3. Mon 9/14

<u>chapter 2</u>: rootfinding

section 2.1: bisection method

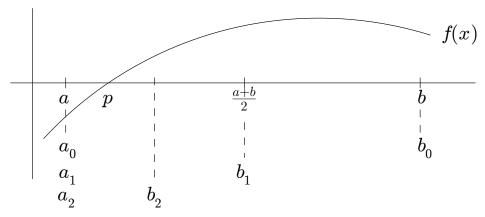
 $\underline{\text{def}}$: Given f(x), a number p satisfying f(p) = 0 is called a <u>root</u> of f(x).

$$\underline{\text{ex}}: f(x) = x^2 - 3x + 2 \implies p = 1, 2$$

 $f(x) = x^2 - 3 \implies p = \pm \sqrt{3}$

question: How can we find the roots of a general function f(x)?

idea: Find an interval [a, b] such that f(a) and f(b) have opposite sign. Then f(x) has a root in [a, b] by the Intermediate Value Theorem (Math 451 - advanced calculus).



Consider the midpoint $\frac{a+b}{2}$. The root is contained in either the left subinterval $[a, \frac{a+b}{2}]$ or the right subinterval $[\frac{a+b}{2}, b]$; to determine which one, compute $f(\frac{a+b}{2})$. Then repeat.

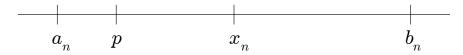
bisection method (assume $f(a) \cdot f(b) < 0$)

- 1. n=0, $a_0=a$, $b_0=b$
- 2. $x_n = \frac{a_n + b_n}{2}$: current estimate of the root
- 3. if $f(x_n) \cdot f(a_n) < 0$, then $a_{n+1} = a_n$, $b_{n+1} = x_n$
- 4. else $a_{n+1} = x_n$, $b_{n+1} = b_n$
- 5. set n = n + 1 and go to line 2

 $\underline{\mathrm{ex}}: f(x) = x^2 - 3 \,, f(1) = -2 \,, f(2) = 1 \, \Rightarrow \, \mathrm{there} \, \mathrm{is} \, \mathrm{a} \, \mathrm{root} \, p \, \mathrm{in} \, [1,2] \,, \, p = 1.73205 \,, \, f(2) = 1 \, \Rightarrow \, \mathrm{there} \, \mathrm{is} \, \mathrm{a} \, \mathrm{root} \, p \, \mathrm{in} \, [1,2] \,, \, p = 1.73205 \,, \, f(2) = 1 \, \Rightarrow \, \mathrm{there} \, \mathrm{is} \, \mathrm{a} \, \mathrm{root} \, p \, \mathrm{in} \, [1,2] \,, \, p = 1.73205 \,$

n	a_n	b_n	x_n	$f(x_n)$	$ p-x_n $
0	1	2	1.5	-0.75	0.2321
1	1.5	2	1.75	0.0625	0.0179
2	1.5	1.75	1.625	-0.3594	0.1071
3	1.625	1.75	1.6875	-0.1523	0.0446
4	1.6875	1.75	1.71875	-0.0459	0.0133

error bound for the bisection method



$$|p - x_n| \le |b_n - a_n| = \frac{1}{2}|b_{n-1} - a_{n-1}| = (\frac{1}{2})^2|b_{n-2} - a_{n-2}| = \dots = (\frac{1}{2})^n|b_0 - a_0|$$

 $\underline{\text{ex}}$: how many steps are needed to ensure that the error is less than 10^{-3} ?

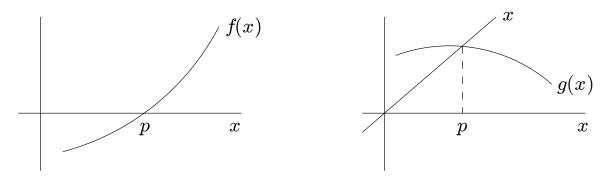
$$(\frac{1}{2})^n |b - a| \le 10^{-3} \implies n \ge 10$$

stopping criterion: here are three options

$$|b_n - a_n| < \epsilon$$
 , $|f(x_n)| < \epsilon$, $n = n_{\text{max}}$

section 2.3 : fixed-point iteration

Suppose that f(x) = 0 is equivalent to x = g(x). Then p is a root of f(x) if and only if p is a fixed point of g(x).



$$\underline{\mathbf{ex}}: f(x) = x^2 - 3 = 0$$

$$x = \frac{3}{x} = g_1(x)$$
 , $x = x - (x^2 - 3) = g_2(x)$, $x = x - \left(\frac{x^2 - 3}{2}\right) = g_3(x)$

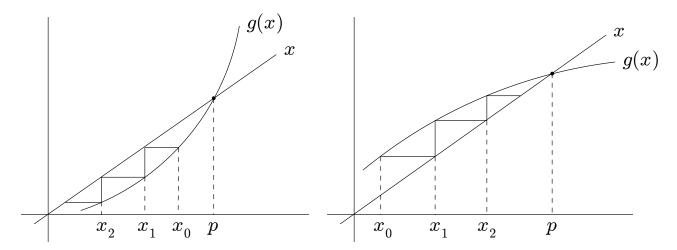
We try to solve x = g(x) by computing $x_{n+1} = g(x_n)$ with some initial guess x_0 . This process is called <u>fixed-point iteration</u>.

	case 1	case 2	case 3
n	x_n	x_n	x_n
0	1.5	1.5	1.5
1	2	2.25	1.875
2	1.5	0.1875	1.6172
3	2	3.1523	1.8095
4	1.5	-3.7849	1.6723
5	2	-15.1106	1.7740

Case 1 and case 2 diverge, but case 3 converges (recall: p = 1.73205).

4. Wed 9/16

<u>question</u>: what determines whether fixed point iteration converges or diverges? Let's consider two examples.



The 1st example diverges and the 2nd example converges.

$\underline{\text{thm}}$

Let $k = \max |g'(x)|$. Then fixed-point iteration converges if and only if k < 1. note: this is consistent with the two examples above.

pf

$$|p - x_{n+1}| = |g(p) - g(x_n)| = |g'(\zeta)(p - x_n)| \le k|p - x_n|$$

Mean Value Theorem

$$|p - x_{n+1}| \le k|p - x_n| \le k^2|p - x_{n-1}| \le \dots \le k^{n+1}|p - x_0|$$
 ok

note

- 1. We showed that $|p x_n| \le k|p x_{n-1}|$; this is called <u>linear convergence</u> and k is called the <u>asymptotic error constant</u>.
- 2. When x_0 is sufficiently close to p, we can choose k = |g'(p)|.

recall :
$$f(x) = x^2 - 3$$
, $p = \sqrt{3} = 1.73205$

$$g_1(x) = \frac{3}{x} \implies g'_1(x) = -\frac{3}{x^2} \implies |g'_1(p)| = 1$$
: diverges

$$g_2(x) = x - (x^2 - 3) \implies g'_2(x) = 1 - 2x \implies |g'_2(p)| = 2.4641$$
: diverges

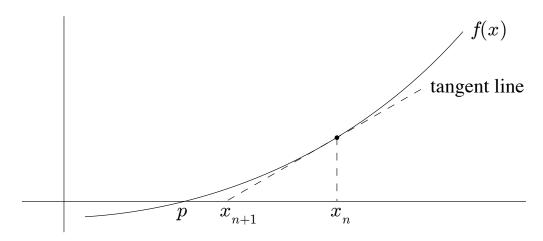
$$g_3(x) = x - \left(\frac{x^2 - 3}{2}\right) \implies g_3'(x) = 1 - x \implies |g_3'(p)| = 0.73205$$
: converges

3. The bisection method also converges linearly, with $k = \frac{1}{2}$.

5. Fri 9/18

section 2.4 Newton's method

idea: local linear approximation



slope =
$$f'(x_n) = \frac{0 - f(x_n)}{x_{n+1} - x_n} \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$\underline{\text{ex}}: f(x) = x^2 - 3 \implies x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n}$$

n	$ x_n $	$f(x_n)$	$ p-x_n $
0	1.5	-0.75	0.23205081
1	1.75	0.0625	0.01794919
2	1.73214286	0.00031888	0.00009205
3	1.73205081	0.00000001	0.00000001

note

Newton's method is an example of fixed point iteration, $x_{n+1} = g(x_n)$, where the iteration function is $g(x) = x - \frac{f(x)}{f'(x)}$.

Then
$$g'(x) = 1 - \frac{f'(x)^2 - f(x) \cdot f''(x)}{f'(x)^2} \Rightarrow g'(p) = 1 - \frac{f'(p)^2 - f(p) \cdot f''(p)}{f'(p)^2} = 0.$$

Here we assumed that f(p) = 0, $f'(p) \neq 0$, i.e. p is a <u>simple root</u> of f(x). (This is the most common case). This implies that Newton's method converges faster than linearly; in fact we have $|p-x_{n+1}| \leq C|p-x_n|^2$, i.e. <u>quadratic convergence</u>.

$$\underline{pf}$$

$$p - x_{n+1} = g(p) - g(x_n) = g(p) - (g(p) + g'(p)(x_n - p) + O(x_n - p)^2)$$
 ok

ex: page 102, volume of chlorine gas

P: pressure, V: volume, T: temperature

PV = nRT: ideal gas law

n: number of moles present

R: universal gas constant, R = 0.08206 atm · liter/(mole · K)

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$
: van der Waals equation

a : accounts for intermolecular attractive forces $\,$, $\,a=6.29~\rm atm \cdot liter^2/mole^2$

b: accounts for intrinsic volume of gas molecules, b = 0.0562 liter/mole

Take n = 1 mole, P = 2 atm, T = 313 K, and find V by Newton's method with starting guess V_0 given by the ideal gas law.

$$f(V) = \left(P + \frac{n^2 a}{V^2}\right)(V - nb) - nRT , f'(V) = \left(P + \frac{n^2 a}{V^2}\right) + \left(\frac{-2n^2 a}{V^3}\right)(V - nb)$$

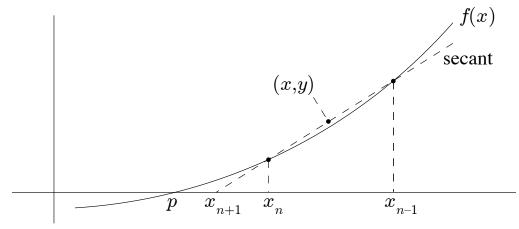
n	$ V_n $									
0	12.84238999999998									
1	12.651154813406302									
2	12.651099337119016	:	slightly	less	than	V_0 given	by	ideal	gas	law

We see that V_0 has 2 correct digits and V_1 has 5 correct digits. How many correct digits does V_2 have? (hw)

note 0
1. alternative derivation: $f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n) + \cdots$

2. Newton's method converges rapidly, but it requires extra work to compute $f'(x_n)$. Is there an alternative?

section 2.5 secant method



6. Mon 9/216

slope:
$$\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$
, equation: $\frac{y - f(x_n)}{x - x_n} = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$
 $(x, y) = (x_{n+1}, 0) \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{\left(\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}\right)}$: secant method note

<u>note</u>

- 1. The secant method requires two starting values, x_0, x_1 .
- 2. It can be shown that $|p-x_n| \leq C|p-x_{n-1}|^{1.6}$, so the secant method converges faster than fixed-point iteration, but slower than Newton's method.

summary

method	rate of convergence	cost per step
bisection	linear, $k = \frac{1}{2}$	$f(x_n)$
fixed-point iteration	linear, $k = g'(p) $	$g(x_n)$
Newton	quadratic	$f(x_n), f'(x_n)$
secant	between linear and quadratic	$f(x_n)$

note: Bisection is guaranteed to converge if the initial interval contains a root, but the other methods can be very sensitive to the choice of x_0 .

rootfinding for nonlinear systems

ex: page 141, chemical reactions

 $\left\{ egin{array}{l} 2A+B \rightleftharpoons C \\ A+D \rightleftharpoons C \end{array}
ight\} \;\; : \;\; \mbox{reversible reactions for reactants A,B,D and product C}$

 a_0,b_0,d_0 : initial concentrations (moles/liter) in chemical reactor (known)

 c_1, c_2 : equilibrium concentrations of C produced by each reaction (unknown)

 k_1, k_2 : equilibrium reaction constants (known)

These variables are related by the Law of Mass Action.

compound	equilibrium concentration		$c_1 + c_2$
\overline{A}	$a_0 - 2c_1 - c_2$		$k_1 = \frac{c_1 + c_2}{(a_0 - 2c_1 - c_2)^2 (b_0 - c_1)}$
B	$b_0 - c_1$	\Rightarrow	$\begin{pmatrix} a_0 & 2c_1 & c_2 \end{pmatrix} \begin{pmatrix} a_0 & c_1 \end{pmatrix}$
C	$c_1 + c_2$		$k_2 = \frac{c_1 + c_2}{(a_0 - 2c_1 - c_2)(d_0 - c_2)}$
D	$d_0 - c_2$		$(a_0 - 2c_1 - c_2)(a_0 - c_2)$

Hence to find c_1, c_2 we need to solve a <u>system</u> of nonlinear equations.

Newton's method for nonlinear systems

$$f(x,y) = 0 , g(x,y) = 0$$

Given (x_n, y_n) , we want to find (x_{n+1}, y_{n+1}) .

$$f(x_{n+1}, y_{n+1}) = f(x_n, y_n) + \frac{\partial f}{\partial x}(x_n, y_n)(x_{n+1} - x_n)$$

$$+ \frac{\partial f}{\partial y}(x_n, y_n)(y_{n+1} - y_n) + \cdots$$

$$g(x_{n+1}, y_{n+1}) = g(x_n, y_n) + \frac{\partial g}{\partial x}(x_n, y_n)(x_{n+1} - x_n)$$

$$+ \frac{\partial g}{\partial y}(x_n, y_n)(y_{n+1} - y_n) + \cdots$$

$$\Rightarrow \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{(x_n, y_n)} \cdot \begin{pmatrix} x_{n+1} - x_n \\ y_{n+1} - y_n \end{pmatrix} = \begin{pmatrix} -f(x_n, y_n) \\ -g(x_n, y_n) \end{pmatrix}$$

$$\uparrow$$

Jacobian matrix

This equation has the form Ax = b, where A is a given matrix, b is a given vector, and we must solve for the vector x.