## Math 412. Symmetric Group: Answers.

DEFINITION: The symmetric group $\mathcal{S}_{n}$ is the group of bijections from any set of $n$ objects, which we usually just call $\{1,2, \ldots, n\}$, to itself. An element of this group is called a permutation of $\{1,2, \ldots, n\}$. The operation in $\mathcal{S}_{n}$ is composition of mappings.

Permutation stack notation: The notation $\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ k_{1} & k_{2} & \cdots & k_{n}\end{array}\right)$ denotes the permutation that sends $i$ to $k_{i}$ for each $i$.

Cycle notation: The notation ( $a_{1} a_{2} \cdots a_{t}$ ) refers to the (special kind of!) permutation that sends $a_{i}$ to $a_{i+1}$ for $i<t$, $a_{t}$ to $a_{1}$, and fixes any element other than the $a_{i}$ 's. A permutation of this form is called a $t$-cycle. A 2 -cycle is also called a transposition.

THEOREM 7.24: Every permutation can be written as a product of disjoint cycles - cycles that all have no elements in common. Disjoint cycles commute.

THEOREM 7.26: Every permutation can be written as a product of transpositions, not necessarily disjoint.

## A. WARM-UP WITH ELEMENTS OF $\mathcal{S}_{n}$

(1) Write the permutation $(135)(27) \in \mathcal{S}_{7}$ in permutation stack notation.
(2) Write the permutation $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 6 & 1 & 2 & 4 & 7 & 5\end{array}\right) \in \mathcal{S}_{7}$ in cycle notation.
(3) If $\sigma=(123)(46)$ and $\tau=(23456)$ in $\mathcal{S}_{7}$, compute $\sigma \tau$; write your answer in stack notation. Now also write it as a product of disjoint cycles.
(4) With $\sigma$ and $\tau$ as in (4), compute $\tau \sigma$; write your as a product of disjoint cycles. Is $\mathcal{S}_{7}$ abelian?
(5) List all elements of $\mathcal{S}_{3}$ in cycle notation. What is the order of each? Verify Lagrange's Theorem for $\mathcal{S}_{3}$.
(6) What is the inverse of (123)? What is the inverse of (1234)? How about (12345) ${ }^{-1}$ ? How about $(123)(345)$ ?
(1) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 5 & 4 & 1 & 6 & 2\end{array}\right)$
(2) $(13)(26754)$
(3) $\left(\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 6 & 5 & 4 & 3 & 7\end{array}\right)$. Same as $\left(\begin{array}{ll}1 & 2)(36)(45)\end{array}\right.$.
(4) $(13)(24)(56)$. No, not abelian as $\sigma \tau \neq \tau \sigma$.
(5) $e,(12),(23),(13),(123),(321)$. These have orders $1,2,2,2,3,3$. Each divides the order of $\mathcal{S}_{3}$, which is 3 ! or 6 .
(6) $(123)^{-1}=(321) . \quad(1234)^{-1}=(4321)(12345)^{-1}=\left(\begin{array}{l}5\end{array} 421\right)$. Notice how we can just write the cycle backwards. $\left[\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)(345)\right]^{-1}=\left(\begin{array}{lll}5 & 4 & 3\end{array}\right)\left(\begin{array}{ll}3 & 2\end{array}\right)$

## B. The Symmetric group $\mathcal{S}_{4}$

(1) What is the order of $\mathcal{S}_{4}$.
(2) List all 2 -cycles in $\mathcal{S}_{4}$. How many are there?
(3) List all 3 -cycles in $\mathcal{S}_{4}$. How many?
(4) List all 4 -cycles in $\mathcal{S}_{4}$. How many?
(5) List all 5-cycles in $\mathcal{S}_{4}$.
(6) How many elements of $S_{4}$ are not cycles? Find them all.
(7) Find the order of each element in $\mathcal{S}_{4}$. Why are the orders the same for permutations with the same "cycle type"?
(8) Find cyclic subgroups of $\mathcal{S}_{4}$ of orders 2,3 , and 4.
(9) Find a subgroup of $\mathcal{S}_{4}$ isomorphic to the Klein 4 -group. List out its elements.
(10) List out all elements in the subgroup of $\mathcal{S}_{4}$ generated by (123) and (23). What familiar group is this isomorphic to? Can you find four different subgroups of $\mathcal{S}_{4}$ isomorphic to $\mathcal{S}_{3}$ ?
(1) 4 ! or 24 .
(2) The transpositions are (12), (13), (14), (23), (2 4), (34). There are six.
(3) The 3 -cycles are $(123),(132),(124),(142),(134),(143),(234),(243)$. There are eight.
(4) The 4 -cycles are $(1234),(1243),(1324),(1342),(1423),(1432)$. There are six.
(5) There are no 5-cycles!
(6) We have found 20 permutations of 24 total permutations in $\mathcal{S}_{4}$. So there must be 4 we have not listed. The identity $e$ is one of these, but let's say it is a 0 -cycle. The permutations that are not cycles are (12)(34) and (13)(24) and (14)(23).
(7) The order of the 2 -cycles is 2 , the order of the 3 cycles is 3 , the order of the 4 -cycles is 4 . The order of the four permutations that are products of disjoint transpositions is 2 .
(8) An example of a cyclic subgroup of order 2 is $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right)\right\}$. An example of a cyclic subgroup of order 3 is $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle=\left\{e,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\right\}$. An example of a cyclic subgroup of order 4 is $\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle=$ $\{e,(1234),(13)(24),(1432)\}$.
(9) A subgroup isomorphic to the Klein 4 group is $\{e,(12)(34),(13)(24),(14)(23)\}$.
(10) The subgroup $\left.\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right)\right\rangle=\left\{\begin{array}{l}e,(1\end{array} 23\right),\left(\begin{array}{ll}1 & 3\end{array} 2\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$, which is $\mathcal{S}_{3}$. We can get four different subgroups inside $\mathcal{S}_{4}$ that are isomorphic to $\mathcal{S}_{3}$, just by looking at the sets of permutations that FIX one of the four elements. The one we just looked at fixes 4 . But we could have just as easily looked only at permutations that fix 1 : these would be the permutations of the set $\{2,3,4\}$, which is also $\mathcal{S}_{3}$. Likewise, the permutation group of $\{1,3,4\}$ and the permutation group of $\{1,2,4\}$ are also subgroups of $\mathcal{S}_{3}$ isomorphic to $\mathcal{S}_{3}$.
C. Even and Odd Permutations. A permutation is odd if it is a composition of an odd number of transposition, and even if it is a product of an even number of transpositions.
(1) Write the permutation (12 3) as a product of transpositions. Is (123) even or odd ?
(2) Write the permutation (1234) as a product of transpositions. Is (1234) even or odd?
(3) Write the $\sigma=(12)(345)$ a product of transpositions in two different ways. Is $\sigma$ even or odd?
(4) Prove that every 3 -cycle is an even permutation.

Note that the definition of even/odd permutation is problematic: how do we know it is well-defined? That is, if Waleed writes out a certain permutation $\sigma$ as a product of 17 transposition, but Linh writes out the same permutation $\sigma$ as a product of 22 transposition, is $\sigma$ even or odd? Fortunately the book proves in 7.1 that even though there can be many ways to write a permutation as a composition of transpositions, the parity will always be the same. So even/odd permutations are well-defined.
(1) $(123)=(12)(23)$, even.
(2) $(1234)=(12)(23)(34)$, odd.
(3) $(12)(345)=(12)(34)(45)=(45)(12)(45)(34)(45)$. odd.
(4) The 3-cycle $(i j k)=(i j)(j k)$ so it is even.

## D. The alternating Groups

(1) Prove that the subset of even permutations in $S_{n}$ is a subgroup. This is the called the alternating $\operatorname{group} A_{n}$.
(2) List out the elements of $A_{2}$. What group is this?
(3) List out the elements of $A_{3}$. To what group is this isomorphic?
(4) How many elements in $A_{4}$ ? Is $A_{4}$ abelian? What about $A_{n}$ ?
(1) To check that $A_{n}$ is a subgroup, we need to prove that for arbitrary $\tau, \sigma \in \mathcal{A}_{n}$.
(a) $\tau \circ \sigma \in \mathcal{A}_{n}$.
(b) $\sigma^{-1} \in A_{n}$.

For (1): Assume $\sigma$ and $\tau$ are both even. we need to show $\sigma \circ \tau$ is even. Write $\tau$ and $\sigma$ as a composition of (an even number of) transpositions. So the composition $\sigma \tau$ is the composition of all these...still an even number of them.
For (2): Note that if $\sigma$ is a product $\tau_{1} \circ \tau_{2} \cdots \tau_{n}$, then the inverse of $\sigma$ is $\tau_{n} \circ \tau_{n-1} \cdots \tau_{2} \circ \tau_{1}$. This has the same number of transpositions, so $\sigma$ is even if and only if its inverse is even. That is, if $\sigma \in A_{n}$, then so is $\sigma^{-1}$. QED.
(2) We have $A_{2}=\{e\}$, the trivial group.
(3) We have $A_{3}=\{e,(12)(23),(13)(23)\}=\{e,(123),(132)\}$. This is a cyclic group of order 3 .
(4) $A_{4}=\left\{e,(123),(132),(124),(142),(134),(143),\left(\begin{array}{ll}2 & 3\end{array}\right),(243),(12)(34),(13)(24),(14)(23)\right\}$. This is order 12 , not abelian. In general, $A_{n}$ has order $n!/ 2$ and is not abelian if $n \geq 4$.

## E. The Symmetric group $\mathcal{S}_{5}$

(1) Find one example of each type of element in $S_{5}$ or explain why there is none:
(a) A 2-cycle
(b) A 3-cycle
(c) A 4-cycle
(d) A 5-cycle
(e) A 6-cycle
(f) A product of disjoint transpositions
(g) A product of 3-cycle and a disjoint 2-cycle.
(h) A product of 2 disjoint 3 cycles.
(2) For each example in (1), find the order of the element.
(3) What are all possible orders of elements in $\mathcal{S}_{5}$ ?
(4) What are all possible orders of cyclic subgroups of $\mathcal{S}_{5}$.
(5) For each example in (1), write the element as a product of transpositions. Which are even and which are odd?
(1) (1 2), (123), (1234), (12345), No six cycles!, (12)(35), (12)(345), no triple products of disjoint 2 cycles exist in $\mathcal{S}_{5} \ldots$ only 5 objects to permute.
(2) The orders are $2,3,4,5$, none, $2,6$.
(3) The orders above, and 1, are all possible orders because these exhaust all possible cycle-types of permutations.
(4) There are cyclic subgroups of all the orders listed in (2), and the trivial subgroup $\{e\}$ which is cyclic of order 1.
(5) (12), (123) $=\binom{1}{1}(23),\left(\begin{array}{ll}1 & 2\end{array} 4_{)}\right)=(12)(23)(34),(12345)=(12)(23)(34)(45)$, No six cycles!, $(12)(35),(12)(345)=(12)(34)(45)$. To determine even/odd just count the number of transpositions in each.
F. Discuss with your workmates how one might prove Theorem 7.26. Start by doing it for $\mathcal{S}_{3}$, then $\mathcal{S}_{4}$. Convince yourself by induction on $n$.

In $\mathcal{S}_{2}$, every element is a transposition (12) or a product of transpositions $(12)(12)=e$.
In $\mathcal{S}_{3}$, every element is a transposition, or a product of transpositions such as $(12)(12)=e$, or $(123)=(12)(23)$.
In $\mathcal{S}_{4}$, the previous cases handle every thing which is a 1 -cycle, 2 -cycle or 3 -cycle. The remaining elements are either products of two disjoint transpositions, such as (12)(34), in which case we're done, or four cycles such as (1234). The latter can be written $(12)(23)(34)$.

In $\mathcal{S}_{n}$, we write an arbitrary element as a product of cycles. Then, it comes down to writing each cycle as a product of transpositions. But for example $\left(i_{1} i_{2} i_{3} \cdots i_{t}\right)=\left(i_{1} i_{2}\right) \circ\left(i_{2} i_{3}\right) \circ \cdots\left(i_{t-1} i_{t}\right)$. So it is a clear that this can be done.

G Permutation Matrices. We say that an $n \times n$ matrix is a permutation matrix if it can be obtained
from the $n \times n$ identity matrix by swapping columns (or rows).
(1) List out all $3 \times 3$ permutation matrices.
(2) Prove that the set $P_{3}$ of $3 \times 3$ permutation matrices is a subgroup of $G L_{3}(\mathbb{R})$.
(3) Find an isomorphism between $\mathcal{S}_{3}$ and the group you found in (2). Prove that the subgroup of $P_{3}$ corresponding to the alternating group is $P_{3} \cap S L_{3}(\mathbb{R})$.
(4) Find the order of each element of the subgroup of permutation matrices in $G L_{3}(\mathbb{R})$.
(5) For any $n$, the set $P_{n}$ of all $n \times n$ permutation matrices is a group isomorphic to $\mathcal{S}_{n}$. Can you explain why?

Bonus. What are the possible orders of elements in $\mathcal{S}_{6}$ ? What are the possible orders of elements in $\mathcal{S}_{7}$ ?
Prove that $\mathcal{S}_{12}$ has an element of order 35 .

