## Math 471 Fall 2009 Homework 2 due: Mon Oct 5

When numerical answers are required, you may use Matlab or a calculator, unless other instructions are given.

1. The forward and backward finite-difference operators are defined by

$$
D_{+} f(x)=\frac{f(x+h)-f(x)}{h}, \quad D_{-} f(x)=\frac{f(x)-f(x-h)}{h} .
$$

a) Show that $D_{+} D_{-} f(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}$.
b) Show that $D_{+} D_{-} f(x)=f^{\prime \prime}(x)+O\left(h^{2}\right)$ and find the asymptotic error constant.

## chapter 2, rootfinding

2. Consider $f(x)=x^{2}-5$. Since $f(2)<0, f(3)>0$, it follows that $f(x)$ has a root $p$ in the interval $[2,3]$. Compute an approximation to $p$ by the following methods. Take 10 steps in each case. Use Matlab and print the answers to 15 digits.
a) bisection method, starting interval $[a, b]=[2,3]$
b) fixed-point iteration with $g_{1}(x)=5 / x$ and $g_{2}(x)=x-f(x) / 3$, starting value $x_{0}=2.5$
c) Newton's method, starting value $x_{0}=2.5$

Present the results in a table with columns as below for each method. Do the results agree with the theory discussed in class?

```
column 1: n (step)
column 2: }\mp@subsup{x}{n}{}\mathrm{ (approximation)
column 3: f( (xn) (residual)
column 4: }|p-\mp@subsup{x}{n}{}|\mathrm{ (error)
```

3. In class we discussed the example, "Volume of Chlorine Gas" on page 102. This example uses Newton's method to compute the volume of a gas given by van der Waal's equation of state, where the initial guess $V_{0}$ is given by the ideal gas law. We saw that $V_{0}$ has 2 correct digits and $V_{1}$ has 5 correct digits. How many correct digits does $V_{2}$ have?
4. Consider the following system of nonlinear equations.

$$
f(x, y)=(x-1)^{2}+y^{2}-4=0, \quad g(x, y)=x y-1=0
$$

This corresponds to finding the intersection of a circle and a hyperbola. Find an approximate solution using Newton's method for systems. Take two steps starting from $\left(x_{0}, y_{0}\right)=(3,0)$. Present the iterates $\left(x_{i}, y_{i}\right)$ and residual values $f\left(x_{i}, y_{i}\right), g\left(x_{i}, y_{i}\right)$ for $i=0,1,2$.

## chapter 3, linear algebra

5. page 148, problem 4a,b,7a (warmup exercise on matrices)
6. page 149, problem 14b (hint: it is sufficient to show that $A A^{-1}=I$ )
7. page 157 , problem 1 (Gaussian elimination)
