Math 493 Fall 2023 HW4

You may use the Sylow theorems on this homework set.

- 1. (10pts) Let p be a prime. Classify the groups of order p^2 up to isomorphism.
- 2. (Internal) Semi-direct products. Let G be a group, H and K subgroups of G with H normal in G.
 - (a) (10 pts) Show that the following are equivalent:
 - i. Every element g in G can be written uniquely as hk with $h \in H$ and $k \in K$.
 - ii. G = HK and $H \cap K = (e)$.
 - iii. The composite map $K \to G \to G/H$ is an isomorphism.

If any (and therefore all) of these three equivalent properties hold, we say that G is the (internal) semidirect product of H and K; this is symbolically written as $G = H \rtimes K$. (The symbol is supposed to indicate that H is normal in G, since the roles of H and K are not symmetric any more, as opposed to the case of direct products.)

(b) (5 pts) Suppose that $G = H \rtimes K$. Show that G may be identified as a *set* with the Cartesian product $H \times K$, and that viewed this way, the multiplication on G is given by

$$(h_1, k_1) \cdot (h_2, k_2) = (h_1(k_1h_2k_1^{-1}), k_1k_2) = (h_1\phi_{k_1}(h_2), k_1k_2),$$

where for any $k \in K$, $\phi_k : H \to H$ is the map given by $\phi_k(h) = khk^{-1}$.

(c) (5 pts) Show that $\phi_k \in Aut(H)$ and that the map $k \mapsto \phi_k$ gives a homomorphism

$$\phi: K \to \operatorname{Aut}(H).$$

How would you use ϕ to characterize whether G is the (internal) direct product of H and K?

3. (External) semi-direct products. The previous problem motivates the following definition. Let H and K be abstract groups, and let

$$\phi: K \to \operatorname{Aut}(H), \quad k \mapsto \phi_k$$

be a homomorphism. The (external) semi-direct product $H \rtimes_{\phi} K$ is defined as follows. As a set, it is the Cartesian product $H \times K$, with group law given by

$$(h_1, k_1) \cdot (h_2, k_2) = (h_1 \phi_{k_1}(h_2), k_1 k_2).$$

- (a) (5 pts) Verify that this gives a group. Namely, identify the identity element, show that the group law is associative, and that inverses exist.
- (b) (5 pts) What is the relation between internal and external semi-direct products? Discuss ...
- (c) (10 pts) It is rather tricky to determine when two different choices of φ (for the same H and K) give rise to isomorphic groups. However, at least we can give a *sufficient* criterion for two semi-direct products to be isomorphic, as follows. The set of φ above, namely the set Hom(K, Aut(H)), carries an action of Aut(H) × Aut(K): if (ψ, μ) ∈ Aut(H) × Aut(K), then

$$\left(\left(\psi,\mu\right)\cdot\phi\right)\left(k\right) = \psi\circ\left(\phi(\mu^{-1}(k))\circ\psi^{-1}\right)$$

Verify that this is an action. Show that if ϕ and ϕ' are in the same orbit for this action, then

$$H \rtimes_{\phi} K \simeq H \rtimes_{\phi'} K.$$

- 4. (10 pts) Show that up to isomorphism there are exactly two groups of order 21.
- 5. (10 pts) Classify all the groups G of order 30 up to isomorphism. (Hint: First show that G must have a normal subgroup of order 15.)
- 6. (20 pts) Use what you know about semi-direct products to classify the groups G of order 12 up to isomorphism. (Hint: First show that G must have either a normal 2-Sylow subgroup or a normal 3-Sylow subgroup, hence is a semi-direct product $H \rtimes K$, where either H is of order 3 or of order 4. Then work through all the possibilities for $H, K, \phi : K \to \operatorname{Aut}(H)$, deciding which of these give isomorphic groups.)
- 7. (10 pts) Let H be a p-Sylow subgroup of a finite group G. Show that

$$N_G(N_G(H)) = N_G(H).$$