
Math 493 Fall 2023 HW6

1. (10 pts) Find all composition series and the corresponding simple factors for S4.

2. (20 pts) Find the derived series (i.e. , the commutator series) for the following groups and identify which of
them are solvable:

(a) (10 pts) All the groups of order 12. (You should use the classification you worked out in a previous
homework.)

(b) (10 pts) Sn for all n.

3. (5 pts) Let G be the group
G = PSL2(F5) = SL2(F5)/{±I}.

Show that G ≃ A5.

4. (40 pts) A simple group of order 168. Let G be the group

G = PSL2(F7) = SL2(F7)/{±I}.

(a) (5 pts) Show that |G| = 168 = 23 · 3 · 7.

(b) (5 pts) Let x and y be the classes of the matrices

A =

[
1 1
0 1

]
, B =

[
1 0
1 1

]
in G. Show that x and y generate distinct 7-Sylow subgroups H and K respectively. Deduce that n7(G) =
8.

(c) (5 pts) Let N ⊴ G be a normal subgroup. Show that [G : N ] ̸= 2. (Hint: Suppose that [G : N ] = 2. How
many 7-Sylows would such an N have?)

(d) (5 pts) Let N ⊴ G be a normal subgroup. Show that [G : N ] ̸= 3. (Hint: Suppose that [G : N ] = 3. Show
that N must contain both H and K. In particular it contains the element u = xy2x. Then show that u has
order 3 in G. Why is this a contradiction?)

(e) (5 pts) Let N ⊴ G be a normal subgroup. Show that [G : N ] ̸= 6.

Suppose now that G is not simple. We will derive a contradiction.

(f) (5 pts) Let N ⊴ G be a maximal proper normal subgroup. Show that the only possibility for its index in
G is [G : N ] = 7, so that |N | = 24.

(g) (5 pts) Since |N | = 24, we must have n2(N) = 1 or 3. Show that n2(N) ̸= 1. (Hint: If n2(N) = 1, show
that the unique 2-Sylow subgroup H of N is normal in G. Then G/H is a group of order 21, and has a
normal 7-Sylow subgroup K̄. Now K̄ corresponds to a normal subgroup K of G containing H . What is
[G : K]?)

(h) (5 pts) Show that n2(N) ̸= 3 either, and thus G must be simple. (Hint: Suppose n2(N) = 3. Let
H1, H2, H3 denote the 2-Sylows in N , which are the same as the 2-Sylows in G. Consider the conjugation
action of G on {H1, H2, H3}. This gives a nontrivial homomorphism φ : G → S3. Now what is the index
of ker(φ) in G? )
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5. (15 pts) A(nother?) simple group of order 168. Let G be the group

G = GL3(F2).

(a) (5 pts) Show that |G | = 168.

(b) (5 pts) Show that G is simple. (Hint: Explain why the same argument as in the previous problem works,
taking

x =

0 0 1
1 0 1
0 1 0

 , y = xT =

0 1 0
0 0 1
1 1 0


and u = yx = xTx. )

(c) (5 pts) Identify the isomorphism class of a 2-Sylow subgroup in G .

6. (10 pts) One can show that up to isomorphism, there is a unique simple group of order 168, so that in fact the
groups G and G from the previous two problems are isomorphic. This group has some beautiful connections
with number theory and algebraic geometry. In particular it is the automorphism group of the Klein quartic:

X3Y + Y 3Z + Z3X = 0.

The equation above defines an algebraic curve of genus 3 in the projective space P2. Over C, it may be thought
of as a Riemann surface, and topologically it is a sphere with three handles attached. Now there is a theorem
in algebraic geometry that if C is a curve of genus g ≥ 2 over the complex numbers, then its (algebraic)
automorphism group Aut(C) is a finite group of order ≤ 84(g − 1). If g = 3, this gives an upper bound of
168, and this upper bound is exactly realized for the curve C above, its automorphism group being isomorphic
to G (or G ). While it is somewhat tricky to see that Aut(C) ≃ G, we can amuse ourselves with the following
exercises:

(a) (3 pts) Construct a nontrivial element σ in Aut(C) of order 3. (Hint: you want to define σ by a formula of
the sort (X,Y, Z) 7→ (F1(X,Y, Z), F2(X,Y, Z), F3(X,Y, Z)) where F1, F2, F3 are polynomials in the
variables X,Y, Z.)

(b) (3 pts) Construct a nontrivial element τ in Aut(C) of order 7. (Hint: try to use a 7th root of unity.)

(c) (4 pts) Consider the subgroup of Aut(C) generated by σ and τ . What can you say about the order of this
group and its structure? (Hint: semi-direct products?)

Historical Note: The classification of finite simple groups is one of the great achievements of 20th century
mathematics, and the original proof took over ten thousand pages of journal articles. A key idea in this work
was a proposal by Richard Brauer1 to study simple groups by using centralizers of an involution.

An involution is an element x in G of order 2, and Brauer’s idea was to characterize for a given group H , the
possible simple groups G such that ZG(x) ≃ H for some involution x ∈ G. Of course for this idea to work, one
would need to know that any nonabelian simple group has an involution. This was provided by the following
landmark result of Feit and Thompson:

Theorem 0.1. (Feit-Thompson, 1962) If G is a nonabelian simple group, then |G| is even.

The proof of this theorem (which takes more than 150 pages) gave hope that a full classification would eventually
be possible.

The classification (which was thought to be completed in the early 1980’s but was eventually finished some
years later) runs as follows: every finite simple group is of one of four types:

(a) The cyclic group Cp for p prime.

(b) The alternating group An for n ≥ 6.

1Brauer was a professor at Toronto until 1948, then at UM from 1948-1952 before moving to Harvard. One of his students from Toronto was
Nesbitt, after whom the Nesbitt undergraduate lounge in our department is named. Nesbitt had moved earlier to UM and ran the actuarial program
here from 1938 to 1980.
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(c) A finite simple group of Lie type: these break up into further subfamilies.
eg. one of these subfamilies is PSLn(F ) = SLn(F )/Z(SLn(F )) where F is a finite field. These are
simple for all finite fields F when n ≥ 3 and for all finite fields F with at least 4 elements if n = 2. Note
that the examples we saw in the problems above are all of this type: PSL2(F5), PSL2(F7) and GL3(F2) ≃
PSL3(F2). Occasionally, there are “exceptional isomorphisms” between members of different families.
For example, A5 ≃ PSL2(F5), A6 ≃ PSL2(F9), A8 ≃ PSL4(F2).

(d) One of 26 “sporadic groups”. The largest of these is called the monster M and has order about 8× 1053.

Another landmark result (which marked in some sense the beginning of the end of the classification project)
was the discovery and construction of the monster group M . The existence of the monster was predicted by
Bernd Fischer and Robert Griess2 in 1973. A few months later, Griess computed the predicted order of the
monster. Nevertheless, there was at that time no proof that such a group actually existed. The monster was first
constructed by Griess in a remarkable piece of work in late 1979 - early 1980.

You can find the journal article with the construction here: The Friendly Giant

Here is the MathSciNet review of it, which gives some idea of the method and tools used.

You can read about the some of the history of the sporadic groups and the work leading up to the construction in
Griess’s own words in this survey article. The most relevant sections are 14-18. Also, on p. 37 of the article you
can find a table of the orders of all the nonabelian finite simple groups, including all the families of Lie type.

The monster has remarkable connections to other areas of mathematics, especially number theory. One of these
connections is a conjecture called Monstrous Moonshine, which was conjectured in the late 70’s and proved by
Richard Borcherds in the early 90’s.

If any of the above piqued your interest, here are some classes we offer where you can learn more:

1. To learn more about Algebraic curves, you can try Math 631 (Algebraic Goemetry)

2. To learn about Riemann surfaces, you will want to start with Math 596 (Complex Analysis)

3. To learn about groups of Lie type, you can take Math 538 (Lie Algebras) and Math 637 (Lie Groups)

2Prof. Griess has been a member of the UM faculty since 1971.
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https://www.dropbox.com/s/picnbu4mz6s06nw/TFG.pdf?dl=0
https://mathscinet-ams-org.proxy.lib.umich.edu/mathscinet/article?mr=671653
https://www.dropbox.com/s/ucyof3b0vwdfidz/ICCM-2021-0009-0001-a002.pdf?dl=0
https://en.wikipedia.org/wiki/Monstrous_moonshine

