ± c′[((gχ)σ
)c] = u′

±
(

gσ
χ, Aσ

)

ξ ′
±
(

gσ
χ, Aσ

)

,

where ξ ′±(gχ, A) is a generator of the A-submodule H1
p(Γ

1
χ,P k−1

A )±,λgχ

(which is free of rank one) and ξ ′±(gσ
χ, Aσ ) = (ξ ′±(gχ, A))σ .

We also have the following lemma whose proof we leave as an easy
exercise for the reader.

Lemma 4.4. 1.

p
(

P k−1
A

) ⊆ L(n, A).

2. Suppose that all primes q < 2k are invertible in A. Then

p
(

P k−1
A

) = L(n, A).

It follows from the lemma that we may pick ξ ′±(gχ, A) such that
p∗(ξ ′±(gχ, A)) = ξ±(gχ, A). Then u±(gχ, A) = u′±(gχ, A).

4.4. Rationality and integrality of the Shintani lift. Denote t′ now by
the symbol t′g,χ,ν and hχ by hg,χ to reflect the dependence on g, χ and ν.
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Theorem 4.5. Write t′g,χ,ν = α′(g, χ, ν, F, λ)u+(gχ, F, λ)hg,χ for some
non-zero constant α′(g, χ, ν, F, λ).

(a) Let σ ∈ Aut(C/F̃0). Then (α′(g, χ, ν, F, λ))σ = α′(gσ , χσ , ν, Fσ , λσ).
Thus α′(g, χ, ν, F, λ) ∈ F(χ).

(b) vλ(α
′(g, χ, ν, F, λ)) ≥ 0.

Proof. With the preparation from the previous section, the proof is almost
tautological. In fact we only need to copy the proof of [31, Proposition 4.5]
(which proves that the Shintani lift is algebraic) with some care to take care
of rationality and λ-adic integrality. Letting C1 = [Γχ : Γ1

χ], we see by (4.3)
that

aξ (t
′) = v−κ/4e2πξvW

(

t′, ψξ, dR(v
1/2)

)

=
∑

C∈R(Γχ),q(C)=νξ

ϕfin(x)(νξ)
−1/2 P(gχ, x,Γχ)

= C1 ·
∑

C∈R(Γχ),q(C)=νξ

ϕfin(x)(νξ)
−1/2 P

(

gχ, x,Γ1
χ

)

= 1

2
C1 · (νξ)−1/2

∑

C∈R(Γχ),q(C)=νξ

[

ϕfin(x)P
(

gχ, x,Γ1
χ

)

+ ϕfin(δ
−1xδ)P

(

gχ, δ−1xδ,Γ1
χ

)]

= 1

2
C1 ·

∑

C∈R(Γχ),q(C)=νξ

[

ϕfin(x)r(γx, x)

+ ϕfin(δ
−1xδ)r

(

δ−1γxδ, δ
−1xδ

)]

,

where γx is any generator of the group Γ1
χ,x{±1}/{±1}. (Here r(γx, x) is

defined to be r(γx, z0, x, gχ) for any choice of z0. This is independent of the
choice of z0 since γx fixes x.) Now, ϕfin(δ

−1xδ) = χ ′(δ)(χ ·χν)(−1)ϕfin(x) =
(−1)kχ ′(δ)ϕfin(x) and r(δ−1γxδ, δ

−1xδ) = (−1)kχ ′(δ)−1(r|δ)(γx, x). Let
I g,χ(x) = ϕfin(x)r(γx, x)+ϕfin(δ

−1xδ)r(δ−1γxδ, δ
−1xδ) and A = AF,λ. Then

I g,χ(x) = ϕfin(x)[r(γx, x) + (r|δ)(γx, x)]
= ϕ

g,χ,ν

fin (x)u′
+(gχ, A)ξ ′

+(gχ, A, γx, x)

= ϕ
g,χ,ν

fin (x)u+(gχ, A)ξ ′
+(gχ, A, γx, x)

where ξ ′+(gχ, A, γx, x) is defined to be c(γx, x) for any c ∈ Z(Γ1
χ,P k−1

A ) in
the class of ξ ′+(gχ, A). Again this is independent of the choice of c since γx

fixes x. Thus I g,χ(x)/u+(gχ, A) = ϕ
g,χ,ν

fin (x)ξ ′+(gχ, A, γx , x) ∈ A, which
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proves part (b) of the theorem. Finally,
(

I g,χ(x)

u+(gχ, A)

)σ

= (

ϕ
g,χ,ν

fin (x)ξ ′
+(gχ, A, γx, x)

)σ

= ϕ
gσ ,χσ ,ν

fin (x)ξ ′
+
(

(gχ)σ , Aσ , γx, x
)

=
(

I gσ ,χσ

(x)

u+
(

(gχ)σ , Aσ
)

)

,

whence part (a) is established too. ��
The proof of the proposition shows that t′/u+(gχ) has its Fourier coef-

ficients in F(χ). In particular, the form hχ is definable over F(χ). Since hχ

may be obtained as a theta lift from PGL2 (i.e. the special case B = M2(Q))
for an appropriate choice of ν, and since F may be taken to be Q( f ) in
this case, we see that some nonzero multiple of hχ has all its Fourier coeffi-
cients in Q( f, χ) as had been claimed in Sect. 3.2 (see the paragraph before
Proposition 3.5).

We now study the relation between the period u+(gχ) and uε(g) where
ε := sign(χ(−1)) = (−1)k sign(ν). For each q | Nχ , let χq be the finite
order character corresponding to the unique Grossencharacter that restricted
to

∏

l Z
×
l × (R+)× is χq at the factor q and 1 at all other factors. Thus

χ = ∏

q | Nχ
χq . For Π ⊆ {l; l | Nχ}, set χΠ = ∏

l∈Π χl.

Proposition 4.6. Let γ = u+(gχ)/uε(g). Then

(a) γ/g(χ) ∈ F(χ).
(b) vλ(γ) ≥ 0.
(c) If B = M2(Q), vλ(γ) = 0.

Proof. Let UΠ = ∏

l �∈Π U0,l × ∏

l∈Π U1,l(χ). Also set Γ1,Π = B× ∩
(UΠ ·(B×∞)+). Suppose that q �∈ Π and s′ = sg′ is a newform in S2k(Γ

1,Π) =
S2k(UΠ). Define γ±

q := u±(g′
χq )

u±εq g′ with εq = χq(−1) where g′ and g′
χq are

arithmetically normalized as in Sect. 2.2.6. We claim that the following
statements hold:

(a)′ γ±
q /g(χq) ∈ F(χ), and

(b)′ vλ(γ
±
q ) ≥ 0.

Clearly (a) follows from (a)′ and (b) from (b)′ since g(χ), g(χq) are λ-
adic units and g(χ)/

∏

q | Nχ
g(χq) ∈ Q(χ) ⊆ F(χ). First consider the case

q � N−. We recall from [13] how one can construct in this case some multiple
of g′

χq from g′. For i = 1, . . . , q − 1, set

σi =
(

1 i
q

0 1

)

∈ (B ⊗Qq)
×
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and identify σi with the corresponding element of B×
A

which is 1 at all other
places. Now set

Rχ,q(s)(x) = χq(Nm(x))
(

q−1
∑

i=1

χq(i)s(xσi,q)
)

for any s ∈ S2k(UΠ). Then Rχ,q(sg′) is a nonzero scalar multiple of sg′
χq .

Write σi = t−1
i ·ui for ti ∈ B×, ui ∈ U1(χ). If s′ corresponds to the classical

form g′, Rχ,q(s′) corresponds to the classical modular form
∑q−1

i=1 χq(i)g′|t−1
i

.
We then have a commutative diagram

S2k(Γ
1,Π) ��

��
Rχ,q

H1
p(Γ

1,Π, L(n,C))

��
φχ,q

S2k(Γ
1,Π∪{q}) �� H1

p(Γ
1,Π∪{q}, L(n,C))

where

φχ,q(r)(γ) =
q−1
∑

i=1

χq(i)σ
(

t−1
i

)

r
(

t−1
i γ ti

)

and the horizontal maps are isomorphisms as in the previous section. Clearly,

φχ,q
(

H1(Γ1,Π, L(n, AF,λ)
)) ⊆ H1(Γ1,Π∪{q}, L(n, AF,λ)

)

.

Suppose Rχ,q(g′) = δqg(χ
q)−1g′

χq . To prove (a)′ and (b)′ it suffices
then to show that δq ∈ F(χ) and vλ(δq) = 0 i.e. we need to compare the
arithmetic properties of the form Rχq(g′) with those of g′. We now apply
the rationality and integrality criteria of [12] and [22], formulated more
precisely in our context in Proposition 5.1 below. Since Rχq (g′) and g′ are
the same except at the prime q and since g′ is arithmetically normalized,
the criteria above reduce the problem to studying the rationality and λ-
divisibility of a certain ratio of local integrals at q. This ratio (being defined
purely locally) is independent of the choice of quaternion algebra and so to
compute it we might as well assume that B = M2(Q). But in this case, we

may pick ti,q =
(

1 −i/q
0 1

)

, g′ = ∑∞
n=0 ane2πinz and directly compute

Rχ,q(g
′) =

q−1
∑

i=1

χq(i)g|t−1
i

=
q−1
∑

i=1

χq(i)
∑

n

ane
2πin

(

z+ i
q

)

= g(χq)
∑

(n,q)=1

χq(n)ane2πinz = g(χq)g′
χq (z),

which proves what is required. The case q | N− is somewhat easier since
in this case g′

χq is a scalar multiple of g′. To study the arithmetic prop-
erties of this scalar we again apply the criteria mentioned above, from
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which the desired result follows easily. (For (a)′, one needs to make the
observation that the CM periods pK appearing in the rationality criterion
satisfy pK (η · χq ◦ NmK/Q, 1)/pK (η, 1)g(χq) ∈ K(η, χq) for any imaginary
quadratic field K and Hecke character η of K .)

Finally, we prove (c) (which in fact we never use in this article.) By [34],
there exists a character η such that g(η−1)|cη|k−1(2πi)−1L(1, f, η) ∼ uε( f )
where cη is the conductor of η and we use the symbol ∼ to denote equality
up to a λ-adic unit. On the other hand L(1, f, η) ∼ L(1, fχ, χ−1η) since
p � Ñ and

g(η−1χ)|cηχ−1 |k−1(2πi)−1L
(

1, fχ, χ−1η
)

/u+( fχ)

has nonnegative λ-adic valuation, again by [34]. Thus

vλ(uε( f )/u+( fχ)) ≥ 0

and combining this with part (b) we see that vλ(γ) = 0. ��
Corollary 4.7. Let α′ = α′(g, χ, ν, F, λ). Set α = α′γ and α := α ·g(χ)−1.
Then α ∈ F(χ) and vλ(α), vλ(α) ≥ 0.

Finally, we specialize to χ = 1. Writing α(g, F, λ) in this case to express
the dependence on g, F, λ, we have for all σ ∈ Aut(C/F̃0), (from part (a)
of Theorem 4.5)

Corollary 4.8.

(α(g, F, λ))σ = α(gσ, Fσ , λσ).(4.5)

5. Arithmetic properties of the Shimura lift

In this section, we study the rationality and integrality of the Shimura lift
i.e. of the constant β appearing in Proposition 3.5.

5.1. CM periods and criteria for rationality and integrality. Let K be an
imaginary quadratic field unramified at the primes dividing N and K ↪→ B
be a Heegner embedding for the order O′(χ) i.e. an embedding of K in B
such that O′(χ) ∩ K = OK . Such an embedding exists exactly when K is
inert at all primes dividing N− and split at the primes dividing N+. Let z
be the associated Heegner point on H (i.e. the unique fixed point on H
of (K ⊗R)×) and η′ a Grossencharacter of K of infinity type (−k, k) i.e.
satisfying η′(xx∞) = η′(x)xk∞x∞−k for x ∈ K×

A
, x∞ ∈ K×∞. Equivalently η′

is the Grossencharacter corresponding to an algebraic Hecke character of
type (−k, k). Define

Lη′(s) = j(α, i)2k
∫

K×K×∞\K×
A

s(xα)η′(x)d×x
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for s ∈ π ′ ⊗χ and α ∈ SL2(R) being any element such that α(i) = z
or equivalently, α · SO2(R) · α−1 = (K ⊗R)(1). Of particular interest to
us are characters of the following type. The inclusion K×

A
↪→ B×

A
maps

UK into U0(χ), where UK := Ô×
K . Let ΣK denote the set of Hecke char-

acters of K of infinity type (−k, k) whose restriction to UK equals ω̃−1
χ |UK .

Clearly ΣK has cardinality equal to the class number of K . There is some
abuse of notation since ΣK depends on the choice of Heegner point and not
just on K . Note that for η′ ∈ ΣK , η′|Q×

A

= χ−2.
We now pick an element j̃ ∈ B such that j̃ ∈ NB×(K×) and B = K + K j̃.

Let � be the ideal in K given by � = {x ∈ K; x j̃ ∈ O′(χ)}. Since p is
split in B and O′(χ)⊗Zp is the maximal order in B ⊗Qp, it is clear that
we may pick j̃ such that � and (hence) Nm j̃ are both prime to p. Let η̂ =
η′N−k (where N is the usual norm character) and denote by η̂ the algebraic
Hecke character corresponding to η̂. Also let Ω(η̂) = (2πi)2k pK (η̂, 1) ∈
C×/Q(η̂)× where pK (η̂, 1) is the period defined in [10] and let Ω be the
period defined in [22, Sect. 2.3.3.], that is well defined up to a λ-adic unit.
The following proposition is a mild strengthening of Proposition A.9 of [12,
Appendix], and Proposition 2.9 of [22]. (In the statement below, (η′)σ is the
Grossencharacter associated to η̂

σ
Nk.)

Proposition 5.1. Suppose s′′ = βsgχ
.

(a) β ∈ Q( f, χ) if and only if for all (or even infinitely many) Heegner
points K ↪→ B and all η′ ∈ ΣK ,

(2πi)k{πJ( j̃, z)�(z)}kLη′(s′′)/Ω(η̂) ∈ Q,

and for all σ ∈ Gal(Q/K ·Q( f, χ)),
(

(2πi)k{πJ( j̃, z)�(z)}k Lη′(s′′)
Ω(η̂)

)σ

= (2πi)k{πJ( j̃, z)�(z)}kL (η′)σ (s′′)
Ω(η̂

σ
)

.

(b) Suppose β ∈ Q. Then vλ(β) ≥ 0 if and only if for all Heegner points
K ↪→ B with p � hK (the class number of K), and all η′ ∈ ΣK ,

vλ

(

{π2 J( j̃, z)�(z)}k · Lη′(s′′)
Ωk

)

≥ 0.

Further, it suffices to check this last condition for any set of such Heegner
points that reduces mod p to an infinite set of points on the special fiber
of XU1(χ).

In our case s′ = βs and s′′ = s′ ⊗ (χχν ◦ Nm). Note that for any
η′ ∈ ΣK , the character η′ · ((χχν) ◦ Nm) is trivial when restricted to Q×

A
,

hence there exists a Grossencharacter η̃ of K of infinity type (0, k) such
that η̃(η̃ρ)−1 = η′ · ((χχν) ◦ NmK/Q). (Here and henceforth, ρ denotes the
complex conjugation of K .) Picking such a character η̃, we set η = η̃ ·N−k/2

so that η(ηρ)−1 = η′ · ((χχν) ◦ NmK/Q) as well. In future, we will denote
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NmK/Q simply by the symbol Nm, since it agrees with the reduced norm
restricted to K ↪→ B.

Let B = K ⊕ K⊥ be the orthogonal decomposition of B for the
norm form, so that V = K0 ⊕ K⊥. Set V1 = K0 and V2 = K⊥. Then
O(V1) = {±1}, O(V2)

0 = K (1). We will need to work below with the
corresponding (connected components of) similitude groups. Note that
GO(V )0 is identified with PB× × Q×, the action of ([x], a) being by
y �→ a ·(x−1 yx). Then we have the natural map φ : B× → PB××Q× given
by φ(x) = ([x], Nm x) and the form s′′ on B× is obtained by pulling back
the form (s′, χχν) on PB× ×Q×. Let H be the group G(O(V1)×O(V2))

0 =
G(Q× × K×) = {(a, b) ∈ Q× × K×, a2 = NmK/Q b}. For (a, b) ∈ H , we
have NmK/Q(a−1b) = 1, hence there exists c ∈ K× such that a−1b = cρ/c.
Now the action of (a, b) on y = y1 + y2 j̃ ∈ V is given by

y1 + y2 j̃ �→ ay1 + by2 j̃ = ay1 + a
cρ

c
j̃ = a · c−1(y1 + y2 j̃)c,

so that the natural inclusion H ↪→ GO(V )0 is identified with i : (a, b) �→
([c−1], a) ∈ PK× × Q× ⊂ PB× × Q×. Set η2 = χ−1χν, η1 = η′ · (χχν) ◦
NmK/Q, so that η′ is the pullback of (η1, η2) via φ. Recall that η has been
chosen such that η1 = η(ηρ)−1. Thus

((η1, η2) ◦ i)(a, b) = η1(c
−1)η2(a) = η

(

cρ

c

)

η2(a) = η(b)µ(a),

where µ(a) = η−1|Q×(a)η2(a). Diagrammatically, we have

B× ��φ
PB× ×Q× ��(s′,χχν)

C

K×��

OO

��φ
PK× × Q×��

OO

��(η1,η2)

C×

G(K× × Q×)

ii

i

ee
(η,µ)

where the solid arrows denote maps of algebraic groups and the dotted
arrows represent automorphic forms on the corresponding adelic groups.

Suppose that ϕ∞(α−1 · α) = ϕ1,∞ ⊗ϕ2,∞ ∈ Sψ′(V1(R))⊗Sψ′(V2(R))
and for finite primes q, ϕq = ∑

iq∈Iq
ϕ1,iq ⊗ϕ2,iq ∈ Sψ′(V1(Qq))⊗

Sψ′(V2(Qq)). By see-saw duality,

j(α, i)−2k Lη′(s′)

=
∫

H(Q)\H(A)

Tψ′(ϕ, g, hχ)η′(g)(χχν)(Nm(g))d×g

=
∫

O(V1)×O(V2)(Q)\O(V1)×O(V2)(A)

Tψ′(ϕ, (g1, g2), hχ)µ(g1)η(g2)d
×g1d×g2
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= 〈Tψ′(ϕ, hχ)(g1, g2), µ(g1)η(g2)〉
=

∑

i=(iq )∈∏q Iq

〈hχ, tψ′(ϕ,µ) · tψ′(ϕ, η)〉

=
∑

i=(iq )∈∏q Iq

∫

SL2(Q)\SL2(A)

hχ(σ)tψ0(⊗ϕ1,iq , σ, µ)

× tψ0(⊗ϕ2,iq , σ, η)d(1)σ,

where ψ0 = ψ′.
In the following section, we will show that for the purposes of computing

the integral above, we may alter ϕq so that it is a pure tensor of a particularly
simple form. With this goal in mind, we set up some notation. Let q be
a prime and suppose that we have fixed for all l �= q, Schwartz functions
ςl ∈ Sψ0(V1(Ql)), ϑl ∈ Sψ0(V2(Ql)). Then for any ς ∈ Sψ0(V1(Qq)), ϑ ∈
Sψ0(V2(Qq)), set

I(ς, ϑ) =
∫

SL2(Q)\SL2(A)

hχ(σ)tψ0(ς ⊗ ςq, σ, µ)tψ0(ϑ ⊗ ϑq, σ, η)d(1)σ,

(5.1)

where ςq = ⊗

l �=q ςl, ϑq = ⊗

l �=q ϑl. Suppose δq ∈ B×
q is chosen such that

ϕδ
q(·) := ϕq(δ

−1
q · δq) is a scalar multiple of ϕq . Let iδq : K ⊗Qq ↪→ Bq be

given by iδq(x) = δqxδ−1
q and set W = iδq(K ⊗Qq). Also let f : B → B

denote the isomorphism given by conjugation by δ, i.e. f(x) = δxδ−1.
Then f induces isomorphisms of quadratic spaces f : V1,q � W and
f : V2,q � W⊥. Now, for ς ∈ Sψ′(W ), ϑ ∈ Sψ′(W⊥), set ςδ = f ∗(ς), ϑδ =
f ∗(ϑ) and J(ς, ϑ) = I(ςδ, ϑδ).

We now need to compute the theta lift of η to SL2(A). However it is
more useful to compute the theta lift of η to GL2(A) using the extension of
the theta correspondence to similitude groups (as in [12]). We have then for
σ ∈ GL2(A),

tψ0(ϑ
δ ⊗ ϑq, σ, η)

=
∫

K (1)\K (1)
A

∑

x∈V2

rψ0(σ, hh̃)(ϑδ ⊗ ϑq)(x)η(hh̃)d×
1 h

=
∫

K (1)\K (1)
A

∑

x∈V2

rψ0(σ
q, hqh̃q)ϑq(x)rψ0(σq, hqh̃q)ϑ

δ(x)η(hh̃)d×
1 h

=
∫

K (1)\K (1)
A

∑

x∈V2

rψ0(σ
q, hqh̃q)ϑq(x)rψ0(σq, hqh̃q)ϑ(xδ)η(hh̃)d×

1 h,

(5.2)
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for h̃ ∈ K×
A

with Nm(h̃) = det(σ), where the measure d×
1 h is defined as

in [22, p. 925]. Likewise,

tψ0(ς
δ ⊗ ςq, σ, µ)

=
∫

{±1}\{±1}A

∑

x∈V1

rψ0(σ
q, hqh̃q)ϑq(x)rψ0(σq, hqh̃q)ς(xδ)µ(hh̃)d×

1 h(5.3)

for h̃ ∈ Q×
A

with h̃2 = det(σ). For convenience of notation, set t1(ς, σ) =
tψ0(ς

δ ⊗ ςq, σ, µ) and t2(ϑ, σ) = tψ0(ϑ
δ ⊗ϑq, σ, η).

Suppose ϕi ∈ Sψ0(Vi(A)), ϕ1 = ⊗

q ςδ
q, ϕ2 = ⊗

q ϑδ
q, with δ = (δq).

Then for g ∈ GL2(A), det(g) ∈ Nm(K×
A
), ν0 = −|ν|,

tψ0(ϕ2, σ, η) =
∑

ξ∈Q×
ξν0 Nm( j̃)−1∈Nm(K×

A)

Wψ
η

((

ξ 0
0 1

)

g

)

,

where, choosing h̃ = (h̃q) such that Nm(h̃) = Nm( j̃)−1ν0 det(g),

Wψ
η (g) =

∫

K (1)
A

rψ0

(

a
(

Nm( j̃)−1ν0
)

g, hh̃
)

ϕ2( j̃)η(hh̃)d×
1 h =

∏

q

Wψ
η,q(gq),

Wψ
η,q(gq) =

∫

K (1)
q

rψ0

(

a
(

Nm( j̃)−1ν0
)

gq, hh̃q
)

ϑδ
q( j̃)η(hh̃q)d

×
1 h.

Suppose fq ( j̃)=αq jq. Since rψ0(a(Nm(αq)), α
i
q)ϑq(·)=|αq|1/2ϑq(αq·),

Wψ
η,q(gq) = |αq|−1/2η

(

αi
q

)−1
Θη(gq),

Θη(gq) =
∫

K (1)
q

rψ0

(

a
(

Nm( jq)
−1ν0

)

gq, hh̃q
)

ϑq( jq)η(hh̃q)d
×
1 h,

where now Nm(h̃q) = Nm( jq)−1ν0 det(gq), and Θη(gq) = 0 if

Nm( jq)
−1ν0 det(gq) �∈ Nm(K×

q ).

On the other hand, the theta lift tψ0(ϕ1, σ, µ) could possibly be non-
cuspidal. Suppose K = Q(

√−d) with d square-free and set v0 = √−d.
Then setting ψ̃ = ψd

0 one easily computes the Fourier development of
tψ0(ϕ1, σ, µ) (for σ ∈˜SA) to be given by

tψ0(ϕ1, σ, µ) = C0(σ) +
∑

ξ∈Q>0

W ψ̃
µ (d(ξ)σ),

where

C0(σ) =
{

0, if µ is not a square,
rψ0(σ)ϕ1(0) = ∏

q rψ0(σq)ς(0) if µ is a square,



Arithmetic properties of the Shimura–Shintani–Waldspurger correspondence 563

and

W ψ̃
µ (σ) =

∫

{±1}A
rψ0(σ, h)ϕ1(v0)µ(h)d×

1 h =
∏

q

Θµ(σq),

Θµ(σq) =
∫

{±1}
rψ0(σq, h)ςq(v0)µq(h)d×

1 h

= 1

2
[rψ0(σq)ςq(v0) + µq(−1)rψ0(σq)ςq(−v0)],

Θ0(σq) = rψ0(σq)ς(0).

Let ςµ
q denote the µq(−1) component of ςq i.e. ςµ

q (σq) = 1
2 [ςq(σq) +

µq(−1)ςq(−σq)] and set ςµ = ⊗

ςµ
q . Then

C0(σ) = rψ0(σ)ςµ(0), W ψ̃
µ (σ) = rψ0(σ)ςµ(v0),

tψ0(ϕ1, σ, µ) = rψ0(σ)ςµ(0) +
∑

ξ∈Q>0

rψ0(d(ξ)σ)ςµ(v0)

=
∑

ξ∈Q≥0

rψ0(σ)ςµ(ξv0).

5.2. Local analysis of the triple integral. Let πη denote the automorphic
representation of GL2(A) corresponding to the character η. Let Ω̃ be the set
of primes dividing Nν at which πη is supercuspidal and Ω̃′ the set of primes
dividing gcd(ν, d). We will see later that πη must be a ramified principal
series representation at q ∈ Ω̃′, hence Ω̃ and Ω̃′ are mutually exclusive
sets. Denote by Σ (resp. Σ′) the set of positive square-free integers all
whose prime factors lie in Ω̃ (resp. Ω̃′.) In what follows, t will denote any
element of Σ and χt is as usual the quadratic character

(

t
·
)

. Also we use
the symbol W̃ψ to denote an anti-newform in the ψ-Whittaker model of
πη i.e. one that transforms by a character of a rather than that of d for
( a b

c d

) ∈ GL2(Qq). Further, let Aq(s) = Dq(s + k, θη̃, θη̃,ρ) (defined as
in [28]), Bq(s) = Lq(η(ηρ)−1, s) and set

Cq(s) = Aq(s)Bq(s)
−1ζK,q(s)

−1ζQ,q(2s),

so that

Dq(s + k, θη̃, θη̃,ρ) = Cq(s) · Lq(η(ηρ)−1, s)ζK,q(s)

ζQ,q(2s)
.

For each q, we also define an integer cq that is set to be equal to 1 except
when explicitly listed below. In what follows, we denote by ηK the quadratic
character associated to the quadratic extension K/Q. Further, for the rest of
this section, F will denote the Fourier transform taken with respect to the
character ψ0.
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5.2.1. Case A: (q, 2Nν) = 1

Subcase (i). K is split at q. Then Kq � Qq × Qq, Bq � M2(Qq). Set
r = Zq × Zq. We may pick δq ∈ GL2(Zq) such that iδq(a, b) = (

a 0
0 b

)

. Let

jq = ( 0 −1
1 0

)

. Then ϕq = ϕq = ς ⊗ϑ, where ς = Ir0 , ϑ = Ir jq .
It is easy to see that Θη, Θµ and Θ0 are right invariant by n(x), n(y) for

vq(x) ≥ 0, vq(y) ≥ 0. Suppose η = (λ1, λ2). Then λ1/λ2 is unramified. Set
λ = λ1|Z×

q
= λ2|Z×

q
, and α = λ1(π), β = λ2(π), for π a uniformiser in Zq.

Also note that µq(−1) = 1. Then

Θη

(

a 0
0 1

)

= |a|1/2λ
(

ν0a/πn
)βn+1 − αn+1

β − α
IZq(a), if vq(a) = n;

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq (a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

If λ1 and λ2 are unramified, so that λ is trivial and µq is unramified,

Θη = W̃ψ
η = W̃ψ

η⊗χt
⊗ χt

for any t ∈ Σ. By a familiar computation (see [28]), Cq(s) = 1.

Subcase (ii). K is inert at q. Then Kq = Qq(v), where v2 = u is a non-
square unit in Zq. Set r = Zq + Zqv. We may pick δq ∈ GL2(Zq) such that
iδq(v) = ( 0 1

u 0

)

. Let jq = ( 0 −1
u 0

)

. Then ϕq = ϕq = ς ⊗ϑ, where ς = Ir0 ,
ϑ = Ir jq .

Since any unit in K (1)
q is of the form κ/κ̄ for some unit κ, we see that

ηq|K (1)
q

is trivial, whence η factors as λ ◦ Nm and µq(−1) = 1. Again, Θη,
Θµ and Θ0 are right invariant by n(x), n(y), x, y ∈ Zq and

Θη

(

a 0
0 1

)

= 1

2
(1 + ηK,q(a))|a|1/2λ(ν0ua)IZq (a);

Θµ(d(a)) = µψ0(a)χd,q(a)|a|1/2IZq (a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a),

where h̃ is any element of Kq with Nm(h̃) = ν0ua. If λ is chosen to be
unramified (so that µq is also unramified),

Θη = W̃ψ
η = W̃ψ

η⊗χt
⊗ χt

for any t ∈ Σ. Again, Cq(s) = 1.

Subcase (iii). K is ramified at q. Then Kq = Qq(v), where v2 = π is
a uniformizer at q. (Without loss, we may take v = v0.) Set r = Zq + Zqv.
We may pick δq ∈ GL2(Zq) such that iδq(v) = ( 0 1

π 0

)

. Let jq = ( 1 0
0 −1

)

.
Then ϕq = ϕq = ∑q−1

i=0 ςi ⊗ϑi , where ςi = I( i
π +Zq)v and ϑi =

I(Zq+( i
π +Zq)v) jq

. Set Jij = J(ςi, ϑ j ). For y ∈ Qq denote by ny the elem-

ent
(

1 y
0 1

)

∈ GL2(Qq). Since hχ(σn1) = hχ(σ), rψ0(n1)ςi = ψ0(i2/π)ςi



Arithmetic properties of the Shimura–Shintani–Waldspurger correspondence 565

and rψ0(n1)ϑ j = ψ0(− j2/π)ϑ j , we see that Jij = 0 if i2 �= j2. For

a ∈ {1, . . . , q − 1} let da =
(

a 0
0 a−1

)

∈ GL2(Zq). Since hχ(σda) = hχ(σ),

rψ0(da)ςi = ςai and rψ0(da)ϑ j = ϑaj we get Jij = J(ai)(aj), hence
∑

i Jii =
J00 + (q − 1)J11. Finally, let β = (βl) ∈ Q×

A
be the element given by

βq = −1, βl = 1 if l �= q. Making the change of variables h �→ hβ in (5.3),
one gets Jij = µq(−1)J(−i) j .

We now make the following observation. A unit z = x + yv ∈ r,
x, y ∈ Zq, y �= 0 with norm 1 such that vq(x + 1) ≤ vq(y) is always of the
form κ/κ̄ for some unit κ ∈ r. In particular, for such units z,

ηq(z) = ηq(κ/κ̄) = η′(κ)χqχν,q(Nm(κ)) = 1.

If x �≡ −1 mod q and y �= 0, this shows that ηq(z) = 1 and by con-
tinuity the same is true without the assumption y �= 0. If q > 3 (as
we may always arrange to be the case by picking K appropriately), this
forces ηq(z) = 1 even if x ≡ −1 mod q. Thus ηq and µq must be un-
ramified, hence µq(−1) = ηq(−1) = 1. Let ς ′ = ∑

i ςi = I 1
qZqv and

w = ( 0 1
−1 0

) ∈ GL2(Zq). Since hχ(σw) = hχ(σ), F (ς ′) = q1/2ς0 and

F (ϑ j ) = q−1/2ψ0(〈− j
π
v, ·〉)I 1

v r jq
,

∑

i

Jij = J
(

ς ′, ϑ j
) = J(F (ς ′),F (ϑ j ))

=
∑

i

ψ0

(〈

− j

π
v,

i

π
v

〉)

J(ς0, ϑi) = J00.

Since Jii = J(−i)i , we have 2Jii = J00 for i �= 0. Thus J = J00 +
(q−1)( 1

2 J00) = 1
2 (q+1)J00 = 1

2 (q+1)J(ς, ϑ) for ς = ς0, ϑ = ϑ0. Suppose
ηq = λ ◦ Nm with λ unramified, so that πη � π(ηKλ, λ). Then one checks
that Θη,Θµ,Θ0 are all invariant by n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 1 and

Θη(d(a)) = |a|1/2ηK,q(−ν0a)λ(−ν0a)IZq (a);
Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq (a), Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a)

so that Θη = ηK,q(−ν0)W̃ψ
η = ηK,q(−ν0)W̃

ψ
η ⊗χt

⊗χt for any t ∈ Σ. Also,
Aq(s) = (1 − q−s)−1, Bq(s) = (1 − q−s)−1, ζKq(s) = (1 − q−s)−1 and
ζQ,q(2s) = (1 − q−2s)−1. Thus Cq(s) = (1 + q−s)−1. Set cq = (q + 1).

5.2.2. Case B: q | ν, (q, 2N) = 1

Subcase (i). K is split at q. Then Kq � Qq × Qq, Bq � M2(Qq). It could
happen that q = p, in which case we pick the first factor to correspond to
the completion at p and the second to p where p is the prime induced by λ
on K . Suppose ηq = (λ1, λ2). Set r = Zq ×Zq. We may pick δq ∈ GL2(Zq)

such that iδq(a, b) = (

a 0
0 b

)

. Let jq = ( 0 −1
1 0

)

and v = (1,−1) ∈ Qq × Qq.
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Also for i, j, k ∈ {0, 1, . . . , q −1}, set ςi = I(qZq+i)v, ϑjk = I(qZq+ j,qZq+k) jq .
One checks easily that

ϕq = ϕq =
q−1
∑

j=1

�( j)ς0 ⊗ ϑ j0 +
q−1
∑

k=1

�(k)ς0 ⊗ ϑ0k +
q−1
∑

i, j,k=1
i2≡ jk mod q

�( j)ςi ⊗ ϑjk,

and further, we may replace �( j) in the last term by �(k). Set Jijk =
J(ςi, ϑjk). Note that Jijk = 0 if i2 �≡ jk mod q (since making the change
of variables σ �→ σn1 in the integral defining Jijk multiplies the integral
by ψ0(i2 − jk), which is not 1 unless i2 ≡ jk mod q.) Let c = (−1, 1) ∈
Qq ×Qq. Then

ηq(−1) = ηq(c/cρ) = η′
q(c) · χqχν,q(Nm(c)) = χν,q(−1);

µq(−1) = η−1
q (−1) · χqχν,q(−1) = 1.

Hence Jijk = µq(−1)J(−i) jk = J(−i) jk. Also set ς = ∑

i ςi = Ir0 . Now,
since hχ(σw) = hχ(σ), F (ς) = q1/2ς0, and

F (ϑjk)((a, c) jq) = q−1ψ0(−c j)ψ0(−ak)Ir(a, c),
∑

i

Jijk = J(ς, ϑjk) = γ 2
ψ0

γψ−1
0

J(F (ς),F (ϑjk))

= q1/2γ 2
ψ0

γψ−1
0

J(ς0,F (ϑjk))

= q−1/2γ 2
ψ0

γψ−1
0

∑

j ′,k′
ψ0(− jk′)ψ0(−k j ′)J(ς0, ϑ j ′k′)

= q−1/2γ 2
ψ0

γψ−1
0

[

J000 +
∑

j ′ �=0

ψ0(−k j ′)J0 j ′0 +
∑

k′ �=0

ψ(− jk′)J00k′
]

.

Thus
q−1
∑

i, j,k=1
i2≡ jk mod q

�( j)Jijk =
q−1
∑

i, j,k=1

�( j)Jijk

= q−1/2γ 2
ψ0

γψ−1
0

q−1
∑

j,k=1

�( j)
[

J000 +
∑

j ′ �= 0

ψ0(−k j ′)J0 j ′0

+
∑

k′ �= 0

ψ(− jk′)J00k′
]

= q−1/2γ 2
ψ0

γψ−1
0

(q − 1)�(−1)G(�,ψ0)
∑

k′ �= 0

�(k′)J00k′

= (q − 1)
∑

k �= 0

�(k)J00k,
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and by symmetry, this last term also equals (q − 1)
∑

j �=0 �( j)J0 j0. Thus
J = (q + 1)J(ς0, ϑ) where

ϑ((a, b) jq) = �(a)IqZq(a)IZ×
q
(b) = χν,q(a)IqZq(a)IZ×

q
(b).

One may check that Θη,Θµ,Θ0 are invariant by n(x), n(y), vq(x) ≥ 0,
vq(y) ≥ 1 and

Θη(d(a)) = λ2(ν0a)|ν0a|1/2IZq (a);
Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq (a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

Note that for x ∈ Z×
q ,

λ1λ
−1
2 (x) = η′

q(1, x)χqχν,q(x) = χν,q(x) = �(x);
µq(x) = η−1(x)χqχν,q(x) = (λ1λ2)

−1(x)χν,q(x).

Choosing λ2 to be ramified and λ1 unramified, we see that λ2χν,q and µq
are unramified, and

Θη = λ2(ν0)|ν0|1/2W̃ψ
η = λ2(ν0)|ν0|1/2

(

W̃ψ
ηχt

⊗ χt
)

for any t ∈ Σ. In this case, Aq(s) = (1 − q−s)−1, Bq(s) = 1, ζK,q(s) =
(1−q−s)−2, ζQ,q(2s) = (1−q−2s)−1. Thus Cq(s) = (1+q−s)−1. Since η has
weight (−k/2, k/2), vp(λ2(ν0)) = vp(λ2(ν0)) = k/2. Set cq = (q +1)q

k−1
2 .

Subcase (ii). K is inert at q. Then Kq = Qq(v), where v2 = u is a non-
square unit in Zq. Set r = Zq + Zqv. We may pick δq ∈ GL2(Zq) such
that iδq(v) = ( 0 1

u 0

)

. Let jq = ( −1 0
0 1

)

. For i, j, k ∈ {0, 1, . . . , q − 1}, set
ςi = I(qZq+i)v, ϑjk = I(qZq+ j+(qZq+k)v) jq . Then one checks that

ϕq =
∑

i �=0

�(−2i)ςi ⊗ ϑ0i +
∑

i �=0

�(2iu)ςi ⊗ ϑ0(−i)

+
∑

i, j,k;i �=±k
j2≡(k2−i2)u

�(−(i + k))ςi ⊗ ϑjk

=
∑

i �=0

�(2iu)ςi ⊗ ϑ0(−i) +
∑

i, j,k;i �=−k
j2≡(k2−i2)u

�(−(i + k))ςi ⊗ ϑjk.

As usual, set Jijk = J(ςi, ϑjk). Now note that

ηq(−1) = ηq(v/v
ρ) = η′

q(v)χqχν,q(−u) = −χν,q(−1);
µq(−1) = η−1

q (−1)χqχν,q(−1) = −1
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so that Jijk = µq(−1)J(−i) jk = −J(−i) jk. Let ςk = ∑

i �=−k �(−(i + k))ςi .
Since F (ςi)(xv) = q−1/2ψ0(2ixu)IZq (x), one has

F (ςk)(xv) = q−1/2
∑

i �=−k

�(−(i + k))ψ0(2ixu)IZq (x)

= q−1/2ψ0(2kxu)
∑

i �=0

�(−i)ψ0(2xiu)IZq (x)

= q−1/2ψ0(2kxu)�(2xu)�(−1)G(�,ψ0)IZq (x).

Further,

F (ϑjk)((y + zv) jq) = q−1ψ0(−2yj + 2zuk)IZq (y)IZq(z).

Thus
∑

i �=−k

�(−(i + k))Jijk = J
(

ςk, ϑjk
) = γ 2

ψ0
γψ−1

0
J
(

F (ςk),F (ϑjk)
)

= q−3/2γ 2
ψ0

γψ−1
0

�(−1)G(�,ψ0)

×
∑

x,y,z

�(2xu)ψ0(2kxu − 2yj + 2zku)Jxyz,

and
∑

i, j,k;i �=−k
j2≡(k2−i2)u

�(−(i + k))Jijk =
∑

i, j,k
i �=−k

�(−(i + k))Jijk

= q1/2γ 2
ψ0

γψ−1
0

�(−1)G(�,ψ0)
∑

i

�(2iu)Ji0(−i)

= q
∑

i

�(2iu)Ji0(−i) = −q
∑

i

�(2i)Ji0(−i).

Since Ji0i = µq(−1)J(−i)0i = −J(−i)0i , one has

J = (q + 1)�(−2)
∑

i

�(i)J(ςi, ϑ0i).

Set ς = ∑

i �=0 µq(i)ςi , ϑ = ∑

i �=0 ηq(i)ϑ0i . Noting that µqηq(i) =
χqχν,q(i) = �(i), we see that

J(ς, ϑ) =
∑

i �=0
j �= 0

µq(i)ηq( j)Ji0 j =
∑

i �=0

{µq(i)ηq(i)Ji0i + µq(−i)ηq(i)J(−i)0i}

= 2
∑

i �=0

�(i)Ji0i .
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Thus J = 1
2(q + 1)�(−2)J(ς, ϑ). Now note that for x any unit in r,

ηq(x/xρ) = η′
q(x)χqχν,q(Nm(x)) = χν,q(Nm(x)).

Since the norm map is surjective onto the units of Z×
q , ηq(η

ρ
q)

−1 is not the
trivial character. Thus ηq does not factor through the norm, whence πη,q
must be supercuspidal.

Set Θ′
η(g) = Θη(gωq), Θ′

µ(g) = Θµ(gωq), Θ′
0(g) = Θ0(gωq), where

ωq =
(

ν−1
0 0

0 1

)

. Then Θ′
η,Θ

′
µ,Θ′

0 are invariant by n(x), n(y), for vq(x) ≥ 0,

vq(y) ≥ 2 and

Θ′
η

(

a 0
0 1

)

= 1

2
(1 − �(a))η(av−1)IZ×

q
(a);

Θ′
µ

(

d(a)ω−1
q

) = |a|1/2µψ0(a)χd,qµq(a)IZ×
q
(a), Θ′

0

(

d(a)ω−1
q

) = 0.

Choose η such that πη has conductor q2. Then for any t ∈ Σ with q | t, πη⊗χt

has conductor q2 as well and for any t1, t2 ∈ Σ with q � t1, q | t2,

Θ′
η = η(v−1)

{

W̃ψ
η⊗χt1

⊗ χt1 − W̃ψ
η⊗χt2

⊗ χt2

}

.

Also, Aq(s) = 1, Bq(s) = 1, ζK,q(s) = ζQ,q(2s) = (1 − q−2s)−1. Hence
Cq(s) = 1. Set cq = q + 1.

Subcase (iii). K is ramified at q. Then Kq = Qq(v), where v2 = π is
a uniformizer at q. Set r = Zq + Zqv. We may pick δq ∈ GL2(Zq) such
that iδq(v) = ( 0 1

π 0

)

. Let jq = ( 1 0
0 −1

)

. For r, i, j, k, l ∈ {0, 1, . . . , q − 1},
set ςrj = I( r

π + j+qZq)v, ϑikl = I(l+qZq+( i
π

+k+qZq)v) jq . Then one checks that

�(−1)ϕq =
∑

i, j
i �=0

�(−2i)ςij ⊗ ϑij0 +
∑

j,k
j �=k

�( j − k)ς0 j ⊗ ϑ0k0

+
∑

i, j,k,l
l �=0,l2≡2i(k− j )

�( j − k)ςij ⊗ ϑikl .
(5.4)

Set Jrjikl = J(ςrj, ϑikl). As usual, we have Jrjikl = µq(−1)J(−r)(− j )ikl. It is
easy to see that if Jrjikl �= 0 then either r = i and l2 ≡ 2i(k − j) or r = −i
and l2 ≡ 2i(k + j). Now fix i �= 0, l �= 0 for the moment. Let t be such that
l2 ≡ 2it. Then

�(−t)
∑

j,k

Jijikl = �(−t)
∑

j,k
l2≡2i(k− j )

Jijikl =
∑

j,k
l2≡2i(k− j )

�( j − k)Jijikl .
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Set ςr = I( r
π +Zq)v, ϑil = I(l+qZq+( i

π
+Zq)v) jq and Jril = J(ςr, ϑil). Thus the

contribution of the last term in (5.4) to the integral �(−1)J is
∑

i, j,k,l
l �=0,l2≡2i(k− j )

�( j − k)Jijikl =
∑

i �=0,l �=0

�(−2i)Jiil .

Set ϑi = I(Zq+( i
π +Zq)v) jq and Jri = J(ςr, ϑi). Note that if i �= 0, Jijik0 = 0

for j �= k. Hence the contribution of the first term of (5.4) to �(−1)J equals
∑

i �=0

�(−2i)
∑

j,k

Jijik0 =
∑

i �=0

�(−2i)Jii0,

whence the first and last terms of (5.4) together contribute
∑

i �=0 �(−2i)Jii0+
∑

i �=0 �(−2i)
∑

ł �=0 Jiil = ∑

i �=0 �(−2i)Jii to the integral �(−1)J .
The contribution of the middle term of (5.4) is somewhat tricky to

compute. First we begin by computing the Fourier transforms of ς0 j and
ϑ0k0. One checks that

F (ς0 j) = q−1
∑

r

ψ0(2 jr)ςr, F (ϑ0k0) = q−3/2
∑

i

ψ0(−2ik)ϑi .

Hence
∑

j �=k

�( j − k)J(ς0 j, ϑ0k0)

=
∑

j �=k

γ 2
ψ0

γψ−1
0

�( j − k)J(F (ς0 j),F (ϑ0k0))

= q−5/2γ 2
ψ0

γψ−1
0

∑

j �=k

∑

r,i

�( j − k)ψ0(2 jr)ψ0(−2ik)J(ςr, ϑi)

= q−5/2γ 2
ψ0

γψ−1
0

∑

s �=0

∑

r,i,k

�(s)ψ0(2(k + s)r)ψ0(−2ik)J(ςr, ϑi)

= q−3/2γ 2
ψ0

γψ−1
0

∑

s �=0

∑

i

�(s)ψ0(2si)J(ςi, ϑi)

= q−3/2γ 2
ψ0

γψ−1
0

G(�,ψ0)
∑

i �=0

�(2i)Jii = q−1�(−2i)Jii .

Thus �(−1)J = (1 + 1
q )
∑

i �=0 �(−2i)Jii . Now setting ς = ∑

i �=0 µ(i)ςi ,
ϑ = ∑

i �=0 η(i)ϑi , one sees that J = q+1
2q �(2)J(ς, ϑ). Set Θ′

η(g) = Θη(gωq),

Θ′
µ(g) = Θµ(gω′

q), Θ′
0(g) = Θ0(gω′

q), where ωq =
(

π−2 0
0 1

)

, ω′
q =

(

π−1 0
0 π

)

. Then Θ′
η,Θ

′
µ,Θ′

0 are invariant by n(x), n(y), for vq(x) ≥ 0,
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vq(y) ≥ 2 and

Θ′
η

(

a 0
0 1

)

= 1

2
ηq
( − ν0av−1)(1 ± �(a))|a|1/2IZ×

q
(a);

Θ′
µ(d(a)) = µψ0(a)χd,qµq(a)|a|1/2IZ×

q
(a), Θ′

0(d(a)) = 0

where the ± sign holds according as (ν0,−π) = ±1. Arguing exactly as in
the case q | d, d � ν, we see that η must be unramified and factor as η = λ◦Nm
for some unramified character λ. Thus πη � π(ληK,q, λ) has conductor q.

Let W̆ψ
η (g) = Wψ

η

(

g
(

q−1 0
0 1

))

, ˘̃Wψ
η = W̃ψ

η

(

g
(

q−1 0
0 1

))

, where in this

subcase alone, we use Wψ
η to denote the newform in the ψ-Whittaker model

of πη. Note that

Wψ
η

(

a 0
0 1

)

= λ(a)|a|1/2IZq (a), W̃ψ
η

(

a 0
0 1

)

= ηK,q(a)λ(a)|a|1/2IZq (a);

W̆ψ
η

(

a 0
0 1

)

= λ(aq−1)|aq−1|1/2IZq(aq−1)

= (λ(q)−1q1/2)λ(a)|a|1/2IqZq(a);
˘̃Wψ

η

(

a 0
0 1

)

= ηK,q(aq−1)λ(aq−1)|aq−1|1/2IZq(aq−1)

= (

ηK,q(q)q1/2λ(q)−1
)

ηK,q(a)λ(a)|a|1/2IqZq(a).

Now setting

Wψ,+
η (g) = W̃ψ

η (g) − q−1/2(ληK,q)(q) ˘̃Wψ
η (g);

Wψ,−
η (g) = Wψ

η (g) − q−1/2λ(q)W̆ψ
η (g)

we see that

Θ′
η = 1

2
ηq(−ν0v)

{

Wψ,−
η ± Wψ,+

η

} = 1

2
ηq(−ν0v)

{

Wψ,−
η⊗χt

± Wψ,+
η⊗χt

}

for any t ∈ Σ. Also, Aq(s) = (1 − q−s)−1, Bq(s) = (1 − q−s)−1, ζK,q(s) =
(1 − q−s)−1 and ζQ,q(2s) = (1 − q−2s)−1. Thus Cq(s) = (1 + q−s)−1. Set
cq = q + 1.

5.2.3. q | N+. In this case, K is split, so we fix an isomorphism K ⊗Qq �
Qq ×Qq. Set r = Zq × Zq.

Subcase (i). q � ν, χ is unramified at q. We may pick δq ∈ NGL2(Qq)(O
×
χ,q)

such that iδq(a, b) = (

a 0
0 b

)

. Let jq = ( 0 −1
1 0

)

and v = (1,−1) ∈ Qq × Qq.
Then ϕq = ς ⊗ϑ where ς = Ir0 and ϑ = I(Zq×qZq) jq . Set Θ′

η(g) =
Θ′

η(gωq), where ωq =
(

q 0
0 1

)

. Set λ = λ1/λ2, where ηq = (λ1, λ2). Then
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λ is unramified, µq(−1) = 1, Θ′
η,Θµ,Θ0 are invariant by n(x), n(y),

x, y ∈ Zq, and

Θ′
η

(

a 0
0 1

)

= |aq|1/2λ1(ν0aq)
λ−1(aq) − 1

λ−1(q) − 1
IZq(a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq (a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

If we pick λ1 and λ2 to be unramified,

Θ′
η

(

a 0
0 1

)

= |q|1/2λ1(q)|a|1/2 λ1(aq) − λ2(aq)

λ1(q) − λ2(q)
,

so that Θ′
η = |q|1/2λ1(q)W̃ψ

η . One checks easily that Cq(s) = 1.

Subcase (ii). q � ν, χ is ramified at q. We may pick δq ∈ O×
χ,q such that

either iδq(a, b) = (

a 0
0 b

)

or iδq(a, b) = (

b 0
0 a

)

. Let jq =
(

0 −q

q−1 0

)

and

v = (1,−1) ∈ Qq ×Qq. Then ϕq = ς ⊗ϑ where ς = Ir0 and ϑ((a, b) jq) =
χq(a)IZ×

q
(a)IqZq(c) or ϑ((a, b) jq) = χq(c)IZ×

q
(c)IqZq (a). We assume we

are in the former case, since the latter case is exactly similar. Set Θ′
η(g) =

Θη(gωq), where ωq =
(

q 0
0 1

)

. Note that η′
q(a, b) = χ−2

q (b) if a, b are units,

ηq(−1) = η′
q(−1, 1)χqχν,q(−1) = χq(−1) and µq(−1) = 1. Now one

checks that Θµ,Θ0 are invariant by n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 0, Θ′
η

is invariant by n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 1 and

Θ′
η

(

a 0
0 1

)

= q−1/2|a|1/2λ1(ν0aq)IZq (a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq(a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

For any a ∈ Z×
q , λ1λ

−1
2 (a) = ηq(a, a−1) = η′

q(a, 1)χqχν,q(a) = χq(a).
Thus we may pick η such that λ2 is unramified and λ1 is ramified with
conductor q. Then πη,q � π(λ1, λ2) has conductor q and Θ′

η = λ1(ν0q)W̃ψ
η .

(If on the other hand, ϑ((a, b) jq) = χ−1(c)IZ×
q
(c)IqZq(a), one gets Θ′

η =
λ2(ν0q)W̃ψ

η .) In this case, Aq(s) = (1 − q−s)−1, Bq(s) = 1, ζK,q(s) =
(1 − q−s)−2, ζQ(2s) = (1 − q−2s)−1 and Cq(s) = (1 + q−s)−1.

Subcase (iii). q | ν. In this case, χ has been chosen to be unramified at q. We
may pick δq ∈ O×

χ,q such that either iδq(a, b) = ( a 0
0 b

)

or iδq(a, b) = ( b 0
0 a

)

.
Let jq = ( 0 −1

1 0

)

and v = (1,−1) ∈ Qq × Qq. Then ϕq = ϕq = ς ⊗ϑ
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where ς = Iqr0 and ϑ((a, b) jq) = χν,q(a)IZ×
q
(a)IqZq (c) or ϑ((a, b) jq) =

χν,q(c)IZ×
q
(c)IqZq (a). Without loss we may assume we are in the former

case. In this case, η′
q is unramified, ηq(−1) = χν,q(−1) and µq(−1) = 1.

Arguing as in the previous case, λ1λ
−1
2 (a) = χν,q(a) = �(a) for a ∈ Z×

q ,
so we may assume that λ2 is unramified and λ1 is ramified, but λ1χν,q is
unramified. One may check that Θη,Θµ,Θ0 are invariant by n(x), n(y),
vq(x) ≥ 0, vq(y) ≥ 1, and

Θη(d(a)) = q−1/2|ν0a|1/2λ1(ν0a)IZq (a);
Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq(a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

We see that Θη = λ1(ν0)|ν0|1/2W̃ψ
η . Aq(s) = (1 − q−s)−1, Bq(s) = 1,

ζK,q(s) = (1 − q−s)−2, ζQ(2s) = (1 − q−2s)−1 and Cq(s) = (1 + q−s)−1.

5.2.4. q | N−. In this case, K is inert at q; we use the notation of Sect. 3.2
in what follows. We pick an isomorphism Kq � Lq and identify Kq and Lq
via this isomorphism. Set r = Zq + Zqω.

Subcase (i). q � ν, χ is unramified at q. We may pick δq ∈ B×
q such that

iδq(a) = a. Clearly, ϕδ
q = ϕq, since Bq has a unique maximal order. Also,

ϕq = ς ⊗ϑ, where ς = Ir0 and ϑ = Iru and we may set jq = u. In
this case, ηq and µq are unramified, hence ηq = λ ◦ Nm for an unramified

character λ. Let Θ′
η(g) = Θη(gωq) with ωq =

(

Nm(ω) 0
0 1

)

. Then Θ′
η,Θµ,Θ0

are invariant by n(x), n(y), x, y ∈ Zq and

Θ′
η

(

a 0
0 1

)

= 1

2
(1 + ηK,q(ν0a))|a|1/2λ(ν0a)IZq (a)

= 1

2
(1 + ηK,q(a))|a|1/2λ(a)IZq (a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZq (a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

Hence Θ′
η = W̃ψ

η . Also, Cq(s) = 1.

Subcase (ii). q � ν, χ is ramified at q. We may pick δq ∈ B×
q such that

iδq(a) = a. It is easy to check that ϕδ
q = ϕq. Also, ϕq = ς ⊗ϑ, where

ς(av) = χq(a)IZ×
q
(a) and ϑ = Iru . Then η′

q(a) = χ−1
q (Nm(a)) for a any

unit in r, ηq|K (1) is trivial and µq(−1) = χq(−1). Thus ηq = λ ◦ Nm for

some unramified character λ. Set Θ′
η(g) = Θη

(

g
(

Nm(ω) 0
0 1

))

. Then Θ′
η
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is invariant by n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 0, Θµ,Θ0 are invariant by
n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 2 and

Θ′
η

(

a 0
0 1

)

= 1

2
(1 + ηK,q(a))|a|1/2IZq (a);

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IZ×
q
(a),

Θ0(d(a)) = 0.

As in the previous case, Θ′
η = W̃ψ

η . Again, Cq(s) = 1.

Subcase (iii). q | ν. In this case, χ has been chosen to be ramified at q,
indeed χq(−1) = −1. We may pick δq ∈ B×

q such that iδq(a) = a. It is

easy to check that ϕδ
q = ϕq and η′

q(a) = χ−1
q (Nm(a)) for a ∈ r×. Also,

ϕq = ς ⊗ϑ, where ς = Iqr0 and ϑ is given by the following formula:
ϑ(bu) = 0 unless Nm(b) ∈ (Z×

q )2. In that case, write b = c ē
e for some

c ∈ Z×
q , e ∈ r×. Then ϑ(b) = χν,qχq(c) ·χν,q(Nm(e)). Note that for x ∈ r×,

ηq(x/xρ) = η′
q(x)χqχν,q(Nm x) = χν,q(Nm x).

In particular, η does not factor through the norm, hence πη is supercus-
pidal. Setting x = v, one gets ηq(−1) = χν,q(Nm ω) = −χν,q(−1) =
χqχν,q(−1). Hence we may assume that µq = η−1

q |Q×
q

· χqχν,q is unrami-
fied. One checks that Θη is invariant by n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 2,
and

Θη

(

a 0
0 1

)

= |a|1/2χν,q(εa)

∫

K (1)
q

ϑ(εah̃−1h−1)ηq(h̃h)d×h,

for any h̃ ∈ K×
q with Nm(h̃) = εa. Now ϑ(εah̃−1h−1) = 0 unless εa ∈

(Z×
q )2. Suppose εa = b2. Pick h̃ = b, so that εah̃−1h−1 = bh−1. Let us

write h = x/xρ for some x ∈ r×. Then

ηq(h̃h) = ηq

(

b
x

xρ

)

= χqχν,q(b) · χν,q(Nm(x)),

ϑ(εah̃−1h−1) = ϑ(bh−1) = ϑ

(

b
xρ

x

)

= χν,qχq(b) · χν,q(Nm(x)),

whence from (5.5) above, we see that

Θη

(

a 0
0 1

)

= 1

2
|a|1/2χν,qχq(εa)(1 + �(εa))IZ×

q
(a).

Thus for t1, t2 ∈ Σ, with q � t1, q | t2, Θη = 1
2χν,qχq(ε){W̃ψ

η ⊗χt1
⊗χt1 ±

W̃ψ
η ⊗χt2

⊗χt2} where the ± sign appears according as �(ε) = ±1. Also
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Θµ,Θ0 are invariant by n(x), n(y), vq(x) ≥ 0, vq(y) ≥ 1 and

Θµ(d(a)) = |a|1/2µψ0(a)χd,q(a)IqZq (a),

Θ0(d(a)) = |a|1/2µψ0(a)χd,q(a).

In this case, Aq(s) = 1, Bq(s) = (1 − q−s)−1, ζK,q(s) = ζQ(2s) and
Cq(s) = (1 − q−s).

5.2.5. q = 2. We assume that K is split at 2; the other cases can be handled
similarly. Pick δq, iδq, jq as in Case (A), subcase (i). Then ϕq = ς ⊗ϑ,
where ς = Ir0 , ϑ = I2r jq . Since η′, χ2 and χν,2 are unramified, we may

pick η and µ to be unramified. Let Θ′
η(g) = Θη(g ·

(

2−2 0
0 1

)

). One checks

that Θ′
η = (λ1λ2)(2) · W̃ψ

η . Further, Θµ,Θ0 are invariant by n(x), n(y),
v2(x) ≥ 0, v2(y) ≥ 2 and

Θµ(d(a)) = |a|1/2µψ0(a)χd,2(a)IZq (a), Θ0(d(a)) = |a|1/2µψ0(a)χd,2(a).

5.2.6. q = ∞. Let j∞ = ( 1 0
0 −1

)

. Then M2(R) = C + C j∞ and ϕ =
(−2i)k|ν|−1/2 · ϕ′

1,∞ ⊗ϕ′
2,∞ where ϕ′

1,∞(x) = e−2π|x|2/|ν|, ϕ′
2,∞(y j∞) =

yke−2π|y|2/|ν|. Here we think of C ↪→ GL2(R) via x = a + bi �→ ( a −b
b a

)

.
Suppose α−1 j̃α = y0 j∞ for y0 ∈ C. Then ϕ(α−1(x + y j̃)α) =
(−2i)kϕ1,∞(x)ϕ2,∞(y j̃) where ϕ1,∞(x) = e−2π|x|2/|ν| and ϕ2,∞(y j̃) =
|ν|−1/2y−k

0 yke−2π|y|2/|ν|. One checks easily that

Θη

(

a 0
0 1

)

= y−k
0 |ν| k

2 |a| k+1
2 e−2πaIR+(a);

Θµ(d(a)) = |a|1/2µψ0(a)e−2πa2/|ν|,
Θ0(d(a)) = |a|1/2µψ0(a).

Set c∞ = |ν|k/2. Also notice that y0 = −�(z)J( j̃, z) j(α, i)2 (see the dis-
cussion on p. 940 of [22]). Hence

(−y0)
−k{J( j̃, z)�(z)}k j(α, i)2k = 1.

5.3. Statement of the main theorem and proof of rationality. We begin
by summarizing the calculations of the previous section in more classical
language. For each prime q define integers lq, rq, mq, nq, sq as below.

(i) If q � 2Nνd, lq = rq = mq = nq = sq = 0.
(ii) If q � 2N, q | d, q � ν,

lq = 0, rq = 1, mq = nq = 1, sq = 0.
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(iii) If q � 2N, q | ν,

lq = 0, rq = 1, mq = nq = 1, sq = 0, if K is split at q,

lq = 1, rq = 0, mq = nq = 2, sq = 0, if K is inert at q,

lq = 2, rq = 0, mq = nq = 2, sq = 0, if K is ramified at q.

(iv) If q | N+,

lq = rq = 0, mq = 1, nq = 0, sq = 1, if q � ν and χ0,q is unramified,

lq = rq = 0, mq = 2, nq = 1, sq = 1, if q � ν and χ0,q is ramified,

lq = 0, rq = 1, mq = nq = 1, sq = 0, if q | ν.
(v) If q | N−,

lq = rq = 0, mq = 1, nq = 0, sq = 0, if q � ν and χ0,q is unramified,

lq = rq = 0, mq = 2, nq = 0, sq = 0, if q � ν and χ0,q is ramified,

lq = 0, rq = 1, mq = nq = 2, sq = 0, if q | ν.
(vi) If q = 2, lq = rq = 0, mq = 2, nq = 0, sq = 2.

Set l = ∏

q qlq , r = ∏

q qrq , m = ∏

q qmq , n = ∏

q qnq , s = ∏

q qsq .
Let κ be the Grossencharacter of weight (k, 0) defined by κ = ¯̃η and set
κt = κ · (χt ◦ Nm) for t ∈ Σ. It is easy to check that cκt = cκ = cη̃ for all
t ∈ Σ where cκt (resp. cη̃) denotes the conductor of κt (resp. of η̃). Let

θµ(z) =
∑

j∈Z≥0

µ( j)e2πij2z, θκt (z) =
∑

a∈OK
(a,cκ)=1

κt(a)e
2πiN(a)z

and denote by θ̃κt the modular form obtained by dropping the Euler factor
at q for q ∈ Σ′ in the Euler product expansion of θκt . When t = 1, we simply
write θκ or θ̃κ . Let s′ = ∏

q∈Σ′ q. Note that θκt ∈ Sk+1(Γ0(n/s′), η|−1
Q×ηK )

while θ̃κt ∈ Sk+1(Γ0(n), η|−1
Q×ηK ). Let Vq denote the Atkin–Lehner operator

usually denoted by the symbol Wq2 , and for t′ ∈ Σ′, set Vt ′ = ∏

q | t ′ Vq. Then
the computations of the previous section express Lη′ explicitly as a linear
combination of the Petersson inner products 〈hχ(lz)θµ(rz), Vt ′ θ̃κ(sz)〉 for
t ∈ Σ and t′ ∈ Σ′. For a vector b = [l, r, s], set

Ib,t
′

f,χ (µ, η̃) = 〈V ∗
t ′ {hχ(lz)θµ(rz)}, θ̃κt (sz)〉,

where η̃ is the algebraic Hecke character corresponding to η̃. We have then
more precisely,

(2πi)k{π�(z)J( j̃, z)}k Lη′

= (2πi)kπk+1
∑

t∈Σ

∑

t ′∈Σ′
cb,t,t

′
f,χ (µ, η̃)Ib,t

′
f,χ (µχt, η̃ · χt ◦ Nm),(5.5)
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with explicit coefficients cb,t,t
′

f,χ (µ, η̃) ∈ K( f, χ, η̃) that are p-adic integers
and satisfy

(

ik|ν|1/2cb,t,t
′

f,χ (µ, η̃)
)σ = ik|ν|1/2cb,t,t

′
f σ ,χσ (µ

σ , η̃σ )(5.6)

for any σ ∈ Aut(C/Q). Recall now that Ω is the CM period associated
to K , that is well defined up to a p-adic unit, and Ω(η̂) is the CM period
associated to the pair (K, η̂), that is well defined up to an element ofQ(η̂)×.
Also Ω(η̂) = (2πi)2k p(η̂, 1) where p(η̂, 1) is the period that occurs in [10].

Theorem 5.2. (a) For all σ ∈ Aut(C/K ),

(

π2k+1ik
√−d · g(χχν) · Ib,t

′
f,χ (µ, η̃)

Ω(η̂)

)σ

= π2k+1ik
√−d · g(χσχν

) · Ib,t
′

f σ ,χσ (µ
σ, η̃σ )

Ω(η̂
σ
)

.

(b) Suppose that p is split in K, p � hK , p > 2k + 1 and p � Ñ . Then, for all
t, t′, the ratio

π2k+1cb,t,t
′

f,χ (µ, η̃) · Ib,t
′

f,χ (µχt , η̃ · χt ◦ Nm)

Ω2k

is a λ-adic integer.

Proof. The p-integrality of part (b) may be proved along the lines of The-
orem 4.15 of [22], using Rubin’s theorem on the main conjecture of Iwasawa
theory for imaginary quadratic fields with some modifications to account
for the more complicated situation of the present article. We defer the details
to the next section.

The reciprocity law of part (a) may be obtained as follows. By [28,
Lemmas 3, 4 (and their proofs)], for all σ ∈ Aut(C/K ),

(

Ib,t
′

f,χ (µ, η̃)

〈θκ, θκ〉
)σ

= Ib,t
′

f σ ,χσ (µσ, η̃σ )

〈θκσ , θκσ 〉 .

Also, by (2.5) of [28],
√

dπk+2〈θκ, θκ〉/L(1, κ−1κρ) ∈ Q×. But

L(1, κ−1κρ) = L(k + 1, κ−1κρNk) = L(k + 1, η̌ · (χχν) ◦ Nm)

where η̌ = (η̂
ρ
)−1. By [28, Theorem 1],
(

g(χχν)L(k + 1, η̌ · (χχν) ◦ Nm)

L(k + 1, η̌)

)σ

=
(

g
(

χσχν

)

L
(

k + 1, η̌
σ · (χσχν

) ◦ Nm
)

L(k + 1, η̌
σ
)

)

.
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Finally, by the main theorem of Blasius’s article on Deligne’s conjecture
for Hecke L-functions of K [2] reinterpreted as in [12, Appendix], (see also
the correction in [11, p. 82])

(

L(k + 1, η̌

(2πi)k+1 p(η̂, 1)

)σ

= L(k + 1, η̌
σ
)

(2πi)k+1 p(η̂
σ
, 1)

,

from which the required reciprocity law follows. ��
Corollary 5.3. (a) ik+τg(χ)β ∈ Q( f, χ).
(b) vλ(β) ≥ 0.

Proof. Part (a) follows from part (a) of the theorem, the rationality criterion
in Proposition 5.1 (a) and (5.5) and (5.6), using that g(χχν)/g(χ)g(χν) ∈
Q(χ) and g(χν)|ν|−1/2iτ ∈ Q×. Part (b) follows from part (b) of the theorem
and the integrality criterion Proposition 5.1 (b), since there exist infinitely
many Heegner points with p split in K and p � hK [22, Lemma 5.1.]. ��

Let us then set β = ik+τg(χ)β. The following reciprocity law for β is
now immediate:

Corollary 5.4. For any σ ∈ Aut(C/Q),

(β(g, χ))σ = β(gσ , χσ ).(5.7)

5.4. Integrality of the Shimura lift. We indicate in this section the modi-
fications to the arguments in [22] needed to prove part (b) of Theorem 5.2.
Since b is fixed and the p-adic valuation of cb,t,t

′
f,χ (µ, η̃) is independent of t

and t′, in what follows we omit the superscripts b, t, t′ and simply write
cf,χ(µ, η̃). Also, since the pair (µχt, η̃ ·χt ◦Nm) is again of the form (µ, η̃),
we may assume without loss that t = 1. Let S = Sk+1(m, η|−1

Q×ηK ). By
Theorem A.1 of the appendix, V ∗

t ′ {hχ(lz)θµ(rz)} is a p-integral modular
form in S. It suffices then to prove the following theorem.

Theorem 5.5. Suppose that p is split in K, p � hK , p > 2k + 1 and p � Ñ .
Let g be any p-integral form in S. Then

cf,χ(µ, η̃) · π2k+1〈g(z), θ̃κ(sz)〉
Ω2k

is a p-adic integer.

Let T0 be the set of primes q (dividing 2N+) such that nq = 0 but sq > 0
and let T be the set of primes q in T0 such that aq (θκ)

2 ≡ qk−1(q+1)2 mod p.
For q ∈ T , let αq, βq be the parameters associated to θκ at q, ordered such
that αq/βq ≡ q mod p. Denote by T̃ the subalgebra of EndC(S) generated
by the Hecke operators Tq for q �m and the Uq for primes q ∈ T . If V ⊂ S
denotes the oldspace corresponding to θκ, then V is T̃-invariant and the
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action of T̃ on V is diagonalizable. Let P denote the set of eigencharacters
of T̃ that appear in its action on V . For every i ∈ P , the corresponding
eigenspace Vi ⊂ V is one dimensional. Let Ti ⊂ T be such that the action
of Uq on Vi is by αq for q ∈ Ti and by βq (or 0, if 2 ∈ T and q = 2) for
q ∈ T \ Ti . For g any p-integral form in S, we may expand g as

g =
∑

i∈P

δi gi + g′

where each gi ∈ Vi is a p-unit and g′ is orthogonal to the oldspace of θκ.
Let F ′ be a number field that contains all the Hecke eigenvalues of all

eigenforms in S, Õ the ring of integers of F ′ and π̃ any prime of F ′ over p.
We shall prove in fact the following theorem from which Theorem 5.5
follows immediately.

Theorem 5.6. Suppose p satisfies the assumptions of the previous theorem.
Then, for all i ∈ P ,

δi · cf,χ(µ, η̃) · π2k+1〈gi(z), θ̃κ(sz)〉
Ω2k

is a p-adic integer.

Let us now take and fix an i ∈ P . The following lemma is the analog of
Lemma 4.2 of [22].

Lemma 5.7.

vπ̃

(

cf,χ
π2k+1〈gi(z), θ̃κ(sz)〉

Ω2k

)

≥
∑

q | ν,q � N
fq +

∑

q∈Ti

vπ̃

(

αq

βq
− q

)

+ vπ̃

(

πk−1 · hK · L(1, κ−1κρ)

Ω2k

)

where fq = (k + 1
2 )vπ̃(q) (resp. fq = vπ̃(q + 1), resp. fq = vπ̃(q − 1)) if q

is split (resp. inert, resp. ramified) in K.

Remark 5.8. The assumption that p � hK made earlier in the article will be
essential later in this section. However some of the initial propositions do
not require this, hence we do not make this assumption in the beginning but
introduce it later when needed. Also we write cf,χ instead of cf,χ(µ, η̃) for
simplicity of notation.

Proof. Let P be defined by

P =
∏

q | 2N+,q �∈T

qmq−nq ·
∏

q | N−,q � ν

qmq−nq ·
∏

q∈Ω̃′
q.
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Let θi ∈ Vi be the T̃-eigenform normalized to have its first Fourier coefficient
equal to 1 and let uq denote the eigenvalue of Uq acting on θi i.e. the
L-series associated to θi is obtained by dropping the factors (1 − αqq−s)
(resp. (1 − βqq−s), resp. (1 − αqq−s)(1 − βqq−s)) for q ∈ Ti (resp. for
q ∈ T \ Ti , uq = αq, resp. q ∈ T \ Ti , uq = 0) from the L-series for θκ.
Then the collection {θi(d′z); d′ | P} is a basis for Vi over C and one checks
easily that gi is a p-integral linear combination of the elements of this basis.
For d′ | P, one finds using Lemma 3 of [28] (and its proof) that

〈θi(d
′z), θ̃κ(sz)〉 =

∏

q

Rq · 〈θκ, θκ〉,(5.8)

where Rq = 1 except in the cases listed below:

(i) If q | N+, q � ν, q �∈ T ,

Rq = aq(θκ)

qk(q + 1)
, if q � d′, Rq = q−(k+1), if q | d′.

(ii) If q | N+, q ∈ T ,

Rq = qβq − αq

qk+1(q + 1)
, if q ∈ Ti, Rq = qαq − βq

qk+1(q + 1)
, if q ∈ T \ Ti.

(iii) If q | N−, q � ν, χ0,q unramified,

Rq = 1, if q � d′, Rq = 0 if q | d′.

(iv) If q | N−, q � ν, χ0,q ramified,

Rq = 1, if q � d′, Rq = 0 if vq(d
′) = 1,

Rq = q−(k+2) if vq(d
′) = 2.

(v) If q ∈ Ω̃′,

Rq = q − 1

q
, if q � d′, Rq = 0, if q | d′.

(vi) If q = 2 �∈ T ,

Rq =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

aq2(θκ) − εθκ
(q)qk−1

q2k−1(q + 1)
, if q � d′;

aq(θκ)

q2k−1(q + 1)
if vq(d′) = 1;

q−2k if vq(d′) = 2
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where εθκ
is the central character of θκ. On the other hand, if q = 2 ∈ T ,

Rq =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

βq(qβq − αq)

q2k(q + 1)
, if q ∈ Ti;

αq(qαq − βq)

q2k(q + 1)
, if q ∈ T \ Ti and uq = αq;

0, if q ∈ T \ Ti and uq = 0.

Further

(4π)k+1

k! 〈θκ, θκ〉 = Ress=k+1 D(s, θκ̄, θκ)

=
∏

q

Cq(1) · L(1, κ−1κρ)L(1, ηK )

ζQ(2)
.

(5.9)

Recall that we have defined for each q (including q = ∞) an algebraic
integer cq such that

∑

q vπ̃(cq) = vπ̃(cf,χ). Since p � q(q +1) for q | N, p � d

and L(1, ηK ) = 2πhK/w
√

d, combining (5.8) and (5.9), we get

vπ̃

(

cf,χ
π2k+1〈gi(z), θ̃κ(sz)〉

Ω2k

)

≥
∑

q<∞
vπ̃(cqCq(1)) + vπ̃(c∞) +

∑

q∈Σ′
vπ̃(q − 1)

+
∑

q∈Ti

vπ̃

(

αq

βq
− q

)

+ vπ̃

(

πk−1hK L(1, κ−1κρ)

Ω2k

)

.

One checks immediately that for finite q, vπ̃(cqCq(1)) = 0 unless q | ν, q � N
and q is unramified in K , in which case it equals k+1

2 vπ̃(q) or vπ̃(q + 1)
according as q is split or inert in K . On the other hand, vπ̃(c∞) = k

2vπ̃(ν),
whence we get the equality of the lemma, noting that if q | ν and q = p, q
must be split in K . ��

Note that in the case vπ̃(δi) ≥ 0, Theorem 5.6 follows immediately from
the above lemma since all the terms on the right in the statement of the
lemma are nonnegative. Therefore we may assume that vπ̃(δi) = −ei with
ei > 0. Now write

S = Vi ⊕
⊕

j �=i

Vj ⊕ W

with W the orthogonal complement to ⊕ j Vj (the oldspace of θκ). Further
suppose W = W1 ⊕ W2 where W1 is the subspace of W spanned by all the
oldspaces corresponding to newforms in S that are theta functions associated
to Grossencharacters of K and are congruent to θκ modulo λ. Thus g′ =
g′

1 + g′
2 for a uniquely determined g′

1 ∈ W1, g′
2 ∈ W2.
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We will now need to study in more detail the space W1. We have the
following proposition.

Proposition 5.9. Let κ′ be a Grossencharacter of K of type (k, 0) such that
θκ′ ∈ S and θκ′ is congruent modulo λ to θκ. Then κ′ = κ · ε for a finite
order character ε of K×

A
that satisfies

(i) ε|Q×
A

= 1, and

(ii) ε is unramified outside the set of primes Ω̃′′ := {q | ν, q � N, ( d
q ) = −1}.

Proof. We begin with a modification of the argument in the proof of Prop-
osition 2.2 of [14]. Let κ′ be a Grossencharacter of K of type (k, 0) such
that θκ′ is congruent modulo λ to θκ. Thus the mod λ representations of
Gal(Q/Q) associated to θκ′ and θκ must be equal. Restricting to Gal(Q/K )
one must have κ̃λ ⊕ κ̃

ρ
λ = κ̃′

λ ⊕ κ̃
′ρ
λ .

We claim that, with our assumptions, κ̃λ �= κ̃
′ρ
λ . Indeed, if p � ν, both κ

and κ′ are unramified at p, and the same argument as in [14] shows that
κ̃λ �= κ̃

′ρ
λ provided p > k+1. If on the other hand p | ν, κ2 is unramified at p,

whence κ′2 must also be unramified at p. Since κ2 has weight (2k, 0), the
argument cited above then shows that (κ̃λ)

2 �= (κ̃
′ρ
λ )2 (and hence κ̃λ �= κ̃

′ρ
λ )

provided p > 2k + 1.
Thus we must have κ̃λ = κ̃′

λ. Let ε = κκ′−1 so that ελ = κ−1
λ κ′

λ and
ε̃λ = 1. Since θκ′ ∈ S, it must have the same central character as θκ. Thus ε
is a finite order character with ε|Q×

A

= 1.
We now show that ε must be unramified outside the set of primes of

K that lie over {q | ν, ( d
q ) = −1}. To start with, it is clear that ε must be

unramified outside the primes above m. If q | N+, q = qq in K , the condition
ε|Q×

A

= 1 forces fε,q = fε,q. Since vq(mi) ≤ 2, one sees that ε is at worst
tamely ramified at q and q. But ε̃λ = 1 and p � q − 1 by assumption, hence
ε must in fact be unramified at q and q. Similarly, if q | N−, so that q is inert
in K , ε must be at worst tamely ramified and hence unramified at q since
p � q2 − 1. If q | d and q � ν, vq(mi) ≤ 1, hence κi and ε must be unramified
at such q. If q | ν and q = qq is split in K , identifying Kq � Qq × Qq one
has κq = (κq,1, κq,2) where κq,1χν,q and κq,2 are unramified. As before, the
condition ε|Q×

A

= 1 forces fε,q = fε,q. Since vq(mi) ≤ 1, if ε were ramified
at q and q, εqχν,q and εqχν,q would both have to be unramified. However the
condition ε̃λ = 1 now forces ε to be unramified at q and q since p �= 2 and
χν,q|Z×

q
is a nontrivial quadratic character. Finally, if q | (ν, d), vq(mi) ≤ 2,

hence ε is at worst tamely ramified at q. However the condition ε|Q×
A

= 1
forces ε to be unramified at q. This completes the proof of the proposition.

��
Recall from the statement of the proposition that Ω̃′′ has been defined

to be the set of primes q | ν, q � N such that q is inert in K . Let κ′ and ε be
as in the proposition and let q ∈ Ω̃′′. Since vq(mi) ≤ 2, ε must be a tamely
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ramified or unramified character with εq|Z×
q =1. Let Uq = O×

Kq
. Then εq|Uq

factors through the quotient Uq/U ′
q where U ′

q is the subgroup Z×
q (1+qOKq)

of index q + 1. Set U ′ = ∏

q �∈Ω̃′′ Uq × ∏

q∈Ω̃′′ U ′
q so that ε factors through

the abelian extension K ′ of K corresponding the open subgroup K×U ′K×∞
of K×

A
. We may thus think of ε as being a character of G′ where G′ is

the p-part of the Galois group Gal(K ′/K ) � K×
A
/K×U ′K×∞ (thought of as

a quotient of Gal(K ′/K )). In this way one obtains a bijection between the
set of κ′ with θκ′ congruent to θκ modulo λ and the nontrivial characters ε of
the group G′. Notice that vπ̃(|G′|) = vπ̃(hK )+∑

q∈Ω′′ vπ̃(q +1). Also note
that for any such character ε, ε|Q×

A

= 1 (thinking of ε as a character of K×
A

).
In particular for any prime q = qq split in K at which ε is unramified,
ε(q)ε(q) = 1.

Suppose that G′ ∼= C1 × C2 × · · · × Cv with Cl being the cyclic factors
of G′ and |Cl| = pal . For l = 1, . . . , v, let ξl be a generator of Cl and εl
be a generator of the character group of Cl. Also, we now pick for each l,
l = 1, . . . , v, a prime ql such that

(i) ql is split in K , ql = qlql and ql, ql are unramified in K ′.
(ii) Frobql corresponds to the element (1, . . . , ξl, . . . , 1) i.e. the element

of G′ that projects to 1 on the factor Cj for j �= l and that projects to
ξl on the factor Cl.

(iii) ql � pN and (η′ · χ0 ◦N)2(ql) �≡ 1 mod π̃.

Since (η′ ·χ0 ◦N)2 is a Hecke character of type (−2k, 2k) with conductor
only divisible by the primes above N (recall p > 2k + 1), and since ε
has conductor divisible only by the primes in Ω′′, a simple application of
Chebotcharev’s theorem allows us to pick primes ql satisfying the properties
above. Now define a Hecke operator ∆ by

∆ =
v
∏

l=1

pal −1
∏

j=1

(

Tql − κ(ql)ε
j
l (ql) − κ(q)ε

j
l (ql)

)

.

Since

g = δi gi +
∑

j �=i

δ j gj + g′
1 + g′

2

we see that gi ≡ H mod π̃ei where H is given by

H = −δ−1
i

(
∑

j �=i

δ j gj + g′
1 + g′

2

)

.

Notice that H is in fact p-integral since H = gi − δ−1
i g and that H ∈

⊕

j �=i Vj ⊕ W . Applying the integral Hecke operator ∆ to the equation
gi ≡ H mod π̃ei , we see that

∆gi ≡ ∆H mod π̃ei .
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We now state and prove two lemmas about ∆gi and ∆H .

Lemma 5.10. ∆H ∈ W̃ := ⊕

j �=i Vj ⊕ W2.

Lemma 5.11. ∆gi = α̃gi with α̃ ∈ F ′ satisfying vπ̃(α̃) = vπ̃(|G′|).
We first prove Lemma 5.10. It suffices to show that ∆ annihilates any

newform θκ′ which is congruent to θκ mod λ. Write κ′ = κ · ε and suppose
that ε = ∏v

l=1 ε
bl
l for 0 ≤ bl ≤ al . Since ε is not the trivial character we may

pick j such that bj �= 0. The Hecke operator Tqj −κ(q j )ε
bj

j (q j )−κ(q j )ε
bj

j (q j )
occurs as a factor of ∆. On the other hand this Hecke operator acts on θκ′
with eigenvalue

κ(q j )

v
∏

l=1

ε
bl
l (q j ) + κ(q j )

v
∏

l=1

ε
bl
l (q j ) − κ(q j )ε

bj

j (q j ) − κ(q j )ε
bj

j (q j )

= κ(q j )ε
bj

j (q j )
{
∏

l �= j

ε
bl
l (q j ) − 1

}

+ κ(q j )ε
bl
l (q j )

{
∏

l �= j

ε
bl
l (q j ) − 1

}

= 0

since εl(q j ) = εl(q j ) = 1 for l �= j. Thus ∆θκ′ = 0 as well, as was required
to be shown.

Now we prove Lemma 5.11. Clearly ∆gi = α̃gi , where

α̃ =
v
∏

l=1

pal −1
∏

j=1

(

κ(ql) + κ(ql) − κ(ql)ε
j
l (ql) − κ(q)ε

j
l (ql)

)

.

Here εl(ql) = ζl, with ζl a primitive pal -th root of unity. Let βl = κ(ql) +
κ(ql) − κ(ql)ε

j
l (ql) − κ(q)ε

j
l (ql). Then

vπ̃(βl) = vπ̃

(

κ(ql)
(

1 − ζ
j

l

) + κ(ql)
(

1 − ζ
− j
l

))

= vπ̃

(

1 − ζ
j

l

) + vπ̃

(

ζ
j

l κ(ql) − κ(ql)
)

.

We claim that vπ̃(ζ
j

l κ(ql) − κ(ql)) = 0. Suppose to the contrary that
ζ

j
l κ(ql) − κ(ql) ≡ 0 mod π̃. Then κ(ql) ≡ ζ

j
l κ(ql) ≡ κ(ql) mod π̃. Since

κ(κρ)−1 = η̃(η̃ρ)−1 = η′ · (χ0χν ◦ N), we get η′ · (χ0χν ◦ N)(ql) ≡ 1

mod π̃, hence (η′ · χ0 ◦ N)
2
(ql) ≡ 1 mod π̃. However we have chosen ql to

expressly avoid this congruence, hence the claim above is verified. Thus

vπ̃(α̃) =
v
∑

l=1

pal −1
∑

j=1

vπ̃

(

1 − ζ
j

l

) =
v
∑

l=1

vπ̃(pal ) = vπ̃(|G′|),

which proves Lemma 5.11.
Now consider the congruence α̃gi ≡ ∆H mod π̃ei . If vπ̃(α̃) ≥ vπ̃(ei),

Theorem 5.6 follows again from Lemma 5.7 since vπ̃(α̃) = vπ̃(|G′|) =
vπ̃(hK ) + ∑

q∈Ω̃′′ vπ̃(q + 1) = vπ̃(hK ) + ∑

q∈Ω̃′′ fq. Thus we may assume
that vπ̃(α̃) < vπ̃(ei). In this case, gi ≡ α̃−1∆H mod π̃ei−vπ̃ (α̃) and α̃−1∆H
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is a p-integral form in W̃ . Set e = ei − vπ̃(α̃). Let T′ be the subalgebra
of EndC(W̃) generated by the image of T̃ and let T = T′ ⊗ Õ. Define
I = AnnT(α̃−1∆H mod π̃e). Then T/I � Õ/π̃e and the elements T ′ −
λθi (T

′) ∈ I for all T ′ ∈ T′ where λθi is the character of T′ corresponding
to θi .

Let [W̃] be a set of representatives for the eigenspaces of T̃ contained
in W̃ and F be the ring

∏

h′∈[W̃] F ′ (where by h ′ ∈ [W̃] we mean h ′ is any
normalized eigenform of T̃ contained in W̃ , i.e. with first Fourier coefficient
equal to 1). Then T is naturally a subring of F via the embedding given
by the various characters of T′ and T⊗Õ F ′ = F. Let V = F ⊕ F and
L = ∏

h′∈[W̃] Õ2 ⊂ V . Then L is a sublattice of V that is stable under the
action of T. Below we write K ′

h′ for the appropriate copy of the field F ′
in F (and O′

h′ for the appropriate copy of Õ) so that F = ∏

h′∈[W̃] K ′
h′ .

Let β be the maximal ideal of T̃ containing I and let Lβ denote the com-
pletion of L at β. The natural map L �→ Lβ factors through

∏

h′∈[W̃](O
′
h′,λ)

2.
As in [22, Lemmas 4.5 and 4.6], (note our slightly different notation), one has

Lemma 5.12. (i) If (O′
h′,λ)

2 is not in the kernel of the map L → Lβ, then h ′

is congruent to θi mod λ i.e. the characters of T̃ corresponding to h ′
and θi are congruent mod λ.

(ii) If h ′ is an eigenform in W2 corresponding to a theta lift from K, then
(O′

h′,λ)
2 is in the kernel of this map.

(iii) The terms (O′
θj,λ

)2, j �= i are in the kernel of this map.

Lemma 5.13. Let [W ] denote the set of forms h in [W̃] such that one
of the eigenforms h ′ of T̃ corresponding to h is congruent to θi mod λ.
Then, for each such h exactly one of the eigenforms corresponding to h
can be congruent to θi mod λ. Denoting this eigenform by h ′, one has
Lβ � (

∏

h∈[W ] O
′
h′,λ)

2 and Tβ ⊗Õ F ′ � ∏

h∈[W ] K ′
h′,λ.

Since Vβ = Lβ ⊗Õ F ′ � (
∏

h∈[W ] K ′
h′,λ)

2 � ∏

h∈[W ](K ′
h′,λ)

2, and Kh,λ

is contained in K ′
h′,λ, Vβ2 is naturally a representation space for Gal(Q/Q),

the action on the component Vh,λ = (K ′
h′,λ)

2 being via ρh,λ. The Galois
action preserves Lβ and thus Lβ is a Tβ[Gal(Q/Q)] module with commut-
ing actions of the Galois group and the Hecke algebra. We shall only be
concerned with its structure as a Tβ[Gal(Q/K )] module.

Let κλ and κ
ρ

λ denote the λ-adic characters associated to κ and κρ re-
spectively, and denote by κ̃λ and κ̃

ρ
λ their reductions modλ. An application

of the Brauer–Nesbitt theorem gives

Lemma 5.14. Let L be a compact sub-bimodule of Vβ. Suppose that U
is an irreducible subquotient (as Tβ[Gal(Q/K )] module) of L/π̃rL for
some r. Then U has one of the following two types.

(i) U � Tβ/βTβ � Õπ̃/π̃Õπ̃ with Gal(Q/K ) acting via κ̃λ.
(ii) U � Tβ/βTβ � Õπ̃/π̃Õπ̃ with Gal(Q/K ) acting via κ̃

ρ
λ .
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We say that U is of type κ or κρ respectively in these two cases. Note
that these types are distinct since κ̃λ �= κ̃

ρ
λ . Indeed since p > 2k + 1, κ̃λ is

ramified at p and unramified at p while κ̃
ρ
λ is unramified at p and ramified

at p.
By the method of [22, pp. 947–950] one constructs a compact sub-

bimodule L of Vβ such that L/IL sits in an exact sequence of bimodules

0 → C → L/IL → M → 0(5.10)

such that M is a free module of rank one over Tβ/I , C � L0/IL0 for
a faithful Tβ module L0 and the action of Gal(Q/K ) on C (resp. M) is
given by κ̃λ (resp. κ̃

ρ
λ ). Let g be the conductor of η′ · χ ◦ N, Kg the ray

class field of K modulo g and set K0 = Kg(
√

ν). Let K∞ be the unique
Z2

p-extension of K0 abelian over K (so that κλ factors through Gal(K∞/K ))
and L ′ the splitting field over K∞ of the representation L/IL. Denote by G′
the Galois group Gal(L ′/K∞). We define a pairing

G′ × M → C, 〈σ, m〉 �→ σm̃ − κλ(g)m̃,(5.11)

where m̃ is any lift of m to L/IL. The following lemma may be proved in
exactly the same way as Lemma 4.12 of [22].

Lemma 5.15. The extension L ′/K∞ is unramified outside the primes lying
above Ξ ∪ p where Ξ is the following set of primes in K.

Ξ = {2} ∪ {q; q | ν} ∪ {q; q ∈ Ti} ∪ {

q, q; q | N+, nq > 0
}

∪ {q; q | N−, nq > 0}.

We view the pairing (5.11) as one of Gal(Q/K ) modules where
Gal(Q/K ) acts on G′ in the usual way (via conjugation). Then we obtain
a Galois equivariant injection

G′ ↪→ HomR(M, C).(5.12)

Let Rκ be the ring generated over Zp by the values of κλ = χλ(χ
ρ
λ )−1.

The image of G′ under (5.12) is easily seen to be stable under Rκ , and this
gives G′ the structure of an Rκ module. We thus get a map φ : G′ ⊗Rκ

Õπ̃ →
HomÕπ̃

(M, C) = C.

Lemma 5.16. The map φ is surjective. Also FittÕπ̃
(G′ ⊗Rκ

Õπ̃ ) ⊆ π̃e.

Proof. See [22, Lemma 4.13]. ��
We now assume that p � hK . Thus p � [K0 : K ] as well. An application

of the main conjecture as in [22, Sect. 4.3] yields
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Proposition 5.17. Let ε = κ(κρ)−1N, and let γ be given by

γ = G(ε)

(

1 − ε(p)

p

)

(1 − ε−1(p))
πk−1Lg∪Ξ(1, κ−1κρ)

Ω2k
,

where G(ε) is the modified Gauss sum defined in [7, Theorem 4.14]. Then

FittRκ
(G′) ⊇ (γ).

One can check easily that 1 − ε(p)

p and 1 − ε−1(p) are λ-units and
vπ̃(G(ε)) = (k + 1

2 )vπ̃(|ν|). (For the computation of vπ̃(G(ε)) the reader
may also refer to II Sect. 6.3 of [7] or the remarks in Sect. 7.6 of [6].)
Further one checks immediately that for q ∈ g ∪ Ξ, the Euler factor at q
of ε−1 evaluated at 0 is a p-unit except possibly when q2 = (q), q | (ν, d)
or q ∈ Ti . In these case, the inverse of the Euler factors evaluated at 0
have p-adic valuation equal to that of q − 1 and αq

βq
− q respectively. Since

fq = (k + 1
2 )vπ̃(q) for q | ν, ( d

q ) = 1, fq = vπ̃(q − 1) for q | (ν, d), and
(γ) ⊆ (π̃e) from the previous proposition and lemma, we get

e ≤
∑

q | ν,q � N,
(

d
q

)

�=−1

fq +
∑

q∈Ti

vπ̃

(

αq

βq
− q

)

+ vπ̃

(

πk−1 · L(1, κ−1κρ)

Ω2k

)

.

Since e = ei − vπ̃(α̃) where vπ̃(α) = ∑

q∈Ω′′ fq + vπ̃(hK ), we get finally

Theorem 5.18. Assume p � hK . Then

ei ≤
∑

q | ν,q � N
fq +

∑

q∈Ti

vπ̃

(

αq

βq
− q

)

+ vπ̃

(

πk−1 · hK · L(1, κ−1κρ)

Ω2k

)

.

Combining the theorem above with Lemma 5.7 completes the proofs of
Theorems 5.6 and 5.5.

Remark 5.19. We have assumed that p � hK since we need p � [K0 : K ] in
order to apply Rubin’s theorem [25]. However we have stated the above
theorem including the term hK since the statement above is presumably true
even without the assumption p � hK .

6. Applications

6.1. A plethora of formulae. Recall the following notation and results
from the previous chapters:

f ∈ S2k(Γ0(N)), g ∈ S2k(Γ), g := JL( f ),

ν an odd fundamental quadratic discriminant, χν =
(ν

·
)

,

ψ′ := ψ1/|ν|,
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χ a finite order character, N ′ := cχ | 4N, M := gcd(4, N ′N),

F0 = a number field over which B splits,

F̃0 = Q if k = 1, F̃0 = F0 if k ≥ 2,

F = a number field containing F0 and all the eigenvalues of f,

F(χ) = the field generated over F by the values of χ,

Q( f, χ) = the field generated over Q by the eigenvalues of f
and the values of χ,

sgχ
:= a newform in π ′ ⊗χ, well defined up to a λ-unit in Q( f, χ),

hχ ∈ Sk+ 1
2
(M,χ, fχ), t := thχ

∈ Ãk+ 1
2
(M, χ0, fχ), both well

defined up to a λ-unit in Q( f, χ),

s := sgχ
⊗ χ−1χν ◦ Nm ∈ π ′ ⊗ χν,

ϕ ∈ V(A), t′ := t(ψ′, ϕ, s), s′ := T(ψ′, ϕ, t).

We have shown that

t′ = α′u+(gχ)t = αuε(g)t, i.e. t′ = tαuε(g)hχ
,

s′ = βs, with α := α/g(χ) ∈ F(χ), vλ(α), vλ(α) ≥ 0,

β := ik+τ
g(χ)β ∈ Q( f, χ), vλ(β) ≥ 0.

We now write down several formulae that explain the relations between
the objects and quantities mentioned above. All the constants below are
completely explicit, but for ease of notation we suppress their exact values.

1. See-Saw duality

〈t, t′〉 = 〈s′, s〉,
⇒ αuε(g)〈hχ, hχ〉 = β〈gχ, gχ〉.(6.1)

2. The formula from Proposition 4.1 for the Fourier coefficients of t′: for ξ
satisfying the conditions
(a) If q | N, q � ν, (

ξ0
q ) �= −wq;

(b) If q | N, q | ν, (
ξ0
q ) = −wq;

(c) ξ0 ≡ 0, 1 mod 4;

|αuε(g)aξ(hχ)|2 = C( f, χ, ν)π−2k|νξ|k− 1
2 L

(

1

2
, πf ⊗ χν

)

× L

(

1

2
, π f ⊗ χξ0

)

· 〈gχ, gχ〉
〈 fχ, fχ〉

(6.2)

for an explicit nonzero constant C( f, χ, ν) ∈ Q×.
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3. A formula of Baruch and Mao [1] for the Fourier coefficients of hχ : for
the ξ satisfying conditions (a)–(c) above,

|aξ (hχ)|2
〈hχ, hχ〉 = C ′( f, χ)

π−k|ξ|k− 1
2 L

(

1
2 , π ⊗ χξ0

)

〈 f, f 〉(6.3)

for an explicit nonzero constant C′( f, χ) ∈ Q×.
4. Taking the ratio of (6.2) to (6.3), we get

|αuε(g)|2〈hχ, hχ〉 = C( f, χ, ν)

C ′( f, χ)
· π−k|ν|k− 1

2 L

(

1

2
, π ⊗ χν

)

× 〈 f, f 〉
〈 fχ, fχ〉 · 〈gχ, gχ〉.

(6.4)

Set C ′′( f, χ, ν) := C( f,χ,ν)

C′( f,χ)
· 〈 f, f 〉

〈 fχ , fχ 〉 . Now substituting (6.1) in (6.4) yields
the fundamental formula.

Theorem 6.1.

αβuε(g) = C′′( f, χ, ν) · π−k|ν|k− 1
2 L

(

1

2
, π ⊗ χν

)

.(6.5)

5. As a bonus, multiplying both sides of (6.1) by β̄ gives

ββ̄〈gχ, gχ〉 = αβ̄uε(g)〈hχ, hχ〉 = αβuε(g)〈hχ, hχ〉.
i.e. 〈s′, s′〉 = 〈βgχ, βgχ〉

= C ′′( f, χ, ν) · π−k|ν|k− 1
2 L

(

1

2
, π ⊗ χν

)

〈hχ, hχ〉.
(6.6)

This is nothing but the explicit version of the Rallis inner product formula.

6.2. Period ratios of modular forms

Proof of Theorems 1.1 and 1.2. We begin by making use of the main
formula (6.5). In the notation of the introduction, we have

αβuε(g) = C′′( f, χ, ν)A( f, ν)uε( f )

since α = α/g(χ), β = ik+τg(χ)β and g(χν) = iτ |ν|1/2. Under the as-
sumption p � Ñ , one checks easily that C′′( f, χ, ν) is a p-unit in Q. Since
α ∈ F(χ),β ∈ Q( f, χ) and A( f, ν) ∈ Q( f ), we have uε( f )/uε(g) ∈ F(χ).
Setting χ = 1 (and making an appropriate compatible choice of ν), we
obtain the reciprocity law of Theorem 1.1 by combining (4.5), (5.7) and
Theorem 1, (iii) of [29]. Further, we have shown that vλ(α) ≥ 0, vλ(β) ≥ 0.
Thus, if A( f, ν) is a p-unit, we get vλ(uε( f )/uε(g)) ≥ 0. This completes
the proof of Theorem 1.2 of the introduction. ��
6.3. Isogenies between new-quotients of Jacobians of Shimura curves.
We show now, if N is odd and square-free, that J0(N)new and Jac(X)new are
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isogenous /Qwithout using Faltings’ isogeny theorem. Indeed it suffices to
prove the following

Theorem 6.2. Let A f and Ag denote the abelian variety quotients of J0(N)
and Jac(X) corresponding to newforms f and g that are Jacquet–Langlands
transfers of each other. Then A f and Ag are isogenous over Q.

Proof. Let Vf = ⊕

C f σ ⊂ S2(Γ0(N))new, Vg = ⊕

Cgσ ⊂ S2(Γ)new,
where σ runs over the embeddings of Q( f ) in C. Then we have canonical
identifications of Vf , Vg with the cotangent space at the identity of A f , Ag
respectively. Further, if f, g are chosen to beQ( f )-rational, then theQ-sub-
spaces Vf,0 := {∑σ aσ f σ : a ∈ Q( f )}, Vg,0 := {∑σ bσgσ : b ∈ Q( f )}
are identified with the natural Q-structures on Vf , Vg respectively coming
from the Q-structures of A f , Ag. Let ξ f : V ∨

f → A f , ξg : V ∨
g → Ag denote

the canonical exponential uniformizations and L f , Lg the kernels of ξ f , ξg
respectively.

Define a C-linear isomorphism ϕ : Vg → Vf by ϕ(gσ ) = f σ . Clearly
ϕ restricts to a Q-linear isomorphism of Vf,0 onto Vg,0. Now consider the
dual map ϕ∨ : V ∨

f → V ∨
g . We claim that ϕ∨ maps L f ⊗Q isomorphically

onto Lg ⊗Q. To prove this note first that H1(X0(N),C) � H1
p(Γ0(N),C)

is spanned by the classes ξ±( f ′) (for varying f ′ ∈ S2(Γ0(N)). (Here
we use the notation of Sect. 4.3, except we write ξ± for ξ±( f ′, K f ′)).
Since J0(N)� A f , H1(A f ,C) ⊆ H1(X0(N),C). Further the Q-subspace
H1(A f ,Q) is given by

H1(A f ,Q) =
{
∑

σ

(aσ ξ+( f σ) + bσ ξ−( f σ )) : a, b ∈ K( f )
}

.

Likewise H1(X,C) � H1
p(Γ,C) is spanned by the classes ξ±(g′) for varying

g′ and

H1(Ag,Q) =
{
∑

σ

(aσ ξ+(gσ ) + bσξ−(gσ )) : a, b ∈ K( f )
}

.

Now L f ⊗Q � H1(A f ,Q), Lg ⊗Q � H1(Ag,Q). Let {ξ∗±( f σ)} (resp.
{ξ∗±(gσ )}) denote the basis of H1(A f ,Q) (resp. of H1(Ag,Q)) that is dual
to the basis {ξ±( f σ )} (resp. {ξ±(gσ )}). It is easy to see that

ϕ∨(ξ∗
±( f σ )

) = u±( f σ )

u±(gσ )
ξ∗
+(gσ ).

The rationality result Theorem 1.1 implies then that ϕ∨ carries L f ⊗Q
isomorphically onto Lg ⊗Q and hence L f into a lattice commensurable
with Lg. Thus nϕ∨ for n a sufficiently large integer, induces an isogeny from
A f to Ag, that must be defined over some number field. Since ϕ restricts to
aQ-linear isomorphism of Vf,0 = H0(A f,Q,Ω

1) onto Vg,0 = H0(Ag,Q,Ω
1),

this isogeny must in fact be defined over Q. ��
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Appendix A. An integrality property for the Atkin–Lehner operator

by Brian Conrad

Let Q and Q′ be relatively prime positive integers and let N = QQ′. For
k ≥ 1 let wQ,k denote the usual Atkin–Lehner involution on the space
Mk(Γ0(N)) of weight-k classical modular forms on Γ0(N), defined by

f �→ f |k
(

a b
c d

)

for any a, b, c, d ∈ Z such that N|c, Q|a, Q|d, and ad − bc = Q. For
f ∈ Mk(Γ0(N)) such that the q-expansion f∞(q) ∈ C[[q]] at the cusp ∞
has all coefficients in a number field K ⊆ C, it is an easy consequence of
the algebraic theory of modular forms (as in [16, §1]) that the q-expansion
(wQ,k( f ))∞(q) also has all coefficients in K . We aim to prove a stronger
integrality property:

Theorem A.1. Fix a prime p � Q and a prime p of K over p. If f ∈
M(Γ0(N)) satisfies f∞(q) ∈ OK,p[[q]] then likewise wQ,k( f ) has p-integral
q-expansion coefficients at ∞. More generally, if R ⊆ C is any Z[1/Q]-
subalgebra and if f has all q-expansion coefficients at ∞ lying in R then
the same holds for wQ,k( f ).

To prove this theorem we wish to use an integral model for a modular
curve by interpreting f as a section of a line bundle and identifying wQ,k
as the pullback operation on its global sections induced by line bundle map
covering a self-map of such an integral model. The most natural way to
do this is to work with the moduli stack X0(N) over SpecZ that classifies
generalized elliptic curves equipped with a Γ0(N)-structure (i.e., ample
finite locally free subgroups of the smooth locus that have order N and are
cyclic in the sense of Drinfeld); working over SpecZ(p) for a prime p � Q
is all that we really require. This stack is generally only an Artin stack
(especially when working over Z(p) with p2|N, which is certainly a case
of much interest). In [4] the basic theory of such stacks was systematically
developed by building on the work [5] of Deligne and Rapoport overZ[1/N]
and the work [17] of Katz and Mazur over Z away from the cusps, and for
example it is shown there (see [4, Theorem 1.2.1]) that X0(N) is a normal
(even regular) Artin stack that is proper and flat over Z with geometrically
connected fibers of pure dimension 1.

Remark A.2. For the purposes of proving Theorem A.1 it will turn out to
only be necessary to work with certain open substacks of X0(N) that are
Deligne–Mumford stacks. In fact, by working systematically with enough
auxiliary prime-to-p level structure to force stacks to be schemes it is
possible to prove Theorem A.1 for normal R without leaving the category
of schemes. (The role of normality is to make it harmless to check the result
after adjoining roots of unity to R so that the Tate curve over R[[q]] admits
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enough auxiliary level structure.) However, it is certainly more natural to
work directly with stacks, and to avoid unnecessary normality hypotheses
on R it seems to be unavoidable to use stacks. For these reasons, we have
decided to work directly on X0(N) rather than try to avoid it.

Since R is a flat Z[1/Q]-algebra we have R = ⋂

p � Q R(p) with the
intersection taken inside of RQ = R ⊗Q. It therefore suffices to prove
Theorem A.1 for each R(p), so from now on we may and do assume that
R ⊆ C is a Z(p)-subalgebra for a fixed choice of prime p � Q. We let U ⊆
X0(N)Z(p)

be the open substack that has full generic fiber and (irreducible)
closed fiber classifying level-structures with multiplicative p-part. The idea
for proving Theorem A.1 is rather simple: identify the space of classical
modular forms having p-adically integral q-expansion at ∞ with the space
of U-sections of the line bundle of weight-k modular forms over X0(N),
and then invoke the fact that for any line bundle on a Z(p)-flat normal Artin
stack (such as U) any section over the generic fiber extends (uniquely) to
a global section if it extends over some open locus meeting every irreducible
component of the closed fiber (as then it is “defined in codimension 1”). To
make this idea work we use a geometric Atkin–Lehner self-map wQ of both
U and the universal generalized elliptic curve over U, and the construction
of this map rests on the fact that p � Q and UFp classifies precisely the
level structures in characteristic p with multiplicative p-part. The relevant
technical problems were either solved in [4] or will be settled by adapting
arguments given there.

As a first step, we shall translate our given setup into purely algebro-
geometric language. The underlying set of the classical analytic modular
curve X0(N) is identified with the set of isomorphism classes of objects in
the category X0(N)(C), and in this way the cusp ∞ arises from the object in
X0(N)(SpecZ) given by the standard Néron 1-gon C1 over SpecZ equipped
with the cyclic subgroup µN ⊆ Gm = Csm

1 . This object over SpecZ canon-
ically lifts to a morphism SpecZ[[q]] → X0(N) given by the Tate curve
Tate equipped with Γ0(N)-structure µN ⊆ Tatesm[N]. We refer the reader
to [4, §2.5] for a review of the basic facts from the algebraic and formal
theories of the Tate curve, including the existence and uniqueness of an iso-
morphism of formal Z[[q]]-group schemes Tate∧

0 � ̂Gm (formal completion
along the identity) lifting the evident isomorphism modulo q. Since global
sections of the relative dualizing sheaf of a generalized elliptic curve are
canonically identified (via restriction) with invariant relative 1-forms over
the smooth locus (as each of these spaces of sections is compatibly identified
with the space of sections of the cotangent space along the identity section),
the relative dualizing sheaf of Tate → Z[[q]] admits a unique trivializing
section whose pullback to Tate∧

0 goes over to the invariant 1-form dt/t on
the formal multiplicative group; this trivializing section is also denoted dt/t.
Let us now briefly recall how the Tate curve underlies the algebraic theory
of q-expansions, and the relation of this algebraic theory with the analytic
theory of q-expansions. If E → S is a generalized elliptic curve then we
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write ωE/S to denote the pushforward of its relative dualizing sheaf; this is
a line bundle on S whose formation commutes with any base change on
S [5, II, 1.6], so we get an invertible sheaf ω = ωE/X0(N) on X0(N). For any
ring A we write ωA to denote ωEA/X0(N)A (with EA → X0(N)A denoting
the scalar extension of E → X0(N) by Z → A), so there is a canonical
A-linear map

H0(X0(N)A, ω⊗k
A

) → H0(Spec A[[q]], ω⊗k
TateA /A[[q]]

) = A[[q]]
using the basis (dt/t)⊗ k (with TateA denoting the scalar extension on Tate
by Z[[q]] → A[[q]]). This map is called the algebraic q-expansion at ∞ over
A. In the special case A = C, descent theory and GAGA provide a canonical
C-linear isomorphism

H0(X0(N)C, ω
⊗k
C

) � Mk(Γ0(N))

that identifies the analytic q-expansion at ∞ and the algebraic q-expansion
at ∞ over C; this is proved as in [5, IV, §4] (which treats Γ(N)). Since the
natural map M ⊗B B[[q]] → M[[q]] is injective for any module M over any
noetherian ring B (such as B = Z), the image of the q-expansion map over
a ring A lies in A ⊗Z Z[[q]].

By descent theory, the q-expansion principle as in [16, 1.6.2] ensures
that for any Z[1/N]-algebra A ⊆ C the A-submodule of classical modular
forms in Mk(Γ0(N)) with q-expansion in A[[q]] coincides with

H0(X0(N)A, ω⊗k
A

) ⊆ H0(X0(N)C, ω
⊗k
C

)

.

However, this fails for more general subrings of C in which N is not
necessarily a unit because fibers of X0(N) in characteristic dividing N are
reducible. This is why we will need to make fuller use of the structure of
X0(N) near ∞ in characteristic p in order to prove Theorem A.1.

We now construct the analytic operator wQ,k algebraically over Z(p)

for an arbitrary prime p (allowing p|Q). Using primary decomposition for
cyclic subgroups in the sense of Drinfeld, for any scheme S the objects
in the category X0(N)(S) may be described as triples (E; CQ, CQ ′) where
E → S is a generalized elliptic curve, CQ and CQ ′ are finite locally free
cyclic subgroups of the smooth locus Esm whose respective orders are Q
and Q′, and the relative effective Cartier divisor CQ + CQ ′ on E is S-ample.
Letting Y0(N) ⊆ X0(N) be the open substack classifying such triples
(E; CQ, CQ ′) for which E is an elliptic curve, we can define a morphism
w0

Q : Y0(N) → Y0(N) by the functorial recipe

(E; CQ, CQ ′)� (E/CQ; E[Q]/CQ , (CQ + CQ ′)/CQ).

This is an involution in the sense that there is a canonical isomorphism of 1-
morphisms w0

Q ◦w0
Q � idY0(N) via the canonical isomorphism E/E[Q] � E

induced by multiplication by Q on E. The quotient process defining w0
Q
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makes no sense over X0(N) because for generalized elliptic curves there is
no reasonable general theory of quotients for the action by a finite locally
free subgroup scheme of the smooth locus when there are non-smooth
fibers, but there is a unique way (up to unique isomorphism) to extend this
construction over the open substack V ⊆ X0(N)Z(p)

complementary to the
closed substack of cusps in characteristic p whose level structure has p-part
that is neither étale nor multiplicative. The following lemma makes this
precise.

Lemma A.3. Let (E;CQ,CQ ′) → X0(N) be the universal object, and let
(E0;C0

Q,C0
Q ′) → Y0(N) denote its restriction away from the closed sub-

stack of cusps. The open substack V ⊆ X0(N)Z(p)
defined as above is

Deligne–Mumford and up to unique isomorphism there is a unique gener-
alized elliptic curve E ′ over V equipped with a Γ0(N)-structure restricting
to

(

E0/C0
Q;E0[Q]/C0

Q,
(

C0
Q +C0

Q ′
)

/C0
Q

)

over Y0(N)Z(p)
.

Proof. By [4, Theorem 3.2.7], V lies in an open substack of X0(N)Z(p)
that

is Deligne–Mumford. Thus, V is Deligne–Mumford. Since Y0(N)Z(p)
⊆ V

is the complement of a relative effective Cartier divisor (as this even holds for
Y0(N) viewed inside of X0(N), by [4, Theorem 4.1.1(1)]), the uniqueness
up to unique isomorphism follows by descent after applying the uniqueness
criterion for extending generalized elliptic curves equipped with ample
Drinfeld level structures in [4, Corollary 3.2.3] (applied over a smooth
scheme covering V). For existence, one argues exactly as in the deformation-
theoretic arguments in [4, §4.4] where it is proved that the p-th Hecke
correspondence Tp on moduli stacks is defined over Z (including the cusps).
The main points in adapting this argument to work for our problem over
the Deligne–Mumford stack V are that (i) the property of p-torsion at
cusps that makes the analysis of Tp work in [4, §4.4] is that such torsion is
either multiplicative or étale on fibers (this is the main reason that we work
over V rather than X0(N)Z(p)

) and (ii) if G is a multiplicative or étale cyclic
subgroup of order pn (n ≥ 1) in an elliptic curve E over an Fp-scheme then
E[pn]/G is étale or multiplicative respectively. ��

Since the Deligne–Mumford stack V is normal, by [4, Lemma 4.4.5] the
morphism w0

Q/Z(p)
has at most one extension (up to unique isomorphism)

to a morphism wQ : V → V, and moreover such a morphism does exist
via the generalized elliptic curve with Γ0(N)-structure over V provided by
Lemma A.3 (the key point is that it suffices to solve the extension problem
on deformation rings at geometric points, again by [4, Lemma 4.4.5]). The
resulting isomorphism w∗

Q(E ) � E ′ respecting Γ0(N)-structures over V
defines (by pullback) a map of line bundles ωE/V → ωE ′/V . Fix a Z(p)-
algebra A, so passing to k-th tensor powers for any k ≥ 1 and using
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extension of scalars thereby defines an A-linear map

H0(VA, ω⊗k
A

) → H0(VA, ω⊗k
E ′

A/VA

)

.(A.1)

We want to compose this with another map to obtain an endomorphism of
H0(VA, ω⊗k

A ), at least if Z(p) → A is flat.
Consider the canonical isogeny of elliptic curves φY : E0 → E0/C0

Q over
Y0(N). Since X0(N)Q is a regular 1-dimensional Deligne–Mumford stack
we can use descent theory and Néron models over étale scheme covers of this
stack to uniquely extend the isogeny φY/Q over Y0(N)Q to a homomorphism
φX over X0(N)Q = VQ from the relative identity component of (EQ)

sm to
the relative identity component of (E ′

Q)
sm. But global sections of the relative

dualizing sheaf of a generalized elliptic curve are canonically identified with
global sections of the relative cotangent space along the identity section, so
we can use the cotangent space map induced by φX to define a (necessarily
unique) map of line bundles ωE ′

Q/VQ → ωQ over X0(N)Q. This can be glued
to the canonical pullback map over Y0(N)Z(p)

induced by φY to define a map
of line bundles from ωE ′/V to ωZ(p)

over the open substack V ′ ⊆ X0(N)Z(p)

complementary to the cusps in characteristic p. (This open complement is
contained in V.) Passing to k-th tensor powers and composing with (A.1)
after extending scalars to A and forming global sections defines an A-linear
map

H0
(

VA, ω⊗k
A

) → H0
(

V ′
A, ω⊗k

A

)

.

If Z(p) → A is flat then I claim that the target of this map coincides with the
module of VA-sections of ω⊗ k

A . By the compatibility of cohomology and
flat base change it suffices to treat the case A = Z(p). Since V is a Z(p)-flat
normal Deligne–Mumford stack and the open substack V ′ contains the entire
generic fiber and is dense in the closed fiber, we get the desired equality of
modules of sections.

To summarize, for any prime p and any flat Z(p)-algebra A we have de-
fined an A-linear endomorphism of H0(VA, ω⊗ k

A ). Moreover, if p � Q then
since Q-isogenies of elliptic curves induce isomorphisms on p-power tor-
sion, the exact same method works with V replaced by the open substack U
whose closed fiber consists of the geometric points of X0(N)Fp whose level
structure has p-part that is multiplicative. In particular, for p � Q we have
constructed an A-linear endomorphism

wQ,k/A : H0
(

UA, ω⊗k
A

) → H0
(

UA, ω⊗k
A

)

.

(Obviously via restriction this is compatible with the endomorphism that
we have just constructed on sections over VA.) Note that as a special case
of working over either U or V, by setting A = C we have constructed
a C-linear endomorphism of H0(X0(N)C, ω

⊗ k
C ). It is a straightforward ma-

trix calculation with the standard Γ0(N)-structure on the universal Weier-
strass family over C − R to verify that the algebraically-defined operator
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wQ,k/C coincides with the analytic Atkin–Lehner involution on Mk(Γ0(N)),
as follows. For τ ∈ C−R and (E; CQ, C ′

Q) = (C/Lτ, 〈1/Q〉, 〈1/Q′〉) with
Lτ = Z⊕ Zτ , if we pick γ = (

a b
c d

) ∈ SL2(Z) such that Q′|c and Q|d then
multiplication by 1/(cτ + d) induces an isomorphism of triples

(E/CQ; E[Q]/CQ, (CQ + C ′
Q)/CQ) = (C/L Qτ; 〈τ〉, 〈1/Q′〉)

� (C/Lγ(Qτ); 〈1/Q〉, 〈1/Q′〉).
Hence, wQ,k/C acting on H0(X0(N)C, ω

⊗ k
C ) � Mk(Γ0(N)) is the operator

f �→ f |k
(

aQ b
cQ d

)

,

and since N = QQ′ divides cQ this is indeed the analytic Atkin–Lehner
involution wQ,k. Thus, to conclude the proof of Theorem A.1 it remains to
prove:

Lemma A.4. If p � Q and R ⊆ C is any Z(p)-subalgebra then the subset
H0(UR, ω⊗ k

R ) ⊆ Mk(Γ0(N)) is precisely the subset of modular forms whose
q-expansion at ∞ lies in R[[q]].
Proof. One containment is obvious by the compatibility of the algebraic and
analytic theories of q-expansion at ∞. For the reverse inclusion, suppose
a modular form f ∈ Mk(Γ0(N)) satisfies f∞(q) ∈ R[[q]] ⊆ C[[q]], so at
least by the q-expansion principle over RQ = R[1/p] we may identify f
with a section of ω⊗ k

RQ
over X0(N)RQ = UR[1/p]. We need to show that

this section extends (necessarily uniquely) to a section of ω⊗ k
R over UR.

By chasing p-powers in the denominator, it is equivalent to show that if
a section σ of ω⊗ k

R over UR has all q-expansion coefficients in pR then
σ/p is also a section of ω⊗ k

R over UR. A standard argument due to Katz
reduces this to the case R = Z(p), as follows. Since the q-expansion lies
in the subset R ⊗Z Z[[q]] ⊆ R[[q]] and this inclusion induces an injection
modulo p, it is equivalent to prove exactness of the complex

H0(U, ω⊗k
Z(p)

⊗Z(p)
R
) p−→ H0(U, ω⊗k

Z(p)
⊗Z(p)

R
) −→(R/pR) ⊗Z Z[[q]].

By Z(p)-flatness of R and the compatibility of quasi-coherent cohomology
with flat base change, this complex is the scalar extension by Z(p) → R
of the analogous such complex for the coefficient ring Z(p), so indeed it
suffices to treat the case R = Z(p).

Consider the map SpecZ(p)[[q]] → X0(N)Z(p)
associated to (Tate, µN ).

This lands inside of the open substack U and sends the closed point to ∞ in
characteristic p. I claim that the resulting morphism ϕ : SpecZ(p)[[q]] →U
is flat. To prove this, it suffices to check flatness of the composition of ϕ
with the faithfully flat map Spec W(Fp)[[q]] → SpecZ(p)[[q]]. Since U is
Deligne–Mumford there is a well-defined complete local ring at each of its
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geometric points (namely, the universal deformation ring of the structure
corresponding to the geometric point), and (Tate, µN ) over W(Fp)[[q]] is the
unique algebraization of the universal deformation of (C1, µN )/Fp

(proof:
it is harmless to drop the multiplicative µN in this deformation-theoretic
claim since Csm

1 = Gm , and on underlying generalized elliptic curves the
claim is part of [4, Lemma 3.3.5]). Thus, Spec W(Fp)[[q]] → U is flat, so
the morphism ϕ : SpecZ(p)[[q]] → U is indeed flat.

To exploit this flatness, we need one further property: the image of ϕ
hits each irreducible component of UFp . In fact, UFp is irreducible. Let us
briefly recall the proof. Since the cuspidal substack in X0(N) is a relative
effective Cartier divisor over Z, the cuspidal substack in UFp is a Cartier
divisor. Hence, it suffices to prove irreducibility of the complement of
the cusps in UFp . This complement is the open substack of Y0(N)Fp

whose geometric points have level structure with multiplicative p-part,
and to prove that this is irreducible it suffices to check the irreducibil-
ity of the corresponding open set in the coarse moduli space. The case
p � N follows from the fact [4, Theorems 3.2.7, 4.2.1(1)] that the proper
map X0(N)Z[1/N] → SpecZ[1/N] is smooth with fibers that are geomet-
rically connected (and so geometrically irreducible), and if p|N then the
irreducible components of the coarse moduli space of Y0(N)Fp are worked
out in [17, Chap. 13] where it is proved that one of these components con-
tains the locus with multiplicative p-part in the level structure as a dense
open subset. This furnishes the desired irreducibility.

It now remains to prove a general result on extending sections of line
bundles over normal Artin stacks by working generically on the closed fiber.
To be precise, let S be a normal locally noetherian Artin stack that is flat
over a discrete valuation ring R with fraction field K , and let ϕ : S → S
be a flat map from an algebraic space S whose image hits each irreducible
component of the closed fiber of S → Spec R. If F is an OS-flat quasi-
coherent sheaf and ση ∈ FK(SK ) is a section such that the pullback section
ϕ∗

K (ση) ∈ (ϕ∗
KFK )(SK ) lies in the subset (ϕ∗F )(S) then I claim that ση

lies in the subset F (S) ⊆ FK(SK ). Using a smooth covering of S by
an algebraic space, descent theory reduces us to the case when S is an
algebraic space, and we then similarly reduce to the case when S and S are
schemes. Working Zariski-locally then permits us to assume S = Spec A
and S = Spec A′ are affine.

Letting M be the flat A-module associated to F , we seek to prove that if
mη ∈ MK has image in MK ⊗AK A′

K = (M ⊗A A′)K lying in M ⊗A A′ then
mη ∈ M ⊆ MK . By Lazard’s theorem we can express M as a direct limit
of finite free A-modules, so we reduce to the case M = A. Hence, if π is
a uniformizer of R then denominator-chasing on mη reduces us to checking
that A/πA → A′/πA′ is injective. Since Spec A′ → Spec A is flat and hits
every irreducible component of the special fiber of Spec A over Spec R, for
each generic point p of this special fiber there is a point p′ of Spec A′ over p.
The local map Ap → A′

p′ is flat, so it is faithfully flat. Hence, if a ∈ A
becomes divisible by π in A′ then a is divisible by π in Ap. By R-flatness
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of A we conclude that the rational function a/π on Spec A is defined in
codimension ≤ 1, so by normality of A we get a/π ∈ A as desired. ��
Remark A.5. The reason we had to work with U rather than V in the
above analysis is that we only imposed an integrality condition at one cusp,
namely ∞ (and UFp is the irreducible and connected component of VFp

passing through ∞). The need to work with U rather than V is the reason
we had to require p � Q in Theorem A.1.
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