Math 494 Winter 2024 HW2

Please submit only the starred subparts (11 in all). 10 points for each subpart, except the two subparts in Problem 4 will be worth 5 each. 100 points total.

1. Homomorphisms and ideals.

- (a) Artin Ex. 11.3.3. Find generators for the kernels of the following maps:
 - i. $\mathbf{R}[X,Y] \to \mathbf{R}$ defined by $f(X,Y) \mapsto f(0,0)$.
 - ii. $\mathbf{R}[X] \to \mathbf{C}$ defined by $f(X) \mapsto f(2+i)$.
 - iii. $\mathbf{Z}[X] \to \mathbf{R}$ defined by $f(X) \mapsto f(1+\sqrt{2})$.
 - iv. $\mathbf{Z}[X] \to \mathbf{C}$ defined by $X \mapsto \sqrt{2} + \sqrt{3}$.
 - v. * $\mathbf{C}[X,Y,Z] \to \mathbf{C}[t]$ defined by $X \mapsto t, Y \mapsto t^2, Z \mapsto t^3$.
- (b) Find all the ideals in the power series ring k[X], where k is a field.
- 2. Extensions and contractions of ideals. Let $\varphi: A \to B$ be a homomorphism of rings. For J an ideal of B, we define J^c (the contraction of J) to be the $\varphi^{-1}(J)$. For I an ideal of A, we define I^e (the extension of I) to be the ideal of B generated by $\varphi(I)$.
 - (a) Show that $I \subseteq I^{ec}$ and that in general this inclusion is strict. Show that $J^{ce} \subseteq J$ and that in general this inclusion is strict.
 - (b) * Show that $I^{ece} = I^e$ and $J^{cec} = J^c$.
 - (c) * Show that if q is a prime ideal of B, then q^c is a prime ideal of A. Show that this is not true if the word *prime* is replaced by *maximal*. (It was one of Grothendieck's great insights that this property of prime ideals makes them much better to work with than maximal ideals.)

Remark: On the other hand, if \mathfrak{p} is a prime ideal of A, the ideal \mathfrak{p}^e is typically not prime. Deciding whether or not \mathfrak{p}^e is prime can be a very subtle problem. and is tied to deep arithmetic questions. See for example Ex. 3(c) and 3(d) below.

3. Chinese remainder theorem.

- (a) State and prove the analog of the Chinese remainder theorem for n ideals I_1, \ldots, I_n .
- (b) * Find all the ideals in the ring $\mathbf{Z}[i]/(5)$. (You should write down explicit generators for the ideals.) Which ones of these are prime? Which are maximal?

4. Quotient rings and some arithmetic.

- (a) Artin Ex 4.3. Identify the following rings:
 - i. $\mathbf{Z}[X]/(X^2-3,2X+4)$.
 - ii. $\mathbf{Z}[i]/(2+i)$
 - iii. $\mathbf{Z}[X]/(6, 2X 1)$
 - iv. * $\mathbf{Z}[X]/(2X^2-4,4X-5)$
 - v. $\mathbf{Z}[X]/(X^2+3,5)$.
- (b) * Artin Ex. 4.4. Are the rings $\mathbf{Z}[X]/(X^2+7)$ and $\mathbf{Z}[X]/(2X^2+7)$ isomorphic?

(c) * Let $R = \mathbf{Z}[i]$, the ring of Gaussian integers and let $\mathbf{F}_p \simeq \mathbf{Z}/p\mathbf{Z}$ denote the finite field with p elements. Analyze the structure of the ring R/(p), where p is a prime in \mathbf{Z} . Show that:

$$R/(p) \simeq \begin{cases} \mathbf{F}_2[t]/(t^2), \text{ if } p=2; \\ \mathbf{F}_p \times \mathbf{F}_p, \text{ if } p \text{ is odd and } -1 \text{ is a square mod } p; \\ \text{a field with } p^2 \text{ elements, if } p \text{ is odd and } -1 \text{ is a non-square mod } p. \end{cases}$$

For the first few odd primes p, decide which case of the above occurs. Make a table and decide if there is some visible pattern. (You can do this by hand, or better, write some code to do it quickly.)

- (d) * Now formulate and work out the analog of the previous subpart for the ring $\mathbf{Z}[\omega]$, where ω is a primitive cube root of unity.
- 5. The spectrum of a ring. It turns out that to every ring A one can attach a topological space $X = \operatorname{Spec}(A)$ defined as follows. The points of $X = \operatorname{Spec}(A)$ are the prime ideals of A. For any subset E of A, we define V(E) to be the set of all prime ideals of A containing E.
 - (a) * Show that the sets V(E) satisfy the axioms defining the *closed sets* for some topology on X. This topology is called the *Zariski topology* on X.
 - (b) Show that if I is the ideal generated by E, then V(E) = V(I).
 - (c) For any element $f \in A$, define X_f to be the complement of V(f) in X. Show that the subsets V_f form a basis for the open sets in the Zariski topology. (This means that given any open set U and an element $x \in U$, there exists an X_f such that $x \in X_f \subset U$.)
 - (d) For a homomorphism $\varphi: A \to B$, one gets a map (in the opposite direction!)

$$\varphi^* : \operatorname{Spec}(B) \to \operatorname{Spec}(A),$$

defined by

$$\varphi^*(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q}) = \mathfrak{q}^c.$$

Show that the map φ^* is continuous for the Zariski topologies on $\operatorname{Spec}(A)$ and $\operatorname{Spec}(B)$.

- (e) * Draw pictures (!) of Spec(\mathbb{Z}), Spec(\mathbb{R}), Spec($\mathbb{R}[X]$), Spec($\mathbb{R}[X]$).
- (f) Draw pictures of Spec($\mathbf{Z}[i]/(3)$), Spec($\mathbf{Z}[i]/(5)$), Spec($\mathbf{Z}[i]/(2)$).
- (g) * Draw a picture of the map

$$\operatorname{Spec}(\mathbf{Z}[i]) \to \operatorname{Spec}(\mathbf{Z}).$$