
Math 371 Winter 2013 Homework 7 due: Tuesday April 2

This exercise concerns the two-dimensional BVP discussed in class. Consider a metal plate
on the unit square D = {(x, y) : 0 x, y 1}. The plate temperature �(x, y) satisfies
the Laplace equation �

xx

+ �

yy

= 0 on D (where �

x

= @�

@x

, etc.), with boundary conditions
�(x, 1) = 1,�(x, 0) = �(0, y) = �(1, y) = 0. This means there are no heat sources inside the
plate, and one side of the plate is kept at a high temperature while the other three sides are kept
at a low temperature. Solve for the temperature �(x, y) inside the plate using the finite-di↵erence
scheme (Dx

+D� +D

y

+D
y

�)wij

= 0 with mesh size h = 1
n+1 , for h = 1

4 ,
1
8 ,

1
16 . This yields a linear

system A

h

w

h

= f

h

, where w
h

= {w
ij

} is the numerical solution with components w
ij

⇡ �(x
i

, y

j

).
The mesh points are given by x

i

= ih, y

j

= jh, i, j = 0 : n + 1. The finite-di↵erence equations
can be written in component form as

1
h

2 (4wij

� w

i+1,j � w

i�1,j � w

i,j+1 � w

i,j�1) = f

ij

,

and in this exercise they are to be solved by Jacobi’s method,
1
h

2 (4w
(k+1)
ij

� w

(k)
i+1,j � w

(k)
i�1,j � w

(k)
i,j+1 � w

(k)
i,j�1) = f

ij

,

where w

(k)
ij

is the numerical solution at step k. Do not form the full matrix A

h

(because it’s
sparse and that would be ine�cient).

Implementation Details (a Matlab pseudocode is on back of this sheet)

1. To keep the code simple, the solution vector w
h

= {w
ij

} is coded as a matrix of dimension
(n+ 2)⇥ (n+ 2) containing the unknown interior temperature values and the known boundary
values. Let w new(i,j) be the solution at step k+1 and let w old(i,j) be the solution at step
k. Since Matlab doesn’t accept zero indices, take i=1:n+2, j=1:n+2. The boundary values of
the temperature correspond to indices i=1,n+2, j=1,n+2.

2. In the case of the two-point BVP in 1D, we put the temperature boundary values in the
right hand side vector f

h

. However in a 2D problem, it’s more convenient to keep the boundary
values in the solution vector w

h

. Therefore the boundary values and interior values of w
h

are
set at the initial step and the interior values are updated at every new step. The interior values
are set to zero at the initial step.

3. stopping criterion : ||r
k

||/||r0|| 10�4, where r

k

= f

h

� A

h

w

(k)
h

is the residual at step k

Present the results as follows. Include a copy of the code and give a brief writeup.

a) For each value of h, plot the computed temperature w

ij

at the final step (including the
boundary values) using a contour plot and a mesh plot (type help contour and help mesh for
instructions).

b) Present the following results in a table. column 1: h, column 2: number of iterations needed
to reach the stopping criterion, column 3: heat flux through bottom edge of the plate. The heat
flux is the integral of the normal derivative of the temperature along an edge of the plate; e.g. on

the bottom edge, the heat flux is F =
Z 1

0
�

y

(x, 0)dx ⇡
n+1X

i=0

D

y

+wi0 · h.

Does the heat flux through the bottom edge converge as h ! 0? At what rate?

c) What is the value of the temperature at the corners of the plate in the limit h ! 0? Explain
your answer.

announcement The second quiz is on Thursday, April 4. It will be 20 minutes long and start
promptly at 12:10pm. The quiz is closed book and will cover material up to and including the
previous class. Please bring a calculator to do arithmetic. The best way to prepare is to review
the lecture notes and homework problems.

function m371bvp2d

% Steady state temperature on the unit square.

clear; clf;

tol = ...; % set tolerance for stopping criterion

for icase=1:3

n = 2

^
(icase+1)-1; h = 1/(n+1); % set mesh size

x = 0:h:1; y = 0:h:1; % create x and y arrays for plots

% initialize solution and residual arrays

w new = zeros(n+2,n+2);

w old = zeros(n+2,n+2);

res = zeros(n+2,n+2);

% set nonzero boundary values

for j = ...; w new(...,...) = ...; w old(...,...) = ...; end

% initialize control variables

k = 0; ratio = 1;

% start iteration

while ratio > tol

k = k+1;

% compute residual vector

for i = ...; for j = ...;

res(i,j) = ...;

end; end

% compute ratio of residual norms using Frobenius norm for convenience

rn(k) = norm(res,’fro’);

ratio = rn(k)/rn(1);

% compute numerical solution

for i = ...; for j = ...;

w new(i,j) = ...;

end; end;

w old = w new; % reset numerical solution for next step

flux = ...; % compute heat flux, hint: use Matlab sum command

end % end while

% store results for output

table(icase,1) = h; table(icase,2) = k; table(icase,3) = flux;

% draw contour plot

subplot(2,3,icase)

contour(x,y,w new); axis square

string = sprintf(’h=1/%d’,n+1); title(string)

% draw surface plot

subplot(2,3,3+icase)

mesh(x,y,w new)

string = sprintf(’h=1/%d’,n+1); title(string)

end

table

