
Math 371 Review Sheet for Final Exam Winter 2013

1. True or False? Give a reason to justify your answer.

a) D+D�yi = D�D+yi

TRUE

D+yi =
yi+1�yi

h

, D�yi =
yi�yi�1

h

D+D�yi = D+

⇣
yi�yi�1

h

⌘
= D+yi�D+yi�1

h

= 1
h

⇣
yi+1�yi

h

� yi�yi�1

h

⌘
= yi+1�2yi+yi�1

h

2

D�D+yi = D�
⇣
yi+1�yi

h

⌘
= D�yi+1�D�yi

h

= 1
h

⇣
yi+1�yi

h

� yi�yi�1

h

⌘
= yi+1�2yi+yi�1

h

2

b) D0f(x) is a 2nd order accurate approximation for the 2nd derivative f 00(x).

FALSE D0f(x) is a 2nd order accurate approximation for the 1st derivative f 0(x). This can be
shown by Taylor expansion.

c) If Ax = 0, then A = 0 or x = 0.

FALSE It is easy to find a counterexample. A modified true statement is: if Ax = 0 and A is
invertible, then x = 0.

d) If A is invertible, then ||A||�1 = ||A�1||.

FALSE For example consider A =
✓
2 1
0 1

◆
, then A�1 =

✓ 1
2 �1

2
0 1

◆
, so ||A|| = 3 ) ||A||�1 = 1

3 ,

but ||A�1|| = 1.

e) ⇢(B)  ||B|| for any matrix B

TRUE If Bx = �x, then |�| · ||x|| = ||�x|| = ||Bx||  ||B|| · ||x||, and it follows that |�|  ||B||,
and since this holds for any eigenvalue, it follows that ⇢(B) = max{|�|}  ||B||.

f) The spectral radius of a matrix satisfies the properties required to be a matrix norm.

FALSE Consider for example A =

 
0 1
0 0

!

, satisfying ⇢(A) = 0 (can you justify this?), but

A 6= 0. This violates the first property of a matrix norm, ||A|| = 0 if and only if A = 0.

g) In solving an n ⇥ n system of linear equations by Gaussian elimination, if n increases by a
factor of 3, then the operation count increases by a factor of approximately 9.

FALSE The operation count for Gaussian elimination is O(n3), therefore the operation count
increases by a factor of approximately 33 = 27.

h) In computing the solution of a linear system Ax = b, if the residual norm ||r|| is small, then
the error norm ||e|| is also small.

FALSE An ill-conditioned system will not have this property according to the result derived in
class, ||e||

||x||  (A) ||r||||b|| , where (A) = ||A|| · ||A�1|| is the condition number of the matrix.

i) If A =

0

B@
2 �1 0

�1 2 �1
0 �1 2

1

CA, then Jacobi’s method applied to solve Ax = b converges.
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TRUE We have B
J

= �D�1(L + U) =

0

B@
0 1

2 0
1
2 0 1

2
0 1

2 0

1

CA ) ||B
J

|| = 1, but this is inconclusive, so

we must consider the spectral radius, det(B
J

� �I) = ��3 + 1
2� = 0 ) � = 0 , ± 1p

2
) ⇢(B

J

) =
1p
2
= 0.7071 < 1, and so the method converges.

j) In solving the linear system Ax = b, where A =
✓

2 �1
�1 2

◆
, one step of Gauss-Seidel reduces

the norm of the error as much as two steps of Jacobi.

TRUE We considered this example in class and the numerical results indicate this.

k) In solving a linear system Ax = b by an iterative method x
k+1 = Bx

k

+ c, if ||B|| < 1, then
lim
k!1

x
k

= x for any initial guess x0.

TRUE This is the convergence theorem for iterative methods derived in class.

l) In solving a linear system Ax = b by an iterative method such as Jacobi or Gauss-Seidel, if
the matrix A has dimension n⇥ n, then the exact solution is obtained after n iterations.

FALSE An iterative method gives better accuracy with increasing number of iterations k, but
it will not give the exact solution for some specific value of k (except in some special cases).

m) Consider two iterative methods for solving Ax = b. If the two iteration matrices B1, B2

satisfy ||B1|| = ||B2||, then the two iterative methods converge at the same rate.

FALSE The convergence rate of an iterative method is determined by the spectral radius of the
iteration matrix, ⇢(B), not by the matrix norm of the iteration matrix ||B||.

n) Suppose a two-dimensional boundary value problem is solved using a finite-di↵erence scheme
and the resulting linear system is solved by Jacobi’s method with stopping criterion ||r

k

||  10�2.
If the mesh size h is decreased, then the number of iterations needed to satisfy the stopping
criterion is also decreased.

FALSE The spectral radius of the iteration matrix ⇢(B
J

) = cos ⇡h has the property that it
approaches 1 as the mesh size h goes to zero. Hence more iterations are required if h is decreased.

o) Jacobi and Gauss-Seidel converge linearly, but optimal SOR converges quadratically.

FALSE All three methods converge linearly; the convergence factor is the spectral radius of the
iteration matrix.

p) A matrix A is positive definite if there exists at least one vector x 6= 0 such that xTAx > 0.

FALSE By definition, a matrix A is positive definite if xTAx > 0 for all x 6= 0.

q) If � = 0 is an eigenvalue of A, then A is not invertible.

TRUE If � = 0 is an eigenvalue of A, then there exists an eigenvector, x 6= 0, corresponding to
the eigenvalue � = 0, and hence Ax = �x = 0 · x = 0. If A were invertible, then we would have
x = Ix = A�1Ax = A�10 = 0, but this contradicts the fact that x 6= 0. Hence A cannot be
invertible.

r) If A is symmetric and positive definite, then A is invertible.
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TRUE Let x 6= 0 be any nonzero vector. If Ax = 0, then xTAx = 0, which contradicts the
assumption that A is positive definite. Hence Ax 6= 0. This ensures that A is invertible.

s) The inverse power method is used to find the inverse of a matrix.

FALSE The inverse power methods is used to find the smallest eigenvalue �
n

of matrix.

t) Wilkinson’s example shows that the coe�cients of a polynomial can depend sensitively on
the roots.

FALSE Wilkinson’s example shows that the roots of the characteristic polynomial are sensitive
to perturbations in the coe�cients, and hence solving f

A

(�) = 0 is not a practical method for
computing e-values (in general).

u) When the power method is applied to find the largest eigenvalue and corresponding eigenvec-
tor of a matrix, the vectors v(k) are normalized at each step in order to accelerate convergence
of the method.

FALSE The vectors v(k) are normalized at each step to avoid overflow/underflow.

v) If p
n

(x) is the interpolating polynomial of degree n for a given function f(x) at points
x
i

= a+ ih, where h = b�a

n

and i = 0 : n, then lim
n!1

p
n

(x) = f(x) for all x in the interval [a, b].

FALSE As we saw in class, the interpolating polynomial based on uniform points has wild
oscillations near the endpoints of the interval as the degree n increases.

w) Polynomial interpolation at the Chebyshev points on the interval a  x  b gives a good
approximation near the endpoints of the interval and a bad approximation near the center of
the interval.

FALSE As we saw in class and on homework, polynomial interpolation at the Chebyshev points
gives a good approximation over the entire interval.

x) Suppose f(x) is approximated by a cubic spline interpolant s(x) on the interval a  x  b
with interpolation points x

i

= a + ih, where h = b�a

n

and i = 0 : n. Then if n is doubled, the
error defined by max

axb

|f(x)� s(x)| is reduced by a factor of approximately 1/16.

TRUE It was stated in class that cubic spline interpolation on uniform points is 4th order
accurate and (12)

4 = 1
16 .

2. State one advantage of . . .
a) . . . Newton’s method over the bisection method.

Newton’s method converges quadratically; the bisection method converges linearly.

b) . . . Gaussian elimination with pivoting over Gaussian elimination without pivoting.

Pivoting prevents breakdown if a zero pivot arises.

c) . . . optimal SOR over Gauss-Seidel.

Optimal SOR converges faster than Gauss-Seidel.

d) . . . Chebyshev points over uniform points.

In polynomial interpolation, Chebyshev points control the error over the entire interval, while
uniform points control the error only near the middle of the interval.

e) . . . cubic spline interpolation over Taylor approximation.
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Cubic spline interpolation controls the error over the entire interval, while Taylor approximation
controls the error only near the expansion point.

3. Consider the following approximation for the first derivative, f 0(x) ⇡ �3f(x)+4f(x+h)�f(x+2h)
2h .

a) Apply the method to compute f 0(1), for f(x) = ex, with step size h = 1, 12 ,
1
4 .

h approximation error error/h error/h2

1 0.6579 2.0604 2.0604 2.0604
1
2 2.3829 0.3354 0.6709 1.3417
1
4 2.6497 0.0686 0.2744 1.0977

The last column converges to a non-zero constant, so the method is 2nd order accurate.

b) The error has the form: error = cf (m)(x)hn + · · ·. Find the constants c,m, n by Taylor
expansion. Are the results of parts (a) and (b) consistent? Explain.

f(x+ h) = f(x) + f 0(x)h+ f

00(x)h2

2 + f

000(x)h3

6 +O(h4)

f(x+ 2h) = f(x) + f 0(x)2h+ 4f 00(x)h2

2 + 8f 000(x)h3

6 +O(h4)

) Df(x) = �3f(x)+4f(x+h)�f(x+2h)
2h = f 0(x)� 1

3f
000(x)h2 +O(h3)

Therefore, c = �1
3 , m = 3, n = 2. The last column converges to 1

3e = 0.9061.

4. a) f(0) = �5, f(4) = 9, f(0)f(4) < 0, thus [0, 4] is a suitable starting intervals.

b)

i x
i

f(x
i

) a
i

b
i

0 2 -1 0 4

1 3 4 2 4

2 2.5 1.25 2 3

c) 1
2

n|b� a| < 10�4 ) 1
2

n

< 1
4 · 10

�4 ) 2n > 4 · 104 ) n = 16

5. Fixed point: x = x2 � 1
2x+ 1

2 ) 2x2 � 3x+ 1 = 0 ) x1 =
1
2 , x2 = 1.

g0(x) = 2x � 1
2x, g

0(12) = 3
4 < 1, g0(1) = 3

2 > 1, therefore the iteration converges for starting
value su�ciently close to the fixed point 1

2 .

6. The correct form is below.

a11x
(k+1)
1 = a11x

(k)
1 � !(a11x

(k)
1 + a12x

(k)
2 � b1),

a22x
(k+1)
2 = a22x

(k)
2 � !(a21x

(k+1)
1 + a22x

(k)
2 � b2).

7. a) Jacobi

2x(k+1)
1 = x(k)

2 + 1

2x(k+1)
2 = x(k)

1 + x(k)
3
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2x(k+1)
3 = x(k)

2 + 1

x0 =

0

B@
0
0
0

1

CA , e0 = x�x0 =

0

B@
1
1
1

1

CA , k e0 k= 1 ; x1 =
1
2

0

B@
1
0
1

1

CA , e1 = x�x1 =

0

B@

1
2
1
1
2

1

CA , k e1 k= 1

b) Gauss-Seidel

2x(k+1)
1 = x(k)

2 + 1

2x(k+1)
2 = x(k+1)

1 + x(k)
3

2x(k+1)
3 = x(k+1)

2 + 1

x0 =

0

B@
0
0
0

1

CA , e0 = x� x0 =

0

B@
1
1
1

1

CA , k e0 k= 1 ; x1 =

0

B@

1
2
1
4
5
8

1

CA , e1 = x� x1 =

0

B@

1
2
3
4
3
8

1

CA , k e1 k= 3
4

8. For A1.

B(1)
J

= �D�1(L+ U) = �
 

1
2 0
0 1

2

! 
0 1
1 0

!

= �
 

0 1
2

1
2 0

!

, k B(1)
J

k= 1
2 < 1

B(1)
GS

= �(D + L)�1U = �
 

2 0
1 2

!�1  
0 1
0 0

!

= �
 

0 2
0 �1

!

, k B(1)
GS

k= 1
2 < 1

For A1, both methods converge.

For A2.

B(2)
J

= �D�1(L+ U) = �
 

1 0
0 1

! 
0 2
2 0

!

= �
 

0 2
2 0

!

, k B(2)
J

k= 2 > 1

B(2)
GS

= �(D + L)�1U = �
 

1 0
2 1

!�1  
0 2
0 0

!

= �
 

0 2
0 �4

!

, k B(2)
GS

k= 4 > 1

Thus we need to consider the spectral radius.

Jacobi : eigenvalues for B(2)
J

, �1 = �2 = 2 ) ⇢(B(2)
J

) = 2 > 1

Gauss-Seidel : eigenvalues for B(2)
GS

, �1 = 0,�2 = 4 ) ⇢(B(2)
J

) = 4 > 1

Hence both methods will not converge.

9. a) Let x = (1 1 1), then xAxT = 0, so it is not positive definite.

b) The eigenvalues of A are all positive, so it is positive definite.

10. a) x = (1 1 1)T

b) B
J

= �D�1(L+ U) = �

0

B@
0 1

4 0
1
4 0 1

4
0 1

4 0

1

CA , k B
J

k= 1
2 < 1 : convergent

c) B
GS

= �(D + L)�1U = �

0

B@
0 1

4 0
0 � 1

16
1
4

0 1
64 � 1

16

1

CA , k B
GS

k= 5
16 < 1 : convergent

5



d) !⇤ =
2

1 +
q
1� ⇢(B

J

)2
, ⇢(B

J

) =
1

2
p
2

) !⇤ = 1.0334

11. a) True. Proof. Suppose A is not invertible, we want to show contradiction. If A is not
invertible, then there exists x 6= 0 such that Ax = 0, and moreover, we have xTAx = 0, which
violates the positive definite assumption of A.

b) True. Proof. Choose x
i

= e
i

, where e
i

is the unit vector, i.e., the ith component of e
i

is
1, and rest components are 0. Then eT

i

Ae
i

= a
ii

> 0.
c) True. Proof. Suppose � is a eigenvalue of A and v 6= 0 is the corresponding eigenvector.

Since A is positive definite, vTAv = �vTv > 0, note that vTv > 0, we have � > 0.
d) True. Proof. (ATA)T = AT (AT )T = ATA, so ATA is symmetric. For any x 6= 0,

xT (ATA)x = (Ax)TAx > 0, so ATA is positive definite.

12. Here n = 3, thus h = 1
3+1 = 1

4 .

�w
i�1 � 2w

i

+ w
i+1

h2
+ !

i

= x
i

, for i = 1, 2, 3, w0 = 0, w4 = 1.

Written in the matrix form, it becomes

1
1
4

2

0

BB@

2 + 1
4

2 �1 0

�1 2 + 1
4

2 �1

0 �1 2 + 1
4

2

1

CCA

0

B@
w1

w2

w3

1

CA =

0

B@

1
4
2
4

3
4 +

1
4

2

1

CA .

13.

�4w
i,j

� w
i+1,j � w

i�1,j � w
i,j+1 � w

i,j�1

h2
= f

i,j

, for i = 1, 2, 3, j = 1, 2, 3.

A
h

=
1

h2

0

BBBBBBBBBBBBBBB@

4 0 0 0 0 �1 �1 0 0
0 4 0 0 0 �1 0 �1 0
0 0 4 0 0 �1 �1 �1 �1
0 0 0 4 0 0 �1 0 �1
0 0 0 0 4 0 0 �1 �1

�1 �1 �1 0 0 4 0 0 0
�1 0 �1 �1 0 0 4 0 0
0 �1 �1 0 �1 0 0 4 0
0 0 �1 �1 �1 0 0 0 4

1

CCCCCCCCCCCCCCCA

14. The eigenvalues of A are �1 = 3, �2 = 1, and the corresponding eigenvectors are q1 =
1p
2
(1, 1)T , q2 =

1p
2
(1, 1)T . Then the solution is x = ��1

1 (qT1 b)q1 + ��1
2 (qT2 b)q2 = (3, �2)T .

15. a) eigenvalues of A are �1 = 1 , �2 = 3 ) ⇢(A) = 3 , k A k= 3

b) eigenvalues of A are �1 = �2 = 2 ) ⇢(A) = 2 , k A k= 3

c) eigenvalues of A are �1 = 1 , �2 = �3 ) ⇢(A) = 3 , k A k= 3

16. Let �1,�2 be the eigenvalues of A, with �1 > �2, and let v1, v2 be the corresponding
eigenvectors. Sijnce the matrix is real symmetric, the eigenvectors form an orthonormal basis
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(they are automatically orthogonal and we assume they’ve been normalized). Any vector can
be expanded as a linear combination of the eigenvectors, x = a1v1 + a2v2, and the Rayleigh
quotient can be evaluated as follows.

xTx = (a1v1 + a2v2)
T (a1v1 + a2v2) = a21v

T

1 v1 + a1a2v
T

1 v2 + a1a2v
T

2 v1 + a22v
T

2 v2 = a21 + a22

xTAx = (a1v1 + a2v2)
TA(a1v1 + a2v2) = · · · = �1a

2
1 + �2a

2
2

xTAx

xTx
=

�1a21 + �2a22
a21 + a22

max
x 6=0

xTAx

xTx
= max

x 6=0

�1a21 + �2a22
a21 + a22

 max
x 6=0

�1a21 + �1a22
a21 + a22

= �1

min
x 6=0

xTAx

xTx
= min

x 6=0

�1a21 + �2a22
a21 + a22

� min
x 6=0

�2a21 + �2a22
a21 + a22

= �2

so max
x 6=0

xTAx

xTx
= �1 = 3 , min

x 6=0

xTAx

xTx
= �2 = 1

17.
x y
2 �1
4 4 f [x0, x1] =

4+1
4�2 = 2.5

5 8 f [x1, x2] =
8�4
5�4 = 4 f [x0, x1, x2] =

4�2.5
5�2 = 0.5

) P2(x) = �1 + 2.5(x� 2) + 0.5(x� 2)(x� 4) ) P2(3) = 3.5

18.
x f(x)
1 �1
2 1

2 �1
2

3 1
3 �1

6
1
6

4 1
4 � 1

12
1
24 � 1

24

) P3(x) = �1� 1
2(x� 1) + 1

6(x� 1)(x� 2)� 1
24(x� 1)(x� 2)(x� 3) ) P3(4) =

1
4

19.
t T (t)
8 30
10 40 5
14 50 2.5 � 5

12
16 60 5 5

12
5
48

) P3(x) = 30 + 5(t� 8) + 5
12(t� 8)(t� 10) + 5

48(t� 8)(t� 10)(t� 14) ) P3(12) = 50 + 5
3

20. Similar to 17, 18, 19. P5(240) = 22.3099.

21. Need to check the following conditions.
(1) cubic polynominal on each subinterval
(2) s00(a) = s00(b) = 0
(3) s

i

(x
i+1) = s

i+1(xi

), s0
i

(x
i+1) = s0

i+1(xi

), s00
i

(x
i+1) = s00

i+1(xi

).

a) s0(x) = 0, 0  x  1; s1(x) = x3 � 3x2 + 3x� 1, 1  x  2
s0(x) = s00(x) = s000(x) = 0, s01(x) = 3(x� 1)2, s002(x) = 6(x� 1)
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Since s00(2) = s002(2) = 6 6= 0, it is not cubic spline.

b) s0(x) = �1
2x

3 � 3
2x

2 + 1, �1  x  0; s1(x) =
1
2x

3 � 3
2x

2 + 1, 0  x  1
s00(x) = �3

2x
2 � 3x, s000(x) = �3x� 3; s01(x) =

3
2x

2 � 3x, s001(x) = 3x� 3
Then s000(�1) = 0, s001(1) = 0, satisfy condition (2). s0(0) = 1 = s1(0), s00(0) = 0 = s01(0),
s000(0) = �3 = s001(0), satisfy condition (3). So it is a cubic spline.

22. Here x0 = 0, x1 = 1, x2 = 2, h = 1. f0 = f(x0) = 0, f1 = f(x1) = 1, f2 = f(x2) = 0. Now
go through the four steps in the notes.
(1) second derivative

s000(x) = a0
x1 � x

h
+ a1

x� x0

h
= a0(x1 � x) + a1(x� x0),

s001(x) = a1
x2 � x

h
+ a2

x� x1

h
= a1(x2 � x) + a2(x� x1),

(2) interpolation

s0(x) = a0
(x1 � x)3

6
+ a1

(x� x0)3

6
+ (f0 �

a0
6
)(x1 � x) + (f1 �

a1
6
)(x� x0)

s1(x) = a1
(x2 � x)3

6
+ a2

(x� x1)3

6
+ (f1 �

a1
6
)(x2 � x) + (f2 �

a2
6
)(x� x1)

(3) first derivative a0 + 4a1 + a2 = 6(f0 � 2f1 + f2) = �12
(4) apply BC s000(x0) = a0 = 0 , s001(x1) = a2 = 0
Therefore, s0(x) = �1

2x
3 + 3

2x, s1(x) = �1
2(1� x)3 + 3

2(2� x).

23. Similar to 25.

24. a)
R 2h
0 f(x)dx = c0f(0) + c1f(h) + c2f(2h).

f(x) = 1,
Z 2h

0
1dx = 2h = c0 + c1 + c2

f(x) = x,
Z 2h

0
2xdx = 2h2 = c1h+ c22h

f(x) = x2,
Z 2h

0
x2dx =

8

3
h3 = c1h

2 + c2(2h)
2

Thus c0 =
1
3h, c1 =

4
3h, c2 =

1
3h, and therefore

R 2h
0 f(x)dx = 2h

6 [f(0) + 4f(h) + f(2h)].

b) For x3, LHS =
R 2h
0 x3dx = 4h4, RHS = 4h4 ) LHS = RHS.

c) For x4, LHS =
R 2h
0 x4dx = 32

5 h
5, RHS = 20

3 h
5 ) LHS 6= RHS.

25. a)

h R0(h) R1(h) R2(h) R3(h)
1 0.183939720585721
1
2 0.286670056060712 0.320913501219042
1
4 0.308882624093246 0.316286813437425 0.315978367585317
1
8 0.314275892570701 0.316073648729853 0.316059437749348 0.316060724577349

b) For R3

⇣
1
8

⌘
, the error is O(h8) = O

⇣
(18)

8
⌘
. Using trapezoidal rule with mesh size h, we should

have approximately h2 < (18)
8 ) h ⇡ 1

212 .
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Note that the exact value of the integral can be computed using calculus.
R 1
0 xe

�x

2
dx = �1

2e
�x

2 |10 = 1
2(1� e�1) = 0.316060279414279

26. Orthogonal pairs are (1, x), (1, sin ⇡x), (1, sin 2⇡x), (x, x2), (x, cos ⇡x), (x, sin2 ⇡x), (x2, sin ⇡x),
(x2, sin 2⇡x), (sin ⇡x, cos ⇡x), (sin ⇡x, sin2 ⇡x), (cos ⇡x, sin 2⇡x), (sin 2⇡x, sin2 ⇡x).

27.

P4(x) = x4 � hx4, P0(x)i
hP0(x), P0(x)i

P0(x)�
hx4, P1(x)i

hP1(x), P1(x)i
P1(x)�

hx4, P2(x)i
hP2(x), P2(x)i

P2(x)�
hx4, P3(x)i

hP3(x), P3(x)i
P3(x)

=
1

8
(35x4 � 30x2 + 3).

28. a), b), c) similar to 25.

e) substituting t = 2x� 1 )
Z 1

0
f(x)dx =

1

2

Z 1

0
f(t)dt =

Z 1

0
e�t sin ⇡t

=
5

9
f

0

@�
s
3

5

1

A+
8

9
f (0) +

5

9
f

0

@
s
3

5

1

A = �0.392002161069389

f)
Z 1

0
e�x sin ⇡xdx = �

Z 1

0
sin ⇡xde�x = ⇡

Z 1

0
e�x cos ⇡xdx = �⇡

Z 1

0
cos ⇡xde�x

�⇡ cos ⇡xe�x

���
1

0
� ⇡2

Z 1

0
e�x sin ⇡xdx = ⇡ + ⇡e�1 � ⇡2

Z 1

0
e�x sin ⇡xdx

)
Z 1

0
e�x sin ⇡xdx =

⇡(1 + e�1)

1 + ⇡2
= 0.395352015106459
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