
Math 371 Review Sheet Solutions for Midterm Exam Winter 2013

1. True or False? Give a reason to justify your answer.

a) TRUE (10101.01)2 = 24 + 22 + 1 + 1
4 = 16 + 4 + 1 + 0.25 = (21.25)10

b) TRUE

D+D�f(x) = D+ (D�f(x)) = D+

⇣
f(x)�f(x�h)

h

⌘
= 1

h

(D+f(x)�D+f(x� h))

= 1
h

⇣
f(x+h)�f(x)

h

� f(x)�f(x�h)
h

⌘
= f(x+h)�2f(x)+f(x�h)

h

2

D�D+f(x) = D� (D+f(x)) = D�
⇣
f(x+h)�f(x)

h

⌘
= 1

h

(D�f(x+ h)�D�f(x))

= 1
h

⇣
f(x+h)�f(x)

h

� f(x)�f(x�h)
h

⌘
= f(x+h)�2f(x)+f(x�h)

h

2 hence the 2 expressions are equal

c) FALSE

D+D+f(x) = D+ (D+f(x)) = D+

⇣
f(x+h)�f(x)

h

⌘
= 1

h

(D+f(x+ h)�D+f(x))

= 1
h

⇣
f(x+2h)�f(x+h)

h

� f(x+h)�f(x)
h

⌘
= f(x+2h)�2f(x+h)+f(x)

h

2

f(x+ h) = f(x) + f 0(x)h+ 1
2f

00(x)h2 +O(h3)

f(x+ 2h) = f(x) + f 0(x)(2h) + 1
2f

00(x)(2h)2 +O((2h)3) = f(x) + 2f 0(x)h+ 2f 00(x)h2 +O(h3)

f(x+ 2h)� 2f(x+ h) + f(x) = f 00(x)h2 +O(h3) ) D+D+f(x) = f 00(x) +O(h)

d) FALSE

The correct statement is “When the derivative f 0(x) is approximated by the forward di↵erence
approximation D+f(x) with step size h in finite precision arithmetic, for large h the TRUNCA-
TION error dominates the ROUNDOFF error, but for small h the ROUNDOFF error dominates
the TRUNCATION error.”

e) TRUE

D0f(x) =
f(x+h)�f(x�h)

2h

f(x+ h) = f(x) + f 0(x)h+ 1
2f

00(x)h2 + 1
6f

000(x)h3 + 1
24f

(4)(x)h4 +O(h5)

f(x� h) = f(x)� f 0(x)h+ 1
2f

00(x)h2 � 1
6f

000(x)h3 + 1
24f

(4)(x)h4 +O(h5)

D0f(x) = f 0(x) + 1
6f

000(x)h2 +O(h4) hence the discretization error is O(h2)

f) FALSE The approximation is exact if and only if the discretization error is zero. Hence if
f(x) is a polynomial of degree less than or equal to three, then f(x) = ax3 + bx2 + cx + d and
f 000(x) = 6a 6= 0 in general, so the discretization error is nonzero in general and the approximation
is not exact in that case. However, this also shows that the approximation is exact if f(x) is a
polynomial of degree less than or equal to two.

g) TRUE The statement as written is true because a theorem in class stated that fixed-point
iteration converges whenever x0 is su�ciently close to the root r and |g0(r)| < 1.

h) FALSE If A is invertible, then Ax = 0 has the unique solution x = 0.

i) FALSE In solving a linear system of equations with three equations and three unknowns by
Gaussian elimination, in step 1 variable x1 is eliminated from equations 2 and 3.
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j) FALSE The operation count for Gaussian elimination is O(n3). Hence if the dimension n is
doubled, then the operation count is increased by approximately a factor of eight.

k) FALSE Pivoting is recommended for stability, not to reduce the operation count.

l) TRUE ||Ax||  ||A|| · ||x|| - this is one of the properties satisfied by the matrix norm

m) FALSE Gaussian elimination is an unstable method for solving for solving Ax = b because
it can replace an WELL-conditioned matrix A by an ILL-conditioned matrix U .

n) FALSE In solving a linear system Ax = b by a numerical method, if the residual is small,
then the error is not guaranteed to be small and we saw an example of this in class.

o) TRUE A property of a 2nd order acurate method is that if the mesh size h is reduced by one
half, then the norm of the error is reduced by approximately one fourth.

p) TRUE This was proven in class.

2. Matlab gives
p
5 = 2.236067977499790. Express

p
5 in normalized floating point form,

±(0.d1 . . . dn)� · �e, with d1 6= 0, on a computer with � = 2, n = 4,M = 3 and then express the
result in decimal form.

SOLUTION
p
5 = 2.236067977499790 = 2 + 0.125 + · · · = 1 · 21 + 0 · 20 + 0 · 2�1 + 0 · 2�2 + 1 · 2�3 + · · ·

fl(
p
5) = (0.1000)2 · 22 = 2

3. Let f(x) =
p
1 + x�

p
1� x and g(x) = 2x/(

p
1 + x+

p
1� x ). Show that f(x) = g(x) for

all x such that |x|  1. If you are using finite precision arithmetic, which expression is better
to use when x ⇡ 0? Explain.

SOLUTION

f(x) =
p
1 + x�

p
1� x =

⇣p
1 + x�

p
1� x

⌘
·
p
1 + x+

p
1� xp

1 + 1 +
p
1� x

=
(1 + x)� (1� x)p
1 + x+

p
1� x

=
2xp

1 + x+
p
1� x

= g(x)

The reason for requiring |x|  1 is to ensure that
p
1 + x and

p
1� x are real numbers.

It is better to use g(x) when x ⇡ 0 to avoid cancellation of digits in f(x) when
p
1 + x ⇡

p
1� x.

4. Consider the finite-di↵erence approximation f 0(x) ⇡ af(x+ h) + bf(x) + cf(x� h)

h
, where

a, b, c are constants. The forward approximation D+f has (a, b, c) = (1,�1, 0) and is 1st order
accurate. The central approximation D0f has (a, b, c) = (12 , 0,�

1
2) and is 2nd order accurate.

Are there any values of (a, b, c) that yield 3rd order accuracy?

SOLUTION
3rd order accuracy means

af(x+ h) + bf(x) + cf(x� h)

h
= f 0(x) +O(h3)

f(x+ h) = f(x) + f 0(x)h+ 1
2f

00(x)h2 + 1
6f

000(x)h3 +O(h4)

f(x� h) = f(x)� f 0(x)h+ 1
2f

00(x)h2 � 1
6f

000(x)h3 +O(h4)

af(x+ h) + bf(x) + cf(x� h)

h
=

2



=
(a+ b+ c)f(x) + (a� c)f 0(x)h+ (a+ c)12f

00(x)h2 + (a� c)f 000(x)16h
3 +O(h4)

h

= f 0(x) +O(h3) ) a+ b+ c = 0 , a� c = 1 , a+ c = 0 , a� c = 0

We see that these equations cannot be satisfied and hence there are no values of (a, b, c) that
yield 3rd order accuracy.

5. Below is the algorithm for the bisection method. Find and correct any errors.
bisection method (assume f(a) · f(b) < 0 )
1. n = 0 , a0 = a , b0 = b
2. x

n

= 1
2(an � b

n

)
3. if f(x

n

) · f(a
n

) < 0 , then a
n+1 = a

n

, b
n+1 = x

n

4. else a
n+1 = x

n

, b
n+1 = b

n

5. set n = n+ 1 and go to line 1

SOLUTION

There are two bugs; line 2 should be x
n

= 1
2(an + b

n

), line 5 should say “go to line 2”.

6. Consider solving f(x) = 0. (a) State one advantage of Newton’s method over the bisection
method; (b) State one advantage of the bisection method over Newton’s method.

SOLUTION

a) Newton’s method converges quadratically, while the bisection method converges linearly.

b) The bisection method requires evaluation of f(x) in each step and convergence is guaranteed
when f(a) · f(b) < 0. On the other hand, Newton’s method requires evaluation of f(x) and
f 0(x) in each step and the initial guess x0 must be su�ciently close to the root in order for the
method to converge. Hence the bisection method is less costly and less sensitive to the initial
guess than Newton’s method.

7. Show that f(x) = x2 � 3x+ 2 = 0 is equivalent to x = g(x) = 1
3x

2 + 2
3 . Suppose fixed-point

iteration x
n+1 = g(x

n

) is applied with initial guess x0 = 0. Find lim
n!1

x
n

. Justify your answer.

SOLUTION : A fixed point of g(x) is defined by x = g(x).

x = 1
3x

2 + 2
3 ) x2 � 3x+ 2 = 0 ) (x� 1)(x� 2) = 0 ) x = 1 , 2 : two fixed points

g0(x) = 2
3x ) g0(1) = 2

3 , g
0(43) ) |g0(1)| < 1 , |g0(2)| > 1

The iteration converges to x = 1.

8. Consider fixed-point iteration x
n+1 = g(x

n

). The
figure shows the function y = g(x), the line y = x,
the fixed point r, and the initial guess x0. Does the
sequence x

n

converge to r in this case? Explain. �

?
D?w/

?(
SOLUTION

The sequence x
n

diverges in this case because it is evident from the figure that |g0(r)| > 1.

9. The screened Coulomb potential is defined by �(x) = e

�x

4⇡✏x , where x is the distance from a
charged particle to a point in space, ✏ is the dielectric constant, and  controls the screening
e↵ect. Let ✏ = 2, = 1

2 . Apply Newton’s method to find the value of x for which �(x) = 0.005.
Let x0 = 2 be the starting value and take two steps, x1, x2. How many digits in x1 are correct?
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SOLUTION

�(x) =
e�x

4⇡✏x
= 0.005 ) f(x) =

e�x

4⇡✏x
� 0.005 ) f 0(x) =

1

4⇡✏

x · (�)e�x � e�x

x2

x
n+1 = x

n

� f(x
n

)

f 0(x
n

)
) after some algebra ) x

n+1 = x
n

+
x
n

� 0.005 · 4⇡✏x2
n

exn

1 + x
n

n x
n

0 2 1 correct digit
1 2.3168 2126 2186 115 2 correct digits
2 2.3949 1766 0163 369 3 correct digits
3 2.3985 4982 1389 847 5 correct digits
4 2.3985 5714 4463 364 11 correct digits
5 2.3985 5714 4493 033

10. Consider the nonlinear system, f(x, y) = (x � 1)2 + y2 � 4 = 0, g(x, y) = xy � 1 = 0, the
solution of which is the intersection of a circle and a hyperbola. Find an approximate solution
using Newton’s method for systems. Take one step starting from (x0, y0) = (3, 0).

SOLUTION
✓
f
x

f
y

g
x

g
y

◆ �����
(x

n

,y

n

)

·
✓
x
n+1 � x

n

y
n+1 � y

n

◆
=

✓�f(x
n

, y
n

)
�g(x

n

, y
n

)

◆

)
✓
2(x� 1) 2y

y x

◆ �����
(3,0)

·
✓
x1 � x0

y1 � y0

◆
=

✓
0

�1

◆
)

✓
4 0
0 3

◆✓
x1 � x0

y1 � y0

◆
=

✓
0
1

◆

) 4(x1 � x0) = 0 ) x1 = x0 = 3 , 3(y1 � y0) = 1 ) y1 =
1
3 + y0 =

1
3 ) (x1, y1) = (3, 13)

11. Solve 2x1�x2+x3 = �1, 4x1+2x2+x3 = 4, 6x1�4x2+2x3 = �2 by Gaussian elimination.

SOLUTION
0

BB@

2 �1 1
... �1

4 2 1
... 4

6 �4 2
... �2

1

CCA !

0

BB@

2 �1 1
... �1

0 4 �1
... 6

0 �1 �1
... 1

1

CCA !

0

BB@

2 �1 1
... �1

0 4 �1
... 6

0 0 �5
4

... 5
2

1

CCA )

8
>>><

>>>:

x1 =
�1�((�1)·1+1·(�2))

2 = 1

x2 =
6�(�1)(�2)

4 = 1

x3 =
5
2

� 5
4
= �2

m21 =
4
2 = 2 m32 =

�1
4 = �1

4

m31 =
6
2 = 3

12. Solve Ax = b by Gaussian elimination with partial pivoting.

a) A =

0

B@
1 1 1
1 1 2
1 2 2

1

CA , b =

0

B@
1
2
1

1

CA b) A =

0

B@
0 4 �15
10 0 15
1 �1 �1

1

CA , b =

0

B@
�12
100
0

1

CA

SOLUTION

part (a)
0

BB@

1 1 1
... 1

1 1 2
... 2

1 2 2
... 1

1

CCA !

0

BB@

1 1 1
... 1

0 0 1
... 1

0 1 1
... 0

1

CCA !

0

BB@

1 1 1
... 1

0 1 1
... 0

0 0 1
... 1

1

CCA )

8
><

>:

x1 =
1�(1·(�1)+1·1)

1 = 1
x2 =

0�1·1
1 = �1

x3 =
1
1 = 1

m21 =
1
1 = 1 a

(2)
22 = 0 ) pivot
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m31 =
1
1 = 1

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

part (b)
0

BB@

0 4 �15
... �12

10 0 15
... 100

1 �1 �1
... 0

1

CCA !

0

BB@

10 0 15
... 100

0 4 �15
... �12

1 �1 �1
... 0

1

CCA !

0

BB@

10 0 15
... 100

0 4 �15
... �12

0 �1 �5
2

... �10

1

CCA !

a
(1)
11 = 0 ) pivot m21 =

0
10 = 0 m32 =

�1
4 = �1

4

m31 =
1
10 = 1

10
0

BB@

10 0 15
... 100

0 4 �15
... �12

0 0 �25
4

... �13

1

CCA )

8
>>><

>>>:

x1 =
100�(0· 245 +15· 5225 )

10 = 172
25 = 6.88

x2 =
�12�(�15)· 5225

4 = 24
5 = 4.8

x3 =
�13
�25
4

= 52
25 = 2.08

13. Let A =

0

B@
2 �1 0

�1 2 �1
0 �1 2

1

CA. Find a vector x such that
||Ax||
||x|| = ||A||.

SOLUTION

||A|| = max{2+1, 1+2+1, 1+2} = 4 , Ax =

0

B@
2 �1 0

�1 2 �1
0 �1 2

1

CA

0

B@
x1

x2

x3

1

CA =

0

B@
2x1 � x2

�x1 + 2x2 � x3

�x2 + 2x3

1

CA

It is convenient to choose x such that ||x|| = 1, e.g. if we choose x =

0

B@
�1
1

�1

1

CA, then we have

Ax =

0

B@
2 �1 0

�1 2 �1
0 �1 2

1

CA

0

B@
�1
1

�1

1

CA =

0

B@
�3
4

�3

1

CA, so ||Ax|| = 4, and
||Ax||
||x|| = 4 = ||A|| as required.

14. Fill in the blanks. In solving a linear system Ax = b, the of the matrix A
controls the relative error in the solution x due to in the right hand side b.

SOLUTION

In solving a linear system Ax = b, the condition number of the matrix A controls the relative
error in the solution x due to changes in the right hand side b.

15. Suppose Ax = b and Ax̃ = b̃, where A =
✓

2 �1
�1 2

◆
, b =

✓
1
1

◆
, and ||b� b̃||  10�2. Find

the maximum value that ||x� x̃|| can attain.

SOLUTION

In class we showed that
||x� x̃||
||x||  (A)

||b� b̃||
||b|| , where (A) = ||A|| · ||A�1||.

The exact solution is x =
✓
1
1

◆
, so ||x|| = 1. Also, ||b|| = 1.

We have ||A|| = 3, A�1 = 1
3

✓
2 1
1 2

◆
=

✓ 2
3

1
3

1
3

2
3

◆
, so ||A�1|| = 1,(A) = 3.
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Then ||x� x̃||  ||x|| · (A) ||b� b̃||
||b|| = 1 · 3 · 10

�2

1
= 0.03.

16. Consider the linear system 2x1 � x2 = 1,�x1 + 2x2 � x3 = 0,�x2 + 2x3 = 1, with solution
x1 = x2 = x3 = 1. a) Write Jacobi’s method in component form. Take two steps starting from
the zero vector. Compute the error norms ||e

k

||, k = 0 : 2. b) Repeat for Gauss-Seidel.

SOLUTION

Note that the exact solution is x1 = x2 = x3 = 1.

a) Jacobi’s method

2x1 � x2 = 1 ) 2x(k+1)
1 = 1 + x

(k)
2

�x1 + 2x2 � x3 = 0 ) 2x(k+1)
2 = x

(k)
1 + x

(k)
3

�x2 + 2x3 = 1 ) 2x(k+1)
3 = 1 + x

(k)
2

k x
(k)
1 x

(k)
2 x

(k)
3 ||e

k

||
0 0 0 0 1

1 1
2 0 1

2 1

2 1
2

1
2

1
2

1
2

b) Gauss-Seidel method

2x1 � x2 = 1 ) 2x(k+1)
1 = 1 + x

(k)
2

�x1 + 2x2 � x3 = 0 ) 2x(k+1)
2 = x

(k+1)
1 + x

(k)
3

�x2 + 2x3 = 1 ) 2x(k+1)
3 = 1 + x

(k+1)
2

k x
(k)
1 x

(k)
2 x

(k)
3 ||e

k

||
0 0 0 0 1

1 1
2

1
4

5
8

3
4

2 5
8

5
8

13
16

3
8

17. Let A1 =
✓
2 1
1 2

◆
, A2 =

✓
1 2
2 1

◆
. a) For which of these does Jacobi’s method converge?

b) For which of these does Gauss-Seidel converge?
SOLUTION

a) Jacobi’s method

A1 : B
J

= �D�1(L+ U) =
✓�1

2 0
0 �1

2

◆✓
0 1
1 0

◆
=

✓
0 �1

2
�1

2 0

◆
) ||B

J

|| = 1
2

A2 : B
J

= �D�1(L+ U) =
✓�1 0

0 �1

◆✓
0 2
2 0

◆
=

✓
0 �2

�2 0

◆
) ||B

J

|| = 2

Jacobi’s method converges for A1.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
b) Gauss-Seidel

A1 : B
GS

= �(D + L)�1U = �
✓
2 0
1 2

◆�1 ✓ 0 1
0 0

◆
= �1

4

✓
2 0

�1 2

◆✓
0 1
0 0

◆
=

✓
0 �1

2
0 1

4

◆
)

||B
GS

|| = 1
2

A2 : B
GS

= �(D + L)�1U = �
✓
1 0
2 1

◆�1 ✓ 0 2
0 0

◆
= �

✓
1 0

�2 1

◆✓
0 2
0 0

◆
=

✓
0 �2
0 4

◆
)

||B
GS

|| = 4

Gauss-Seidel converges for A1.
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