1. Wed 9/9 1

section 1.3, 1.4 : finite precision arithmetic

number systems
r = i(dndn_l ce dldo.d_ld_g e °)5

= +(d," + dp1 S+ o diBE + Ao+ AT+ dfE)
B: base , d;: digits , 0<d; <p—1

ex

6 =10 : decimal

(2009)1p = 2-10° + 0-10> + 0- 10! + 9-10°

6 = 2 : binary

(10101.01)g = 1-2* + 0-28 +1-22 + 0-2' +1-2° 4+ 0-271 + 1.272
=16 +4+ 1+ 025 = (21.25)10 = 2-10t + 110" + 21071 + 5-1072

question: how are real numbers represented in a computer?

answer: floating point representation

r = £(0.didy---dy)g- 5 , di #0 , we say there are n significant digits

(0.dydy---dy)p - mantissa , e: exponent , —M <e< M

ex

consider a computer with 3 =2, n=4, M =3

tmax = (0.1111)y-2% = (111.1)y = 22 + 21 + 20 4+ 271 = (7.5)y9
Tin = (0.1000)2 - 272 = (0.0001); = 27* = (0.0625)10

note

1. In IEEE double precision format, each number is stored in memory as a string
of 64 bits.

mantissa exponent

The first two bits are sign bits for the mantissa and exponent, the next 52 bits

are for the mantissa, and the remaining 10 bits are for the exponent. Hence we
have 8 = 2,n =52, M = (1111111111)5 = 21° — 1 = 1023.

2. If z is a real number and fl(x) is its floating point representation, then x —fl(x)
is the roundoff error. The IEEE standard gives rules for determining fl(x).

X

m = 3.14159265358979 . .. :2+1+é+é+ﬁ+--.

— (11.001001000001 ...); = (0.11001001000001...)s - 22
n=4 = fl(r) = (0.1101)y-22 = 3.25 : closest 4-bit floating point number to
In reality, with n = 52, the roundoff error in fl(7) is approximately 27°% ~ 1071,

note

If two floating point numbers with n significant digits are subtracted, the result
may have fewer than n significant digits. This is called loss of significance due
to cancellation of digits.

the result has only

. _ — — . -3
ex: 0.1234 — 0.1233 = 0.0001 = (0.1000); - 1073 = | significant digit

ex : page 45, quadratic formula

—bEt Vb2 —4
ar’ +br+c=0 = x= 5 -
a

02202 —4791x +6 =0 = x = 239.4247,0.1253 : Matlab

Now suppose we use 4 decimal digit arithmetic.

47914 /47917 — 4(0.2)6 47.91+ /2205 — 4.8 47.91 £ /2290

o 2(0.2) 0.4 0.4
4791 +47.85 95.76 .
B 4791 + 47.85 B 04 = 04 = 239.4 : all 4 digits are correct

0.4] 47.91 — 47. _
L 0.4 5 = 00946 = 0.15 : only 1 digit is correct

The problem is due to loss of significance in the subtraction 47.91 — 47.85. One
remedy is to use higher precision arithmetic (Matlab), but another option is to
reformulate the arithmetic.

—b—Vb® —4dac —b+ Vb — dac v’ — (V* — 4ac) 2¢
€Tr = . —= —=
2a —b+ Vb2 —4dac 2a(—b+ Vb?> —4ac) —b+ Vb? —4dac
2:6 12

= = = 0.1253 : now all 4 digits are correct
4791 +47.85 95.76

2. Fri 9/11 3

ex : finite-difference approximation of a derivative

forward difference

filay~ HEH IO g

question : how large is the error? x x+h
Taylor series : f(z) = f(a) + f'(a)(x —a) + 5f"(a)(x —a)*---
equivalent form :

5”_””} = f(z+h) = f(z) + f'(@)h + ;f”(m)hQ + -

a—
T T T

exact value approximation discretization error

Hence the error is proportional to h; we write this as f'(x) = Dy f(x) + O(h),
where the symbol O(h) means “order h”.

For example, if f(x) = e*,x = 1, then f'(1) = e = 2.71828. .. is the exact value.

h Dyf f'(@)=Dif | (f'(x) = Dif)/h
0.1 2.8588 -0.1406 -1.4056
0.05 2.7874 -0.0691 -1.3821
0.025 2.7525 -0.0343 -1.3705
0.0125 | 2.7353 -0.0171 -1.3648
! ! ! !
0 e 0 —£=—1f"(1)

note : in practice, something unexpected happens when A is small.

% Matlab

exact_value = exp(1);

for j=1:65
h(j) = 1/2;
computed_value = (exp(1+h(j)) - exp(1))/h(j);
error(j) = abs(exact_value - computed_value);

end

loglog(h,error,h,error,’o’);

xlabel(’h’); ylabel(’error’);

error

107 107"° 107"° 107° 10°

note

If error = ch?, then log(error) ~ logc + plogh, i.e. the slope of the data gives
the order of convergence (this is why we use log-log to plot the error vs. h).
question : why does the error increase for small h?

1. The computed value has two sources of error: truncation error is due to re-
placing the exact derivative f’(x) by the finite-difference approximation D, f(z),
and roundoff error is due to using finite precision computer arithmetic.

2. The truncation error is O(h) and the roundoff error is O(e/h), where € ~ 1071
in Matlab.

3. The total error is O(h) + O(e/h). Hence, for large h, the truncation error
dominates the roundoff error, but for small A, the roundoff error dominates the
truncation error.

note
D_f(z) = flz) = £(x —) backward difference
Dof(z) = flwth) = fle=h) centered difference (hw)

2h

