chapter 3 : numerical linear algebra
3.1 review of linear algebra

$$
\left.\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{array}\right\}: \text { system of linear equations for } x_{1}, \ldots, x_{n}
$$

We can write the system in 3 other forms.

1. $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1: n, i:$ row index $, j:$ column index
2. $\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right)\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right)=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right)$
3. $A x=b$
basic problem : Given A and b, find x.
solution : $x=b / A$: no, but $x=A \backslash b$ does work in Matlab (what is it doing?)
thm : The following conditions are equivalent.
4. The equation $A x=b$ has a unique solution for any vector b.
5. A is invertible, i.e. there exists a matrix A^{-1} such that $A A^{-1}=I$
6. $\operatorname{det} A \neq 0$
7. The equation $A x=0$ has the unique solution $x=0$.
8. The columns of A are linearly independent.
9. The eigenvalues of A are nonzero.
pf : Math 214/417/419
note
10. If A is invertible, then $x=A^{-1} b$ (pf : $\left.A x=A\left(A^{-1} b\right)=\left(A A^{-1}\right) b=I b=b\right)$, but this is not the best way to compute x in practice.
11. There are two types of methods for solving $A x=b$, direct methods and iterative methods. We will begin with direct methods.

3.2 Gaussian elimination

First consider the special case in which A is upper triangular.

$$
\begin{gathered}
a_{11} x_{1}+\begin{array}{l}
a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\ddots \\
a_{n-1, n-1} x_{n-1}+a_{n-1, n} x_{n}=b_{n-1} \\
a_{n n} x_{n}=b_{n} \\
\Rightarrow \quad x_{n}=b_{n} / a_{n n} \\
x_{n-1}=\left(b_{n-1}-a_{n-1, n} x_{n}\right) / a_{n-1, n-1} \\
\vdots \\
x_{1}=
\end{array} \\
=\left(b_{1}-\left(a_{12} x_{2}+\cdots+a_{1 n} x_{n}\right)\right) / a_{11}
\end{gathered}
$$

back substitution

1. $x_{n}=b_{n} / a_{n n}$
2. for $i=n-1:-1: 1 \quad \% i:$ row index
3. \quad sum $=b_{i}$
4. for $j=i+1: n \quad \% j:$ column index
5. \quad sum $=\operatorname{sum}-a_{i j} \cdot x_{j}$
6. $x_{i}=s u m / a_{i i}$
operation count
$\#$ divisions $=n$
$\#$ mults $=\#$ adds $=\frac{1}{2} n(n-1)=\frac{1}{2} n^{2}-\frac{1}{2} n \sim \frac{1}{2} n^{2}$ for large n
pf
$\#$ mults $=1+2+\cdots+(n-1)=S$
$2 S=(1+2+\cdots+(n-1))+((n-1)+\cdots+2+1)=n+n+\cdots+n=n(n-1)$
$\Rightarrow S=\frac{1}{2} n(n-1) \quad \underline{\text { ok }}$
Hence the leading order term in the operation count for back substitution is n^{2}.
note : Similar considerations apply if A is lower triangular.
note
In case A is a non-triangular matrix, we use elementary row operations to reduce

$$
A x=b \text { to upper triangular form and then apply back substitution to find } x .
$$

ex : $n=3$
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}$
$a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}$
$\left(\begin{array}{lll:l}a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{32} & a_{33} & b_{3}\end{array}\right)$
step 1 : eliminate variable x_{1} from eqs. 2 and 3

$$
\begin{aligned}
m_{21}=\frac{a_{21}}{a_{11}} \Rightarrow a_{22} & \rightarrow a_{22}-m_{21} a_{12} \quad \% m_{21} \text { is called a multiplier } \\
a_{23} & \rightarrow a_{23}-m_{21} a_{13} \\
b_{2} & \rightarrow b_{2}-m_{21} b_{1}
\end{aligned}
$$

$$
m_{31}=\frac{a_{31}}{a_{11}} \Rightarrow \quad \begin{aligned}
& a_{32}
\end{aligned} \quad \rightarrow a_{32}-m_{31} a_{12}, ~=a_{33}-m_{31} a_{13} .
$$

$$
b_{3} \rightarrow b_{3}-m_{31} b_{1}
$$

$$
\left(\begin{array}{ccc:c}
a_{11} & a_{12} & a_{13} & b_{1} \\
0 & a_{22} & a_{23} & b_{2} \\
0 & a_{32} & a_{33} & b_{3}
\end{array}\right) \text { - - these elements have changed }
$$

step 2 : eliminate variable x_{2} from eq. 3
$\left.m_{32}=\frac{a_{32}}{a_{22}} \Rightarrow \quad \begin{array}{rl}a_{33} & \rightarrow a_{33}-m_{32} a_{23} \\ b_{3} & \rightarrow b_{3}-l_{32} b_{2}\end{array}\right)$.
$\left(\begin{array}{ccc:c}a_{11} & a_{12} & a_{13} & b_{1} \\ 0 & a_{22} & a_{23} & b_{2} \\ 0 & 0 & a_{3} & b_{3}\end{array}\right)$: upper triangular
ex

$$
\begin{aligned}
& 2 x_{1}-x_{2}=1 \\
& -x_{1}+2 x_{2}-x_{3}=0 \\
& -x_{2}+2 x_{3}=1
\end{aligned}
$$

$$
\left(\begin{array}{rrr:r}
2 & -1 & 0 & 1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & 1
\end{array}\right) \quad \begin{aligned}
& \\
& m_{21}=-1 / 2 \\
& m_{31}=0
\end{aligned}
$$

$$
\left(\begin{array}{rrr:c}
2 & -1 & 0 & 1 \\
0 & 3 / 2 & -1 & 1 / 2 \\
0 & -1 & 2 & 1
\end{array}\right) \quad m_{32}=-1 /(3 / 2)=-2 / 3
$$

$$
\left(\begin{array}{rrr:c}
2 & -1 & 0 & 1 \\
0 & 3 / 2 & -1 & 1 / 2 \\
0 & 0 & 4 / 3 & 4 / 3
\end{array}\right)
$$

$$
x_{3}=1, x_{2}=\left(\frac{1}{2}-(-1) \cdot 1\right) / \frac{3}{2}=1, x_{1}=(1-(-1) \cdot 1) / 2=1 \quad \text { check }: \underline{o k}
$$

$$
\text { general } n \times n \text { case }
$$

reduction to upper triangular form

1. for $k=1: n-1 \quad \% k:$ step index
2. for $i=k+1: n$
3. $m_{i k}=a_{i k} / a_{k k} \quad \%$ assume $a_{k k} \neq 0$, more later
4. for $j=k+1: n$
5. $a_{i j}=a_{i j}-m_{i k} \cdot a_{k j}$
6. $b_{i}=b_{i}-m_{i k} \cdot b_{k}$
note
The element $a_{k k}$ in step k is called a pivot (these are the diagonal elements in the last step). In the previous example, the pivots are $2, \frac{3}{2}, \frac{4}{3}$.

operation count

The leading order term comes from line 5 .

$$
\left.\begin{array}{rl}
k=1 \Rightarrow 2(n-1)^{2} \text { ops } \\
k=2 \Rightarrow 2(n-2)^{2} \mathrm{ops} \\
\quad \vdots \\
k=n-2 \Rightarrow 2 \cdot 2^{2} \mathrm{ops} \\
k=n-1 \Rightarrow 2 \cdot 1^{2} \mathrm{ops}
\end{array}\right\} \Rightarrow 2 \cdot \sum_{k=1}^{n-1} k^{2}=2 \cdot \frac{1}{6}(n-1) n(2 n-1), \text { pf }: \text { soon }
$$

Hence the operation count for Gaussian elimination is $\frac{2}{3} n^{3}$.
note
$\sum_{k=1}^{n} k=\frac{1}{2} n(n+1) \quad, \quad \sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)$
pf : 1. already done
2. $n^{3}=n^{3}-(n-1)^{3}+(n-1)^{3}+\cdots-2^{3}+2^{3}-1^{3}+1^{3}=\sum_{k=1}^{n}\left(k^{3}-(k-1)^{3}\right)$
$k^{3}-(k-1)^{3}=k^{3}-\left(k^{3}-3 k^{2}+3 k-1\right)=3 k^{2}-3 k+1$
$n^{3}=\sum_{k=1}^{n}\left(3 k^{2}-3 k+1\right)=3 \sum_{k=1}^{n} k^{2}-3 \sum_{k=1}^{n} k+\sum_{k=1}^{n} 1=3 S-3 \cdot \frac{1}{2} n(n+1)+n$
$3 S=n^{3}+\frac{3}{2} n(n+1)-n=n\left(n^{2}+\frac{3}{2} n+\frac{1}{2}\right)=n(n+1)\left(n+\frac{1}{2}\right) \quad$ ok
ex : electric circuit for charging a car battery

To determine the currents, we will apply Kirchoff's voltage law and current law.

1. The sum of the voltage drops around any closed loop is zero.

Ohm's law : $V=I R \Rightarrow 10 I_{1}+15 I_{3}-100=0,4 I_{2}+12-15 I_{3}=0$
2. The sum of the currents flowing into a junction equals the sum flowing out.

$$
\Rightarrow I_{1}=I_{2}+I_{3}
$$

$$
\Rightarrow\left(\begin{array}{rrr}
10 & 0 & 15 \\
0 & 4 & -15 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{r}
100 \\
-12 \\
0
\end{array}\right)
$$

Then we can apply Gaussian elimination. But if we write the first 2 equations in reverse order, then we obtain the following system.

$$
\left(\begin{array}{rrr}
0 & 4 & -15 \\
10 & 0 & 15 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right)=\left(\begin{array}{r}
-12 \\
100 \\
0
\end{array}\right)
$$

In this case Gaussian elimination breaks down because the 1st pivot is zero.

3.3 pivoting

There are various strategies that can be applied if one of the pivots is zero. partial pivoting

Consider the reduced matrix at the beginning of step k.
$\left(\begin{array}{cccccc:c}a_{11} & \cdots & \cdots & a_{1 k} & \cdots & a_{1 n} & b_{1} \\ & \ddots & & \vdots & & \vdots & \vdots \\ & & \ddots & \vdots & & \vdots & \vdots \\ & & & a_{k k} & \cdots & a_{k n} & b_{k} \\ & & & \vdots & & \vdots & \vdots \\ & & & \vdots & & \vdots & \vdots \\ & & & a_{n k} & \cdots & a_{n n} & b_{n}\end{array}\right)$
If $a_{k k}=0$, find index l such that $\left|a_{l k}\right|=\max \left\{\left|a_{i k}\right| ; k \leq i \leq n\right\}$, then interchange row l and row k and proceed with the elimination.

1. If A is invertible, then Gaussian elimination with partial pivoting does not break down. (pf : Math 571)
2. In practice, pivoting is often applied even if the pivot element is nonzero.

$$
\begin{aligned}
& \underline{\mathrm{ex}} \\
& \left.\left(\begin{array}{cc:c}
\epsilon & 1 & 1+\epsilon \\
1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cc:c}
\epsilon & 1 & 1+\epsilon \\
0 & 1-\frac{1}{\epsilon} & 1-\frac{1}{\epsilon}
\end{array}\right) \Rightarrow \begin{array}{l}
x_{1}=\frac{1+\epsilon-1}{\epsilon}=1 \\
x_{2}=\frac{1-\frac{1}{\epsilon}}{1-\frac{1}{\epsilon}}=1
\end{array}\right\}: \text { exact solution } \\
& m_{21}=\frac{1}{\epsilon}
\end{aligned}
$$

Now consider the effect of roundoff error.
$\left.\left(\begin{array}{rr:r}\epsilon & 1 & 1 \\ 0 & -\frac{1}{\epsilon} & -\frac{1}{\epsilon}\end{array}\right) \Rightarrow \begin{array}{l}\tilde{x}_{1}=\frac{1-1}{\epsilon}=0 \\ \tilde{x}_{2}=\frac{-\frac{1}{\epsilon}}{-\frac{1}{\epsilon}}=1\end{array}\right\}:$ computed solution, inaccurate
Now apply pivoting in the presence of roundoff error.

$$
\begin{aligned}
& \left.\left(\begin{array}{ll:l}
1 & 1 & 2 \\
\epsilon & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll:l}
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right) \Rightarrow \begin{array}{l}
\tilde{x}_{1}=1 \\
\tilde{x}_{2}=1
\end{array}\right\}: \text { new computed solution, accurate } \\
& m_{21}=\frac{\epsilon}{1}=\epsilon
\end{aligned}
$$

This is an issue of stability. (more later)

3.4 vector and matrix norms

To prepare for error analysis, we need a way to measure the size of a vector. def : A vector norm is a function $\|x\|$ satisfying the following properties.

1. $\|x\| \geq 0$ and $\|x\|=0 \Leftrightarrow x=0$
2. $\|\alpha x\|=|\alpha| \cdot\|x\|, ~ \alpha:$ scalar
3. $\|x+y\| \leq\|x\|+\|y\|$: triangle inequality
ex
$\stackrel{\text { ex }}{\|x\|_{2}}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}:$ Euclidean length
$\|x\|_{\infty}=\max \left\{\left|x_{i}\right|: i=1, \ldots, n\right\}$
pf ...
ex : $x=\binom{1}{2} \Rightarrow\|x\|_{2}=\sqrt{5},\|x\|_{\infty}=2$
def : Given a matrix A, consider the operator $x \rightarrow A x$ as input \rightarrow output.
Then $\frac{\|A x\|}{\|x\|}$ is the amplification factor for a given input vector x, and we define the matrix norm to be the maximum amplification factor over all nonzero input vectors, $\|A\|=\max _{x \neq 0} \frac{\|A x\|}{\|x\|}$. The matrix norm satisfies the following properties.
4. $\|A\| \geq 0$ and $\|A\|=0 \Leftrightarrow A=0$
5. $\|\alpha A\|=|\alpha| \cdot\|A\|$
6. $\|A+B\| \leq\|A\|+\|B\|$
7. $\|A x\| \leq\|A\| \cdot\|x\|$
8. $\|A B\| \leq\|A\| \cdot\|B\|$
pf : just 5

$$
\begin{aligned}
& \|A B\|=\max _{x \neq 0} \frac{\|A B x\|}{\|x\|} \leq \max _{x \neq 0} \frac{\|A\| \cdot\|B x\|}{\|x\|} \leq \max _{x \neq 0} \frac{\|A\| \cdot\|B\| \cdot\|x\|}{\|x\|}=\|A\| \cdot\|B\| \\
& \uparrow \\
& \text { def } \\
& \text { prop } 4 \\
& \text { prop } 4 \\
& \text { ok }
\end{aligned}
$$

note : Computing $\|A\|$ by the definition is difficult and there are more convenient formulas that can be used in practice.
$\underline{\text { thm }: ~}\|A\|_{\infty}=\max _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\max _{i} \sum_{j}\left|a_{i j}\right|:$ max row sum
pf : omit (Math 571)
ex : $\quad A=\left(\begin{array}{rr}3 & -4 \\ 1 & 0\end{array}\right) \Rightarrow\|A\|_{\infty}=\max \{|3|+|-4|,|1|+|0|\}=7$
$x=\binom{1}{0} \Rightarrow A x=\binom{3}{1} \Rightarrow \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\frac{3}{1}=3$
$x=\binom{0}{1} \Rightarrow A x=\binom{-4}{0} \Rightarrow \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\frac{4}{1}=4$
$x=\binom{1}{1} \Rightarrow A x=\binom{-1}{1} \Rightarrow \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\frac{1}{1}=1$
$x=\binom{1}{-1} \Rightarrow A x=\binom{7}{1} \Rightarrow \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\frac{7}{1}=7:$ max amp factor by thm
3.5 error analysis
$A x=b$
x : exact solution , \tilde{x} : approximate solution
$e=x-\tilde{x}$: error (usually unknown) , $r=b-A \tilde{x}$: residual (can be computed) question : What is the relation between e and r ?
ex : $\left(\begin{array}{ll:l}1.01 & 0.99 & 2 \\ 0.99 & 1.01 & 2\end{array}\right) \Rightarrow x=\binom{1}{1}$

$$
\begin{aligned}
\tilde{x}_{1}=\binom{1.01}{1.01} \Rightarrow & e_{1}=x-\tilde{x}_{1}=\binom{-0.01}{-0.01} \Rightarrow\left\|e_{1}\right\|=0.01 \\
& r_{1}=b-A \tilde{x}_{1}=\binom{2}{2}-\binom{2.02}{2.02}=\binom{-0.02}{-0.02} \Rightarrow\left\|r_{1}\right\|=0.02
\end{aligned}
$$

$$
\tilde{x}_{2}=\binom{2}{0} \Rightarrow e_{2}=x-\tilde{x}_{2}=\binom{-1}{1} \Rightarrow\left\|e_{2}\right\|=1
$$

$$
r_{2}=b-A \tilde{x}_{2}=\binom{2}{2}-\binom{2.02}{1.98}=\binom{-0.02}{0.02} \Rightarrow\left\|r_{2}\right\|=0.02
$$

Hence if $\|r\|$ is small, there is no guarantee that $\|e\|$ is also small. question : How large can $\|e\|$ be?
$\underline{\text { thm }}: \frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}$, where $\kappa(A)=\|A\| \cdot\left\|A^{-1}\right\|:$ condition number
ex : $A=\left(\begin{array}{ll}1.01 & 0.99 \\ 0.99 & 1.01\end{array}\right) \Rightarrow\|A\|=2$
$A^{-1}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}d & -b \\ -c & a\end{array}\right)=\frac{1}{0.04}\left(\begin{array}{rr}1.01 & -0.99 \\ -0.99 & 1.01\end{array}\right)$
$=\left(\begin{array}{rr}25.25 & -24.75 \\ -24.75 & 25.25\end{array}\right) \Rightarrow\left\|A^{-1}\right\|=50 \Rightarrow \kappa(A)=100 \quad \underline{\mathrm{ok}}$
pf

1. $\|b\|=\|A x\| \leq\|A\| \cdot\|x\| \Rightarrow\|x\| \geq\|b\| /\|A\|$
2. $A e=A(x-\tilde{x})=A x-A \tilde{x}=b-A \tilde{x}=r \Rightarrow A e=r$
3. $e=A^{-1} r \Rightarrow\|e\|=\left\|A^{-1} r\right\| \leq\left\|A^{-1}\right\| \cdot\|r\|$
4. $\frac{\|e\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\| \cdot\|r\|}{\|b\| /\|A\|}=\frac{\|A\| \cdot\left\|A^{-1}\right\| \cdot\|r\|}{\|b\|}=\kappa(A) \cdot \frac{\|r\|}{\|b\|} \quad$ ok
alternative viewpoint
5. $\left.\begin{array}{l}A x=b \\ A \tilde{x}=\tilde{b}\end{array}\right\} \Rightarrow \frac{\|x-\tilde{x}\|}{\|x\|} \leq \kappa(A) \frac{\|b-\tilde{b}\|}{\|b\|}$: perturbation of RHS , pf : $\underline{\mathrm{ok}}$
6. $\left.\begin{array}{l}A x=b \\ \tilde{A} \tilde{x}=b\end{array}\right\} \Rightarrow \frac{\|x-\tilde{x}\|}{\|\tilde{x}\|} \leq \kappa(A) \frac{\|A-\tilde{A}\|}{\|A\|}$: perturbation of matrix , pf : ...

Hence $\kappa(A)$ controls the change in x due to changes in A and b.
ex (recall)
$\left.\left(\begin{array}{cc:c}\epsilon & 1 & 1+\epsilon \\ 1 & 1 & 2\end{array}\right) \rightarrow\left(\begin{array}{cc:c}\epsilon & 1 & 1+\epsilon \\ 0 & 1-\frac{1}{\epsilon} & 1-\frac{1}{\epsilon}\end{array}\right) \Rightarrow \begin{array}{l}x_{1}=1 \\ x_{2}=1\end{array}\right\}$: exact solution
Now consider the effect of roundoff error.
$\left.\left(\begin{array}{rr:r}\epsilon & 1 & 1 \\ 0 & -\frac{1}{\epsilon} & -\frac{1}{\epsilon}\end{array}\right) \Rightarrow \begin{array}{l}\tilde{x}_{1}=0 \\ \tilde{x}_{2}=1\end{array}\right\}$: computed solution, inaccurate explanation

$$
A=\left(\begin{array}{ll}
\epsilon & 1 \\
1 & 1
\end{array}\right), A^{-1}=\frac{1}{\epsilon-1}\left(\begin{array}{rc}
1 & -1 \\
-1 & \epsilon
\end{array}\right) \Rightarrow \kappa(A)=2 \cdot \frac{1}{|\epsilon-1|} \cdot 2 \approx 4
$$

However, Gaussian elimination reduces the system to upper triangular form.
$U=\left(\begin{array}{ll}\epsilon & 1 \\ 0 & 1-\frac{1}{\epsilon}\end{array}\right), U^{-1}=\frac{1}{\epsilon-1}\left(\begin{array}{cc}1-\frac{1}{\epsilon} & -1 \\ 0 & \epsilon\end{array}\right)$
$\Rightarrow \kappa(U)=\left|1-\frac{1}{\epsilon}\right| \cdot \frac{1}{|\epsilon-1|} \cdot\left(\left|1-\frac{1}{\epsilon}\right|+1\right) \approx \frac{1}{\epsilon^{2}}$: larger than $\kappa(A)$

Hence a small change in the matrix or RHS of the reduced system (e.g. due to roundoff error) can produce a large change in the computed solution (as in the example). This means that Gaussian elimination is an unstable method for solving $A x=b$, because it replaced a well-conditioned matrix A by an illconditioned matrix U. However, pivoting produces a different reduced system.
$\left.\left(\begin{array}{cc:c}1 & 1 & 2 \\ \epsilon & 1 & 1+\epsilon\end{array}\right) \rightarrow\left(\begin{array}{cc:c}1 & 1 & 2 \\ 0 & 1-\epsilon & 1-\epsilon\end{array}\right) \Rightarrow \begin{array}{l}\tilde{x}_{1}=1 \\ \tilde{x}_{2}=1\end{array}\right\}:$ exact solution
$U=\left(\begin{array}{ll}1 & 1 \\ 0 & 1-\epsilon\end{array}\right), U^{-1}=\frac{1}{1-\epsilon}\left(\begin{array}{rr}1-\epsilon & -1 \\ 0 & 1\end{array}\right) \Rightarrow \kappa(U) \approx 4 \approx \kappa(A)$
Hence, pivoting preserves the condition number of the original matrix, and therefore Gaussian elimination + pivoting is stable (in most cases).
3.6 LU factorization : matrix form of Gaussian elimination

Consider the 3×3 case (but the $n \times n$ case is similar).
$\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$
step 1 : eliminate variable x_{1} from eqs. 2 and 3
$m_{21}=\frac{a_{21}}{a_{11}}, m_{31}=\frac{a_{31}}{a_{11}}$
$\left(\begin{array}{ccc}1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1\end{array}\right)\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & \left\ulcorner a_{22}\right. & a_{23} \\ 0 & a_{32} & a_{33}\end{array}\right)$
step 2 : eliminate variable x_{2} from eq. 3
$m_{32}=\frac{a_{32}}{a_{22}}$
$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1\end{array}\right)\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33}\end{array}\right)=U$: upper triangular
$\Rightarrow E_{2} E_{1} A=U \Rightarrow E_{1} A=E_{2}^{-1} U \Rightarrow A=E_{1}^{-1} E_{2}^{-1} U$
$E_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1\end{array}\right) \Rightarrow E_{1}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & 0 & 1\end{array}\right)$, check : $E_{1} E_{1}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$E_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1\end{array}\right) \Rightarrow E_{2}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{32} & 1\end{array}\right)$, check : ...
$E_{1}^{-1} E_{2}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{32} & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1\end{array}\right)=L$: lower triangular
final result : $A=L U$
ex : $\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right) \rightarrow\left(\begin{array}{rrr}2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2\end{array}\right) \rightarrow\left(\begin{array}{rrr}2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3}\end{array}\right)$

$$
m_{21}=\frac{-1}{2} \quad m_{32}=\frac{-1}{3 / 2}=-\frac{2}{3}
$$

$$
m_{31}=\frac{0}{2}=0
$$

check : $L U=\left(\begin{array}{rrr}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1\end{array}\right)\left(\begin{array}{rrr}2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3}\end{array}\right)=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)=A \quad \underline{\text { ok }}$
note: The following steps are used to solve $A x=b$.

1. factor $A=L U$, op count $=\frac{2}{3} n^{3}$
2. solve $L y=b$ by forward substitution , op count $=n^{2}$
3. solve $U x=y$ by back substitution , op count $=n^{2}$
check : $A x=L U x=L y=b \quad$ ok
ex : $A=\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right), b=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \Rightarrow x=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
Previously we used Gaussian elimination, but now we'll use $L U$ factorization.
$L y=b \Rightarrow\left(\begin{array}{rrr}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1\end{array}\right)\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \Rightarrow\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)=\left(\begin{array}{c}1 \\ \frac{1}{2} \\ \frac{4}{3}\end{array}\right)$
$U x=y \Rightarrow\left(\begin{array}{rrr}2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3}\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ \frac{1}{2} \\ \frac{4}{3}\end{array}\right) \Rightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \quad \underline{\mathrm{ok}}$
question: So what's the point of $L U$ factorization?
answer : Some applications require solving $A x=b$ for a given matrix A and a sequence of vectors b, e.g. a time-dependent problem. Once the $L U$ factorization of A is known, we can apply forward and back substitution to the sequence of vectors b; it's not necessary to repeat the $L U$ factorization.

3.7 two-point boundary value problem

Find $y(x)$ on $0 \leq x \leq 1$ satisfying the differential equation $-y^{\prime \prime}=r(x)$, subject to boundary conditions $y(0)=\alpha, y(1)=\beta$. This problem is a model for 1 D steady state heat diffusion, where $y(x)$ is a temperature profile and $r(x)$ is a distribution of heat sources. (Think of $r(x), \alpha, \beta$ as input and $y(x)$ as output.) finite-difference scheme
choose $n \geq 1$ and set $h=\frac{1}{n+1}$: mesh size
set $x_{i}=i h$ for $i=0,1, \ldots, n+1$: mesh points $\left(x_{0}=0, x_{n+1}=1\right)$

$y\left(x_{i}\right)=y_{i}$: exact solution,$r_{i}=r\left(x_{i}\right)$
recall : $D_{+} y_{i}=\frac{y_{i+1}-y_{i}}{h}, D_{-} y_{i}=\frac{y_{i}-y_{i-1}}{h}$

$$
\begin{aligned}
D_{+} D_{-} y_{i} & =D_{+}\left(D_{-} y_{i}\right)=D_{+}\left(\frac{y_{i}-y_{i-1}}{h}\right)=\frac{1}{h}\left(D_{+} y_{i}-D_{+} y_{i-1}\right) \\
& =\frac{1}{h}\left(\frac{y_{i+1}-y_{i}}{h}-\left(\frac{y_{i}-y_{i-1}}{h}\right)\right)=\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} \approx y^{\prime \prime}\left(x_{i}\right)
\end{aligned}
$$

question: How accurate is the approximation?
$y_{i+1}=y\left(x_{i+1}\right)=y\left(x_{i}+h\right):$ expand in a Taylor series about $x=x_{i}$
$y_{i+1}=y_{i}+h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}+\frac{h^{3}}{3!} y_{i}^{\prime \prime \prime}+\frac{h^{4}}{4!} y_{i}^{(4)}+\frac{h^{5}}{5!} y_{i}^{(5)}+O\left(h^{6}\right)$
$y_{i-1}=y_{i}-h y_{i}^{\prime}+\frac{h^{2}}{2} y_{i}^{\prime \prime}-\frac{h^{3}}{3!} y_{i}^{\prime \prime \prime}+\frac{h^{4}}{4!} y_{i}^{(4)}-\frac{h^{5}}{5!} y_{i}^{(5)}+O\left(h^{6}\right)$
$D_{+} D_{-} y_{i}=\underbrace{\frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}}}_{\text {approximation }}=\underset{\begin{array}{c}\text { exact } \\ \text { value }\end{array}}{y_{i}^{\prime \prime}}+\underbrace{\frac{h^{2}}{12} y_{i}^{(4)}+O\left(h^{4}\right)}_{\begin{array}{c}\text { discretization } \\ \text { error }\end{array}}$: 2nd order accurate
w_{i} : numerical solution , $w_{i} \approx y_{i}, w_{0}=\alpha, w_{n+1}=\beta$
$-\left(\frac{w_{i+1}-2 w_{i}+w_{i-1}}{h^{2}}\right)=r_{i}, i=1, \ldots, n:$ finite-difference equations
$\frac{1}{h^{2}}\left(-w_{i+1}+2 w_{i}-w_{i-1}\right)=r_{i}$
$i=2 \Rightarrow \frac{1}{h^{2}}\left(-w_{3}+2 w_{2}-w_{1}\right)=r_{2}$
$i=1 \Rightarrow \frac{1}{h^{2}}\left(-w_{2}+2 w_{1}-\alpha\right)=r_{1}$
$i=n \Rightarrow \frac{1}{h^{2}}\left(-\beta+2 w_{n}-w_{n-1}\right)=r_{n}$
$\frac{1}{h^{2}}\left(\begin{array}{rrrrr}2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2\end{array}\right)\left(\begin{array}{c}w_{1} \\ w_{2} \\ \vdots \\ w_{n-1} \\ w_{n}\end{array}\right)=\left(\begin{array}{l}r_{1}+\alpha / h^{2} \\ r_{2} \\ \vdots \\ r_{n-1} \\ r_{n}+\beta / h^{2}\end{array}\right) \Rightarrow A_{h} w_{h}=r_{h} \begin{aligned} & \\ & A_{h}:\left\{\begin{array}{l}\text { symmetric }, \\ \text { tridiagonal }\end{array}\right.\end{aligned}$
questions

1. Is A_{h} invertible?
2. Can w_{h} be computed efficiently?
3. Does $w_{h} \rightarrow y_{h}$ as $h \rightarrow 0$, i.e. does the numerical solution converge to the exact solution as the mesh is refined? If so, what is the order of accuracy?
$L U$ factorization for a tridiagonal system (Thomas algorithm) $\left(\begin{array}{ccccc}b_{1} & c_{1} & & & \\ a_{2} & b_{2} & c_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & c_{n-1} \\ & & & a_{n} & b_{n}\end{array}\right)=\left(\begin{array}{ccccc}1 & & & & \\ l_{2} & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & \ddots & \\ & & & l_{n} & 1\end{array}\right)\left(\begin{array}{lllll}u_{1} & c_{1} & & & \\ & u_{2} & c_{2} & & \\ & & \ddots & \ddots & \\ & & & \ddots & c_{n-1} \\ & & & & u_{n}\end{array}\right)$
special case : $n=3$

$$
\left(\begin{array}{ccc}
b_{1} & c_{1} & 0 \\
a_{2} & b_{2} & c_{2} \\
0 & a_{3} & b_{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
l_{2} & 1 & 0 \\
0 & l_{3} & 1
\end{array}\right)\left(\begin{array}{ccc}
u_{1} & c_{1} & 0 \\
0 & u_{2} & c_{2} \\
0 & 0 & u_{3}
\end{array}\right)
$$

find L, U
$b_{1}=u_{1} \quad \Rightarrow u_{1}=b_{1}$
$a_{2}=l_{2} u_{1} \quad \Rightarrow l_{2}=a_{2} / u_{1}$
$b_{2}=l_{2} c_{1}+u_{2} \Rightarrow u_{2}=b_{2}-l_{2} c_{1}, \ldots$
general case
find L, U
$b_{1}=u_{1} \quad \Rightarrow u_{1}=b_{1}$
$\left.\begin{array}{ll}a_{k}=l_{k} u_{k-1} & \Rightarrow l_{k}=a_{k} / u_{k-1} \\ b_{k}=l_{k} c_{k-1}+u_{k} & \Rightarrow u_{k}=b_{k}-l_{k} c_{k-1}\end{array}\right\}$ for $k=2: n$
solve $L z=r$
$z_{1}=r_{1}$
$l_{k} z_{k-1}+z_{k}=r_{k} \Rightarrow z_{k}=r_{k}-l_{k} z_{k-1}$ for $k=2: n$
solve $U w=z$
$\begin{array}{ll}u_{n} w_{n}=z_{n} & \Rightarrow w_{n}=z_{n} / u_{n} \\ u_{k} w_{k}+c_{k} w_{k+1}=z_{k} & \Rightarrow w_{k}=\left(z_{k}-c_{k} w_{k+1}\right) / u_{k} \text { for } k=n-1:-1: 1\end{array}$
note : operation count $=O(n)$ memory $=O(n)$ if vectors are used instead of full matrices
two-point bvp : $-y^{\prime \prime}=25 \sin \pi x, 0 \leq x \leq 1, y(0)=0, y(1)=1$
solution : $y(x)=\frac{25}{\pi^{2}} \sin \pi x+x \quad, \quad$ check \ldots

exact solution : $y(x)$ is plotted as a solid curve
numerical solution : w_{h} is plotted as circles connected by straight lines
The error is $\left\|y_{h}-w_{h}\right\|$, where y_{h} denotes the exact solution at the mesh points.

| h | $\left\\|y_{h}-w_{h}\right\\|$ | $\frac{\left\\|y_{h}-w_{h}\right\\|}{h}$ | | $\frac{\left\\|y_{h}-w_{h}\right\\|}{h^{2}}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |$\frac{\left\|y_{h}-w_{h}\right\|}{h^{3}}$

note

1. If h decreases by $\frac{1}{2}$, then the error decreases by approximately $\frac{1}{4}$.
2. We see that $\left\|y_{h}-w_{h}\right\|=O\left(h^{2}\right)$, so the method is 2 nd order accurate.

3.8 iterative methods

Gaussian elimination is a direct method for solving $A x=b$, because it yields the exact solution x after a finite number of steps. In practice, the $O\left(n^{3}\right)$ operation count is an obstacle when n is large and memory is an issue too. Now we consider iterative methods, an alternative class of methods which generate a sequence of approximate solutions x_{k} such that $\lim _{k \rightarrow \infty} x_{k}=x$. As we shall see, iterative methods have some advantages over direct methods.
$A x=b \Leftrightarrow x=B x+c:$ equivalent linear system

$$
x_{k+1}=B x_{k}+c \text { : fixed-point iteration : given } x_{0}, \text { compute } x_{1}, \ldots
$$

B : iteration matrix
Jacobi method
$A=L+D+U:$ this is different than $L U$ factorization
$D=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$, assume $a_{i i} \neq 0, i=1: n$
$L=\left(\begin{array}{ccccc}0 & & & & \\ a_{21} & 0 & & & \\ \vdots & \ddots & \ddots & & \\ \vdots & & \ddots & \ddots & \\ a_{n 1} & \cdots & \cdots & a_{n, n-1} & 0\end{array}\right), U=\left(\begin{array}{ccccc}0 & a_{12} & \cdots & \cdots & a_{1 n} \\ & 0 & \ddots & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & a_{n-1, n} \\ & & & & 0\end{array}\right)$
$A x=b \Leftrightarrow(L+D+U) x=b$
$\Leftrightarrow D x=-(L+U) x+b$
$\Leftrightarrow x=-D^{-1}(L+U) x+D^{-1} b \quad, \quad B_{J}=-D^{-1}(L+U)$
$D x_{k+1}=-(L+U) x_{k}+b:$ easy to solve for x_{k+1}
component form

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \Rightarrow a_{11} x_{1}^{(k+1)}=b_{1}-\left(a_{12} x_{2}^{(k)}+a_{13} x_{3}^{(k)}\right) \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \Rightarrow a_{22} x_{2}^{(k+1)}=b_{2}-\left(a_{21} x_{1}^{(k)}+a_{23} x_{3}^{(k)}\right) \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \Rightarrow a_{33} x_{3}^{(k+1)}=b_{3}-\left(a_{31} x_{1}^{(k)}+a_{32} x_{2}^{(k)}\right)
\end{aligned}
$$

ex

$$
\begin{aligned}
2 x_{1}-x_{2}=1 & \Rightarrow 2 x_{1}^{(k+1)}=1+x_{2}^{(k)} \\
-x_{1}+2 x_{2}=1 \quad & \Rightarrow 2 x_{2}^{(k+1)}=1+x_{1}^{(k)}
\end{aligned}
$$

The exact solution is $x_{1}=x_{2}=1$. Let the initial guess be $x_{1}^{(0)}=x_{2}^{(0)}=0$.

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$
0	0	0
1	$1 / 2$	$1 / 2$
2	$3 / 4$	$3 / 4$
3	$7 / 8$	$7 / 8$

Hence the numerical solution converges to the exact solution as $k \rightarrow \infty$.
$\underline{\text { def }}: e_{k}=x-x_{k}:$ error at step k
In the example we have $\left\|e_{0}\right\|=1,\left\|e_{1}\right\|=\frac{1}{2},\left\|e_{2}\right\|=\frac{1}{4}, \ldots,\left\|e_{k+1}\right\|=\frac{1}{2}\left\|e_{k}\right\|$. question : What determines the factor $\frac{1}{2}$?
thm
Consider a linear system $A x=b$ and fixed-point iteration $x_{k+1}=B x_{k}+c$.

1. $e_{k+1}=B e_{k}$ for all $k \geq 0$
2. If $\|B\|<1$, then $x_{k} \rightarrow x$ as $k \rightarrow \infty$ for any initial guess x_{0}.
pf
3. $e_{k+1}=x-x_{k+1}=(B x+c)-\left(B x_{k}+c\right)=B\left(x-x_{k}\right)=B e_{k}$
4. $\left\|e_{k+1}\right\|=\left\|B e_{k}\right\| \leq\|B\| \cdot\left\|e_{k}\right\|=\|B\| \cdot\left\|B e_{k-1}\right\| \leq\|B\| \cdot\|B\| \cdot\left\|e_{k-1}\right\|$
$\Rightarrow\left\|e_{k+1}\right\| \leq\|B\|^{2} \cdot\left\|e_{k-1}\right\|$
$\Rightarrow\left\|e_{k+1}\right\| \leq\|B\|^{k+1} \cdot\left\|e_{0}\right\| \rightarrow 0$ as $k \rightarrow \infty \quad$ ok
ex

$$
\begin{aligned}
& A=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) \Rightarrow B_{J}=-D^{-1}(L+U)=-\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right) \\
& \Rightarrow\left\|B_{J}\right\|=\frac{1}{2}
\end{aligned}
$$

Hence since $\left\|B_{J}\right\|=\frac{1}{2}<1$, the theorem implies that Jacobi's method converges, and the proof shows that $\left\|e_{k}\right\|$ decreases by a factor of at least $\frac{1}{2}$ in each step.

Gauss-Seidel method
$A=L+D+U:$ as before

$$
\begin{aligned}
A x=b & \Leftrightarrow(L+D+U) x=b \\
& \Leftrightarrow(L+D) x=-U x+b \\
& \Leftrightarrow x=-(L+D)^{-1} U x+(L+D)^{-1} b \quad, \quad B_{G S}=-(L+D)^{-1} U
\end{aligned}
$$

$(L+D) x_{k+1}=-U x_{k}+b:$ solve by forward substitution
component form
$a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \quad \Rightarrow \quad a_{11} x_{1}^{(k+1)}=b_{1}-\left(a_{12} x_{2}^{(k)}+a_{13} x_{3}^{(k)}\right)$
$a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \quad \Rightarrow \quad a_{22} x_{2}^{(k+1)}=b_{2}-\left(a_{21} x_{1}^{(k+1)}+a_{23} x_{3}^{(k)}\right)$
$a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \quad \Rightarrow \quad a_{33} x_{3}^{(k+1)}=b_{3}-\left(a_{31} x_{1}^{(k+1)}+a_{32} x_{2}^{(k+1)}\right)$
Hence $x_{i}^{(k+1)}$ is used as soon as it's computed, in contrast to Jacobi.
ex

$$
\begin{aligned}
& 2 x_{1}-x_{2}=1 \quad \Rightarrow \quad 2 x_{1}^{(k+1)}=1+x_{2}^{(k)} \\
& -x_{1}+2 x_{2}=1 \quad \Rightarrow \quad 2 x_{2}^{(k+1)}=1+x_{1}^{(k+1)} \\
& \begin{array}{r|c|c}
k & x_{1}^{(k)} & x_{2}^{(k)} \\
\hline 0 & 0 & 0 \\
1 & 1 / 2 & 3 / 4 \\
2 & 7 / 8 & 15 / 16 \\
3 & 31 / 32 & 63 / 64
\end{array}
\end{aligned}
$$

Hence Gauss-Seidel converges faster than Jacobi.

$$
\begin{aligned}
& \left\|e_{0}\right\|=1,\left\|e_{1}\right\|=\frac{1}{2},\left\|e_{2}\right\|=\frac{1}{8},\left\|e_{3}\right\|=\frac{1}{32}, \ldots,\left\|e_{k+1}\right\|=\frac{1}{4}\left\|e_{k}\right\| \text { for } k \geq 1 \\
& A=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) \Rightarrow B_{G S}=-(L+D)^{-1} U=-\frac{1}{4}\left(\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right)\left(\begin{array}{rr}
0 & -1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & \frac{1}{2} \\
0 & \frac{1}{4}
\end{array}\right) \\
& \Rightarrow\left\|B_{G S}\right\|=\frac{1}{2}
\end{aligned}
$$

Since $\left\|B_{G S}\right\|=\frac{1}{2}<1$, the theorem implies that Gauss-Seidel converges, but we see that $\left\|e_{k}\right\|$ decreases by a factor of $\frac{1}{4}<\left\|B_{G S}\right\|$ in each step.
summary

$$
\begin{aligned}
A=\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right) \Rightarrow B_{J}=\left(\begin{array}{ll}
0 & \frac{1}{2} \\
\frac{1}{2} & 0
\end{array}\right) \Rightarrow\left\|B_{J}\right\|=\frac{1}{2},\left\|e_{k+1}\right\|=\frac{1}{2}\left\|e_{k}\right\| \\
B_{G S}=\left(\begin{array}{ll}
0 & \frac{1}{2} \\
0 & \frac{1}{4}
\end{array}\right) \Rightarrow\left\|B_{G S}\right\|=\frac{1}{2},\left\|e_{k+1}\right\|=\frac{1}{4}\left\|e_{k}\right\|
\end{aligned}
$$

question: What determines the factor by which $\left\|e_{k}\right\|$ decreases in each step?
To answer this question, we need to recall some facts about eigenvalues and eigenvectors.
def : If $A x=\lambda x$, where $x \neq 0$ is a vector and λ is a scalar (real or complex), then λ is an eigenvalue of A and x is a corresponding eigenvector.
ex : $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$A\binom{1}{1}=\binom{1}{1} \Rightarrow \lambda=1$ is an e-value with e-vector $x=\binom{1}{1}$
$A\binom{-1}{-1}=\binom{-1}{-1} \Rightarrow \lambda=1, x=\binom{-1}{-1}$
$A\binom{1}{-1}=\binom{-1}{1} \Rightarrow \lambda=-1, x=\binom{1}{-1}$
note
$A x=\lambda x, x \neq 0 \Leftrightarrow(A-\lambda I) x=0, x \neq 0 \Leftrightarrow \operatorname{det}(A-\lambda I)=0$
$f_{A}(\lambda)=\operatorname{det}(A-\lambda I):$ characteristic polynomial of A
Hence the e-values of A are the roots of the characteristic polynomial $f_{A}(\lambda)$.
ex : $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}-\lambda & 1 \\ 1 & -\lambda\end{array}\right)=\lambda^{2}-1=0 \Rightarrow \lambda= \pm 1 \quad \underline{\mathrm{ok}}$
thm : If A is upper triangular, then the e-values are the diagonal elements.
$\underline{\mathrm{pf}}\left(\begin{array}{ccc}a_{11} & \cdots & a_{1 n} \\ & \ddots & \vdots \\ 0 & & a_{n n}\end{array}\right) \Rightarrow A-\lambda I=\left(\begin{array}{ccc}a_{11}-\lambda & \cdots & a_{1 n} \\ & \ddots & \vdots \\ 0 & & a_{n n}-\lambda\end{array}\right)$
$f_{A}(\lambda)=\operatorname{det}(A-\lambda I)=\left(a_{11}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)=0 \Rightarrow \lambda=a_{i i}$ for some $i \quad$ ok
recall : $A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right) \Rightarrow B_{G S}=\left(\begin{array}{cc}0 & \frac{1}{2} \\ 0 & \frac{1}{4}\end{array}\right)$
$\lambda_{1}=0$ is an e-value of $B_{G S}$ with e-vector $v_{1}=\binom{1}{0}$, check : $B v_{1}=\lambda v_{1}$
$\lambda_{2}=\frac{1}{4} \ldots \ldots \ldots \ldots \ldots . \ldots \ldots \ldots \ldots v_{2}=\binom{2}{1}$, check : B $v_{2}=\lambda v_{2}$
$e_{0}=x-x_{0}=\binom{1}{1}-\binom{0}{0}=\binom{1}{1}=v_{2}-v_{1}$
$e_{1}=B e_{0}=B\left(v_{2}-v_{1}\right)=B v_{2}-B v_{1}=\lambda_{2} v_{2}-\lambda_{1} v_{1}$
$e_{2}=B e_{1}=B\left(\lambda_{2} v_{2}-\lambda_{1} v_{1}\right)=\lambda_{2}^{2} v_{2}-\lambda_{1}^{2} v_{1}$
$e_{k}=\lambda_{2}^{k} v_{2}-\lambda_{1}^{k} v_{1}=\left(\frac{1}{4}\right)^{k} v_{2} \Rightarrow\left\|e_{k}\right\|=\left(\frac{1}{4}\right)^{k}\left\|v_{2}\right\|$
This explains why $\left\|e_{k+1}\right\|=\frac{1}{4}\left\|e_{k}\right\|$, even though $\left\|B_{G S}\right\|=\frac{1}{2}$.
question
What determines the convergence rate of an iterative method?
def : $\rho(B)=\max \{|\lambda|: \lambda$ is an e-value of $B\}:$ spectral radius of B thm

1. $\left\|e_{k+1}\right\| \leq\|B\| \cdot\left\|e_{k}\right\|$ for all $k \geq 0$: error bound
2. $\left\|e_{k+1}\right\| \sim \rho(B) \cdot\left\|e_{k}\right\|$ as $k \rightarrow \infty$: asymptotic relation

This means that $\lim _{k \rightarrow \infty} \frac{\left\|e_{k+1}\right\|}{\left\|e_{k}\right\|}=\rho(B)$.
Hence the spectral radius of the iteration matrix $\rho(B)$ determines the convergence rate of an iterative method.
pf

1. recall : $e_{k+1}=B e_{k} \Rightarrow\left\|e_{k+1}\right\|=\left\|B e_{k}\right\| \leq\|B\| \cdot\left\|e_{k}\right\|$
2. Math 571 (but the idea is the same as in the example above)
$e_{0}=\alpha_{1} v_{1}+\alpha_{2} v_{2} \Rightarrow e_{k}=B^{k} e_{0}=\alpha_{1} \lambda_{1}^{k} v_{1}+\alpha_{2} \lambda_{2}^{k} v_{2}=\lambda_{1}^{k}\left(\alpha_{1} v_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \alpha_{2} v_{2}\right) \quad \underline{\mathrm{ok}}$
recall : $A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right) \Rightarrow B_{J}=\left(\begin{array}{rr}0 & \frac{1}{2} \\ \frac{1}{2} & 0\end{array}\right) \Rightarrow \rho\left(B_{J}\right)=\frac{1}{2}$
$B_{G S}=\left(\begin{array}{cc}0 & \frac{1}{2} \\ 0 & \frac{1}{4}\end{array}\right) \Rightarrow \rho\left(B_{G S}\right)=\frac{1}{4} \quad \underline{\mathrm{ok}}$
question : Are there faster methods?
Jacobi (1804-1851) , Gauss (1777-1855) , Seidel (1821-1896)
Richardson (1881-1953) : numerical weather forecasting
$A x=b, A=L+D+U$
Recall the Gauss-Seidel method.
$(L+D) x_{k+1}=-U x_{k}+b \Leftrightarrow D x_{k+1}=D x_{k}-\left(L x_{k+1}+(D+U) x_{k}-b\right)$
Now let ω be a free parameter and consider a modified iteration.
$D x_{k+1}=D x_{k}-\omega\left(L x_{k+1}+(D+U) x_{k}-b\right)$
$\omega=1 \Rightarrow$ GS , $\omega>1$: successive over-relaxation (SOR)
component form
$a_{11} x_{1}^{(k+1)}=a_{11} x_{1}^{(k)}+\omega\left(b_{1}-\left(a_{11} x_{1}^{(k)}+a_{12} x_{2}^{(k)}+a_{13} x_{3}^{(k)}\right)\right)$
$a_{22} x_{2}^{(k+1)}=a_{22} x_{2}^{(k)}+\omega\left(b_{2}-\left(a_{21} x_{1}^{(k+1)}+a_{22} x_{2}^{(k)}+a_{23} x_{3}^{(k)}\right)\right)$
$a_{33} x_{3}^{(k+1)}=a_{33} x_{3}^{(k)}+\omega\left(b_{3}-\left(a_{31} x_{1}^{(k+1)}+a_{32} x_{2}^{(k+1)}+a_{33} x_{3}^{(k)}\right)\right)$
ex
$2 x_{1}-x_{2}=1 \Rightarrow 2 x_{1}^{(k+1)}=2 x_{1}^{(k)}+\omega\left(1-\left(2 x_{1}^{(k)}-x_{2}^{(k)}\right)\right)$
$-x_{1}+2 x_{2}=1 \Rightarrow 2 x_{2}^{(k+1)}=2 x_{2}^{(k)}+\omega\left(1-\left(x_{1}^{(k+1)}+2 x_{2}^{(k)}\right)\right)$
matrix form
$\left.\left.(\omega L+D) x_{k+1}=((1-\omega) D-\omega U)\right) x_{k}+\omega b \Rightarrow B_{\omega}=(\omega L+D)^{-1}((1-\omega) D-\omega U)\right)$ ex
$\left(\begin{array}{rr}2 & 0 \\ -\omega & 2\end{array}\right)\binom{x_{1}}{x_{2}}_{k+1}=\left(\begin{array}{cc}2(1-\omega) & \omega \\ 0 & 2(1-\omega)\end{array}\right)\binom{x_{1}}{x_{2}}_{k}+\omega\binom{1}{1}$
$B_{\omega}=\left(\begin{array}{rr}2 & 0 \\ -\omega & 2\end{array}\right)^{-1}\left(\begin{array}{cc}2(1-\omega) & \omega \\ 0 & 2(1-\omega)\end{array}\right)=\left(\begin{array}{cc}1-\omega & \frac{1}{2} \omega \\ \frac{1}{2} \omega(1-\omega) & \frac{1}{4} \omega^{2}+1-\omega\end{array}\right)$
check: $\omega=1 \Rightarrow B_{\omega}=\left(\begin{array}{cc}0 & \frac{1}{2} \\ 0 & \frac{1}{4}\end{array}\right):$ GS,$\rho\left(B_{\omega}\right)=\frac{1}{4} \quad \underline{\mathrm{ok}}$
question : Can we choose ω so that $\rho\left(B_{\omega}\right)$ is smaller?
thm (Young 1950)
3. If $\rho\left(B_{\omega}\right)<1$, then $0<\omega<2$.
4. Assume A is symmetric, block tridiagonal, and positive definite (defined later). Then $\omega_{*}=\frac{2}{1+\sqrt{1-\rho\left(B_{J}\right)^{2}}}$ is the optimal SOR parameter in the sense that $\rho\left(B_{\omega_{*}}\right)=\min _{0<\omega<2} \rho\left(B_{\omega}\right)=\omega_{*}-1<\rho\left(B_{G S}\right)<\rho\left(B_{J}\right)<1$.
pf : Math 571 (sometimes)
return to example : $\omega_{*}=\frac{2}{1+\sqrt{1-\rho\left(B_{J}\right)^{2}}}=\frac{2}{1+\sqrt{1-\left(\frac{1}{2}\right)^{2}}}=\frac{4}{2+\sqrt{3}}=1.0718$

k	$x_{1}^{(k)}$	$x_{2}^{(k)}$	$\left\\|e_{k}\right\\|$	$\left\\|e_{k}\right\\| /\left\\|e_{k-1}\right\\|$
0	0.0000	0.0000	1.0000	\cdots
1	0.5359	0.8231	0.4641	0.4641
2	0.9385	0.9798	0.0615	0.1325
3	0.9936	0.9980	0.0064	0.1047
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
∞	1	1	0	$\rho\left(B_{\omega_{*}}\right)=\omega_{*}-1=0.0718$

Hence optimal SOR converges faster than GS.
def : A is positive definite if $x^{T} A x>0$ for all $x \neq 0$
ex 1 : $A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$ is positive definite
ㅁ : $\begin{aligned} x^{T} A x & =\left(x_{1}, x_{2}\right)\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)\binom{x_{1}}{x_{2}}=\left(x_{1}, x_{2}\right)\binom{2 x_{1}-x_{2}}{-x_{1}+2 x_{2}} \\ & =2\left(x_{1}^{2}+x_{2}^{2}\right)-2 x_{1} x_{2}=x_{1}^{2}+x_{2}^{2}+\left(x_{1}-x_{2}\right)^{2} \geq 0\end{aligned}$
If $x \neq 0$, then either $x_{1} \neq 0$ or $x_{2} \neq 0$, but in any case we have $x^{T} A x>0$. $\underline{\mathrm{ok}}$ ex $2: A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ is positive definite : hw
ex $3: A=\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$ is not positive definite
$\underline{\mathrm{pf}}: x^{T} A x=\left(x_{1}, x_{2}\right)\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\binom{x_{1}}{x_{2}}=x_{1}^{2}+x_{2}^{2}+4 x_{1} x_{2}:$ indefinite
for example : $x=\binom{1}{0} \Rightarrow x^{T} A x=1, x=\binom{1}{-1} \Rightarrow x^{T} A x=-2 \quad \underline{\mathrm{ok}}$
$A_{h}=\frac{1}{h^{2}}\left(\begin{array}{rrrrr}2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2\end{array}\right): \quad$ dimension $n \times n, h=\frac{1}{n+1}$
The matrix A_{h} represents the finite difference operator $-D_{+} D_{-} ; A_{h}$ is symmetric, tridiagonal, and positive definite, and hence Young's theorem applies.
note : The real advantage of iterative methods, in comparison with direct methods, is for BVPs in more than one dimension.
3.9 two-dimensional BVP
problem : A metal plate has a square shape. The plate is heated by internal sources and the edges are held at a given temperature. Find the temperature at points inside the plate.
$D=\{(x, y): 0 \leq x, y \leq 1\}$: plate domain
$\phi(x, y)$: temperature
$f(x, y)$: heat sources,$g(x, y)$: boundary temperature
Then $\phi(x, y)$ satisfies the following two equations.

1. $\underset{\uparrow}{-\Delta} \phi=-\nabla^{2} \phi=-\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right)=f$ for (x, y) in $D: \underline{\text { Poisson equation }}$

Laplace operator
(note : This equation arises in many areas, e.g. if f is a charge/mass distribution, then ϕ is the electrostatic/gravitational potential.)
2. $\phi=g$ for (x, y) on ∂D : Dirichlet boundary condition finite-difference scheme
$h=\frac{1}{n+1}:$ mesh size $,\left(x_{i}, y_{j}\right)=(i h, j h), i, j=0, \ldots, n+1:$ mesh points ex : $n=3, h=\frac{1}{4}$

$\phi\left(x_{i}, y_{j}\right)$: exact solution $w_{i j}$: numerical solution ordering of mesh points : w_{11}, w_{12}, \ldots
$-\left(D_{+}^{x} D_{-}^{x} w_{i j}+D_{+}^{y} D_{-}^{y} w_{i j}\right)=f_{i j}$: finite-difference equations
$-\left(\frac{w_{i+1, j}-2 w_{i j}+w_{i-1, j}}{h^{2}}+\frac{w_{i, j+1}-2 w_{i j}+w_{i, j-1}}{h^{2}}\right)=f_{i j}$
$\frac{1}{h^{2}}\left(4 w_{i j}-w_{i+1, j}-w_{i-1, j}-w_{i, j+1}-w_{i, j-1}\right)=f_{i j}$

Consider what happens near the boundary.

$$
\begin{aligned}
(i, j)=(1,1) & \Rightarrow \frac{1}{h^{2}}\left(4 w_{11}-w_{21}-w_{01}-w_{12}-w_{10}\right)=f_{11} \\
& \Rightarrow \frac{1}{h^{2}}\left(4 w_{11}-w_{21}-w_{12}\right)=f_{11}+\frac{1}{h^{2}}\left(g_{01}+g_{10}\right)
\end{aligned}
$$

Write the equations for $w_{i j}$ in matrix form.

$\begin{gathered} 1 \\ w_{11} \end{gathered}$		$\begin{gathered} 3 \\ w_{13} \end{gathered}$	$\begin{gathered} 4 \\ w_{21} \end{gathered}$	$\begin{gathered} 5 \\ w_{22} \end{gathered}$	$\begin{gathered} 6 \\ w_{23} \end{gathered}$	$\begin{gathered} 7 \\ w_{31} \end{gathered}$	$\begin{gathered} 8 \\ w_{32} \end{gathered}$	$\begin{gathered} 9 \\ w_{33} \end{gathered}$		
4	-1		-1							
-1	4	-1		-1						
	-1	4			-1					
-1			4	-1		-1		-1		
	-1		-1	4	-1		-1			
		-1		-1	4					
			-1			4	-1			
			-1		-1	4	-1			
				-1		-1	4			
$A_{h} w_{h}=f_{h}, A_{h}=$				$\left(\begin{array}{ccccc}T & -I & & & \\ -I & T & -I & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -I \\ & & & -I & T\end{array}\right)$						

$T: n \times n$, symmetric, tridiagonal
$A_{h}: n^{2} \times n^{2}$, symmetric, block tridiagonal, positive definite (pf:omit)
temperature distribution on a metal plate : no heat sources, one side heated differential equation : $\phi_{x x}+\phi_{y y}=0$
boundary conditions : $\phi(x, 1)=1, \phi(x, 0)=\phi(0, y)=\phi(1, y)=0$ finite-difference scheme : $D_{+}^{x} D_{-}^{x} w_{i j}+D_{+}^{y} D_{-}^{y} w_{i j}=0$

above : solution of linear system $A_{h} w_{h}=f_{h}$ for given mesh size h below : number of iterations k required for each method initial guess $=$ zero vector, stopping criterion : $\left\|r_{k}\right\| /\left\|r_{0}\right\| \leq 10^{-4}$

Jacobi | h | k | $\rho(B)$ |
| :---: | :---: | :---: |
| $1 / 4$ | 26 | 0.7071 |
| $1 / 8$ | 96 | 0.9239 |
| $1 / 16$ | 334 | 0.9808 |

Gauss-Seidel	h	k	$\rho(B)$
	1/4	15	0.5000
	1/8	51	0.8536
	1/16	172	0.9619

optimal SOR	h	k	$\rho(B)$
	1/4	9	0.1716
	1/8	18	0.4465
	1/16	34	0.6735

note

1. For each method, more iterations are needed as the mesh size $h \rightarrow 0$. Hence refining the mesh yields a more accurate solution of the BVP, but the computational cost increases.
2. For a given mesh size h, SOR converges the fastest, then GS, and then J.
3. Explicit formulas for $\rho(B)$ can be derived in this example. (Math 571)
$\rho\left(B_{J}\right)=\cos \pi h \sim 1-\frac{1}{2} \pi^{2} h^{2}$
$\rho\left(B_{G S}\right)=\cos ^{2} \pi h \sim 1-\pi^{2} h^{2}$
$\rho\left(B_{\omega_{*}}\right)=\frac{2}{1+\sqrt{1-\rho\left(B_{J}\right)^{2}}}-1=\frac{1-\sin \pi h}{1+\sin \pi h} \sim \frac{1-\pi h}{1+\pi h} \sim 1-2 \pi h$
This shows that $\rho(B) \rightarrow 1$ as $h \rightarrow 0$ (confirming that the iteration slows down as the mesh is refined). The formulas also show that $\rho\left(B_{\omega_{*}}\right)<\rho\left(B_{G S}\right)<\rho\left(B_{J}\right)<1$ (confirming that SOR converges the fastest, then GS, and then J).
4. Consider what happens if Gaussian elimination is used instead of J/GS/SOR.
$\left(\begin{array}{rrrr:rrrrr}\square & \overline{4} & -\overline{1} & - & 0 & -\overline{1} & 0 & 0 & 0 \\ 1 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ \hdashline 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4\end{array}\right)$
a) A_{h} is a band matrix, i.e. $a_{i j}=0$ for $|i-j|>m$, where m is the bandwidth (in this example we have $m=3$).
b) As the elimination proceeds, zeros inside the band can become non-zero (this is called fill-in), but zeros outside the band are preserved. Hence we can adjust the limits on the loops to reduce the operation count for Gaussian elimination from $O\left(n^{3}\right)$ to $O\left(n m^{2}\right)$.
c) Due to fill-in, more memory needs to be allocated than is required for the original matrix A_{h}. This is a disadvantage in comparison with iterative methods like J/GS/SOR which preserve the sparsity of A_{h}.
final comments on linear systems
5. comparison of operation counts : two-dimensional BVP
mesh size : $\quad h=\frac{1}{n+1}$
typical equation : $\frac{1}{h^{2}}\left(4 w_{i j}-w_{i+1, j}-w_{i-1, j}-w_{i, j+1}-w_{i, j-1}\right)=f_{i j}$
vector $w_{i j}$ has length n^{2}
matrix A_{h} has dimension $n^{2} \times n^{2}$ and bandwidth $m=n$
a) Gaussian elimination : $O\left(\left(n^{2}\right)^{3}\right)=O\left(n^{6}\right) \mathrm{ops}$
banded Gaussian elimination : $O\left(n^{2} m^{2}\right)=O\left(n^{4}\right)$ ops
b) iterative methods
cost per iteration : $O\left(n^{2}\right)$ ops (roughly the same for $\mathrm{J} / \mathrm{GS} / \mathrm{SOR}$)
stopping criterion : $\frac{\left\|r_{k}\right\|}{\left\|r_{0}\right\|}=\epsilon \Rightarrow \rho(B)^{k}=\epsilon \Rightarrow k=\frac{\log \epsilon}{\log \rho(B)}$
$\mathrm{J}, \mathrm{GS} \Rightarrow \rho(B) \sim 1-c h^{2} \Rightarrow \log \rho(B) \sim \log \left(1-c h^{2}\right) \sim-c h^{2}$
$\Rightarrow k \sim \frac{\log \epsilon}{-c h^{2}}=O\left(n^{2}\right)$ iterations
\Rightarrow total cost $=O\left(n^{2}\right) \times O\left(n^{2}\right)=O\left(n^{4}\right) \mathrm{ops}$
$\mathrm{SOR} \Rightarrow \rho(B) \sim 1-c h$

$$
\begin{aligned}
& \Rightarrow k \sim \frac{\log \epsilon}{-c h}=O(n) \text { iterations } \\
& \Rightarrow \text { total cost }=O\left(n^{2}\right) \times O(n)=O\left(n^{3}\right) \mathrm{ops}
\end{aligned}
$$

2. developments after SOR
conjugate gradient method
FFT $=$ fast Fourier transform
multigrid
GMRES
preconditioning : $A x=b \rightarrow P A x=P b$
software
parallel
