chapter 3 : numerical linear algebra

3.1 review of linear algebra

a11x1 + appxo + - - - + a1y = b1
9121 + Ao9T9 + -+ - + Aopxy = by . .

: : system of linear equations for z1,...,x,
Ap1T1 + ApaXo + -+ + AppTy = bn

We can write the system in 3 other forms.

n
1. Y ajxz; =b , i=1:n , i:rowindex , j: column index
j=1

air aiz -+ Qp x1 by
9 21 Q22 - Q2n Tra | ba

ani an?2 e Ann, Tn bn
3. Az =0

basic problem : Given A and b, find .

solution : x = b/A : no, but x = A\b does work in Matlab (what is it doing?)

thm : The following conditions are equivalent.

The equation Ax = b has a unique solution for any vector b.

A is invertible, i.e. there exists a matrix A~! such that AA™1 =1
det A # 0

The equation Az = 0 has the unique solution x = 0.

The columns of A are linearly independent.

A S

The eigenvalues of A are nonzero.
pf : Math 214/417/419

note

1. If A is invertible, then x = A71b (pf : Az = A(A71b) = (AA™)b =T =),
but this is not the best way to compute x in practice.

2. There are two types of methods for solving Az = b, direct methods and
iterative methods. We will begin with direct methods.



3.2 Gaussian elimination

First consider the special case in which A is upper triangular.

anry + apr: + - 4+ apr, = b
Ap—1n—1Tp—1 + Ap—1.nTpn = bn—l
ApnLn = bn

= x, = by/an

Tp—1 = (bn—l - an—l,nxn)/an—l,n—l

ry = (by — (ap2x2 + -+ + apzy)) /a1

back substitution

1.z, =by/an,

2. fori=n—1:-1:1 % i : row index

3. sum =b;

4. forj=i+1:n % 7 : column index
5. SUM = SUm — ;; * T;

6. x; =sum/ay

operation count

# divisions = n

# mults = # adds = jn(n — 1) = 3n* — 3n ~ 3n? for large n

pf

#Fmults=14+2+---+(n—-1)=S

28 =(142+---+(n=1)+((n—-1)+--+2+1)=n+n+---+n=n(n—-1)
= S:%n(n—l) ok

Hence the leading order term in the operation count for back substitution is n?.

note : Similar considerations apply if A is lower triangular.




note 6
In case A is a non-triangular matrix, we use elementary row operations to reduce El;;

Ax = b to upper triangular form and then apply back substitution to find x.

elementary row operation - { multiply an equation by a nonzero con.stant and
subtract the result from another equation

ex: n=3

an® + apTs + a;ry = b

a1T1 + ATz + a3r3 = by

a31T1 + azara + aszrs = b3

|
air a2 a3 1 by
asr @z Gz | by
|
az1 azz2 as3 | b3

step 1 : eliminate variable x; from egs. 2 and 3

asy ) -
moy = = = Q99 — Q99 — M91G12 % moy is called a multiplier
11
Q93 — QA23 — M21013
bQ — b2 —m2161
as1
msg = P = Q32 — (32 — M31a12
11

a3 — a33 — M31013

bs — bs —maib

|
a1 a2 a1 b
0 asx asg | by
| | L J--- these elements have changed
0 as ass + b3

step 2 : eliminate variable x5 from eq. 3

aso
mgy = — = Q33 — (33 — M32G23

a92
by — b3 — l32b9

o9 93 i b . upper triangular



X
21’1—372:1

—r1 + 229 — x3 =0

—$2+2ZC3: 1
2 —1 0 i 1
1 2 —1 ' 0| ma=-1/2
0 -1 2 i 1 ms1 =
2 —1 0 i 1
0 3/2 -1 ' 1/2
0 -1 21 1) myp=-1/(3/2)=-2/3
2 -1 0 i 1
0 3/2 —1 ! 1/2
0 0 4/3 ! 4/3

3=1, 3=(3—-(-1)-1)/2=1,2=(1-(-1)-1)/2=1 check : ok

general n X n case

reduction to upper triangular form

l.fork=1:n-1 % k : step index

2. fori=k+1:n

3. myk = ai/ag % assume ay, # 0, more later
4. forg=k+1:n

5. Qij = Qjj — M) * A

6. b =bi—my - by

note

The element ag, in step k is called a pivot (these are the diagonal elements in
3 4

the last step). In the previous example, the pivots are 2, 3, 3.

operation count

The leading order term comes from line 5.
k=1 = 2(n—1)*ops
k=2 = 2(n—2)*ops

n—1
= 2.3 k=2
k=1

(n—1)n(2n—1) , pf: soon

D=

k=n—-—2 = 2-2%0ps -
k=n—-1 = 2-1%0ps

Hence the operation count for Gaussian elimination is %n?’.



note

Sk=inn+1) , Yk =1Ilnn+1)2n+1)
k=1 k=1

pf : 1. already done

2.0 =n—(n—1P+n—-17+ =224+ 22 PP+ 1P =S (k- (k-1
k=1

k— (k=12 =k — (k> —3k*+3k—1) =3k> -3k + 1

W'=Y (3K 3k +1)=3Y K -3> k+ > 1=35-3-In(n+1)+n
k=1 k=1 k=1 k=1
38 =n*+3nn+1)—n=nr’+3n+3)=n(n+1)(n+1i) ok

ex : electric circuit for charging a car battery

- AVA 0 DC generator
I

3
4Q I, | I, 10Q
W W

To determine the currents, we will apply Kirchoft’s voltage law and current law.

1. The sum of the voltage drops around any closed loop is zero.
Ohm’slaw : V=1IR = 101 +15I3—100=0, 41, + 12— 1513 =0

2. The sum of the currents flowing into a junction equals the sum flowing out.

= 1 =1L+ 13 7
Thurs

10 0 15\ /I, 100 .
- |0 4 —15||L]|=]-12
1 -1 —1)\5 0

Then we can apply Gaussian elimination. But if we write the first 2 equations
in reverse order, then we obtain the following system.

0 4 =15\ /L —12
10 0 5| | =] 100
1 -1 -1 I3 0

In this case Gaussian elimination breaks down because the 1st pivot is zero.



3.3 pivoting

There are various strategies that can be applied if one of the pivots is zero.

partial pivoting

Consider the reduced matrix at the beginning of step k.

a1y a’lk aln : bl
. . . ‘ .
‘ .
|
age =+ Qgn 1 by
. . ‘ :
|
| :
|
Ank **° Qpn | bn

If axr, = 0, find index [ such that |a;x| = max{|a;|; & < i < n}, then interchange
row [ and row k and proceed with the elimination.

1. If A is invertible, then Gaussian elimination with partial pivoting does not
break down. (pf: Math 571)

2. In practice, pivoting is often applied even if the pivot element is nonzero.

ex 1+e—1
rH=——=1
<€ 11+€>—><6 ! 1+6>:> ‘ : exact solution
11, 2 0 1-1 1-1 1-1 '
T9 = 1 1 = 1
1 €
ma1 = ¢
Now consider the effect of roundoff error.
= 1ol _
€ 1 \ 1 1= 61 O . .
L 1 = . —- : computed solution , inaccurate
N Typ=—1=1

Now apply pivoting in the presence of roundoff error.

<1 12>—><1 12) = fl:1}'newcom uted solution , accurate
e 1,1 0 1,1 Go=1)" p !

€
m21=I=€

This is an issue of stability. (more later)



3.4 vector and matrix norms

To prepare for error analysis, we need a way to measure the size of a vector.
def : A vector norm is a function ||z|| satisfying the following properties.
L ||z]| >0 and ||z]| =0 & =0

2. |lazx|| = |af - ||z|| , a: scalar

3. |z +yll < |lz|| + |ly|| : triangle inequality
ex

L \1/2
l|z||s = (Z :1:3) : Euclidean length
i=1

||z||oe = max{|x;|:i=1,...,n}

exi o= (y) = llala= V5, |lsllo =2

def : Given a matrix A, consider the operator x — Az as input — output.
Then [[Az] is the amplification factor for a given input vector x, and we define

the matrix norm to be the maximum amplification factor over all nonzero input

A
vectors, ||Al| = max 1Az
A0 ||

L. ||A]| >0 and [|A]|=0«< A=0
2. |laA[l = |l - |]A]

3. |[A+ Bl < [[All + 1|BI]

4 |[Azl] < [[AJ] - []]]

5. [[AB]| < [|All - [|B]|

. The matrix norm satisfies the following properties.

pf: just 5
AB All-||B All-||B]|-
HABH:maX” o e HAI Bl o AT BI] HxH:HAH-HBH
w20 |jzf] T A0 ||z 70 |||
/[\
def prop 4 prop 4 ok

note : Computing ||A|| by the definition is difficult and there are more convenient
formulas that can be used in practice.



A
thm : ||A||.c = max [1Az]|o
20 |2l

pf : omit (Math 571)

ex: A= (] 7o) = Il

(3 el -
(0= (-
(- ()
()= () - B

3.5 error analysis
Ar =10

J

= mlaxz ‘aijl

. InNax row su1n

= max{|3[ + | = 4|, [1[ +|0]} = 7

= 7 : max amp factor by thm

x : exact solution , T : approximate solution

e =x — 7 : error (usually unknown) , r =b— AZ : residual (can be computed)

question : What is the relation between e and r?

,(1.01 0.992)23 _(1)
<99 101i2) 7T

oy
1=11.01 Ga=r—8n=

leb—Ai“lz

- 2 -
5132:(0) = 6221'—1‘2:(

7“2:[)—14532:<

—1

(—0.01
—0.01

1

)~

(2) -

) = lleall =1

)

2.02
2.02

2.02
1.98

) — Jlea| = 0.01

) - (‘0'02) = (]| = 0.02

—0.02

(—0.02

Om) = [|ra| = 0.02

Hence if ||r|| is small, there is no guarantee that ||e|| is also small.

question : How large can ||e|| be?

Tues
2/5




thm : ‘H‘QH < /s(A)HZH , where k(A) = ||A]| - [|[A7!|| : condition number
T
1.01 0.99
ex: A= (g0 1o1) = IAll=2

A4_<a @y[_ 1 (d —%__1< 1.01 —Q%)
“\c¢ d)  ad—bc\—c a) 0.04\-099 1.01
( 25.25 —24.75
—24.75  25.25

) LAY =50 = k(A) =100 ok
pf

L [[ol] = [lAz|| < [[A[} - [l«]| = [l][ = [[o[|/||Al
2. Ae=Alr —2)=Az— AT =b— AT =r = Ae=r

3. = A7l = [lefl = |A] < A7 - )
-1 . 1AL
o el AL AL A DL
alternative viewpoint ~
1. ﬁgig } H:I:H;f” < /ﬁ(A)HbH;”bH . perturbation of RHS , pf : ok
2. ﬁ; ilg } = HxH;‘f:H < /i(A)HAH_AljliH . perturbation of matrix , pf : ...

Hence k(A) controls the change in = due to changes in A and b.

ex (recall)

(e 11+e>_><€ 1 1+€>:> xl:l}'exactsol tion
11, 2 0 1-ti1-3) T m=1) )

Now consider the effect of roundoff error.

| T =
<E } | }) = ;1 (1) } : computed solution , inaccurate
6‘ € 2 =
explanation

(e 1 1 1 —1 B 1 N
A_<1 1>’A _6—1(—1 e)éH(A)_Q le — 1| 2~

However, Gaussian elimination reduces the system to upper triangular form.

(e 1 R S O
v=( 1—1>’U -— ("0

= w(U)=[1-1- 11‘ (1 =1 +1) =~ & : larger than x(A)

e~
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Hence a small change in the matrix or RHS of the reduced system (e.g. due
to roundoff error) can produce a large change in the computed solution (as in
the example). This means that Gaussian elimination is an unstable method
for solving Az = b, because it replaced a well-conditioned matrix A by an ill-
conditioned matrix U. However, pivoting produces a different reduced system.

(1 1, 2 >—><1 b > = fl:l}'exactsolution
e 1il+e 0 1—e! 1—c¢ Fy=1J"

/11 L1 [1-e -1 o

Hence, pivoting preserves the condition number of the original matrix, and there-
fore Gaussian elimination + pivoting is stable (in most cases).

3.6 LU factorization : matrix form of Gaussian elimination

Consider the 3 x 3 case (but the n x n case is similar).

ailx a2 Qi3
ao1 Q22 A23
azr az2 as3

step 1 : eliminate variable x; from eqs. 2 and 3

as1 a31

moy = — , M31 = —

ar ar
1 0 0\ [ann a2 a3 aj; a2 a3
—mo 1 0 a1 az ax | =1 0 ‘ra22 a3 |
—msi 0 1 asy aso ass 0 Laégi EL?LSJ

step 2 : eliminate variable x5 from eq. 3

32
maza = —
a22
1 0 0 ai; aiz2 dAs a1 a2 Aas
0 1 0 0 ax ax| =1 0 ayw asg = U : upper triangular
0 —ms39 1 0 ass A3zs 0 0 10,331‘

= FyFIA=U = FIA=F;'U = A=E['E;'U

1 00 1 00 1 0 0
Ey=|-ma 1 0| =E'=|my 1 0|, check: EyE;'=[0 1 0
—mgz 0 1 mz 0 1 0 0 1

Thurs
2/7
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1 0 0 1 0 0
Ey=(0 1 0|=E'=|0 1 0], check: ...

0 —1MmMs2 1 0 mso 1

1 0 0\/1 0 O 1 0 0
Ef1E2_1: mor 1 0|0 1 Of=|mog 1 0| =L : lowertriangular

ms1 0 1 0 mso 1 ms1 132 1

final result : A= LU

2 -1 0 2 -1 0 2 -1 0
ex: -1 2 -1 | = |0 3 -1|—= 1|0 3 -1
0 -1 2 0 -1 2 0 0 3
m31=%=0
1 0 0 2 -1 0 2 -1 0
check : LU=|—5 1 0 0 3 -1 |=|-1 2 -1 |=A4 ok
0 -3 1 0 0 3 0 -1 2
note : The following steps are used to solve Az = b.

1. factor A= LU , op count = §n3

2. solve Ly = b by forward substitution , op count = n
3. solve Uz = y by back substitution , op count = n?

check : Av =LUx=Ly=b ok

2 —1 0 1 1
ex: A= -1 2 =1 | ,b=|0|=>2z=|1
0 —1 2 1 1

Previously we used Gaussian elimination, but now we’ll use LU factorization.

2

1 0 0 Y1 1 U1 1
Ly=0b = (; 1 0)(3/2 =0 =|w|=|}
0 —3 1 Y3 1 Y3 3
2 —1 0 T 1 T 1

question : So what’s the point of LU factorization?

answer : Some applications require solving Az =b for a given matrix A and a
sequence of vectors b, e.g. a time-dependent problem. Once the LU factorization
of A is known, we can apply forward and back substitution to the sequence of
vectors b; it’s not necessary to repeat the LU factorization.
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3.7 two-point boundary value problem

Find y(z) on 0 < x < 1 satisfying the differential equation —y"” = r(z), subject
to boundary conditions y(0) = «,y(1) = §. This problem is a model for 1D
steady state heat diffusion, where y(z) is a temperature profile and r(x) is a
distribution of heat sources. (Think of r(x), «, 5 as input and y(x) as output.)

finite-difference scheme 10
choose n > 1 and set h = ﬁ : mesh size QT;IGQS
set x; =ih for i =0,1,...,n+ 1 : mesh points (g =0, z,41 = 1)
| | | | | | | | |
Lo Xy e Tia & T T L Tpna

y(x;) = y; : exact solution , r; =r(x;)

Yi+1 Yi — Yi—1
+h , D_y, = 27—

Yi — Yi—
D.D_y; = Dy (D_y;) = Dy <h1> = E(DH/@' — D.yi1)
1 <y7:+1 —Yi (yz — yz’—1>> _ Y ity ()
h h h h? '

question : How accurate is the approximation?

recall : Dy, =
1

Yir1 = Y(xip1) = y(x; + h) : expand in a Taylor series about r = x;
2 4 (4
Vi1 = Yi + hy; + %yé’ + 3 y{” + %yz() + % )+ O(h%)

n

2 4 (4
i = g — byl + Lyl = Iy By B O (RS)

2y; + h?
D,D_y;, = Yl — hy; Yl _ Yl + oY y + O(h*) : 2nd order accurate
/I\
approximation exact discretization
value error

w; : numerical solution , w; Ry, , wy = @, Wy = 5

W1 — 2W; + w1
_ =

# (—wis1 +2w; —wi—y) = 1y

=7r;,1=1,...,n : finite-difference equations

1=2 = %(—wg—l—ng—wl) = 79

=1 = #(—wg—l—Zwl—oz) = 7

L=n = #(_ﬁ+2wn_wn—1) = Tn
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A, - { symmetric,

tridiagonal

2 —1 W1 ™ +&/h2
1 —1 2 —1 w9 9
ﬁ : = : éAhwh:rh
—1 2 -1 Wn-1 Tn—1
-1 2 w, r, + 3/h?
questions

1. Is Aj, invertible?
2. Can wy, be computed efficiently?

3. Does wy, — yp as h — 0, i.e. does the numerical solution converge to the exact
solution as the mesh is refined? If so, what is the order of accuracy?

LU factorization for a tridiagonal system (Thomas algorithm)

b1 C1 1 Uy C
a9 bg Co lz 1 U9

Qp, bn ln 1
special case : n =3

bl C1 0 1 0 0 U 0
a9 b2 (6) = l2 1 0 0 Uo C9
0 as bg 0 l3 1 0 0 us

find L, U
by = uy = u; =b
as = lyuy = [y = CLQ/Ul

by =loci +us = us =by —locy , ...
general case

find L.U
bl = U = U3 = bl
ap = lgug—1 = I = ar/up—1

by = lpcp—1 +up = uk:bk—lkck_l} for k=2:n

solve Lz =1r

1 ="Nn
lhzb1+ze=1r = 2z =1 — 21 for k=2:n
solve Uw = 2z
UpWp = Zp

= W, = 2, /Uy

UpWE, + Cpwpyr = 2 = Wi = (2K — cpwpr1) /ug for k=n—1:

note : operation count = O(n)

€2

—1:1

memory = O(n) if vectors are used instead of full matrices



two-point bvp : —y”" =25sin7x, 0 <z <1,y(0)=0,y(1) =1

: 25 .
solution : y(z) = —sinmz +2z , check ...
ar
h=1/2 h=1/4
4 : 4 :
3 37
2 21
1 D 17
0& : 0¥ .
0 0.5 1 0 0.5 1
h=1/8 h=1/16
4 4
3 37
2 21
1 D 1
0& : 0¥ .
0 0.5 1 0 0.5 1

exact solution : y(x) is plotted as a solid curve

numerical solution : wj, is plotted as circles connected by straight lines

The error is ||y, — wy||, where y;, denotes the exact solution at the mesh points.

h

0.50000000
0.25000000
0.12500000
0.06250000

note

|lyn — wa|

0.591970401
0.134324755
0.032804625
0.008153732

lyn —wnl|  [lyn — wsl] |y — wa|
h h? h3
1.18394082 2.36788164 4.73576327
0.53729902 2.14919607 8.59678429
0.26243700 2.09949598 16.7959678
0.13045971 2.08735544 33.3976870

1. If h decreases by %, then the error decreases by approximately i.

2. We see that ||y, —wp|| = O(h?), so the method is 2nd order accurate.

11
Thurs
2/14
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3.8 iterative methods

Gaussian elimination is a direct method for solving Ax = b, because it yields the
exact solution x after a finite number of steps. In practice, the O(n?) operation
count is an obstacle when n is large and memory is an issue too. Now we
consider iterative methods, an alternative class of methods which generate a

sequence of approximate solutions xj; such that klim xr = x. As we shall see,
—00

iterative methods have some advantages over direct methods.

Ar=b & x = Bx + c : equivalent linear system
Tri1 = Bxp 4+ ¢ : fixed-point iteration : given zy, compute x1, ...

B : iteration matrix

Jacobi method

A=L+ D+ U : this is different than LU factorization

D = diag(ay1,...,an,) , assume a; #0,i=1:n
0 0 ap -+ - au
a921 0 0 :
L = : . . , U=
Ap—1n
Gpi -t Gppo1 0 0

Ar=b & (L+D+U)x =10
& Dr=—(L+U)z+b
& z2=-DYL+U)x+D% , Bj=-DYL+U)

Dz = —(L+U)xp+b : easy to solve for zjq

component form

k1 k k
a1171 + appxr2 + aj3ry = by = allxg = — <a12x§ ) 4 a13$:(2, )>

k k k
2171 + AT + agxz = by = azzil?é o by — (a21xg ) + a23x§, )>

k k k
a31T1 + a3To + agaxrs = by = aggxé +1) = by — (aglxg ) + CL32$§ )>
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ex
201 — x9=1 = 2x§k+1) =1+ acgk)
—x1+ 29 =1 = 2x;k+1) =14+ x(lk)
The exact solution is x1 = x9 = 1. Let the initial guess be :1:(0) = xéo) =0.
k :z:gk) xék)
0 0 0
1 1/2 | 1/2
2 | 3/4 | 3/4
31 7/8 | 7/8

Hence the numerical solution converges to the exact solution as k — oo.

def : e, =x —x; : error at step k

In the example we have ||eg|| =1, [le1i]| =%, |lea| =1, - |lewsall = 3llex]]-
question : What determines the factor %?

thm

Consider a linear system Ax = b and fixed-point iteration z;,1 = Bxy + c.
1. €11 = Bek for all k > 0
2. If ||B|| < 1, then z;, — z as k — oo for any initial guess x.

pf
L. epy1 = — xp11 = (Bxr+¢) — (Brp + ¢) = B(x — x) = Beg,

2. lexnll = [[Bexl| < [IBI[ - llexl] = [|BI - [| Bexa|| < |IBI| - [|BI] - [lex-1]

= |lexsall < [1BII* - [lex- ]|

= [lexral| < IB[|**" - [leo]| - 0ask — 00 ok

& 1 1
2 -1 o (oo 0—1_02>

A= ) memorarn=—(5 ) (L )= (0

= 1Bl =3

Hence since ||By|| = % < 1, the theorem implies that Jacobi’s method converges,
and the proof shows that ||e,|| decreases by a factor of at least 3 in each step.



Gauss-Seidel method
A=L+ D+ U : as before

Ar=b & (L+D+U)z=b

o (L+Da=-Uzs+b

& 2=—(L+D)" e+ (L+D)"% , Bas=—(L+D)'U
(L+ D)xpy = Uz, +b : solve by forward substitution

component form

k1 k k
a1171 + appx2 + aj3rz = by = allafg = — <a1237é )+ a13$z(a )>

(k+1)
9171 + a2%2 + a3T3 = by = T

(k+1)
b2 — <a21x + Cl23£l?3 )

k k
a31T1 + azex2 + azzxrz = by = a3337:(), = bz — (a31:c§ b + azox ( " )>

Hence a:EkH) is used as soon as it’s computed, in contrast to Jacobi.
ex
20 — 12=1 = 2$§k+1) =1+ :cé“
—T1+225=1 = 2:1:5“1) =1+ :ngﬂ)
k xgk) :Uék)

0] o 0
1| 1/2 | 3/4

2 | 7/8 |15/16
3 | 31/3263/64

Hence Gauss-Seidel converges faster than Jacobi.

17

leoll =1, [leill =3, lleall = 5, llesll =55, -, llewsall = Fllexl| for k > 1

A:(_? _;>=>BGS:—(L+D)1U:_}1(§ g) (8 _(1)>:<

= ||Besl| =3

Since ||Bgs|| = 5 < 1, the theorem implies that Gauss-Seidel converges, but we

see that ||ex|| decreases by a factor of < ||Bgs|| in each step.

12
Tues
2/19
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sumimnary

2 —1 0 % . .
A=1_1 o) = Bi={1 §) = IBsl=25 llexnll = 3llexl]

2

0

Bgs = (0

) = liBasll =, llewnll = lleal

il M

question : What determines the factor by which ||e;|| decreases in each step?

To answer this question, we need to recall some facts about eigenvalues and
eigenvectors.

def : If Az = Az, where x # 0 is a vector and A is a scalar (real or complex),
then A is an eigenvalue of A and x is a corresponding eigenvector.

wia= (1)

A<1>:<1> = >\:1isane—valuewithe—vectora::(D
—1 —1 —1

A(L)=(5) === ()
1 —1 1

4 —1)‘( 1) = A__1’x_<—1>

note

Ar =X, 240 (A=AM)z=0,2#0 < det(A—A[)=0
fa(X) = det(A — M) : characteristic polynomial of A

Hence the e-values of A are the roots of the characteristic polynomial fa(\).

0 1
eX.A_<1 O)

fa(\) = det(A — A1) = det <—)\ 1

—\2 _ 1 — =
| _>\>_)\ 1=0 = A==+ ok

thm : If A is upper triangular, then the e-values are the diagonal elements.

_ air - QAin apg — A - A1n
A= : = A- )\ = :
0 Ann, 0 Anp — A

fa(A) =det(A—AI) = (a1 — A) -+ (@ — A) =0 = X =ay for some i ok
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2 —1 0
recall:A:<_1 2) = BGS:(O

PN NI
N———

A1 = 0 is an e-value of Bgg with e-vector vy = <(1)> , check : Bvy = Ay

)\in ................ D Vg = <2> , check : Bvy = Avs

e ()= ()

€1 = B€0 = B(UQ — Ul) = BUQ — BUl = )\21}2 — )\11)1
€y — B€1 = B()\QUQ — )\17)1) = )\%Ug — )\%Ul

er = Mvy — Moy = (o, = [lex]| = (1) |loa

This explains why ||ex41]| = §||ex||, even though [|Bgs|| = 3.
question

What determines the convergence rate of an iterative method?

def : p(B) = max{|A| : A is an e-value of B} : spectral radius of B
thm
L. |legs1]| < ||B]| - ||ex|| for all kK >0 : error bound

2. |lexs1|| ~ p(B) - |lex]| as k — oo : asymptotic relation

This means that lim el = p(B).
koo |fex|

Hence the spectral radius of the iteration matrix p(B) determines the conver-
gence rate of an iterative method.

pf
1. recall : epy1 = Bep = |leps1]| = ||Bex|| < ||B]] - ||ex]]
2. Math 571 (but the idea is the same as in the example above)

Ao\
eo = v + aavy = e = BFey = ar\uy + agMivg = Af (041111 + () asve | ok

A

4 2 -1 0 3 .
recall : =1 _ o = B;=|{, 0 = p(BJ):§

2

0

Bgs = <O

) = p(Bgs) = ok

N I
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question : Are there faster methods?
Jacobi (1804-1851) , Gauss (1777-1855) , Seidel (1821-1896)

Richardson (1881-1953) : numerical weather forecasting

Ar=b, A=L+D+U

Recall the Gauss-Seidel method.

(L+ D)xjyy = —Uxr+b & Dxpiy = Dy — (Lxgyy + (D 4+ U)xy — b)
Now let w be a free parameter and consider a modified iteration.
Dzyy1 = Dxy — w(Lxgy + (D + U)xy — b)

w=1= GS , w>1: successive over-relaxation (SOR)

component form

allxgkﬂ) = allxgk) + w(by — (allxgk) + alzﬂfék) + a13$:(),k)))

CLQQJZ';]C—H) = CLQQZC;R) + W(bQ — (azll'gk—i_l) + @Qgiﬁgk)

+ a23fﬁgk)))

a3337:(ak+1) = a33$§k) + w(bs — (a31113§k+1) + a32$§k+1) + a33113§k)))
€ex

2y — m=1 = 2" =2 + (1 - @22 - 1))
—r 20 =1 = 223 =200 p w1 — @Y 4 228))

matrix form

(wWL+D)xpy = (1—w)D—wU))zp+wb = B, = (wL+ D) }((1-w)D—wU))

(9,6

(5 )G - (0 ) ()< (0)

B‘”:<—3 (2)>_1<2(1(;w) 2(1iw)>:<%w1(1_—ww) }1002%—@))
0

check : w=1 = Bw:<0

):GS,p(Bw):i ok

NI

question : Can we choose w so that p(B,) is smaller?



thm (Young 1950)
1. If p(By) < 1, then 0 < w < 2.

21

2. Assume A is symmetric, block tridiagonal, and positive definite (defined later).

2

Then w, = is the optimal SOR parameter in the sense that

1+ /1 —p(By)?
p(B,,) = min p(B,) =w, —1 < p(Bgs) < p(By) < 1.

O<w<?2

pf : Math 571 (sometimes)

2 2 4
return to example : w, = = =
1+1-p(Bs)2 1+ /1-(1)2 2+V3

Bt | a8 | el | Hlerl)/llesll

0 | 0.0000 | 0.0000 | 1.0000 .

1 | 0.5359 | 0.8231 | 0.4641 | 0.4641

2 1 0.9385 | 0.9798 | 0.0615 | 0.1325

3 1 0.9936 | 0.9980 | 0.0064 | 0.1047

{ l 1 1 d

00 1 1 0 p(By.) = wy — 1 =0.0718

Hence optimal SOR converges faster than GS.
def : A is positive definite if 274z > 0 for all = # 0

ex1 : A= (_? _;> is positive definite
pf : 561;4513:(:61,:62)( 2 —1><x1>:(:61,x2)<2:1:1—:62>
—1 2 T9 —x1 + 279

= 2(2? +23) — 2mw9 = 23+ 2+ (21— 22)2 > 0

If z # 0, then either 2; # 0 or 25 # 0, but in any case we have z’Az > 0.

ex2 : A= (? ;) is positive definite : hw

ex3 : A= (; ?) is not positive definite

pf : rAxr = (xl,x2)<1 2) <x1> = 2% + 23 + 42129 : indefinite
2 1 i)

1>=>:ETAac:1,x:<

0 1>:>:IJTA$:—2 ok

for example : z = ( 1

= 1.0718

ok
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1 1
A, = — : dimensionn xn , h=
h? e 1 n+1

—1 2

The matrix Ay, represents the finite difference operator —D, D _; A}, is symmet-
ric, tridiagonal, and positive definite, and hence Young’s theorem applies.

note : The real advantage of iterative methods, in comparison with direct meth-
ods, is for BVPs in more than one dimension.

3.9 two-dimensional BVP

problem : A metal plate has a square shape. The plate is heated by internal
sources and the edges are held at a given temperature. Find the temperature

at points inside the plate.

D ={(z,y) : 0 <x,y <1} : plate domain

¢(z,y) : temperature
f(z,y) : heat sources , g(x,y) : boundary temperature
Then ¢(x,y) satisfies the following two equations.

*¢ 9?9

1. _ﬁ(p = V% =— (W + 8y2) = f for (x,y) in D : Poisson equation

Laplace operator

(note : This equation arises in many areas, e.g. if f is a charge/mass distribution,
then ¢ is the electrostatic/gravitational potential.)

2. ¢ = g for (z,y) on 0D : Dirichlet boundary condition

finite-difference scheme

1
h = L mesh size |, (x;,y;) = (ih,jh) , i, =0,...,n+ 1 : mesh points

n+

L 1

ex: n=3,h=7
Yy :
4 o(xi,y;) : exact solution
303 6 € w;; : numerical solution
I . .

2 S ordering of mesh points : wqy, wio, . ..

1 —3

0 x

15
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— (D* D w;j + DYDY w;;) = f;; : finite-difference equations

(Wi, — 2w + Wi 4 Wigh = 2wij + w1\ £
h? h? v

1
h2(4wij — Wit — Wi—1,5 — Wi j41 — wz’,j1> = fij

1,7+1

H-point stencil

i1,j ij i+l

ij-1
Consider what happens near the boundary.
(i,7) = (1,1) = 55 (4w — wa — wor — wip — wig) = fu
= 53 (4w — wa — wi2) = fi1 + 32 (901 + 910)

Write the equations for w;; in matrix form.

1 2 3 4 5} 6 7 8 9
w11 w12 w13 w21 w22 w23 w31 W32 w33
4 —1 —1
—1 4 —1 —1
—1 4 —1
—1 4 —1 —1
—1 —1 4 —1 —1
—1 —1 4 —1
—1 4 —1
—1 —1 4 —1
—1 —1 4
T -1
-1 T -1
Apwp = frn, Ap = '
—1
-1 T

T : n xXn ,symmetric , tridiagonal

Ay o n? x n? | symmetric , block tridiagonal , positive definite (pf :

omit)

23
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temperature distribution on a metal plate : no heat sources, one side heated
differential equation : ¢g; + ¢,y = 0

boundary conditions : ¢(x,1) =1, ¢(x,0) = ¢(0,y) = ¢(1,y) =0
finite-difference scheme : D% D" w;; + DY DY w;; = 0

h=1/4 h=1/8 h=1/16
1 1

1

0.5 0.5

0o

above : solution of linear system A,w;, = fj for given mesh size h
below : number of iterations k required for each method
initial guess = zero vector, stopping criterion : ||ry||/||ro|| < 10~

Jacobi  h k| p(B)
1/4 | 26 | 0.7071
1/8 | 96 | 0.9239
1/16 | 334 | 0.9808

Gauss-Seidel I k| p(B)
1/4 | 15 | 0.5000
1/8 | 51 | 0.8536
1/16 | 172 | 0.9619

optimal SOR  h | k& | p(B)
1/4 ] 9 [ 0.1716
1/8 | 18 | 0.4465
1/16 | 34 | 0.6735




note

1. For each method, more iterations are needed as the mesh size h — 0.
Hence refining the mesh yields a more accurate solution of the BVP, but the
computational cost increases.

2. For a given mesh size h, SOR converges the fastest, then GS, and then J.
3. Explicit formulas for p(B) can be derived in this example. (Math 571)

p(By) = cosmh ~ 1 — 3mh?
p(Bgs) = cos’mh ~ 1 — w?h?
(B,) = 2 1_1—sin7rh 1 —mh
e = A=p(B)? l+sinmch ~ 1+7h

~ 1—2mh

This shows that p(B) — 1 as h — 0 (confirming that the iteration slows down as
the mesh is refined). The formulas also show that p(B,,) < p(Bgs) < p(By) < 1

(confirming that SOR converges the fastest, then GS, and then J).

4. Consider what happens if Gaussian elimination is used instead of J/GS/SOR.

O OO O~ O~

DR A D RO OO
_ e RO O OO OO

@)
)
)
)

a) Ap is a band matrix, i.e. a;; = 0 for |i — j| > m, where m is the bandwidth

(in this example we have m = 3).

b) As the elimination proceeds, zeros inside the band can become non-zero (this
is called fill-in), but zeros outside the band are preserved. Hence we can adjust
the limits on the loops to reduce the operation count for Gaussian elimination

from O(n?) to O(nm?).

¢) Due to fill-in, more memory needs to be allocated than is required for the
original matrix Aj;. This is a disadvantage in comparison with iterative methods

like J/GS/SOR which preserve the sparsity of Ay,.

25
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final comments on linear systems

1. comparison of operation counts : two-dimensional BVP

. . . 1
mesh size : h= .5
. . . 1 .
typlcal equatlon . W(ZMUZ] — Wit1,j — Wi—15 — Wi j+1 — ww-_l) = fij
vector w;; has length n?

matrix A;, has dimension n? x n? and bandwidth m = n

a) Gaussian elimination : O((n?)3) = O(n°) ops
banded Gaussian elimination : O(n?m?) = O(n*) ops
b) iterative methods

cost per iteration : O(n?) ops (roughly the same for J/GS/SOR)

log e
log p(B)
J,GS = p(B)~1—ch® = logp(B) ~ log(l — ch?) ~ —ch?

stopping criterion : —¢c = p(Bf=¢ = k=

log e
—ch2
= total cost = O(n?) x O(n?) = O(n*) ops

= k~

= O(n?) iterations

SOR = p(B) ~1—ch

1
= k~ og; = O(n) iterations
—c

= total cost = O(n?) x O(n) = O(n?) ops

2. developments after SOR
conjugate gradient method

FFT = fast Fourier transform
multigrid

GMRES

preconditioning : Ax =0 — PAx = Pb
software

parallel
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