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Math 412. Symmetric Group: Answers.

DEFINITION: The symmetric group Sn is the group of bijections from any set of n objects, which
we usually just call {1, 2, . . . , n}, to itself. An element of this group is called a permutation of
{1, 2, . . . , n}. The operation in Sn is composition of mappings.

PERMUTATION STACK NOTATION: The notation
(
1 2 · · · n
k1 k2 · · · kn

)
denotes the permutation that sends

i to ki for each i.

CYCLE NOTATION: The notation (a1 a2 · · · at) refers to the (special kind of!) permutation that sends ai
to ai+1 for i < t, at to a1, and fixes any element other than the ai’s. A permutation of this form is called
a t-cycle. A 2-cycle is also called a transposition.

THEOREM 7.24: Every permutation can be written as a product of disjoint cycles — cycles that all have
no elements in common. Disjoint cycles commute.

THEOREM 7.26: Every permutation can be written as a product of transpositions, not necessarily dis-
joint.

A. WARM-UP WITH ELEMENTS OF Sn
(1) Write the permutation (1 3 5)(2 7) ∈ S7 in permutation stack notation.

(2) Write the permutation
(
1 2 3 4 5 6 7
3 6 1 2 4 7 5

)
∈ S7 in cycle notation.

(3) If σ = (1 2 3)(4 6) and τ = (2 3 4 5 6) in S7, compute στ ; write your answer in stack notation. Now
also write it as a product of disjoint cycles.

(4) With σ and τ as in (4), compute τσ; write your as a product of disjoint cycles. Is S7 abelian?
(5) List all elements of S3 in cycle notation. What is the order of each? Verify Lagrange’s Theorem for
S3.

(6) What is the inverse of (1 2 3)? What is the inverse of (1 2 3 4)? How about (1 2 3 4 5)−1? How about
(1 2 3)(3 4 5)?

(1)
(
1 2 3 4 5 6 7
3 7 5 4 1 6 2

)
(2) (1 3)(2 6 7 5 4)

(3)
(
1 2 3 4 5 6 7
2 1 6 5 4 3 7

)
. Same as (1 2)(3 6)( 4 5).

(4) (1 3)(2 4)( 5 6). No, not abelian as στ 6= τσ.
(5) e, (1 2), (2 3), (1 3), (1 2 3), (3 2 1). These have orders 1, 2, 2, 2, 3, 3. Each divides the order of S3, which is 3! or 6.
(6) (1 2 3)−1 = (3 2 1). (1 2 3 4)−1 = (4 3 2 1) (1 2 3 4 5)−1 = (5 4 3 2 1). Notice how we can just write the cycle

backwards. [(1 2 3)(3 4 5)]−1 = (5 4 3)(3 2 1)

B. THE SYMMETRIC GROUP S4

(1) What is the order of S4.
(2) List all 2-cycles in S4. How many are there?
(3) List all 3-cycles in S4. How many ?



(4) List all 4-cycles in S4. How many ?
(5) List all 5-cycles in S4.
(6) How many elements of S4 are not cycles? Find them all.
(7) Find the order of each element in S4. Why are the orders the same for permutations with the same

“cycle type”?
(8) Find cyclic subgroups of S4 of orders 2, 3, and 4.
(9) Find a subgroup of S4 isomorphic to the Klein 4-group. List out its elements.

(10) List out all elements in the subgroup of S4 generated by (1 2 3) and (2 3). What familiar group is
this isomorphic to? Can you find four different subgroups of S4 isomorphic to S3?

(1) 4! or 24.
(2) The transpositions are (1 2), (1 3), (1 4), (2 3), (2 4), (3 4). There are six.
(3) The 3-cycles are (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3). There are eight.
(4) The 4-cycles are (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2). There are six.
(5) There are no 5-cycles!
(6) We have found 20 permutations of 24 total permutations in S4. So there must be 4 we have not listed. The identity

e is one of these, but let’s say it is a 0-cycle. The permutations that are not cycles are (1 2)(3 4) and (1 3)(2 4) and
(1 4)(2 3).

(7) The order of the 2-cycles is 2, the order of the 3 cycles is 3, the order of the 4-cycles is 4. The order of the four
permutations that are products of disjoint transpositions is 2.

(8) An example of a cyclic subgroup of order 2 is 〈(1 2)〉 = {e, (1 2)}. An example of a cyclic subgroup of or-
der 3 is 〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)}. An example of a cyclic subgroup of order 4 is 〈(1 2 3 4)〉 =
{e, (1 2 3 4), (1 3)(2 4), (1 4 3 2)}.

(9) A subgroup isomorphic to the Klein 4 group is {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
(10) The subgroup 〈(1 2 3), (2 3)〉 = {e, (1 2 3), (1 3 2), (2 3), (1 2), (1 3)}, which is S3. We can get four different

subgroups inside S4 that are isomorphic to S3, just by looking at the sets of permutations that FIX one of the four
elements. The one we just looked at fixes 4. But we could have just as easily looked only at permutations that fix 1:
these would be the permutations of the set {2, 3, 4}, which is also S3. Likewise, the permutation group of {1, 3, 4}
and the permutation group of {1, 2, 4} are also subgroups of S3 isomorphic to S3.

C. EVEN AND ODD PERMUTATIONS. A permutation is odd if it is a composition of an odd number of
transposition, and even if it is a product of an even number of transpositions.

(1) Write the permutation (1 2 3) as a product of transpositions. Is (1 2 3) even or odd ?
(2) Write the permutation (1 2 3 4) as a product of transpositions. Is (1 2 3 4) even or odd ?
(3) Write the σ = (1 2)(3 4 5) a product of transpositions in two different ways. Is σ even or odd ?
(4) Prove that every 3-cycle is an even permutation.

Note that the definition of even/odd permutation is problematic: how do we know it is well-defined? That is, if Waleed
writes out a certain permutation σ as a product of 17 transposition, but Linh writes out the same permutation σ as a product
of 22 transposition, is σ even or odd? Fortunately the book proves in 7.1 that even though there can be many ways to
write a permutation as a composition of transpositions, the parity will always be the same. So even/odd permutations are
well-defined.

(1) (1 2 3) = (1 2)(2 3), even.
(2) (1 2 3 4) = (1 2)(2 3)(3 4), odd.
(3) (1 2)(3 4 5) = (1 2)(3 4)(4 5) = (4 5)(1 2)(4 5)(3 4)(4 5). odd.
(4) The 3-cycle (i j k) = (i j)(j k) so it is even.

D. THE ALTERNATING GROUPS

(1) Prove that the subset of even permutations in Sn is a subgroup. This is the called the alternating
group An.

(2) List out the elements of A2. What group is this?



(3) List out the elements of A3. To what group is this isomorphic?
(4) How many elements in A4? Is A4 abelian? What about An?

(1) To check that An is a subgroup, we need to prove that for arbitrary τ, σ ∈ An.
(a) τ ◦ σ ∈ An.
(b) σ−1 ∈ An.

For (1): Assume σ and τ are both even. we need to show σ ◦ τ is even. Write τ and σ as a composition of (an even
number of) transpositions. So the composition στ is the composition of all these...still an even number of them.
For (2): Note that if σ is a product τ1 ◦ τ2 · · · τn, then the inverse of σ is τn ◦ τn−1 · · · τ2 ◦ τ1. This has the same
number of transpositions, so σ is even if and only if its inverse is even. That is, if σ ∈ An, then so is σ−1. QED.

(2) We have A2 = {e}, the trivial group.
(3) We have A3 = {e, (1 2)(2 3), (1 3)(2 3)} = {e, (1 2 3), (1 3 2)}. This is a cyclic group of order 3.
(4) A4 = {e, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. This

is order 12, not abelian. In general, An has order n!/2 and is not abelian if n ≥ 4.

E. THE SYMMETRIC GROUP S5
(1) Find one example of each type of element in S5 or explain why there is none:

(a) A 2-cycle
(b) A 3-cycle
(c) A 4-cycle
(d) A 5-cycle
(e) A 6-cycle
(f) A product of disjoint transpositions
(g) A product of 3-cycle and a disjoint 2-cycle.
(h) A product of 2 disjoint 3 cycles.

(2) For each example in (1), find the order of the element.
(3) What are all possible orders of elements in S5?
(4) What are all possible orders of cyclic subgroups of S5.
(5) For each example in (1), write the element as a product of transpositions. Which are even and which

are odd?

(1) (1 2), (1 2 3), (1 2 3 4), (1 2 3 4 5), No six cycles!, (1 2)(3 5), (1 2)(3 4 5), no triple products of disjoint 2 cycles
exist in S5....only 5 objects to permute.

(2) The orders are 2, 3, 4, 5, none, 2, 6.
(3) The orders above, and 1, are all possible orders because these exhaust all possible cycle-types of permutations.
(4) There are cyclic subgroups of all the orders listed in (2), and the trivial subgroup {e} which is cyclic of order 1.
(5) (1 2), (1 2 3) = (1 2)(2 3), (1 2 3 4) = (1 2)(2 3)(3 4), (1 2 3 4 5) = (1 2)(2 3)(3 4)(4 5), No six cycles!,

(1 2)(3 5), (1 2)(3 4 5) = (1 2)(3 4)(4 5). To determine even/odd just count the number of transpositions in each.

F. Discuss with your workmates how one might prove Theorem 7.26. Start by doing it for S3, then S4.
Convince yourself by induction on n.

In S2, every element is a transposition (12) or a product of transpositions (12)(12) = e.
In S3, every element is a transposition, or a product of transpositions such as (12)(12) = e, or (123) = (12)(23).
In S4, the previous cases handle every thing which is a 1-cycle, 2-cycle or 3-cycle. The remaining elements are either

products of two disjoint transpositions, such as (12)(34), in which case we’re done, or four cycles such as (1234). The latter
can be written (12)(23)(34).

In Sn, we write an arbitrary element as a product of cycles. Then, it comes down to writing each cycle as a product of
transpositions. But for example (i1i2i3 · · · it) = (i1i2) ◦ (i2i3) ◦ · · · (it−1it). So it is a clear that this can be done.

G PERMUTATION MATRICES. We say that an n × n matrix is a permutation matrix if it can be obtained



from the n× n identity matrix by swapping columns (or rows).
(1) List out all 3× 3 permutation matrices.
(2) Prove that the set P3 of 3× 3 permutation matrices is a subgroup of GL3(R).
(3) Find an isomorphism between S3 and the group you found in (2). Prove that the subgroup of P3

corresponding to the alternating group is P3 ∩ SL3(R).
(4) Find the order of each element of the subgroup of permutation matrices in GL3(R).
(5) For any n, the set Pn of all n×n permutation matrices is a group isomorphic to Sn. Can you explain

why?

BONUS. What are the possible orders of elements in S6? What are the possible orders of elements in S7?

Prove that S12 has an element of order 35.


