Math 493 Fall 2023 HW2

- 1. Classify all groups of order six up to isomorphism.
- 2. Let G be a group. Denote by Aut(G) the set of automorphisms of G. (An automorphism is an isomorphism from G to itself.) Show that Aut(G) has the structure of a group (in a natural way). Identify the group Aut(G) for G in the following list:
 - (a) *C*₅
 - (b) *C*₈
 - (c) C_{11}
 - (d) S_3
 - (e) $C_2 \times C_2$
 - (f) **Z**
- 3. Let p be a prime. Show that up to isomorphism there are exactly two groups of order 2p, namely the cyclic group C_{2p} and the dihedral group D_p .
- 4. Let H and K be subgroups of G. Define

$$HK = \{hk : h \in H, k \in K\}.$$

Show that HK is a subgroup of G if and only if HK = KH.

5. Let H and K be finite subgroups of a group G. Show that

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Here we are not assuming that HK is a subgroup of G, it may just be a subset; the notation |HK| is still used to denote its cardinality.

6. Let H be a subgroup of G. Define

$$N_G(H) = \{g \in G : gHg^{-1} = H\}.$$
 (equivalently: $gH = Hg$)

Show that $N_G(H)$ is a subgroup of G containing H, that H is normal in $N_G(H)$, and that $N_G(H)$ is the *largest* subgroup of G containing H in which H is normal. (Here *largest* means that it contains any other subgroup with this property.) In particular, H is normal in G if and only if $N_G(H) = G$. **Remark:** $N_G(H)$ is called the normalizer of H in G.

- 7. The second isomorphism theorem: Suppose that H and K are subgroups of G with $H \subseteq N_G(K)$. Show that
 - (i) HK is a subgroup of G and K is normal in HK.
 - (ii) $H \cap K$ is normal in H.
 - (iii) There is a canonical (i.e. natural) isomorphism

$$H/H \cap K \simeq HK/K$$

- 8. Let $H \leq G$ and $K \leq G$ be normal subgroups of G with $H \cap K = (e)$.
 - (a) Show that any two elements of H and K commute with each other. Namely, hk = kh for any $h \in H$ and $k \in K$.
 - (b) Suppose further that HK = G. Show that G must be isomorphic to the direct product $H \times K$.