7. Wed 9/23 1

section 3.0 : review of linear algebra
a11ry + apxe + -+ + a1, = bl

a21%1 + agTs + - -+ + a2,y = by : :
: system of linear equations for xq,...,x,

Ap1T1 + ApaTo + - - - + AppTy = bn

We can write the system in 3 other forms.

n
1. Y ajxz; =b , i=1:n , i:rowindex , j: column index
J=1

air Qi -+ Qp x1 by
9 21 Q22 - G2p T2 [ba

anl 07%%) e Qpn T bn
3. Az =b

basic problem : Given A, b, find x.

solution : x = b/A : no, but x = A\b does work in Matlab (what is it doing?)
thm : The following conditions are equivalent.

1. The equation Az = b has a unique solution for any vector b.

2. A is invertible, i.e. there exists a matrix A~! such that AA~! =1

3. det A # 0

4. The equation Az = 0 has the unique solution z = 0.

5. The columns of A are linearly independent.

6. The eigenvalues of A are nonzero.

note

1. If A is invertible, then x = A~1b (because then Az = A(A71b) = (AA™1)b =
Ib = b), but this is not the best way to compute x in practice.

2. There are two types of methods for solving Az = b, direct methods and
iterative methods. We will begin with direct methods.

section 3.1 : Gaussian elimination

First consider the special case in which A is upper triangular.

anry + apr: + - 4+ apr, = b
Ap—1.n—1Tp—1 + Ap—1nTpn = bn—l
ApnLn = bn

= x, = by/anm

Tp—1 = (bn—l - an—l,nxn)/an—l,n—l

r1 = (by — (a122 + -+ + apzy)) /a1

back substitution

1.z, =b,/an,

2. fori=n—1:-1:1 % i : row index

3. sum = b;

4. forj=i+1:n % 7 : column index
5. SUM = SUm — ;; * T;

6. x; =sum/ay

operation count

divisions = n

mults = # adds = gn(n — 1) = 3n* — 3n ~ 3n? for large n

pf
n—1
#Fmults =14+2+---+(n—-1)=> i=95
i=1
n—1 n—1 n—1 n—1
25=>Y i+ > n—i)=> (i+(n—1i)=> n=nn—1)
=1 =1 i=1 i=1

= S=1in(n-1) ok
Hence the leading order term in the operation count for back substitution is n?.

note : Similar considerations hold if A is lower triangular.

note

In the case of a non-triangular matrix, we use elementary row operations to
reduce Ax = b to upper triangular form and then apply back substitution to
find z. elementary row operation: multiply an equation by a nonzero constant
and subtract from another equation

ex: n=3
anry + appre + ajzrs = by
9171 + a20Ts + aozxrs = by

as1T1 + azaT2 + aszrs = b3

|
ann aiz aiy 0 b
a1 @y gz | by
|
azy azz2 ass | b3

step 1 : eliminate variable x; from eqs. 2 and 3

a2y) ..
moy = = = Q99 — 99 — Mo1G1o % meoy is called a multiplier
11
ao3 — Q23 — M210413
by — by — mab;
as1
ms3p = P = Q32 — (32 — M31a12
11
azz — a3z — M31a13

bs — bs—maib

|
app aip ay o by
0 asx asg | by
| | L J--- these elements have changed
0} ag ass + by,

step 2 : eliminate variable x5 from eq. 3
32
mgy = — = (33 — (33 — M32023
22
by — by —lsbe

|

app @iz Az
0 ag axs ! b . upper triangular

|

|

8. Fri 9/25 4

X
21’1—372:1

—r1 + 209 — 23 =0

—$2+2£II3 =1
2 —1 0 i 1
~1 2 =1 ! 0| ma=-1/2
0 -1 2 i 1 m31:O
2 -1 0] i 1
0 3/2 —1 '1/2
0 —1 2 i 1 msge = —1/(3/2) = —2/3
2 -1 0 i 1
0 3/2 —1 ' 1/2
0 0 4/3 1 4/3

3=1, 3=(3—-(-1)-1)/2=1,21=(1-(-1)-1)/2=1 check : ok

general n X n case

reduction to upper triangular form

l.fork=1:n-1 % k : step index

2. fori=k+1:n

3. muk = ai/ak % assume ay, # 0, more later
4. forjg=k+1:n

9. aij = aij — Mk - akj

6. b =0b; —m - by

note

The element ag;, in step k is called a pivot (these are the diagonal elements in
the last step). In the previous example, the pivots are 2, %, %.
operation count

The leading order term comes from line 5.

k=1 = 2(n—1)*ops
k=2 = 2(n—2)?ops

: () :>2.7§1k2:2.(n—1)n(2n—1)
F=1 6

k=n—-—2 = 2-2%0ps
k=n—-1 = 2-1%0ps

Hence the operation count for Gaussian elimination is %n?’.

n(n + 1) n(n+1)(2n+ 1)
F=1 2 F=1 6
pf
1. already done
2.nt =0 —(n—1P+n—-107>+ =224+ 22 -1+ 1P =Y (k¥ — (k-1)%
k=1
B— (k=12 =k — (K*—-3k*+3k—1) =3k* -3k + 1
n n n n 1
n® = z(3k2—3k+1):32k2—3zk+21:35—3”("+)+n
k=1 k=1 k=1 k=1 2
n 1 1
Szkzlk:2:3<n3+§n(n+1)—n> :3n<n2+2(n+1)—1>
1 1 1 1 1 1
:3n<n2+2n+2> :§n-§(2n2+3n+1):§n-§(2n+1)(n+1) ok

ex : electric circuit for charging a car battery (page 129, problem 13)

= DC generator
=12V =159 C) oE

4 102
Apply Kirchoft’s voltage law and current law to determine the currents.

1. The sum of the voltage drops around any closed loop is zero.
= 4o+ 12— 1513=0, 1513 —1004+ 101 =0 (U_Siﬂg Ohm’s law V =]R)
2. The sum of the currents flowing into a junction equals the sum flowing out.

= 11:]2+[3

0 4 —15\ /] ~12
= (10 o 15||L]|=] 100
1 -1 —1)\1 0

Hence we can’t apply Gaussian elimination because the 1st pivot is zero.

9. Mon 9/28 6

section 3.2 : pivoting

There are various pivoting strategies that can be applied if one of the pivots is
Zero.

partial pivoting

Consider the reduced matrix at the beginning of step k.

all e e alk e aln : bl
|
! .
|
agg **+ Qgp 1 by
. . ‘ .
|
| :
|
Apk * - Qnn | bn

If axr, = 0, find index [such that |a;| = max{|a;|; & < i < n}, then interchange
row [and row k and proceed with the elimination.

1. If A is invertible, then Gaussian elimination with partial pivoting does not
break down. (pf: Math 571)

2. Interchanging the rows can be done implicitly, using an index array, to avoid
the expense of moving the matrix elements in memory.

3. Other strategies are scaled partial pivoting and complete pivoting, but we
won’t consider these.

4. In practice, pivoting is often applied even if the pivot element is nonzero.

ex 1+e—1
r1=——=1
(6 11+€>_>(€ 1 1+€> = ‘ : exact solution
11, 2 0 1-1/1-1 1-1 '
1 6 6 2= 1 =1
Mo = p e
Now consider the effect of roundoff error.
e 11 1 =" =0
< L 1) = -1 : computed solution , inaccurate
0 —¢ —c Tp=—1=1

Now apply pivoting in the presence of roundoft error.

<1 12>—><1 12>:> jl:l}'ne computed solution , accurate
e 1,1 0 1,1 Fy =1 [0 OV COMP ’

— €
Moy =7 =€

This is an issue of stability. (more later)

10. Wed 9/30 7

section 3.3 : vector and matrix norms

def : A vector norm is a function x — ||z|| satisfying the following properties.
L. ||z]| >0 and ||z]| =0 & =0

2. ||ax|| = |a]-||x|| , «: scalar

3. |z + vyl <|lz|| + [ly|]| : triangle inequality

note : The vector norm measures the size of a vector.

ex

N2
|z||s = (Z x?) . Euclidean length
i=1

||z||oe = max{|x;|:i=1,...,n}

1
exi o= (y) = llala= V5, |lslln =2

def : Given a matrix A, consider the transformation x — Ax as input — output.

| Az]] .

Then is the amplification factor for a given input vector x and we define

|||
the matrix norm to be the maximum amplification factor over all nonzero input

vectors, ||A]| = max m The matrix norm satisfies the following properties.
1. ||A]| >0 and ||A]|=0 & A=0

2. |lecAl} = laf - [|A]

3. ||A+ Bl < [lAll + |Bl]

4. [[Az]] < [|A]] - |||l

5 ||AB[| < [|All - [| B

pf : just property 5

AB All-|B All-]|Bl] -
HABH:maX” o e LALABl o AT B]] Hx”zl\AH-HBH
' w20]| w70 ||zl a0 [|l]
def prop 4 prop 4 ok

note : Computing ||A|| by the definition is difficult, but there are more conve-
nient formulas that can be used in practice.

[Az]o

thm : ||A]|lc = m = max »_|a;;| : max row sum
220 |[2]]oc g
3 —4
ex: A= (]) = Ml = max{(3+ |~ 4], 1]+ 0]} =7
1 3 |Az||~ 3
— A — _ — =
x <O> = Ax <1> = 2| 1 3
0 —4 Azl _ 4
r=(1) = 4= (To) = T =
1 —1 |Az||o _ 1
= (1) = a=(T1) = T =
Az||se 7
SU=< 1) = Aa::<7> = [[Az] = — =7 : max amp factor by thm
—1 1 |z]l 1
pf (thm)
1] oo = max [(Aa)y| = max | ag;| < mas S ag o] < max S ag | - o]
J J J
Azl
HH T‘H < max) |a;j| =D |ai;| for some index [(this holds for all x # 0)
Tlloo b j

Define y = (sign(ay), . . ., sign(az,))?.

= Ayl =1, 2lay| = 2 ayy; = (Ay)h < |[Ayl[o
j j

Ax||o Ayl|o Ax||o
20 zlle T lleo = 220 [
A
thm : HAH2:m25<HH T"bzmax{\/X:)\is an eigenvalue of ATA}
€T T 9
1 0\ /1 2 1 2
CATA — _ _
eX.AA—<2 2><0 2)_<2 8) = [|A[]» = 2.9208 (Matlab)
) () Azl 1
T = = Ax = = —— =1
<O 0 z|]ls 1
:c:<) — Ax:<2> S Azl V8 g
1 2) 7 Tl 1
(3
2

x:<1> = Ax =) = HAazH2:\/ﬁ:2.5495
|zl V2

pf (thm) Math 571

11. Mon 10/5 9

section 3.4 : error analysis

Axr=1b , A: invertible

x : exact solution , T : approximate solution

e=x—a:error , r=>b— AT : residual

note: Ae=r , pf: Ae=A(r—2)=Arv - AT =b— Az =r ok

Then e = 0 if and only if » = 0, but if ||r|| is small, there’s no guarantee that
||e]] is also small.

€ex
<1.o1 0.992) ~ _<1>
0.99 1.01:2 =1
- 1.01 —0.01 —0.02
X = <1'01> = €1 = <—0.01> , |le1]le = 0.01, ry = (_0'02> , [I71] 0 = 0.02

- 2 —1 —0.02
n={y) =a=("1) lallk=1. rn=("yg): Irlx=00

Hence ||r|| is small in both cases, while ||e|| is small in case 1 and 100 times
larger in case 2. How large can ||e|| be?

thm : H < /<@(A)|“|Tb"’| , where k(A) = ||A]| - [|[A7Y|| : condition number
X
ex
1.01 0.99
A‘<0.99 1.01) = (14l =2
A_1_<a b)‘l_ 1 (d —b>_1< 1.01 —0.99)
\e¢ d) ad—be\—c a) 0.04\-099 1.01
[2525 —24.75 o B
_(_24'75 25.25) o A =50 = mu(A) =100 ok
pt
L|[bl] = [[Az|[< [[A][- [[=]| = [[=[| = [[6][/|[All
2. Ae=r = e=A"r = |le|| = [[A7r|| < [|ATY] Il
lell _ AT [l [I]]
3. < =kr(A) - 7 ok
[lzl] = [16l]/1]All [151]

12. Wed 10/7 10

note
Ax:b} |z — 2| 16— bl L

. . = —— <k(4) . perturbation in RHS , pf: ok
Az =10 ||| [161] -
Ax:b} |z —] I|A — Al| . :

2. = ———— < k(A)———— : perturbation in matrix , pf: hw
Az =b 1] [1A] .

Hence k(A) controls the error in the solution due to perturbations in A and b.

ex (recall)
<€ 11+€>—><6 L 1+€> = xl:l}'exactsolution
1 1, 2 0 1-1,1-1 zo=1/J"
Now consider the effect of roundoff error.
11 1 =
<€ 1) - U 0 } : computed solution , inaccurate

0 -1, -1 By =1

explanation
e 1 1 1 -1 1
A= A7l = A)=2- 2 =4
(1 1) ’ e—l(—l 6) = fioo(4) le — 1|
However, Gaussian elimination reduces the system to upper triangular form.

(e 1 I S
v=(1—1>’U -— ("0)

1

e =1

Hence a small change in the matrix or RHS of the reduced system (e.g. due
to roundoff error) can produce a large change in the computed solution (as in

1
= koo(U) =1 -1 (=14 +1) ~ & ¢ can be larger than k. (A)

the previous example). This means that Gaussian elimination is an unstable
method for solving Az = b because it can replace a well-conditioned matrix A
by an ill-conditioned matrix U. Pivoting however produces a different reduced

system.
(1 1. 2 >_><1 1 2 > = ”%1:1} : exact solution
€ 131+e 0 1—e' 1—c¢ To=1])"

(11 L1 (1€ -1 o

In fact, Gaussian elimination + partial pivoting + IEEE arithmetic is stable (in
most cases).

11

section 3.5 : LU factorization

matrix form of Gaussian elimination

We consider the 3 x 3 case (but the general n x n case is similar).
app ajiz a3
a1 Q22 Aa23
a3 a3z A33

step 1 : eliminate variable x; from eqs. 2 and 3

a2 _asi
moy = —, M31 = —

ai ai

1 0 0 aij] a1z Qa13 ailr a2 a13
—mg1 1 0| |a a2 a3 |=] 0 ‘ra22 a23 |
—131 0 1 asy Qazz2 ass 0 as9 CLSSJ

step 2 : eliminate variable x5 from eq. 3

a3
m32 = —

a9

1 0 0 ailz a2 a3 ailz a2 a13
0 1 0 0 agp ax|=| 0 axn axg = U : upper

0 —ms3y 1 0 ass ass 0 O 16351‘ triangular

= F,FEA=U = A=E['E;'U

1 00 1 0 0 1 00
Ei=|-mog 1 0| ,E'=|moy 1 0|, check : E4E{'=[0 1 0

—m3101 m310 0 0 1

1 0 0 1 0 0
Ey=(0 1 0|,E?'=|0 1 0
0 —mg3 1 0 ms 1

1 0 0\/1 0 O 1 0 0
E7'Est=|my 1 0[O0 1 O0|=|mau 1 0|=L : lower

msg; 0 1 0 mgy 1 msg; Mms3a 1 triangular

—_

final result : A= LU

13. Fri 10/9 12

€xX
2 -1 0 2 -1 0 2 -1 0
-1 2 -1 | —>(0 2 1| =10 2 -1
0 -1 2 0 -1 2 0 0 3
mo1 = —, m32 = 373 _g
mgl—%—()
check :
1 0 0 2 -1 0 2 —-1 0
LU=|—-3 1 0 0 2 -1 |=|-1 2 -1]|=A4 ok
2 4
0 -3 1 0 0 3 0 -1 2
note

To solve Ax = 0.

step 1. factor A = LU

step 2. solve Ly = b by forward substitution
step 3. solve Ux = y by back substitution
check : Ax = LUz =Ly=0b ok

X

2 -1 0 1 1
A=|-1 2 -1 |,b=|0| = 2= 1)
0 -1 2 1 1

Previously we used Gaussian elimination, but now we’ll use LU factorization.

1 0 0 Y1 1 U1 1
Ly=»>b = (—% 1 0)(y2 =10 = |w|=]|3

0 -3 1 Y3 1 Y3 3

2 -1 0 1 1 1 1
Ur=y = (0 % 1)(:1:2 = % = |z |=|1 ok

question : So what’s the point of LU factorization?

answer : Some applications require solving Az = b for a given matrix A and a
sequence of different vectors b (e.g. in a time-dependent problem). Once the LU
factorization of A is known, we can apply forward and back substitution to the
sequence of vectors b - it’s not necessary to repeat the LU factorization.

13

LU factorization and partial pivoting

To perform partial pivoting we need to interchange rows and this can be rep-
resented using a permutation matrix. Instead of A = LU, the final result is
PA = LU, where P is a permutation matrix.

ex

0 4 —15\ /x ~12
10 0 15| a9 | =] 100
1 -1 —1) \a3 0

We want to interchange rows 1 and 2.

01 0 0 4 —15 10 0 15 01 0
1 0 010 O 5= 0 4 =-15|,P=|1 00
0 0 1 1 -1 -1 1 -1 -1 0 0 1

10 0 15 10 0 15 10 0 15
0 4 —-15| — 0 4 —15 — 0 4 -—-15
1 -1 -1 0 -1 =25 0 0 —6.25

m21:1%20 m32:%1:—0.25
m31:%
check : PA=LU ...

Then Ax = b = PAx = Pb = LUx = Pb and we can apply forward and back
substitution to find x.

1 0 0\ [y 100 Y1 100
Ly=Pb = 0 1 Ollye|=|-12| = [y |=|—-12

0.1 —-0.25 1 Y3 0 Y3 —13

10 0 15 X1 100 1 6.88

Ur=y = 0 4 -15 ro | = 12| = | x| =1|4.80
0 0 —6.25 X3 —13 3 2.08

note

If pivoting is required in more than one step, we proceed as follows.
EyP,E\P,A =U , but it can be shown that P,E; = E\P, (hw)
= EyE\P,PPA=U = PA=LU , where P= PP, , L=FE{'E;!

14. Mon 10/12 14

section 8.1 : 2-point boundary value problem

Find y(z) on 0 < z < 1 satisfying the differential equation —y” + q(z)y = r(x)
subject to boundary conditions y(0) = «,y(1) = 3, where ¢(x),r(x) are given.
The equation models a steady state convection-reaction-diffusion system, where
y(x) represents a velocity or temperature profile (for example).

finite-difference scheme

choose an integer n > 1 and set h = ﬁ : mesh size
set x; = ih for i =0,1,...,n 4+ 1 : mesh points (note : z9p =0, z,11 = 1)
| | | | | | | | !
| ! ! ! ! ! ! ! !
xo xl ------ xZ,]_ xz xz+1 ------ xn $n+1

y(x;) = y; : exact solution , ¢ = q(z;) , i = r(z;)

_ Yi41 —
: Dy, = ———
reca LY A
Yi — Yi- 1
DyD_y; = Dy (D-y;) = D4 <hl> = E(Dﬂﬁ — Dyyi1)

_ 1 <yi+1 —Yi (yz — yz’—l)) _ Vi — ity J (1)
h h h h? '

question : How accurate is the approximation?

Vi1 = y(xip1) = y(z; + h) : expand in a Taylor series about x = x;
2 4 (4
yint = i + hyp + Syl + Sl + G + e+ ord)

2 4 4
i = g — byl + Lyl = Iy By B O (Rd)

i 2y + yi— h?
D_D_vy; Yl ~ hy2 Ll v+ 12%(+ O(h*) : 2nd order accurate
T
discrete exact discretization
approximation value error

w; : numerical solution , w; ~y; , wy = a, Wyy1 = F

12)—i—qz-wl-:?“i,i:l,...,n

. <wz+1 sz + Wi—1
(—wit1 + (24 @h?) wi —wiy) = 7

h2
1=1 = %(—w2+(2+q1h2)w1—a) =n
i=n = 5 (-0+ 24 ¢h?)w, —w,1) = 1

15. Wed 10/14 15

2+ q1h? -1 wy 1+ a/h?
—1 24+ @h* -1 wo)
1 .- .-
ﬁ p—
—1 24 g,1h? -1 W1 Tn-1
—1 2 + g,h? wy, r, + 3/ h*

Apwy, =1, , Ajp o tridiagonal |, symmetric

questions
1. Is Ay, invertible for all h, g(x),r(x)?

2. Can wy, be computed efficiently?

3. Does wy, — yp as h — 0, i.e. does the numerical solution converge to the exact
solution as the mesh is refined? If so, what is the order of accuracy?

LU factorization for a tridiagonal system (Thomas algorithm)

bl C1 1 ur
a9 b2 (&) l2 1 U9 Co
Cpn—1 . Cn—1
a, b, [, 1 Uy,
find L, U
bl = U] = Ul = bl
ap = lpug—1 = I = ap/up_1 } for k—=9:n
b = lpcp—1 +up = up = by — lpcp— '

solve Lz =1r

21 ="
lizbe1+zo=1 = 2z =1 — lpzp_1 for k=2:n

solve Uw = z

UpWy, = Zp, = W, = Z/Uy

UpWE + Cpwper = 2k = Wi = (2K — gwgr1)/ug for k=n—1: —1:1
note

operation count = O(n)

memory = O(n) if vectors are used instead of full matrices

16

2-point bvp : —ey’ +y=22+1,0<2<1,y0)=0,y(1)=0,e=10"3
solution : y(z) = 2z + 1 — (sinh 15F + 3sinh %) /sinh -, check : hw

h=1/2

h=1/4

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

h=1/8 h=1/16

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

h iy — walloc [y hwhHoo [|yn hQIUhHoo [|yn h;UhHoo
0.50000000 0.015872 0.031744 0.0634890 0.126979
0.25000000 0.045420 0.181682 0.7267300 2.906920
0.12500000 0.113164 0.905315 7.2425200 57.94016
0.06250000 0.107705 1.723287 27.572593 441.1615
0.03125000 0.041333 1.322659 42.325086 1354.402
0.01562500 0.010982 0.702852 44.982586 2878.885
0.00781250 0.002790 0.357233 45.725862 5852.910
0.00390625 0.000701 0.179364 45.917351 11754.84

1. For % <h< %, the error increases as h decreases. This is due to the presence

of boundary layers (look closely at the plots).

1
2. For h < 4,

3. We see that ||y, — wp||sc = O(h?), so the method is 2nd order accurate.

if A decreases by %, then the error decreases by approximately i.

16. Fri 10/16 17

section 3.8 : iterative methods

Gaussian elimination is an example of a direct method for solving Ax = b, in
the sense that the exact solution is obtained after a finite number of steps. In
practice, the O(n?) operation count is a serious obstacle when n is large (and
storage can be an issue too). Now we consider an alternative class of methods
called iterative methods which generate a sequence of approximate solutions
xp such that limy_. xr, = x. As we shall see, iterative methods have some
advantages over direct methods.

Ar=b & o= Bx+c¢ : equivalent linear system
Tri1 = Bxp 4+ ¢ : fixed-point iteration

B : iteration matrix

Jacobi method

A=L+ D+ U : thisis different than LU factorization

D = diag(aq1,...,an,) , assume a; #0,i=1:n
0 0 ap - - aw
a921 0 0 :
[= : . .. , U=
Ap—1n
Gpi - ot Gpp1 0 0

Ar=b < (L+D+U)x=b

& Dr=—(L+U)x+b

& z=-DYL+U)x+D % , Bj=-DL+U)
Dz = —(L+U)xp +b

component form

k k k
a;r1 + ajprs + ajzrs = by = a11$§ = by — (auxé) + a13$§,)>

(k+1

k)
9171 + A22%2 + a93x3 = by = a0,

) = by, — <CL2136§ + az3$§k)>

k k k
a31T1 + azex2 + azzxz = by = CL33IE‘§, o b3 — <a31xg) + CL323€§)>

18

ex
200 — =1 = 2x§k+1) =1+ Iék)
—x1+2r0=1 = 295%“” =1+ :Cik)
The exact solution is 1 = 29 = 1. Let 2V = xéo) = 0 be the initial guess.
k x(lk) a:ék)
0 0 0
1| 1/2 | 1/2
2 | 3/4 | 3/4
31 7/8 | 7/8

Hence the numerical solution converges to the exact solution as k — oo.

def: e, =x —xp : error at step k

leollo =1, llerlloc = 3, lleallo =7, lleslloo =5 = llersilloc = 3llerlloc

thm
Consider a fixed-point iteration of the form x;,1 = Bxy + c.
1. €Li1 — Bek

2. If ||B]| < 1 for any matrix norm, then z; — x for any initial guess zy.

pt
1. egr1 = — a1 = (Br +¢) — (Bxp + ¢) = B(x — x1) = Bey,
2. ep = Bep 1 = B¢y p=--- = B¢y = |ler]| = || Beo|| < [|B*]| - ||eoll

1B%|l =1|B- Bl < ||B]| - [|1B]| = [|B]I* = [IB*|| < ||B|"
= [lexll < |IB][* - [leol] =0 as k—o0 ok
ex

(D) w3 (8)

= [|Billeo =3

O o=
N——

0
1
2

1. Since ||Bj||s < 1, the theorem implies that Jacobi’s method converges.

2. In each step the norm of the error decreases by %

17. Wed 10/21

Gauss-Seidel method
A=L+ D4+ U : as before

Ar=b & (L+D+U)z=b

o (L+De=-Uzs+b

& 2=—(L+D)"Wa+(L+D)% , Bas=—(L+D)'U
(L+ D)xpy = —Uzr +b : solve by forward substitution

component form

(k+1)

k k
anry + apry +azrs =0 = anz = b — <a12$§) + a1333z(a)>

k1 k1 k
a91T1 + A% + ag3r3 = by = a22:c§)= b, — <a21x§ ut a23x§,)>

a3171 + azex2 + azzxrz = by = a333;§)k+1) = by — (aglxgkﬂ) + a32x§k+1)>
Hence x§k+1) is used as soon as it’s computed, in contrast with Jacobi.
ex

200 — x93 =1 = 2x§k+1) =1+ g;g€>

—r1+2r5=1 = 2x§k+1) =1+ ;c(lkﬂ)

0] o 0

1] 1/2 | 3/4

2 | 7/8 |15/16
3 |31/32|63/64

Hence Gauss-Seidel converges faster than Jacobi.

1

leollos =1, llerlle =5, llealloc = 5+ llesllo = 35 = llenralloc = Jllenll

(2o 7o) =5

A= (_? _§> = BGS:—(L-I-D)*lU:—

|

= [|Baslle = 3
1. Since ||Bgsl||o < 1, the theorem implies that Gauss-Seidel converges.

2. In each step the norm of the error decreases by i.

[=R | =

19

20

0o 1L
Bi=(1 2) = 1Bsll =} llennlloo = Hllenll
2

0 1L
Bos= (o 1) = IBasll =3 llewnllo = dllerll
4

We see that ||exi1||co < || B - ||€x||oo in both cases, but the bound is not sharp

in the case of GS (because ; < ||Bgs||~). To explain this, we need to consider
the eigenvalues of the iteration matrix.

def

If Ax = Az, where x # 0 is a vector (real or complex) and A is a scalar (real or
complex), then X is an eigenvalue of A and x is a corresponding eigenvector.

ex
A= <(1) é) . permutation matrix
1 1 . :
A<1>:<1> = >\:11sane—valuemthe—vectora::<1>
1 1) (1
()= m et =)
note
Az =X, 2#0 & (A—-AN)z=0,2#0 < det(A—X)=0

fa(A) =det(A — AI) : characteristic polynomial of A

Hence the e-values of A are the roots of the characteristic polynomial f4(\).

- 1

ex fA(/\):det(A—)\[):det< S

>:A2—1:O:>)\::t1 ok

thm : If A is upper triangular, then the e-values are the diagonal elements.

o air - Qip ajp — A - a1n
A= : = A-)\ = :
0 App, 0 ann_>\

fa(A) =det(A—AI) = (a11 — A) -+ (apn — A) =0 = X = a;; for some i ok

18. Fri 10/23 21

recall:A:<_2 _1> = BGS:<O

PN NI
N———

1 2 0
A1 = 0 is an e-value of Bgg with e-vector vy = é) , check ...
1 9 2 heck
A2 =7 e v2=1|,) » check...

mea= () (- ()=

€1 — Beo = B(UQ — Ul) = BUQ — Bvl =)\21)2 —)\11)1 =)\21)2

€y = B€1 = B()\QUQ) =)\QBUQ =)\2 .)\21)2 =)\%Ug

er = Mvs = (D' = lexlloe = (1) 12]oc

This explains why ||ez11]|s = 3||ex]|~ in this case, even though ||Bgs||« = 3.
question : What determines the rate of convergence of an iterative method?

def : p(B) = max{|\| : X is an e-value of B} : spectral radius of B

thm
L |lex+1loo < ||B|loo - |l€x|]oo for all & >0 : error bound

2. |lexsilloo ~ p(B) - |lex||s as & — oo : asymptotic relation

This means that lim Nerrfloo = p(B).

k=oo |[eg||oo
Hence, the spectral radius of the iteration matrix p(B) determines the asymp-

totic rate of convergence of an iterative method.
pf
1. recall : ey = Bep = ||erti]loo = ||Bek|loo < ||B||oo -« |]€k]]o0

2. Math 571 (but the idea is the same as in the example above)

recall
2 —1 0 1)
A=) T) = m=(y §) =m0y
0 3)
Bgs = 0 1 = p(Bas) = 3 ok
4

19. Mon 10/26 22

question : Can we design faster methods?
Jacobi (1804-1851) , Gauss (1777-1855) , Seidel (1821-1896)

Richardson (1881-1953) : numerical weather forecasting

Ar=b, A=L+D+U

Recall the Gauss-Seidel method.

(L+ D)xpyy = —-Uxr+b & Dxpiy = Dy — (Lxgy + (D + U)xy — b)
Now let w be a free parameter and consider a modified iteration.
Dzyy1 = Dxy — w(Lxgy + (D + U)xy — b)

w > 1 is called successive over-relaxation (SOR) , w =1 = GS

component form

auxgkﬂ) = aux(lk) — w(anxgk) + algxgk) - a13x§k> — by)
a22517§k+1) = Cl22£13§k) - w(agle““) + a22$§k) + CL235E:(;k) — by)
a3356§,k+1) = a33$:(),k) — w(aglxﬁ’”” + a32$§k+1) + a33$:(),k) — bs3)
ex

201 — w9 =1 = 2 § D= 23:316) w(2x§k) —xék) - 1)
—a 42 =1 = 28 =2l — (a4 22 — 1)

matrix form

(wWL+D)xp1 = (1—w)D—wU))zp+wb = B, = (wL+ D)} ((1—w)D—wl))

€xX

(=0 2 G- (0 a2 u) () <)

O N G B (S B
0

check : w=1 = Bw:<0

):GS,p(Bw):}L ok

INTE NI

question : Can we choose w so that p(B,,) is smaller?

20. Wed 10/28 23

thm (Young 1950)
1. If p(B,) <1, then 0 < w < 2.

2. Assume A is block tridiagonal, symmetric, and positive definite (defined later).

2
Then w, = 5 is the optimal SOR parameter in the sense that

1 + 1— p(BJ)
p(B.,) = min p(B,) =w, —1 < p(Bgs) < p(By) < 1.

O<w<?2

pf : Math 571 (sometimes)

2 2 4
return to example : w, = = = =1.0718
P 1+ 1—p(By)?2 1+J1-(3)?2 243
ool | el | el | llerllo/llenmill
0 | 0.0000 | 0.0000 | 1.0000 e
1 | 0.5359 | 0.8231 | 0.4641 | 0.4641
2 1 0.9385 | 0.9798 | 0.0615 | 0.1325
3 1 0.9936 | 0.9980 | 0.0064 | 0.1047
l | | | l
00 1 1 0 p(B,,) =w,—1=0.0718
Hence optimal SOR converges faster than GS.
def : A is positive definite if 27Az > 0 for all x # 0 (section 3.7)
ex1 : A= (_? _;) is positive definite
pf::cicélx:(xl,a:g)< 2 —1><x1>:(x1,x2)<2x1—x2>
—1 2 T —x1 + 2$2
= 2(x} +23) — 2mw0 = 22+ 23+ (11 —29)* > 0
If x # 0, then either z; # 0 or x5 # 0, but in any case we have 74z > 0. ok

ex2 : A= (? ;) is positive definite , hw

ex3d : A= (; i) is not positive definite

pf : vAr = (11, 29)(1 2) <x1> = 2} + 23 + 4x179 : indefinite
2 1 T9

1

0

1

>:>331;4£U:1,$:<_1

for example : z = <) = 2Ax = =2 ok

21. Mon 11/2 24

ex 4 2 —1
1 —1 2 —1
Ah:ﬁ : dimensionnxn,whereh:n—il
—1 2
= (Ayw); = 5 (wis1 — 2w; + wi1) = =D D_w; (where wy = wy,11 = 0), so 4,

represents the finite difference operator —D,D_. A, is tridiagonal, symmetric,
and positive definite, and hence Young’s theorem applies.

note : The real advantage of iterative methods, in comparison with direct meth-
ods, occurs for BVPs in more than one dimension.
section 9.1 : two-dimensional BVP

problem : A metal plate has the shape of a square. The plate is heated by
internal sources and the edges of the plate are held at a given temperature.
Find the temperature at points inside the plate.

D ={(z,y) : 0 <z,y <1} : plate domain
o(z,y) : plate temperature

f(z,y) : heat sources , g(z,y) : boundary temperature

Then ¢(x,y) satisfies the following two equations.

2 2
1. —A¢p=— (g;ﬁ + gyf) = f for (z,y) in D : Poisson equation

:

Laplace operator

(note : This equation arises in many areas, e.g. if f is a charge/mass distribution,
then ¢ is the electrostatic/gravitational potential.)

2. ¢ = g for (x,y) on D : Dirichlet boundary condition

finite-difference scheme

h = %H : mesh size , (z;,y;) = (ih,jh), i,7=0,...,n+1: mesh points
C o 1
ex: n=3,h=7
Yy
4
33 6 d o(xi,y;) : exact solution , w;; : approximation
72 & g ordering of mesh points : (1,1),(1,2),...
1 T
0 x

— (D*D* 4+ D{DY)w;; = f;; : 2nd order accurate

ij+1

H-point stencil

i1,j ij il

1,71
— e (Wig1j — 2wij + wi1j + wijpn = 2wy + wija) = fi
#(4%’]' — Wiyl — Wi—15 — Wjj+1 — wi,j—l) = fij
Now consider what happens near the boundary.

(4,5) = (L1 = %(41011 — Wy — wor — Wiz — W) = fu1

= 5 (4w — wa — wi2) = fi1 + 55 (o1 + Guo)

1 2 3 4 5 6 7 8 9
w11 w12 w13 w21 w32 Wa3 w31 w32 w33
4 —1 —1
—1 4 —1 —1
—1 4 —1
—1 4 —1 —1
—1 —1 4 —1 —1
—1 —1 4 —1
—1 4 —1
—1 —1 4 —1
—1 —1 4
T -1
—1 T -1
Apwp = fun, Ap = ' '
—1 T

T : n xXn ,symmetric , tridiagonal

Ay o n? x n? | block tridiagonal , symmetric , positive definite (pf :

omit)

25

22. Wed 11/4

temperature distribution on a metal plate

no heat sources : ¢, + ¢, =0
boundary conditions : ¢(z,1) =1, ¢(x,0) = ¢(0,y) = ¢(1,y) =0

finite-difference scheme : 4w;;

h=1/4
1 _————
0.8 v
0.4
0.2
% 05
h=1/4

—_

— Wij-1 =0

— Wiyl — Wi-1,j — Wij+1
h=1/8 h=1/16
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
OO 0.5 00 0.5 1

26

The plots above show the solution of the linear system A,w;, = f;, for given mesh
size h. The results below show the behaviour of the iterative methods; the initial
guess was the zero vector and the stopping criterion was ||7]]so/||70]lc0 < 1072

Jacobi h |k | lrellso/llmi—allee | p(B)
1/4 | 13 0.7071 0.7071

1/8 | 38 0.9238 0.9239

1/16 | 97 0.9804 0.9808

Gauss-Seidel h E | Irklloo/||ma=1]] 0o p(B)
1/4 | 7 0.4997 0.5000

1/8 | 19 0.8521 0.8536

1/16 | 47 0.9600 0.9619

optimal SOR h | k | |[rglloo/|ITk-1lloc | p(B)
1/4 5 0.2645 0.1716

1/8 8 0.5124 0.4465

1/16 | 11 0.6855 0.6735

27

note

1. For a given value of h, GS requires fewer iterations than J, and SOR requires
fewer iterations than GS, but whichever method is used, more iterations are
needed as the mesh size h — 0. Hence decreasing h leads to smaller truncation
error, but the computational cost increases.

2. The ratio of successive residuals converges to the spectral radius of the itera-
tion matrix as h — 0.

3. Explicit formulas can be derived for p(B) in this example.
p(By) = cosTh ~ 1 — i7*h?
p(Bas) = cos’th ~ 1 — w2h?

1 —sinwh 1 —mh
1 +sinwh 14+ 7h

2
p(Bw*) - 1+W_1_

This confirms the observation above that the iteration converges more slowly as
h — 0, since p(B) — 1 in this limit. SOR is least affected by this, followed by
GS, and then J, i.e. p(B,,) < p(Bgs) < p(By) < 1.

4. Now consider what happens if Gaussian elimination is used to solve Apwy, = fj,.

o o0 0 0

~ 1—2mh

)

- RO O O O

a) Ay is a band matrix, i.e. a;; = 0 for |¢ — j| > m, where m is the bandwidth
(in this example we have m = 3).

b) As the elimination proceeds, zeros inside the band can become non-zero (this
is called fill-in), but zeros outside the band are preserved. Hence we can adjust
the limits on the loops to reduce the operation count for Gaussian elimination

from O(n?) to O(nm?).
c¢) Due to fill-in, more memory needs to be allocated than is required for the

original matrix A. This is a disadvantage in comparison with iterative methods
of the form x,1 = Bxp + ¢ (e.g. J, GS, SOR) which preserve the sparsity of A.

23. Fri 11/6 28

final comments on linear systems

1. comparison of operation counts

recall : For a two-dimensional BVP, the matrix A; has dimension n? x n?, where
h = #1 is the mesh size, the bandwidth of Aj is m = n, and the typical equation
is 15 (dwi; — Wig1j — Wis1j — W41 — Wij-1) = fij.

a) Gaussian elimination : O(n%) ops

banded Gaussian elimination : O(n*m?) = O(n') ops

b) iterative methods

S [17% /oo k log e
stopping criterion : = = pB)'=€¢ = k=—2—-
170/ log p(B)
J,GS = p(B)~1—ch* = logp(B)~ log(l — ch?) ~ —ch?
1
= ko~ Oghz —= O(n?) iterations , cost per iteration = O(n?) ops
—c

= total cost = O(n*) ops

SOR = p(B) ~1—ch

N kNloge

= O(n) iterations , cost per iteration = O(n?) ops
—c

= total cost = O(n?) ops

2. developments after SOR

multigrid : large h (fast, low accuracy) + small h (slow, high accuracy)
conjugate gradient method , GMRES : energy minimization
preconditioning : Axr =b — MAzxz = Mb

software

parallel algorithms

