Math 493 Fall 2023 HW9

Please do not submit this assignment. These problems are for reviewing for the final exam. G is a finite group in all the problems below.

- 1. Let $Fun(G, \mathbf{C})$ denote the vector space of \mathbf{C} -valued functions on G.
 - (a) For (ρ, V) a representation of G, let $P = (p_{ij}(g))$ denote the matrix of $\rho(g)$ with respect to some basis \mathfrak{B} of V. Show that the subspace of $\operatorname{Fun}(G, \mathbb{C})$ spanned by the functions $p_{ij}(g)$ is independent of the choice of basis \mathfrak{B} and only depends on the isomorphism class of ρ .
 - (b) Show that these matrix coefficients $p_{ij}(g)$, as (ρ, V) vary over all the distinct irreducible representations of G, form a basis for Fun (G, \mathbb{C}) .
- 2. Let (ρ_i, V_i) be the distinct irreducibles of G. We have seen that given any finite dimensional representation (ρ, V) , it is the direct sum

$$V = \oplus W_j \tag{1}$$

of irreducibles, each of which must be isomorphic to one of the ρ_i . We have also seen that in such a decomposition, the number of W_j that are isomorphic to a fixed (ρ_i, V_i) is independent of the choice of decomposition. However the actual decomposition (i.e. the physical subspaces W_j) may not be unique. Nevertheless, show that the decomposition above does satisfy the following uniqueness property:

Fix one of the ρ_i and let W be the (direct) sum of those W_j that are all isomorphic to ρ_i . Then the subspace W of V thus obtained depends only on the isomorphism class of ρ_i and is independent of the choice of decomposition (1). (This subspace W is called the ρ_i -isotypic part of V.)

Hint: Let χ_i be the character of ρ_i , which is a class function on G. Let $p_i: V \to V$ be the map given by

$$p_i(v) = n_i \rho_{\chi_i}$$

in the notation of Prop. 0.6 of the "group rep 5" note., where $n_i = \dim(V_i)$. Show that p_i must be the identity on all the W_j that are isomorphic to our fixed ρ_i and is zero on all the W_j that are not isomorphic to the fixed ρ_i . Thus p_i is a projection to W. But p_i only depends on ρ and the isomorphism class of ρ_i .

- 3. Construct the character tables for the three nonabelian groups of order 12.
- 4. The group S_4
 - (a) Construct the character table of S_4 , using just what you know about the character table of S_3 and the properties of characters we have proved. *Hint:* Write S_4 as a semidirect product of a normal subgroup of order 4 and S_3 .
 - (b) Verify that the rows of the character table satisfy the expected orthogonality relations.
 - (c) Consider the natural permutation action of S_4 on \mathbb{C}^4 (i.e. $\sigma(e_i) = e_{\sigma(i)}$.) Describe how this representation decomposes as a sum of irreducibles.
 - (d) For each irreducible representation of S_4 (corresponding to a character in the character table of the previous problem), describe how its restriction to A_4 decomposes as a sum of representations of A_4 .
- 5. Explain how you can use the character table of G to determine all the normal subgroups of G.
- 6. Artin Ex. 10.4.9
- 7. Artin Ex. 10.4.10
- 8. Artin Ex. 10.4.11