Math 371 Winter 2013 Homework 7 due: Tuesday April 2
This exercise concerns the two-dimensional BVP discussed in class. Consider a metal plate on the unit square $D=\{(x, y): 0 \leq x, y \leq 1\}$. The plate temperature $\phi(x, y)$ satisfies the Laplace equation $\phi_{x x}+\phi_{y y}=0$ on D (where $\phi_{x}=\frac{\partial \phi}{\partial x}$, etc.), with boundary conditions $\phi(x, 1)=1, \phi(x, 0)=\phi(0, y)=\phi(1, y)=0$. This means there are no heat sources inside the plate, and one side of the plate is kept at a high temperature while the other three sides are kept at a low temperature. Solve for the temperature $\phi(x, y)$ inside the plate using the finite-difference scheme $\left(D_{+}^{x} D_{-}+D_{+}^{y} D_{-}^{y}\right) w_{i j}=0$ with mesh size $h=\frac{1}{n+1}$, for $h=\frac{1}{4}, \frac{1}{8}, \frac{1}{16}$. This yields a linear system $A_{h} w_{h}=f_{h}$, where $w_{h}=\left\{w_{i j}\right\}$ is the numerical solution with components $w_{i j} \approx \phi\left(x_{i}, y_{j}\right)$. The mesh points are given by $x_{i}=i h, y_{j}=j h, i, j=0: n+1$. The finite-difference equations can be written in component form as

$$
\frac{1}{h^{2}}\left(4 w_{i j}-w_{i+1, j}-w_{i-1, j}-w_{i, j+1}-w_{i, j-1}\right)=f_{i j},
$$

and in this exercise they are to be solved by Jacobi's method,

$$
\frac{1}{h^{2}}\left(4 w_{i j}^{(k+1)}-w_{i+1, j}^{(k)}-w_{i-1, j}^{(k)}-w_{i, j+1}^{(k)}-w_{i, j-1}^{(k)}\right)=f_{i j},
$$

where $w_{i j}^{(k)}$ is the numerical solution at step k. Do not form the full matrix A_{h} (because it's sparse and that would be inefficient).
Implementation Details (a Matlab pseudocode is on back of this sheet)

1. To keep the code simple, the solution vector $w_{h}=\left\{w_{i j}\right\}$ is coded as a matrix of dimension $(n+2) \times(n+2)$ containing the unknown interior temperature values and the known boundary values. Let w_new (i, j) be the solution at step $k+1$ and let $w _o l d(i, j)$ be the solution at step k. Since Matlab doesn't accept zero indices, take $i=1: n+2, j=1: n+2$. The boundary values of the temperature correspond to indices $i=1, n+2, j=1, n+2$.
2. In the case of the two-point BVP in 1D, we put the temperature boundary values in the right hand side vector f_{h}. However in a 2D problem, it's more convenient to keep the boundary values in the solution vector w_{h}. Therefore the boundary values and interior values of w_{h} are set at the initial step and the interior values are updated at every new step. The interior values are set to zero at the initial step.
3. stopping criterion : $\left\|r_{k}\right\| /\left\|r_{0}\right\| \leq 10^{-4}$, where $r_{k}=f_{h}-A_{h} w_{h}^{(k)}$ is the residual at step k Present the results as follows. Include a copy of the code and give a brief writeup.
a) For each value of h, plot the computed temperature $w_{i j}$ at the final step (including the boundary values) using a contour plot and a mesh plot (type help contour and help mesh for instructions).
b) Present the following results in a table. column 1: h, column 2: number of iterations needed to reach the stopping criterion, column 3: heat flux through bottom edge of the plate. The heat flux is the integral of the normal derivative of the temperature along an edge of the plate; e.g. on the bottom edge, the heat flux is $F=\int_{0}^{1} \phi_{y}(x, 0) d x \approx \sum_{i=0}^{n+1} D_{+}^{y} w_{i 0} \cdot h$.
Does the heat flux through the bottom edge converge as $h \rightarrow 0$? At what rate?
c) What is the value of the temperature at the corners of the plate in the limit $h \rightarrow 0$? Explain your answer.
announcement The second quiz is on Thursday, April 4. It will be 20 minutes long and start promptly at $12: 10 \mathrm{pm}$. The quiz is closed book and will cover material up to and including the previous class. Please bring a calculator to do arithmetic. The best way to prepare is to review the lecture notes and homework problems.
```
function m371bvp2d
% Steady state temperature on the unit square.
clear; clf;
tol = ...; % set tolerance for stopping criterion
for icase=1:3
    n = 2^(icase+1)-1; h = 1/(n+1); % set mesh size
    x = 0:h:1; y = 0:h:1; % create x and y arrays for plots
% initialize solution and residual arrays
    w_new = zeros(n+2,n+2);
    w_old = zeros(n+2,n+2);
    res = zeros(n+2,n+2);
% set nonzero boundary values
    for j = ...; w_new(...,...) = ...; w_old(...,...) = ...; end
% initialize control variables
    k = 0; ratio = 1;
% start iteration
    while ratio > tol
        k = k+1;
% compute residual vector
        for i = ...; for j = ...;
            res(i,j) = ...;
        end; end
% compute ratio of residual norms using Frobenius norm for convenience
    rn(k) = norm(res,'fro');
    ratio = rn(k)/rn(1);
% compute numerical solution
    for i = ...; for j = ...;
            w_new(i,j) = ...;
        end; end;
        w_old = w_new; % reset numerical solution for next step
        flux = ...; % compute heat flux, hint: use Matlab sum command
    end % end while
% store results for output
    table(icase,1) = h; table(icase,2) = k; table(icase,3) = flux;
% draw contour plot
    subplot(2,3,icase)
    contour(x,y,w_new); axis square
    string = sprintf('h=1/%d',n+1); title(string)
% draw surface plot
    subplot(2,3,3+icase)
    mesh(x,y,w_new)
    string = sprintf('h=1/%d',n+1); title(string)
end
table
```

