7. Wed 9/23

section 3.0 : review of linear algebra

$$\left. \begin{array}{l} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \end{array} \right\} : \text{ system of linear equations for } x_1, \dots, x_n$$

We can write the system in 3 other forms.

1.
$$\sum_{j=1}^{n} a_{ij}x_j = b_i$$
, $i = 1:n$, $i:$ row index, $j:$ column index

$$2. \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

3. Ax = b

<u>basic problem</u>: Given A, b, find x.

solution : x = b/A : no, but $x = A \setminus b$ does work in Matlab (what is it doing?)

thm: The following conditions are equivalent.

- 1. The equation Ax = b has a unique solution for any vector b.
- 2. A is invertible, i.e. there exists a matrix A^{-1} such that $AA^{-1} = I$
- $3. \det A \neq 0$
- 4. The equation Ax = 0 has the unique solution x = 0.
- 5. The columns of A are linearly independent.
- 6. The eigenvalues of A are nonzero.

<u>note</u>

- 1. If A is invertible, then $x = A^{-1}b$ (because then $Ax = A(A^{-1}b) = (AA^{-1})b = Ib = b$), but this is not the best way to compute x in practice.
- 2. There are two types of methods for solving Ax = b, direct methods and iterative methods. We will begin with direct methods.

section 3.1 : Gaussian elimination

First consider the special case in which A is <u>upper triangular</u>.

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n-1,n-1}x_{n-1} + a_{n-1,n}x_n = b_{n-1}$$

$$a_{nn}x_n = b_n$$

$$\Rightarrow x_n = b_n/a_{nn}$$

$$x_{n-1} = (b_{n-1} - a_{n-1,n}x_n)/a_{n-1,n-1}$$

$$\vdots$$

$$x_1 = (b_1 - (a_{12}x_2 + \dots + a_{1n}x_n))/a_{11}$$

back substitution

1.
$$x_n = b_n/a_{nn}$$

2. for
$$i = n - 1 : -1 : 1$$
 % $i : row index$

3.
$$sum = b_i$$

4. for
$$j = i + 1 : n$$
 % j : column index

5.
$$sum = sum - a_{ij} \cdot x_j$$

6.
$$x_i = sum/a_{ii}$$

operation count

$$\#$$
 divisions = n

mults = # adds =
$$\frac{1}{2}n(n-1) = \frac{1}{2}n^2 - \frac{1}{2}n \sim \frac{1}{2}n^2$$
 for large n

 \underline{pf}

mults =
$$1 + 2 + \dots + (n-1) = \sum_{i=1}^{n-1} i = S$$

$$2S = \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} (i + (n-i)) = \sum_{i=1}^{n-1} n = n(n-1)$$

$$\Rightarrow S = \frac{1}{2}n(n-1)$$
 ok

Hence the leading order term in the operation count for back substitution is n^2 .

 $\underline{\text{note}}$: Similar considerations hold if A is $\underline{\text{lower triangular}}$.

note

In the case of a non-triangular matrix, we use <u>elementary row operations</u> to reduce Ax = b to upper triangular form and then apply back substitution to find x. elementary row operation: multiply an equation by a nonzero constant and subtract from another equation

$$\underline{ex}: n = 3$$

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

$$\begin{pmatrix}
a_{11} & a_{12} & a_{13} & b_1 \\
a_{21} & a_{22} & a_{23} & b_2 \\
a_{31} & a_{32} & a_{33} & b_3
\end{pmatrix}$$

step 1: eliminate variable x_1 from eqs. 2 and 3

$$m_{21} = \frac{a_{21}}{a_{11}}$$
 \Rightarrow $a_{22} \rightarrow a_{22} - m_{21}a_{12}$ % m_{21} is called a multiplier $a_{23} \rightarrow a_{23} - m_{21}a_{13}$ $b_{2} \rightarrow b_{2} - m_{21}b_{1}$ $m_{31} = \frac{a_{31}}{a_{11}}$ \Rightarrow $a_{32} \rightarrow a_{32} - m_{31}a_{12}$ $a_{33} \rightarrow a_{33} - m_{31}a_{13}$ $b_{3} \rightarrow b_{3} - m_{31}b_{1}$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2 \\ 0 & a_{32} & a_{33} & b_3 \end{pmatrix} - - \text{ these elements have changed}$$

step 2: eliminate variable x_2 from eq. 3

$$m_{32} = \frac{a_{32}}{a_{22}} \Rightarrow a_{33} \rightarrow a_{33} - m_{32}a_{23}$$

 $b_3 \rightarrow b_3 - l_{32}b_2$

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2 \\ 0 & 0 & \overline{a_{33}} & \overline{b_3} \end{pmatrix} : \text{ upper triangular}$$

8. Fri 9/25

$$2x_1 - x_2 = 1$$

$$-x_1 + 2x_2 - x_3 = 0$$

$$-x_2 + 2x_3 = 1$$

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & 1 \end{pmatrix} \quad m_{21} = -1/2$$

$$m_{31} = 0$$

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3/2 & -1 & 1/2 \\ 0 & -1 & 2 & 1 \end{pmatrix} \quad m_{32} = -1/(3/2) = -2/3$$

$$\begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3/2 & -1 & 1/2 \\ 0 & -1 & 2 & 1 \end{pmatrix} \quad m_{32} = 1, \quad x_1 = (1 - (-1) \cdot 1)/2 = 1 \quad \text{check} : \underline{ok}$$

$$x_3 = 1, \quad x_2 = (\frac{1}{2} - (-1) \cdot 1)/\frac{3}{2} = 1, \quad x_1 = (1 - (-1) \cdot 1)/2 = 1 \quad \text{check} : \underline{ok}$$

general $n \times n$ case

reduction to upper triangular form

1. for
$$k = 1 : n - 1$$
 % $k : \text{step index}$

2. for i = k + 1 : n

3.
$$m_{ik} = a_{ik}/a_{kk}$$
 % assume $a_{kk} \neq 0$, more later

4. for j = k + 1 : n

$$5. a_{ij} = a_{ij} - m_{ik} \cdot a_{kj}$$

$$6. b_i = b_i - m_{ik} \cdot b_k$$

note

The element a_{kk} in step k is called a <u>pivot</u> (these are the diagonal elements in the last step). In the previous example, the pivots are $2, \frac{3}{2}, \frac{4}{3}$.

operation count

The leading order term comes from line 5.

$$k = 1 \implies 2(n-1)^{2} \text{ ops} k = 2 \implies 2(n-2)^{2} \text{ ops} \vdots k = n-2 \implies 2 \cdot 2^{2} \text{ ops} k = n-1 \implies 2 \cdot 1^{2} \text{ ops}$$

$$\Rightarrow 2 \cdot \sum_{k=1}^{n-1} k^{2} = 2 \cdot \frac{(n-1)n(2n-1)}{6}$$

Hence the operation count for Gaussian elimination is $\frac{2}{3}n^3$.

note

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \quad , \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

pf

1. already done

2.
$$n^{3} = n^{3} - (n-1)^{3} + (n-1)^{3} + \dots - 2^{3} + 2^{3} - 1^{3} + 1^{3} = \sum_{k=1}^{n} (k^{3} - (k-1)^{3})$$

 $k^{3} - (k-1)^{3} = k^{3} - (k^{3} - 3k^{2} + 3k - 1) = 3k^{2} - 3k + 1$
 $n^{3} = \sum_{k=1}^{n} (3k^{2} - 3k + 1) = 3\sum_{k=1}^{n} k^{2} - 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 3S - 3\frac{n(n+1)}{2} + n$
 $S = \sum_{k=1}^{n} k^{2} = \frac{1}{3} \left(n^{3} + \frac{3}{2}n(n+1) - n \right) = \frac{1}{3}n \left(n^{2} + \frac{3}{2}(n+1) - 1 \right)$
 $= \frac{1}{3}n \left(n^{2} + \frac{3}{2}n + \frac{1}{2} \right) = \frac{1}{3}n \cdot \frac{1}{2}(2n^{2} + 3n + 1) = \frac{1}{3}n \cdot \frac{1}{2}(2n+1)(n+1)$ ok

ex: electric circuit for charging a car battery (page 129, problem 13)

Apply Kirchoff's voltage law and current law to determine the currents.

1. The sum of the voltage drops around any closed loop is zero.

$$\Rightarrow 4I_2 + 12 - 15I_3 = 0$$
, $15I_3 - 100 + 10I_1 = 0$ (using Ohm's law $V = IR$)

2. The sum of the currents flowing into a junction equals the sum flowing out.

$$\Rightarrow I_1 = I_2 + I_3$$

$$\Rightarrow \begin{pmatrix} 0 & 4 & -15 \\ 10 & 0 & 15 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} -12 \\ 100 \\ 0 \end{pmatrix}$$

Hence we can't apply Gaussian elimination because the 1st pivot is zero.

9. Mon 9/28

section 3.2 : pivoting

There are various <u>pivoting strategies</u> that can be applied if one of the pivots is zero.

partial pivoting

Consider the reduced matrix at the beginning of step k.

$$\begin{pmatrix} a_{11} & \cdots & a_{1k} & \cdots & a_{1n} & b_1 \\ & \ddots & \vdots & & \vdots & \vdots \\ & & a_{kk} & \cdots & a_{kn} & b_k \\ & \vdots & & \vdots & \vdots \\ & & a_{nk} & \cdots & a_{nn} & b_n \end{pmatrix}$$

If $a_{kk} = 0$, find index l such that $|a_{lk}| = \max\{|a_{ik}|; k \leq i \leq n\}$, then interchange row l and row k and proceed with the elimination.

- 1. If A is invertible, then Gaussian elimination with partial pivoting does not break down. (pf : Math 571)
- 2. Interchanging the rows can be done implicitly, using an index array, to avoid the expense of moving the matrix elements in memory.
- 3. Other strategies are <u>scaled partial pivoting</u> and <u>complete pivoting</u>, but we won't consider these.
- 4. In practice, pivoting is often applied even if the pivot element is nonzero.

$$\frac{ex}{\begin{pmatrix} \epsilon & 1 + 1 + \epsilon \\ 1 & 1 & 2 \end{pmatrix}} \rightarrow \begin{pmatrix} \epsilon & 1 & 1 + \epsilon \\ 0 & 1 - \frac{1}{\epsilon} & 1 - \frac{1}{\epsilon} \end{pmatrix} \Rightarrow x_1 = \frac{1 + \epsilon - 1}{\epsilon} = 1 \\
m_{21} = \frac{1}{\epsilon} \qquad x_2 = \frac{1 - \frac{1}{\epsilon}}{1 - \frac{1}{\epsilon}} = 1$$
: exact solution

Now consider the effect of roundoff error.

$$\begin{pmatrix} \epsilon & 1 & | & 1 \\ 0 & -\frac{1}{\epsilon} & | & -\frac{1}{\epsilon} \end{pmatrix} \Rightarrow \begin{cases} \tilde{x}_1 = \frac{1-1}{\epsilon} = 0 \\ \tilde{x}_2 = \frac{-\frac{1}{\epsilon}}{-\frac{1}{\epsilon}} = 1 \end{cases} : \text{ computed solution , inaccurate}$$

Now apply pivoting in the presence of roundoff error.

$$\begin{pmatrix} 1 & 1 + 2 \\ \epsilon & 1 + 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 + 2 \\ 0 & 1 + 1 \end{pmatrix} \Rightarrow \tilde{x}_1 = 1 \\ \tilde{x}_2 = 1 \} : \text{new computed solution , accurate}$$

$$m_{21} = \frac{\epsilon}{1} = \epsilon$$

This is an issue of stability. (more later)

10. Wed 9/30

section 3.3 : vector and matrix norms

<u>def</u>: A <u>vector norm</u> is a function $x \to ||x||$ satisfying the following properties.

1.
$$||x|| \ge 0$$
 and $||x|| = 0 \Leftrightarrow x = 0$

2.
$$||\alpha x|| = |\alpha| \cdot ||x||$$
, α : scalar

3.
$$||x+y|| \le ||x|| + ||y||$$
: triangle inequality

<u>note</u>: The vector norm measures the size of a vector.

$$\frac{\mathrm{ex}}{||x||_2} = \left(\sum_{i=1}^n x_i^2\right)^{1/2} : \text{ Euclidean length}$$

$$||x||_{\infty} = \max\{|x_i| : i = 1, \dots, n\}$$

$$\underline{\mathbf{ex}}: \ x = \begin{pmatrix} 1\\2 \end{pmatrix} \ \Rightarrow \ ||x||_2 = \sqrt{5} \ , \ ||x||_{\infty} = 2$$

<u>def</u>: Given a matrix A, consider the transformation $x \to Ax$ as input \to output.

Then $\frac{||Ax||}{||x||}$ is the amplification factor for a given input vector x and we define the matrix norm to be the maximum amplification factor over all nonzero input

vectors, $||A|| = \max_{x \neq 0} \frac{||Ax||}{||x||}$. The matrix norm satisfies the following properties.

1.
$$||A|| \ge 0$$
 and $||A|| = 0 \Leftrightarrow A = 0$

$$2. ||\alpha A|| = |\alpha| \cdot ||A||$$

3.
$$||A + B|| \le ||A|| + ||B||$$

4.
$$||Ax|| \le ||A|| \cdot ||x||$$

5.
$$||AB|| \le ||A|| \cdot ||B||$$

pf: just property 5

$$||AB|| = \max_{x \neq 0} \frac{||ABx||}{||x||} \le \max_{x \neq 0} \frac{||A|| \cdot ||Bx||}{||x||} \le \max_{x \neq 0} \frac{||A|| \cdot ||B|| \cdot ||x||}{||x||} = ||A|| \cdot ||B||$$

$$def \qquad prop 4 \qquad prop 4 \qquad \underline{ok}$$

<u>note</u>: Computing ||A|| by the definition is difficult, but there are more convenient formulas that can be used in practice.

$$\begin{array}{l} \underbrace{\operatorname{thm}}: ||A||_{\infty} = \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = \max_{i} \sum_{j} |a_{ij}| : \max \text{ row sum} \\ \underline{\operatorname{ex}}: \ A = \begin{pmatrix} 3 & -4 \\ 1 & 0 \end{pmatrix} \Rightarrow ||A||_{\infty} = \max\{|3| + |-4|, |1| + |0|\} = 7 \\ x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow Ax = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \Rightarrow \frac{||Ax||_{\infty}}{||x||_{\infty}} = \frac{3}{1} = 3 \\ x = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow Ax = \begin{pmatrix} -4 \\ 0 \end{pmatrix} \Rightarrow \frac{||Ax||_{\infty}}{||x||_{\infty}} = \frac{4}{1} = 4 \\ x = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \Rightarrow Ax = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \Rightarrow \frac{||Ax||_{\infty}}{||x||_{\infty}} = \frac{1}{1} = 1 \\ x = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow Ax = \begin{pmatrix} 7 \\ 1 \end{pmatrix} \Rightarrow \frac{||Ax||_{\infty}}{||x||_{\infty}} = \frac{7}{1} = 7 : \max \text{ amp factor by thm} \\ \underline{\operatorname{pf}} \text{ (thm)} \\ ||Ax||_{\infty} = \max_{i} |(Ax)_{i}| = \max_{i} \left|\sum_{j} a_{ij}x_{j}\right| \leq \max_{i} \sum_{j} |a_{ij}||x_{j}| \leq \max_{i} \sum_{j} |a_{ij}| \cdot ||x||_{\infty} \\ \Rightarrow \frac{||Ax||_{\infty}}{||x||_{\infty}} \leq \max_{i} \sum_{j} |a_{ij}| = \sum_{j} |a_{ij}| \text{ for some index } l \text{ (this holds for all } x \neq 0) \\ \underline{\operatorname{Define}} \ y = (\operatorname{sign}(a_{11}), \ldots, \operatorname{sign}(a_{ln}))^{T}. \\ \Rightarrow ||y||_{\infty} = 1, \sum_{j} |a_{ij}| = \sum_{j} a_{ij}y_{j} = (Ay)_{l} \leq ||Ay||_{\infty} \\ \Rightarrow ||A||_{\infty} = \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} \leq \sum_{j} |a_{ij}| \leq \frac{||Ay||_{\infty}}{||y||_{\infty}} \leq \max_{x \neq 0} \frac{||Ax||_{\infty}}{||x||_{\infty}} = ||A||_{\infty} \quad \text{ok} \\ \underline{\operatorname{thm}}: \ ||A||_{2} = \max_{x \neq 0} \frac{||Ax||_{2}}{||x||_{2}} = \max\{\sqrt{\lambda}: \lambda \text{ is an eigenvalue of } A^{T}A\} \\ \underline{\operatorname{ex}}: A^{T}A = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix} \Rightarrow ||A||_{2} = 2.9208 \quad \text{(Matlab)} \\ x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow Ax = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \Rightarrow \frac{||Ax||_{2}}{||x||_{2}} = \frac{\sqrt{13}}{\sqrt{2}} = 2.5495 \\ \hline{ ||Ax||_{2}} = \frac{\sqrt$$

pf (thm) Math 571

11. Mon 10/5

section 3.4 : error analysis

Ax = b , A : invertible

x: exact solution , \tilde{x} : approximate solution

 $e = x - \tilde{x} : \underline{\text{error}}$, $r = b - A\tilde{x} : \underline{\text{residual}}$

note:
$$Ae = r$$
, pf: $Ae = A(x - \tilde{x}) = Ax - A\tilde{x} = b - A\tilde{x} = r$ ok

Then e = 0 if and only if r = 0, but if ||r|| is small, there's no guarantee that ||e|| is also small.

ex

$$\begin{pmatrix} 1.01 & 0.99 & 2 \\ 0.99 & 1.01 & 2 \end{pmatrix} \implies x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\tilde{x}_1 = \begin{pmatrix} 1.01 \\ 1.01 \end{pmatrix} \Rightarrow e_1 = \begin{pmatrix} -0.01 \\ -0.01 \end{pmatrix}, ||e_1||_{\infty} = 0.01, r_1 = \begin{pmatrix} -0.02 \\ -0.02 \end{pmatrix}, ||r_1||_{\infty} = 0.02$$

$$\tilde{x}_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \implies e_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \quad ||e_2||_{\infty} = 1, \quad r_2 = \begin{pmatrix} -0.02 \\ 0.02 \end{pmatrix}, \, ||r_2||_{\infty} = 0.02$$

Hence ||r|| is small in both cases, while ||e|| is small in case 1 and 100 times larger in case 2. How large can ||e|| be?

$$\underline{\text{thm}}: \frac{||e||}{||x||} \le \kappa(A) \frac{||r||}{||b||}, \text{ where } \kappa(A) = ||A|| \cdot ||A^{-1}||: \underline{\text{condition number}}$$

 \underline{ex}

$$A = \begin{pmatrix} 1.01 & 0.99 \\ 0.99 & 1.01 \end{pmatrix} \Rightarrow ||A||_{\infty} = 2$$

$$A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \frac{1}{0.04} \begin{pmatrix} 1.01 & -0.99 \\ -0.99 & 1.01 \end{pmatrix}$$
$$= \begin{pmatrix} 25.25 & -24.75 \\ -24.75 & 25.25 \end{pmatrix} \Rightarrow ||A^{-1}||_{\infty} = 50 \Rightarrow \kappa_{\infty}(A) = 100 \quad \underline{ok}$$

pf

1.
$$||b|| = ||Ax|| \le ||A|| \cdot ||x|| \Rightarrow ||x|| \ge ||b||/||A||$$

2.
$$Ae = r \implies e = A^{-1}r \implies ||e|| = ||A^{-1}r|| \le ||A^{-1}|| \cdot ||r||$$

3.
$$\frac{||e||}{||x||} \le \frac{||A^{-1}|| \cdot ||r||}{||b||/||A||} = \kappa(A) \cdot \frac{||r||}{||b||}$$
 ok

12. Wed 10/7

note

1.
$$\begin{cases} Ax = b \\ A\tilde{x} = \tilde{b} \end{cases} \Rightarrow \frac{||x - \tilde{x}||}{||x||} \le \kappa(A) \frac{||b - \tilde{b}||}{||b||}$$
: perturbation in RHS, $\underline{\text{pf}}$: $\underline{\text{ok}}$

2.
$$Ax = b \atop \tilde{A}\tilde{x} = b$$
 $\Rightarrow \frac{||x - \tilde{x}||}{||\tilde{x}||} \le \kappa(A) \frac{||A - A||}{||A||}$: perturbation in matrix , $\underline{p}f$: hw

Hence $\kappa(A)$ controls the error in the solution due to perturbations in A and b. ex (recall)

$$\begin{pmatrix} \epsilon & 1 + 1 + \epsilon \\ 1 & 1 + 2 \end{pmatrix} \rightarrow \begin{pmatrix} \epsilon & 1 & + 1 + \epsilon \\ 0 & 1 - \frac{1}{\epsilon} + 1 - \frac{1}{\epsilon} \end{pmatrix} \implies \begin{cases} x_1 = 1 \\ x_2 = 1 \end{cases} : \text{ exact solution}$$

Now consider the effect of roundoff error.

$$\begin{pmatrix} \epsilon & 1 & 1 & 1 \\ 0 & -\frac{1}{\epsilon} & -\frac{1}{\epsilon} \end{pmatrix} \Rightarrow \begin{pmatrix} \tilde{x}_1 = 0 \\ \tilde{x}_2 = 1 \end{pmatrix} : \text{computed solution , inaccurate}$$

explanation

$$A = \begin{pmatrix} \epsilon & 1 \\ 1 & 1 \end{pmatrix} , \ A^{-1} = \frac{1}{\epsilon - 1} \begin{pmatrix} 1 & -1 \\ -1 & \epsilon \end{pmatrix} \Rightarrow \kappa_{\infty}(A) = 2 \cdot \frac{1}{|\epsilon - 1|} \cdot 2 \approx 4$$

However, Gaussian elimination reduces the system to upper triangular form.

$$U = \begin{pmatrix} \epsilon & 1 \\ 0 & 1 - \frac{1}{\epsilon} \end{pmatrix}, \ U^{-1} = \frac{1}{\epsilon - 1} \begin{pmatrix} 1 - \frac{1}{\epsilon} & -1 \\ 0 & \epsilon \end{pmatrix}$$

$$\Rightarrow \kappa_{\infty}(U) = |1 - \frac{1}{\epsilon}| \cdot \frac{1}{|\epsilon - 1|} \cdot (|1 - \frac{1}{\epsilon}| + 1) \approx \frac{1}{\epsilon^{2}} : \text{can be larger than } \kappa_{\infty}(A)$$

Hence a small change in the matrix or RHS of the reduced system (e.g. due to roundoff error) can produce a large change in the computed solution (as in the previous example). This means that Gaussian elimination is an <u>unstable</u> method for solving Ax = b because it can replace a well-conditioned matrix A by an ill-conditioned matrix U. Pivoting however produces a different reduced system.

$$\begin{pmatrix} 1 & 1 & 2 \\ \epsilon & 1 & 1 + \epsilon \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 - \epsilon & 1 - \epsilon \end{pmatrix} \implies \tilde{x}_1 = 1 \\ \tilde{x}_2 = 1 \end{pmatrix} : \text{ exact solution}$$

$$U = \begin{pmatrix} 1 & 1 \\ 0 & 1 - \epsilon \end{pmatrix}, \ U^{-1} = \frac{1}{1 - \epsilon} \begin{pmatrix} 1 - \epsilon & -1 \\ 0 & 1 \end{pmatrix} \implies \kappa_{\infty}(U) \approx 4 \approx \kappa_{\infty}(A)$$

In fact, Gaussian elimination + partial pivoting + IEEE arithmetic is stable (in most cases).

section 3.5: LU factorization

matrix form of Gaussian elimination

We consider the 3×3 case (but the general $n \times n$ case is similar).

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

step 1: eliminate variable x_1 from eqs. 2 and 3

$$m_{21} = \frac{a_{21}}{a_{11}}, m_{31} = \frac{a_{31}}{a_{11}}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & \lceil \bar{a}_{22} & \bar{a}_{23} \rceil \\ 0 & \lceil a_{32} & a_{33} \rceil \end{pmatrix}$$

step 2: eliminate variable x_2 from eq. 3

$$m_{32} = \frac{a_{32}}{a_{22}}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & \boxed{a_{33}} \end{bmatrix} = U : \text{ upper triangular}$$

$$\Rightarrow E_2 E_1 A = U \Rightarrow A = E_1^{-1} E_2^{-1} U$$

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 \end{pmatrix} , E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & 0 & 1 \end{pmatrix} , \text{ check } : E_1 E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -m_{32} & 1 \end{pmatrix} , E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{32} & 1 \end{pmatrix}$$

$$E_1^{-1}E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & m_{32} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ m_{21} & 1 & 0 \\ m_{31} & m_{32} & 1 \end{pmatrix} = L : \text{lower}$$
triangular

final result : A = LU

13. Fri 10/9

ex

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & -1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

$$m_{21} = \frac{-1}{2} \qquad m_{32} = \frac{-1}{3/2} = -\frac{2}{3}$$

$$m_{31} = \frac{0}{2} = 0$$

check:

$$LU = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} = A \quad \underline{ok}$$

note

To solve Ax = b.

step 1. factor A = LU

step 2. solve Ly = b by forward substitution

step 3. solve Ux = y by back substitution

 $check: Ax = LUx = Ly = b \quad \underline{ok}$

<u>ex</u>

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} , b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \Rightarrow x = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Previously we used Gaussian elimination, but now we'll use LU factorization.

$$Ly = b \implies \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \implies \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{4}{3} \end{pmatrix}$$

$$Ux = y \implies \begin{pmatrix} 2 & -1 & 0 \\ 0 & \frac{3}{2} & -1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ \frac{4}{3} \end{pmatrix} \implies \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \underline{ok}$$

question: So what's the point of LU factorization?

answer: Some applications require solving Ax = b for a given matrix A and a sequence of different vectors b (e.g. in a time-dependent problem). Once the LU factorization of A is known, we can apply forward and back substitution to the sequence of vectors b - it's not necessary to repeat the LU factorization.

LU factorization and partial pivoting

To perform partial pivoting we need to interchange rows and this can be represented using a <u>permutation matrix</u>. Instead of A = LU, the final result is PA = LU, where P is a permutation matrix.

ex

$$\begin{pmatrix} 0 & 4 & -15 \\ 10 & 0 & 15 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -12 \\ 100 \\ 0 \end{pmatrix}$$

We want to interchange rows 1 and 2.

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 4 & -15 \\ 10 & 0 & 15 \\ 1 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & 15 \\ 0 & 4 & -15 \\ 1 & -1 & -1 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 10 & 0 & 15 \\ 0 & 4 & -15 \\ 1 & -1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & 0 & 15 \\ 0 & 4 & -15 \\ 0 & -1 & -2.5 \end{pmatrix} \rightarrow \begin{pmatrix} 10 & 0 & 15 \\ 0 & 4 & -15 \\ 0 & 0 & -6.25 \end{pmatrix}$$

$$m_{21} = \frac{0}{10} = 0 \qquad m_{32} = \frac{-1}{4} = -0.25$$

$$m_{31} = \frac{1}{10}$$

check : $PA = LU \dots$

Then $Ax = b \Rightarrow PAx = Pb \Rightarrow LUx = Pb$ and we can apply forward and back substitution to find x.

$$Ly = Pb \implies \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0.1 & -0.25 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 100 \\ -12 \\ 0 \end{pmatrix} \implies \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 100 \\ -12 \\ -13 \end{pmatrix}$$

$$Ux = y \implies \begin{pmatrix} 10 & 0 & 15 \\ 0 & 4 & -15 \\ 0 & 0 & -6.25 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 100 \\ -12 \\ -13 \end{pmatrix} \implies \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6.88 \\ 4.80 \\ 2.08 \end{pmatrix}$$

<u>note</u>

If pivoting is required in more than one step, we proceed as follows.

$$E_2 P_2 E_1 P_1 A = U$$
, but it can be shown that $P_2 E_1 = \tilde{E}_1 P_2$ (hw)
 $\Rightarrow E_2 \tilde{E}_1 P_2 P_1 A = U \Rightarrow PA = LU$, where $P = P_2 P_1$, $L = \tilde{E}_1^{-1} E_2^{-1}$

14. Mon 10/12

section 8.1 : 2-point boundary value problem

Find y(x) on $0 \le x \le 1$ satisfying the differential equation -y'' + q(x)y = r(x) subject to boundary conditions $y(0) = \alpha, y(1) = \beta$, where q(x), r(x) are given. The equation models a steady state convection-reaction-diffusion system, where y(x) represents a velocity or temperature profile (for example).

finite-difference scheme

choose an integer $n \ge 1$ and set $h = \frac{1}{n+1}$: mesh size

set
$$x_i = ih$$
 for $i = 0, 1, ..., n + 1$: mesh points (note: $x_0 = 0, x_{n+1} = 1$)

 $y(x_i) = y_i$: exact solution , $q_i = q(x_i)$, $r_i = r(x_i)$

recall:
$$D_+ y_i = \frac{y_{i+1} - y_i}{h}$$
, $D_- y_i = \frac{y_i - y_{i-1}}{h}$

$$D_{+}D_{-}y_{i} = D_{+}(D_{-}y_{i}) = D_{+}\left(\frac{y_{i} - y_{i-1}}{h}\right) = \frac{1}{h}(D_{+}y_{i} - D_{+}y_{i-1})$$
$$= \frac{1}{h}\left(\frac{y_{i+1} - y_{i}}{h} - \left(\frac{y_{i} - y_{i-1}}{h}\right)\right) = \frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}} \approx y''(x_{i})$$

question: How accurate is the approximation?

$$y_{i+1} = y(x_{i+1}) = y(x_i + h)$$
: expand in a Taylor series about $x = x_i$

$$y_{i+1} = y_i + hy_i' + \frac{h^2}{2}y_i'' + \frac{h^3}{3!}y_i''' + \frac{h^4}{4!}y_i^{(4)} + \frac{h^5}{5!}y_i^{(5)} + O(h^6)$$

$$y_{i-1} = y_i - hy_i' + \frac{h^2}{2}y_i'' - \frac{h^3}{3!}y_i''' + \frac{h^4}{4!}y_i^{(4)} - \frac{h^5}{5!}y_i^{(5)} + O(h^6)$$

$$D_{+}D_{-}y_{i} = \underbrace{\frac{y_{i+1} - 2y_{i} + y_{i-1}}{h^{2}}}_{\text{discrete}} = \underbrace{y_{i}''}_{\text{exact}} + \underbrace{\frac{h^{2}}{12}y_{i}^{(4)} + O(h^{4})}_{\text{discretization}} : 2nd \text{ order accurate}$$

$$\underbrace{\frac{discrete}{approximation}}_{\text{exact}} = \underbrace{\frac{h^{2}}{12}y_{i}^{(4)} + O(h^{4})}_{\text{exact}} : 2nd \text{ order accurate}$$

 w_i : numerical solution, $w_i \approx y_i$, $w_0 = \alpha$, $w_{n+1} = \beta$

$$-\left(\frac{w_{i+1}-2w_i+w_{i-1}}{h^2}\right)+q_iw_i=r_i, i=1,\ldots,n$$

$$\frac{1}{h^2} \left(-w_{i+1} + \left(2 + q_i h^2 \right) w_i - w_{i-1} \right) = r_i$$

$$i = 1 \implies \frac{1}{h^2} \left(-w_2 + \left(2 + q_1 h^2 \right) w_1 - \alpha \right) = r_1$$

$$i = n \implies \frac{1}{h^2} \left(-\beta + \left(2 + q_n h^2 \right) w_n - w_{n-1} \right) = r_n$$

15. Wed 10/14

$$\frac{1}{h^2} \begin{pmatrix} 2 + q_1 h^2 & -1 & & & & \\ -1 & 2 + q_2 h^2 & -1 & & & & \\ & \ddots & \ddots & & \ddots & & \\ & & \ddots & & \ddots & & \ddots & \\ & & & \ddots & & \ddots & & \ddots & \\ & & & -1 & 2 + q_{n-1} h^2 & -1 & \\ & & & & -1 & 2 + q_n h^2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ \vdots \\ \vdots \\ w_{n-1} \\ w_n \end{pmatrix} = \begin{pmatrix} r_1 + \alpha/h^2 \\ r_2 \\ \vdots \\ \vdots \\ \vdots \\ r_{n-1} \\ r_n + \beta/h^2 \end{pmatrix}$$

 $A_h w_h = r_h$, A_h : tridiagonal, symmetric

questions

- 1. Is A_h invertible for all h, q(x), r(x)?
- 2. Can w_h be computed efficiently?
- 3. Does $w_h \to y_h$ as $h \to 0$, i.e. does the numerical solution converge to the exact solution as the mesh is refined? If so, what is the order of accuracy?

<u>LU factorization for a tridiagonal system</u> (Thomas algorithm)

find L, U

$$\begin{array}{lll} b_1 = u_1 & \Rightarrow & u_1 = b_1 \\ a_k = l_k u_{k-1} & \Rightarrow & l_k = a_k / u_{k-1} \\ b_k = l_k c_{k-1} + u_k & \Rightarrow & u_k = b_k - l_k c_{k-1} \end{array} \right\} \text{ for } k = 2:n$$

solve Lz = r

$$z_1 = r_1$$

$$l_k z_{k-1} + z_k = r_k \implies z_k = r_k - l_k z_{k-1}$$
 for $k = 2: n$

solve Uw = z

$$u_n w_n = z_n$$
 $\Rightarrow w_n = z_n / u_n$
 $u_k w_k + c_k w_{k+1} = z_k \Rightarrow w_k = (z_k - c_k w_{k+1}) / u_k$ for $k = n - 1 : -1 : 1$

note

operation count = O(n)

memory = O(n) if vectors are used instead of full matrices

2-point by $y(x) = -\epsilon y'' + y = 2x + 1$, $0 \le x \le 1$, y(0) = 0, y(1) = 0, $\epsilon = 10^{-3}$ solution: $y(x) = 2x + 1 - (\sinh \frac{1-x}{\sqrt{\epsilon}} + 3\sinh \frac{x}{\sqrt{\epsilon}})/\sinh \frac{1}{\sqrt{\epsilon}}$, check: hw

- 1. For $\frac{1}{8} \le h \le \frac{1}{2}$, the error increases as h decreases. This is due to the presence of <u>boundary layers</u> (look closely at the plots).
- 2. For $h \leq \frac{1}{32}$, if h decreases by $\frac{1}{2}$, then the error decreases by approximately $\frac{1}{4}$.
- 3. We see that $||y_y w_h||_{\infty} = O(h^2)$, so the method is 2nd order accurate.

16. Fri 10/16

section 3.8: iterative methods

Gaussian elimination is an example of a <u>direct method</u> for solving Ax = b, in the sense that the exact solution is obtained after a finite number of steps. In practice, the $O(n^3)$ operation count is a serious obstacle when n is large (and storage can be an issue too). Now we consider an alternative class of methods called <u>iterative methods</u> which generate a sequence of approximate solutions x_k such that $\lim_{k\to\infty} x_k = x$. As we shall see, iterative methods have some advantages over direct methods.

$$Ax = b \Leftrightarrow x = Bx + c$$
: equivalent linear system
$$x_{k+1} = Bx_k + c$$
: fixed-point iteration

B: iteration matrix

Jacobi method

$$A = L + D + U$$
: this is different than LU factorization

$$D = diag(a_{11}, ..., a_{nn})$$
, assume $a_{ii} \neq 0, i = 1 : n$

$$L = \begin{pmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ \vdots & \ddots & \ddots & & \\ \vdots & & \ddots & \ddots & \\ a_{n1} & \cdots & \cdots & a_{n\,n-1} & 0 \end{pmatrix} , \quad U = \begin{pmatrix} 0 & a_{12} & \cdots & \cdots & a_{1n} \\ 0 & \ddots & & \vdots \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & a_{n-1,n} \\ & & & & 0 \end{pmatrix}$$

$$Ax = b \Leftrightarrow (L + D + U)x = b$$

$$\Leftrightarrow Dx = -(L + U)x + b$$

$$\Leftrightarrow x = -D^{-1}(L + U)x + D^{-1}b , B_J = -D^{-1}(L + U)$$

$$Dx_{k+1} = -(L+U)x_k + b$$

component form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \implies a_{11}x_1^{(k+1)} = b_1 - \left(a_{12}x_2^{(k)} + a_{13}x_3^{(k)}\right)$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \implies a_{22}x_2^{(k+1)} = b_2 - \left(a_{21}x_1^{(k)} + a_{23}x_3^{(k)}\right)$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \implies a_{33}x_3^{(k+1)} = b_3 - \left(a_{31}x_1^{(k)} + a_{32}x_2^{(k)}\right)$$

$$2x_1 - x_2 = 1 \implies 2x_1^{(k+1)} = 1 + x_2^{(k)}$$

 $-x_1 + 2x_2 = 1 \implies 2x_2^{(k+1)} = 1 + x_1^{(k)}$

The exact solution is $x_1 = x_2 = 1$. Let $x_1^{(0)} = x_2^{(0)} = 0$ be the initial guess.

$$\begin{array}{c|ccccc} k & x_1^{(k)} & x_2^{(k)} \\ \hline 0 & 0 & 0 \\ 1 & 1/2 & 1/2 \\ 2 & 3/4 & 3/4 \\ 3 & 7/8 & 7/8 \\ \end{array}$$

Hence the numerical solution converges to the exact solution as $k \to \infty$.

 $\underline{\operatorname{def}}$: $e_k = x - x_k$: error at step k

$$||e_0||_{\infty} = 1$$
, $||e_1||_{\infty} = \frac{1}{2}$, $||e_2||_{\infty} = \frac{1}{4}$, $||e_3||_{\infty} = \frac{1}{8}$ \Rightarrow $||e_{k+1}||_{\infty} = \frac{1}{2}||e_k||_{\infty}$

$\underline{\text{thm}}$

Consider a fixed-point iteration of the form $x_{k+1} = Bx_k + c$.

- 1. $e_{k+1} = Be_k$
- 2. If ||B|| < 1 for any matrix norm, then $x_k \to x$ for any initial guess x_0 . pf

1.
$$e_{k+1} = x - x_{k+1} = (Bx + c) - (Bx_k + c) = B(x - x_k) = Be_k$$

2.
$$e_k = Be_{k-1} = B^2e_{k-2} = \cdots = B^ke_0 \implies ||e_k|| = ||B^ke_0|| \le ||B^k|| \cdot ||e_0||$$

$$||B^2|| = ||B \cdot B|| \le ||B|| \cdot ||B|| = ||B||^2 \implies ||B^k|| \le ||B||^k$$

$$\Rightarrow ||e_k|| \le ||B||^k \cdot ||e_0|| \to 0 \text{ as } k \to \infty$$

$$\frac{\text{ex}}{A} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \Rightarrow B_J = -D^{-1}(L+U) = -\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}
\Rightarrow ||B_J||_{\infty} = \frac{1}{2}$$

- 1. Since $||B_J||_{\infty} < 1$, the theorem implies that Jacobi's method converges.
- 2. In each step the norm of the error decreases by $\frac{1}{2}$.

17. Wed 10/21

Gauss-Seidel method

$$A = L + D + U$$
: as before

$$Ax = b \Leftrightarrow (L + D + U)x = b$$

$$\Leftrightarrow (L + D)x = -Ux + b$$

$$\Leftrightarrow x = -(L + D)^{-1}Ux + (L + D)^{-1}b , B_{GS} = -(L + D)^{-1}U$$

 $(L+D)x_{k+1} = -Ux_k + b$: solve by forward substitution

component form

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \implies a_{11}x_1^{(k+1)} = b_1 - \left(a_{12}x_2^{(k)} + a_{13}x_3^{(k)}\right)$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \implies a_{22}x_2^{(k+1)} = b_2 - \left(a_{21}x_1^{(k+1)} + a_{23}x_3^{(k)}\right)$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \implies a_{33}x_3^{(k+1)} = b_3 - \left(a_{31}x_1^{(k+1)} + a_{32}x_2^{(k+1)}\right)$$

Hence $x_i^{(k+1)}$ is used as soon as it's computed, in contrast with Jacobi.

ex

$$2x_{1} - x_{2} = 1 \Rightarrow 2x_{1}^{(k+1)} = 1 + x_{2}^{(k)}$$

$$-x_{1} + 2x_{2} = 1 \Rightarrow 2x_{2}^{(k+1)} = 1 + x_{1}^{(k+1)}$$

$$\begin{array}{c|ccc} k & x_{1}^{(k)} & x_{2}^{(k)} \\ \hline 0 & 0 & 0 \\ 1 & 1/2 & 3/4 \\ 2 & 7/8 & 15/16 \\ 3 & 31/32 & 63/64 \end{array}$$

Hence Gauss-Seidel converges faster than Jacobi.

$$||e_0||_{\infty} = 1 , ||e_1||_{\infty} = \frac{1}{2} , ||e_2||_{\infty} = \frac{1}{8} , ||e_3||_{\infty} = \frac{1}{32} \Rightarrow ||e_{k+1}||_{\infty} = \frac{1}{4} ||e_k||_{\infty}$$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \Rightarrow B_{GS} = -(L+D)^{-1}U = -\frac{1}{4} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}$$

$$\Rightarrow ||B_{GS}||_{\infty} = \frac{1}{2}$$

- 1. Since $||B_{GS}||_{\infty} < 1$, the theorem implies that Gauss-Seidel converges.
- 2. In each step the norm of the error decreases by $\frac{1}{4}$.

summary

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

$$B_J = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \Rightarrow ||B_J||_{\infty} = \frac{1}{2} , ||e_{k+1}||_{\infty} = \frac{1}{2} ||e_k||_{\infty}$$

$$B_{GS} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix} \Rightarrow ||B_{GS}||_{\infty} = \frac{1}{2} , ||e_{k+1}||_{\infty} = \frac{1}{4} ||e_k||_{\infty}$$

We see that $||e_{k+1}||_{\infty} \leq ||B||_{\infty} \cdot ||e_k||_{\infty}$ in both cases, but the bound is not sharp in the case of GS (because $\frac{1}{4} < ||B_{GS}||_{\infty}$). To explain this, we need to consider the eigenvalues of the iteration matrix.

 $\underline{\mathrm{def}}$

If $Ax = \lambda x$, where $x \neq 0$ is a vector (real or complex) and λ is a scalar (real or complex), then λ is an <u>eigenvalue</u> of A and x is a corresponding <u>eigenvector</u>.

 \underline{ex}

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 : permutation matrix

$$A\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} \implies \lambda = 1$$
 is an e-value with e-vector $x = \begin{pmatrix} 1\\1 \end{pmatrix}$

$$A\begin{pmatrix} 1\\ -1 \end{pmatrix} = \begin{pmatrix} -1\\ 1 \end{pmatrix} \Rightarrow \lambda = -1 \dots x = \begin{pmatrix} 1\\ -1 \end{pmatrix}$$

note

$$Ax = \lambda x$$
, $x \neq 0 \Leftrightarrow (A - \lambda I)x = 0$, $x \neq 0 \Leftrightarrow \det(A - \lambda I) = 0$

$$f_A(\lambda) = \det(A - \lambda I)$$
: characteristic polynomial of A

Hence the e-values of A are the roots of the characteristic polynomial $f_A(\lambda)$.

$$\underline{\operatorname{ex}}: f_A(\lambda) = \det(A - \lambda I) = \det\begin{pmatrix} -\lambda & 1\\ 1 & -\lambda \end{pmatrix} = \lambda^2 - 1 = 0 \implies \lambda = \pm 1 \qquad \underline{\operatorname{ok}}$$

 $\underline{\text{thm}}$: If A is upper triangular, then the e-values are the diagonal elements.

$$\frac{\underline{\mathrm{pf}}}{A} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ & \ddots & \vdots \\ 0 & & a_{nn} \end{pmatrix} \Rightarrow A - \lambda I = \begin{pmatrix} a_{11} - \lambda & \cdots & a_{1n} \\ & & \ddots & \vdots \\ 0 & & & a_{nn} - \lambda \end{pmatrix}$$

$$f_A(\lambda) = \det(A - \lambda I) = (a_{11} - \lambda) \cdots (a_{nn} - \lambda) = 0 \implies \lambda = a_{ii} \text{ for some } i \qquad \underline{\text{ok}}$$

18. Fri 10/23

$$\underline{\operatorname{recall}}: A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \implies B_{GS} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix}$$

 $\lambda_1 = 0$ is an e-value of B_{GS} with e-vector $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, check ...

$$\lambda_2 = \frac{1}{4} \dots v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, check ...

$$e_0 = x - x_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = v_2 - v_1$$

$$e_1 = Be_0 = B(v_2 - v_1) = Bv_2 - Bv_1 = \lambda_2 v_2 - \lambda_1 v_1 = \lambda_2 v_2$$

$$e_2 = Be_1 = B(\lambda_2 v_2) = \lambda_2 Bv_2 = \lambda_2 \cdot \lambda_2 v_2 = \lambda_2^2 v_2$$

:

$$e_k = \lambda_2^k v_2 = \left(\frac{1}{4}\right)^k v_2 \implies ||e_k||_{\infty} = \left(\frac{1}{4}\right)^k ||v_2||_{\infty}$$

This explains why $||e_{k+1}||_{\infty} = \frac{1}{4}||e_k||_{\infty}$ in this case, even though $||B_{GS}||_{\infty} = \frac{1}{2}$.

<u>question</u>: What determines the rate of convergence of an iterative method?

 $\underline{\operatorname{def}}:\ \rho(B)=\max\{|\lambda|:\lambda\ \text{is an e-value of}\ B\}\ :\ \underline{\operatorname{spectral\ radius}}\ \operatorname{of}\ B$ thm

- 1. $||e_{k+1}||_{\infty} \leq ||B||_{\infty} \cdot ||e_k||_{\infty}$ for all $k \geq 0$: error bound
- 2. $||e_{k+1}||_{\infty} \sim \rho(B) \cdot ||e_k||_{\infty}$ as $k \to \infty$: asymptotic relation

This means that $\lim_{k\to\infty} \frac{||e_{k+1}||_{\infty}}{||e_k||_{\infty}} = \rho(B)$.

Hence, the spectral radius of the iteration matrix $\rho(B)$ determines the asymptotic rate of convergence of an iterative method.

pf

- 1. recall : $e_{k+1} = Be_k \implies ||e_{k+1}||_{\infty} = ||Be_k||_{\infty} \le ||B||_{\infty} \cdot ||e_k||_{\infty}$
- 2. Math 571 (but the idea is the same as in the example above)

<u>recall</u>

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \Rightarrow B_J = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \Rightarrow \rho(B_J) = \frac{1}{2}$$

$$B_{GS} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{4} \end{pmatrix} \Rightarrow \rho(B_{GS}) = \frac{1}{4} \qquad \underline{ok}$$

19. Mon 10/26

<u>question</u>: Can we design faster methods?

Jacobi (1804-1851), Gauss (1777-1855), Seidel (1821-1896)

Richardson (1881-1953): numerical weather forecasting

$$Ax = b , A = L + D + U$$

Recall the Gauss-Seidel method.

$$(L+D)x_{k+1} = -Ux_k + b \Leftrightarrow Dx_{k+1} = Dx_k - (Lx_{k+1} + (D+U)x_k - b)$$

Now let ω be a free parameter and consider a modified iteration.

$$Dx_{k+1} = Dx_k - \omega(Lx_{k+1} + (D+U)x_k - b)$$

 $\omega > 1$ is called successive over-relaxation (SOR) , $\,\omega = 1 \,\Rightarrow\, \mathrm{GS}$

component form

$$a_{11}x_1^{(k+1)} = a_{11}x_1^{(k)} - \omega(a_{11}x_1^{(k)} + a_{12}x_2^{(k)} + a_{13}x_3^{(k)} - b_1)$$

$$a_{22}x_2^{(k+1)} = a_{22}x_2^{(k)} - \omega(a_{21}x_1^{(k+1)} + a_{22}x_2^{(k)} + a_{23}x_3^{(k)} - b_2)$$

$$a_{33}x_3^{(k+1)} = a_{33}x_3^{(k)} - \omega(a_{31}x_1^{(k+1)} + a_{32}x_2^{(k+1)} + a_{33}x_3^{(k)} - b_3)$$

ex

$$2x_1 - x_2 = 1 \implies 2x_1^{(k+1)} = 2x_1^{(k)} - \omega(2x_1^{(k)} - x_2^{(k)} - 1)$$
$$-x_1 + 2x_2 = 1 \implies 2x_2^{(k+1)} = 2x_2^{(k)} - \omega(-x_1^{(k+1)} + 2x_2^{(k)} - 1)$$

matrix form

$$(\omega L + D)x_{k+1} = ((1-\omega)D - \omega U)x_k + \omega b \Rightarrow B_\omega = (\omega L + D)^{-1}((1-\omega)D - \omega U)$$

 $\underline{\mathbf{e}}\mathbf{x}$

$$\begin{pmatrix} 2 & 0 \\ -\omega & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_{k+1} = \begin{pmatrix} 2(1-\omega) & \omega \\ 0 & 2(1-\omega) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}_k + \omega \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$B_{\omega} = \begin{pmatrix} 2 & 0 \\ -\omega & 2 \end{pmatrix}^{-1} \begin{pmatrix} 2(1-\omega) & \omega \\ 0 & 2(1-\omega) \end{pmatrix} = \begin{pmatrix} 1-\omega & \frac{1}{2}\omega \\ \frac{1}{2}\omega(1-\omega) & \frac{1}{2}\omega^2 + 1 - \omega \end{pmatrix}$$

check:
$$\omega = 1 \implies B_{\omega} = \begin{pmatrix} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$
: GS, $\rho(B_{\omega}) = \frac{1}{4}$ ok

question: Can we choose ω so that $\rho(B_{\omega})$ is smaller?

20. Wed 10/28

thm (Young 1950)

1. If $\rho(B_{\omega}) < 1$, then $0 < \omega < 2$.

2. Assume A is block tridiagonal, symmetric, and positive definite (defined later).

Then $\omega_* = \frac{2}{1 + \sqrt{1 - \rho(B_J)^2}}$ is the <u>optimal SOR parameter</u> in the sense that $\rho(B_{\omega_*}) = \min_{0 \le \omega \le 2} \rho(B_\omega) = \omega_* - 1 < \rho(B_{GS}) < \rho(B_J) < 1.$

pf: Math 571 (sometimes)

return to example :
$$\omega_* = \frac{2}{1 + \sqrt{1 - \rho(B_J)^2}} = \frac{2}{1 + \sqrt{1 - (\frac{1}{2})^2}} = \frac{4}{2 + \sqrt{3}} = 1.0718$$

Hence optimal SOR converges faster than GS.

 $\underline{\text{def}}: A \text{ is positive definite if } x^T\!\!Ax > 0 \text{ for all } x \neq 0 \pmod{3.7}$

$$\underline{\text{ex } 1} : A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 is positive definite

$$\underline{\mathbf{pf}} : x^{T} A x = (x_{1}, x_{2}) \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = (x_{1}, x_{2}) \begin{pmatrix} 2x_{1} - x_{2} \\ -x_{1} + 2x_{2} \end{pmatrix}
= 2(x_{1}^{2} + x_{2}^{2}) - 2x_{1}x_{2} = x_{1}^{2} + x_{2}^{2} + (x_{1} - x_{2})^{2} \ge 0$$

If $x \neq 0$, then either $x_1 \neq 0$ or $x_2 \neq 0$, but in any case we have $x^T A x > 0$. ok

$$\underline{\text{ex } 2} : A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 is positive definite, hw

$$\underline{\text{ex } 3}$$
: $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ is $\underline{\text{not}}$ positive definite

$$\underline{\mathbf{pf}} : x^T\!\!Ax = (x_1, x_2) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + x_2^2 + 4x_1x_2 : indefinite$$

for example:
$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow x^T A x = 1, \ x = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow x^T A x = -2$$
 ok

21. Mon 11/2

$$\frac{\text{ex } 4}{A_h = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix}} : \text{ dimension } n \times n \text{ , where } h = \frac{1}{n+1}$$

 $\Rightarrow (A_h w)_i = \frac{1}{h^2}(w_{i-1} - 2w_i + w_{i+1}) = -D_+ D_- w_i$ (where $w_0 = w_{n+1} = 0$), so A_h represents the finite difference operator $-D_+ D_-$. A_h is tridiagonal, symmetric, and positive definite, and hence Young's theorem applies.

<u>note</u>: The real advantage of iterative methods, in comparison with direct methods, occurs for BVPs in more than one dimension.

section 9.1 : two-dimensional BVP

<u>problem</u>: A metal plate has the shape of a square. The plate is heated by internal sources and the edges of the plate are held at a given temperature. Find the temperature at points inside the plate.

$$D = \{(x, y) : 0 \le x, y \le 1\}$$
: plate domain

 $\phi(x,y)$: plate temperature

f(x,y): heat sources , g(x,y): boundary temperature

Then $\phi(x,y)$ satisfies the following two equations.

1.
$$-\Delta \phi = -\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}\right) = f \text{ for } (x, y) \text{ in } D : \underline{\text{Poisson equation}}$$

Laplace operator

(note: This equation arises in many areas, e.g. if f is a charge/mass distribution, then ϕ is the electrostatic/gravitational potential.)

2. $\phi = g$ for (x, y) on ∂D : Dirichlet boundary condition

finite-difference scheme

$$h = \frac{1}{n+1}$$
: mesh size , $(x_i, y_j) = (ih, jh)$, $i, j = 0, \dots, n+1$: mesh points $\underline{\text{ex}}$: $n = 3$, $h = \frac{1}{4}$

 $\phi(x_i, y_j)$: exact solution , w_{ij} : approximation ordering of mesh points: $(1, 1), (1, 2), \ldots$

$$-(D_{+}^{x}D_{-}^{x} + D_{+}^{y}D_{-}^{y}) w_{ij} = f_{ij}$$
: 2nd order accurate

$$-\frac{1}{h^2}(w_{i+1,j} - 2w_{ij} + w_{i-1,j} + w_{i,j+1} - 2w_{ij} + w_{i,j-1}) = f_{ij}$$

$$\frac{1}{h^2}(4w_{ij} - w_{i+1,j} - w_{i-1,j} - w_{i,j+1} - w_{i,j-1}) = f_{ij}$$

Now consider what happens near the boundary.

$$(i,j) = (1,1) \Rightarrow \frac{1}{h^2} (4w_{11} - w_{21} - w_{01} - w_{12} - w_{10}) = f_{11}$$
$$\Rightarrow \frac{1}{h^2} (4w_{11} - w_{21} - w_{12}) = f_{11} + \frac{1}{h^2} (g_{01} + g_{10})$$

Now write the equations for w_{ij} in matrix form.

1	2	3	4	5	6	7	8	9
w_{11}	w_{12}	w_{13}	w_{21}	w_{22}	w_{23}	w_{31}	w_{32}	w_{33}
4	-1		-1					
-1	4	-1		-1				
	-1	4			-1			
$\overline{-1}$			4	-1		-1		
	-1		-1	4	-1		-1	
		-1		-1	4			-1
			-1			4	-1	
				-1		-1	4	-1
					-1		-1	4

$$A_h w_h = f_h , A_h = \begin{pmatrix} T & -I & & & \\ -I & T & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -I \\ & & & -I & T \end{pmatrix}$$

 $T:\, n\times n$, symmetric , tridiagonal

 $A_h: n^2 \times n^2$, block tridiagonal, symmetric, positive definite (pf: omit)

22. Wed 11/4

temperature distribution on a metal plate

no heat sources : $\phi_{xx} + \phi_{yy} = 0$

boundary conditions : $\phi(x,1) = 1$, $\phi(x,0) = \phi(0,y) = \phi(1,y) = 0$

finite-difference scheme : $4w_{ij} - w_{i+1,j} - w_{i-1,j} - w_{i,j+1} - w_{i,j-1} = 0$

The plots above show the solution of the linear system $A_h w_h = f_h$ for given mesh size h. The results below show the behaviour of the iterative methods; the initial guess was the zero vector and the stopping criterion was $||r_k||_{\infty}/||r_0||_{\infty} \leq 10^{-2}$.

Jacobi	h	k	$ r_k _{\infty}/ r_{k-1} _{\infty}$	$\rho(B)$
	1/4	13	0.7071	0.7071
	1/8	38	0.9238	0.9239
	1/16	97	0.9804	0.9808
Gauss-Seidel	h	k	$ r_k _{\infty}/ r_{k-1} _{\infty}$	$\rho(B)$
	1/4	7	0.4997	0.5000
	1/8	19	0.8521	0.8536
	1/16	47	0.9600	0.9619
optimal SOR	h	k	$ r_k _{\infty}/ r_{k-1} _{\infty}$	$\rho(B)$
	1/4	5	0.2645	0.1716
	1/8	8	0.5124	0.4465
	1/16	11	0.6855	0.6735

note

- 1. For a given value of h, GS requires fewer iterations than J, and SOR requires fewer iterations than GS, but whichever method is used, more iterations are needed as the mesh size $h \to 0$. Hence decreasing h leads to smaller truncation error, but the computational cost increases.
- 2. The ratio of successive residuals converges to the spectral radius of the iteration matrix as $h \to 0$.
- 3. Explicit formulas can be derived for $\rho(B)$ in this example.

$$\rho(B_J) = \cos \pi h \sim 1 - \frac{1}{2}\pi^2 h^2$$

$$\rho(B_{GS}) = \cos^2 \pi h \sim 1 - \pi^2 h^2$$

$$\rho(B_{\omega_*}) = \frac{2}{1 + \sqrt{1 - \rho(B_J)^2}} - 1 = \frac{1 - \sin \pi h}{1 + \sin \pi h} \sim \frac{1 - \pi h}{1 + \pi h} \sim 1 - 2\pi h$$

This confirms the observation above that the iteration converges more slowly as $h \to 0$, since $\rho(B) \to 1$ in this limit. SOR is least affected by this, followed by GS, and then J, i.e. $\rho(B_{\omega_*}) < \rho(B_{GS}) < \rho(B_J) < 1$.

4. Now consider what happens if Gaussian elimination is used to solve $A_h w_h = f_h$.

- a) A_h is a <u>band matrix</u>, i.e. $a_{ij} = 0$ for |i j| > m, where m is the <u>bandwidth</u> (in this example we have m = 3).
- b) As the elimination proceeds, zeros inside the band can become non-zero (this is called <u>fill-in</u>), but zeros outside the band are preserved. Hence we can adjust the limits on the loops to reduce the operation count for Gaussian elimination from $O(n^3)$ to $O(nm^2)$.
- c) Due to fill-in, more memory needs to be allocated than is required for the original matrix A. This is a disadvantage in comparison with iterative methods of the form $x_{k+1} = Bx_k + c$ (e.g. J, GS, SOR) which preserve the <u>sparsity</u> of A.

23. Fri 11/6

final comments on linear systems

1. comparison of operation counts

recall: For a two-dimensional BVP, the matrix A_h has dimension $n^2 \times n^2$, where $h = \frac{1}{n+1}$ is the mesh size, the bandwidth of A_h is m = n, and the typical equation is $\frac{1}{h^2}(4w_{ij} - w_{i+1,j} - w_{i-1,j} - w_{i,j+1} - w_{i,j-1}) = f_{ij}$.

a) Gaussian elimination : $O(n^6)$ ops

banded Gaussian elimination : $O(n^2m^2) \Rightarrow O(n^4)$ ops

b) iterative methods

stopping criterion :
$$\frac{||r_k||_{\infty}}{||r_0||_{\infty}} = \epsilon \implies \rho(B)^k = \epsilon \implies k = \frac{\log \epsilon}{\log \rho(B)}$$

J, GS
$$\Rightarrow \rho(B) \sim 1 - ch^2 \Rightarrow \log \rho(B) \sim \log(1 - ch^2) \sim -ch^2$$

 $\Rightarrow k \sim \frac{\log \epsilon}{-ch^2} = O(n^2) \text{ iterations }, \text{ cost per iteration} = O(n^2) \text{ ops}$
 $\Rightarrow \text{ total cost} = O(n^4) \text{ ops}$

SOR
$$\Rightarrow \rho(B) \sim 1 - ch$$

 $\Rightarrow k \sim \frac{\log \epsilon}{-ch} = O(n) \text{ iterations }, \text{ cost per iteration} = O(n^2) \text{ ops}$
 $\Rightarrow \text{ total cost} = O(n^3) \text{ ops}$

2. developments after SOR

multigrid : large h (fast, low accuracy) + small h (slow, high accuracy) conjugate gradient method , GMRES : energy minimization preconditioning : $Ax = b \rightarrow MAx = Mb$ software

parallel algorithms