
Math 371 Winter 2013 Homework 5 due: Thursday March 14

announcement : on Feb 19/21 and March 12/14, both sections will meet in 133 Chrysler

This assignment consists of Matlab programming exercises. In class we considered the two-
point boundary value problem −y′′ = r(x) for 0 ≤ x ≤ 1, with y(0) = α, y(1) = β. The function
y(x) is the temperature profile in a metal rod, r(x) is a distribution of heat sources, and the
temperature is given at the ends of the rod. The numerical solution is wi ≈ y(xi), where the
mesh points are xi = ih, h = 1

n+1
, i = 0 : n + 1. We set w0 = α,wn+1 = β and the remaining

values, wh = (w1, . . . , wn)T , are determined by the finite-difference equations, −D+D−wi = ri.
This leads to a tridiagonal linear system, Ahwh = rh, which is solved by the tridiagonal LU
method (Thomas algorithm) given in class.

A template for the Matlab code is on the back of this sheet. Copy the template into an
m-file and fill in the lines to run the code. The code solves the problem for four values of the
mesh size, h = 1

2
, 1
4
, 1
8
, 1
16

, and it plots the exact solution and numerical solution, and produces a
table displaying the error. Note that the tridiagonal LU method does not create the full matrix
Ah, but instead uses vectors to store the nonzero matrix elements and numerical solution wh.
This saves memory and is important in realistic applications.

For each problem below submit the plots and error table produced by the code. You may
copy and paste the table. Explain the trends in each column of the table. To observe the trends,
you may compute some smaller values of h. Does the numerical solution converge to the exact
solution as h→ 0? What is the rate of convergence?

1. The first problem is the one from class, −y′′ = 25 sin πx, y(0) = 0, y(1) = 1, with exact
solution y(x) = 25

π2 sin πx+ x. Make sure your code reproduces the results given in class.

2. The second problem is −y′′ = 25 cos πx, y(0) = 0, y(1) = 1, in which the right hand side
has changed. Find the exact solution y(x) in this case and run the code (after changing the
appropriate lines). Compare the results for problems (1) and (2). How does the heat source
distribution r(x) affect the temperature profile y(x)?

3. The third problem is µv′′ − λv = ρ0g, v(0) = v(W ) = 0, for a function v(x) defined for
0 ≤ x ≤ W . This problem appears on page 401 of the article “Drag of a Flexible Fiber in
a 2D Moving Viscous Fluid”, by Luoding Zhu and Charles S. Peskin, in Computers & Fluids,
vol. 36, (2007) pp. 398-406. The function v(x) represents a fluid velocity profile in which the
fluid is flowing vertically downward in a channel under the influence of gravity. The variable x
goes across the channel and the walls correspond to x = 0,W . The fluid velocity is zero on the
channel walls due to the no-slip condition. The parameters are as follows.

µ = ρ0ν : dynamic viscosity coefficient
ρ0 = 3× 10−4 g/cm2 : fluid density
ν = 4 cm2/s : kinematic viscosity coefficient
λ = ρ0g/V0 : air resistance coefficient
g = 980 cm/s2 : gravitational constant
V0 = 200 cm/s : terminal velocity amplitude
W = 10 cm : channel width

The exact solution is v(x) = c1e
r1x + c2e

r2x − V0, where r1, r2, c1, c2 are constants that depend
on the numerical parameters above. Find r1, r2 by substituting erx into the differential equation
and then find c1, c2 by satisfying the boundary conditions (do this by hand and show your work,
but you may check your formulas by comparing with the article which is available online). Solve
the problem using the finite-difference scheme µD+D−wi− λwi = ρ0g. Modify the Matlab code
from problems 1 and 2 accordingly.



function m371bvp1d

% template for numerical solution of a two-point boundary value problem

% -y’’=r, y(0)=alpha, y(1)=beta

clear; clf;

alpha = 0; beta = 1; % boundary conditions

for icase=1:4

n = 2∧icase-1; h = 1/(n+1); % h = mesh size

xe = 0:0.0025:1; % fine mesh for plotting exact solution

ye = . . .; % exact solution on fine mesh

% Set up for numerical solution.

for i=1:n

xh(i) = i*h; % mesh points

yh(i) = . . .; % exact solution at mesh points

a(i) = . . .; b(i) = . . .; c(i) = . . .; % matrix elements

r(i) = . . .; % right hand side vector

end

r(1) = . . .; % adjust for BC at x=0

r(n) = . . .; % adjust for BC at x=1

wh = LU 371(a,b,c,r); % numerical solution

% output

table(icase,1) = h;

table(icase,2) = norm(yh-wh,inf);

table(icase,3) = norm(yh-wh,inf)/h;

table(icase,4) = norm(yh-wh,inf)/h∧2;

table(icase,5) = norm(yh-wh,inf)/h∧3;

xplot = [0 xh 1]; wplot = [alpha wh beta];

subplot(2,2,icase); plot(xe,ye,xplot,wplot,’-o’);

string = sprintf(’h=1/%d’,n+1); title(string)

end

table

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function w = LU 371(a,b,c,r)

% input: a, b, c, r - matrix elements and right hand side vector

% output: w - solution of linear system

n = length(r);

%

% Fill in the steps below using the tridiagonal LU method given in class.

%

% find L, U

%

% solve Lz = r

%

% solve Uw = z

%


