$\underline{\text{chapter 2}}$: root-finding

 $\underline{\text{def}}$: Given a function f(x), a root is a number r satisfying f(r) = 0.

$$\underline{\mathrm{ex}}: f(x) = x^2 - 3 \ \Rightarrow \ r = \pm \sqrt{3}$$

question: How can we find the roots of a general function f(x)?

2.1 bisection method

idea: Find an interval [a, b] such that f(a) and f(b) have opposite sign. Then f(x) has a root in [a, b] (Intermediate Value Theorem, Math 451 - advanced calculus).

Consider the midpoint $x_0 = \frac{1}{2}(a+b)$. The root r is contained in either the left subinterval or the right subinterval; to determine which one, compute $f(x_0)$. Then repeat.

$$\underline{\text{ex}}: f(x) = x^2 - 3, f(1) = -2, f(2) = 1 \Rightarrow f(x) \text{ has a root in } [1, 2], r = 1.73205$$

n	a_n	b_n	x_n	$f(x_n)$	$ r-x_n $
0	1	2	1.5	-0.75	0.2321
1	1.5	2	1.75	0.0625	0.0179
2	1.5	1.75	1.625	-0.3594	0.1071
3	1.625	1.75	1.6875	-0.1523	0.0446

3 Thurs 1/17

<u>bisection method</u> (assume $f(a) \cdot f(b) < 0$)

- 1. n = 0, $a_0 = a$, $b_0 = b$
- 2. $x_n = \frac{1}{2}(a_n + b_n)$: current estimate of the root
- 3. if $f(x_n) \cdot f(a_n) < 0$, then $a_{n+1} = a_n$, $b_{n+1} = x_n$
- 4. else $a_{n+1} = x_n$, $b_{n+1} = b_n$
- 5. set n = n + 1 and go to line 2

stopping criterion: here are three options

$$|b_n - a_n| < \epsilon$$
 , $|f(x_n)| < \epsilon$, $n = n_{\text{max}}$

error bound

 $\underline{\text{ex}}$: how many steps are needed to ensure that the error is less than 10^{-3} ?

$$[a,b] = [1,2], |r - x_n| \le (\frac{1}{2})^{(n+1)} |b_0 - a_0| \le 10^{-3} \implies n+1 \ge 10 \implies n \ge 9$$

2.3 fixed-point iteration

Suppose f(x) = 0 is equivalent to x = g(x). Then r is a root of f(x) if and only if r is a fixed point of g(x).

We try to solve x = g(x) by computing $x_{n+1} = g(x_n)$ with some initial guess x_0 . This is called <u>fixed-point iteration</u>.

$$ex : f(x) = x^2 - 3 = 0$$

$$x = g_1(x) = \frac{3}{x}$$
, $x = g_2(x) = x - (x^2 - 3)$, $x = g_3(x) = x - \frac{1}{2}(x^2 - 3)$

	case 1	case 2	case 3	
n	$ x_n $	x_n	x_n	
0	1.5	1.5	1.5	
1	2	2.25	1.875	
2	1.5	0.1875	1.6172	
3	2	3.1523	1.8095	
4	1.5	-3.7849	1.6723	
5	2	-15.1106	1.7740	\Rightarrow Case 1 and case 2 diverge,
	•	'	•	but case 3 converges (recall : $r = 1.73205$).

<u>question</u>: what determines whether fixed-point iteration converges or diverges? Consider two examples.

The 1st example diverges and the 2nd example converges.

thm

Assume that x_0 is sufficiently close to r and let k = |g'(r)|. Then fixed-point iteration converges if and only if k < 1.

note: This is consistent with the two examples above.

 \underline{pf} (idea)

$$|r - x_{n+1}| = |g(r) - g(x_n)| \sim |g'(r)| \cdot |r - x_n|$$

Taylor expansion: $g(x_n) = g(r) + g'(r)(x_n - r) + \cdots$

$$|r - x_{n+1}| \sim k|r - x_n| \sim k^2|r - x_{n-1}| \sim \cdots \sim k^{n+1}|r - x_0|$$
 ok

note

1. We showed that $|r - x_{n+1}| \sim k|r - x_n|$. This is called <u>linear convergence</u> and k is called the <u>asymptotic error constant</u>.

recall :
$$f(x) = x^2 - 3$$
, $r = \sqrt{3} = 1.73205$

$$g_1(x) = \frac{3}{x} \Rightarrow g_1'(x) = -\frac{3}{x^2} \Rightarrow k = |g_1'(r)| = 1 : \text{diverges}$$

$$g_2(x) = x - (x^2 - 3) \Rightarrow g_2'(x) = 1 - 2x \Rightarrow k = |g_2'(r)| = 2.4641 : \text{diverges}$$

$$g_3(x) = x - \frac{1}{2}(x^2 - 3) \Rightarrow g_3'(x) = 1 - x \Rightarrow k = |g_3'(r)| = 0.73205 : \text{converges}$$

2. The bisection method also converges linearly, with $k = \frac{1}{2}$.

2.3 Newton's method

idea: local linear approximation

slope =
$$f'(x_n) = \frac{0 - f(x_n)}{x_{n+1} - x_n} \implies x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 $\underline{\mathbf{e}}\mathbf{x}$

$$f(x) = x^2 - 3 \implies x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n}$$

	n	$ x_n $	$f(x_n)$	$ r-x_n $	
-	0	1.5	-0.75	0.23205081	
	1	1.75	0.0625	0.01794919	
	2	1.73214286	0.00031888	0.00009205	: rapid convergence

note

Newton's method is an example of fixed point iteration, $x_{n+1} = g(x_n)$, where the iteration function is $g(x) = x - \frac{f(x)}{f'(x)}$.

$$g'(x) = 1 - \frac{f'(x)^2 - f(x) \cdot f''(x)}{f'(x)^2} \implies g'(r) = 1 - \frac{f'(r)^2 - f(r) \cdot f''(r)}{f'(r)^2} = 0$$

This implies that Newton's method converges faster than linearly; in fact it can be shown that $|r - x_{n+1}| \le C|r - x_n|^2$, i.e. <u>quadratic convergence</u>.

$$\underline{pf}$$

$$r - x_{n+1} = g(r) - g(x_n) = g(r) - (g(r) + g'(r)(x_n - r) + O((x_n - r)^2))$$
 ok

 $\underline{\mathbf{ex}}$: equation of state of chlorine gas

ideal gas law : PV = nRT , P : pressure , V : volume , T : temperature

n: number of moles present

R: universal gas constant, R = 0.08206 atm·liter/(mole·K)

van der Waals equation : $\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$

 $a=6.29~\mathrm{atm}\cdot\mathrm{liter^2/mole^2}$ (accounts for intermolecular attractive forces)

b = 0.0562 liter/mole (accounts for size of gas molecules)

Take n = 1 mole, P = 2 atm, T = 313 K, and find V by Newton's method with starting guess V_0 given by the ideal gas law.

$$f(V) = \left(P + \frac{n^2 a}{V^2}\right)(V - nb) - nRT , f'(V) = \left(P + \frac{n^2 a}{V^2}\right) + \left(\frac{-2n^2 a}{V^3}\right)(V - nb)$$

n	V_n
0	12.84238 99999 99980
1	12.65115 48134 06302

2 | 12.65109 93371 19016 ≈ 0.2 atm less than V_0 given by ideal gas law

We infer that V_0 has 2 correct digits and V_1 has 5 correct digits. How many correct digits does V_2 have? (hw)

summary

method	rate of convergence	cost per step
bisection	linear, $k = \frac{1}{2}$	$f(x_n)$
fixed-point iteration	linear, $k = g'(r) $	$g(x_n)$
Newton	quadratic	$f(x_n), f'(x_n)$

<u>note</u>: Bisection is guaranteed to converge if the initial interval contains a root; the other methods are sensitive to the choice of x_0 .

root-finding for nonlinear systems

 $\underline{\mathbf{ex}}$: chemical reactions

$$2A + B \rightleftharpoons C$$

 $A + D \rightleftharpoons C$: reversible reactions for reactants A, B, D and product C

 a_0, b_0, d_0 : initial concentrations (moles/liter) in chemical reactor (known)

 c_1, c_2 : equilibrium concentrations of C produced by each reaction (unknown)

 k_1, k_2 : equilibrium reaction constants (known)

These variables are related by the <u>law of mass action</u>.

$$\frac{c_1 + c_2}{(a_0 - 2c_1 - c_2)^2 (b_0 - c_1)} = k_1$$

$$\frac{c_1 + c_2}{(a_0 - 2c_1 - c_2)(d_0 - c_2)} = k_2$$

Hence to find c_1, c_2 we need to solve a system of nonlinear equations with 2 equations and 2 unknowns.

Newton's method for nonlinear systems

First note the following alternative derivation of Newton's method for the case of 1 equation and 1 unknown, f(x) = 0.

$$f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n) + \cdots$$

$$0 \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Now consider a system of 2 equations and 2 unknowns.

$$f(x,y) = 0 , g(x,y) = 0$$

Given (x_n, y_n) , we want to find (x_{n+1}, y_{n+1}) .

$$f(x_{n+1}, y_{n+1}) = f(x_n, y_n) + \frac{\partial f}{\partial x}(x_n, y_n)(x_{n+1} - x_n)$$

$$+ \frac{\partial f}{\partial y}(x_n, y_n)(y_{n+1} - y_n) + \cdots$$

$$g(x_{n+1}, y_{n+1}) = g(x_n, y_n) + \frac{\partial g}{\partial x}(x_n, y_n)(x_{n+1} - x_n)$$

$$+ \frac{\partial g}{\partial y}(x_n, y_n)(y_{n+1} - y_n) + \cdots$$

$$\Rightarrow \left(\begin{cases} f_x & f_y \\ g_x & g_y \end{cases} \right) \Big|_{(x_n, y_n)} \cdot \left(\begin{cases} x_{n+1} - x_n \\ y_{n+1} - y_n \end{cases} \right) = \left(\begin{cases} -f(x_n, y_n) \\ -g(x_n, y_n) \end{cases} \right)$$

Jacobian matrix

note

- 1. Given (x_n, y_n) , we can solve for (x_{n+1}, y_{n+1}) . Each step has the form Ax = b, where A is a given matrix, b is a given vector, and we must solve for the vector x.
- 2. hw3 has an application to the chemical reaction system

5 Thurs 1/24