Math 471 Fall 2009 Homework 3 due: Wed Oct 21

chapter 3 , linear algebra

1. Which of the following matrices are invertible? Justify your answer.
(a) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
(c) $\left(\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right)$
(d) $\left(\begin{array}{rrr}1 & 0 & 2 \\ -1 & 3 & 1 \\ 0 & 3 & 3\end{array}\right)$
2. page 159 , problem 13 (electric circuit, solve by Gaussian elimination)
3. page 169, problem 14, solve the system three ways:
(a) Gaussian elimination with no pivoting, 3 decimal digit arithmetic with rounding
(b) Gaussian elimination with partial pivoting, 3 decimal digit arithmetic with rounding
(c) Matlab backslash command
4. page 180, problems 1, 2 b (vector norms)
5. Let $A=\left(\begin{array}{rr}-2 & 1 \\ 2 & 0\end{array}\right)$.
(a) Find $\frac{\|A x\|_{\infty}}{\|x\|_{\infty}}$ for the following vectors. $\quad x_{1}=\binom{1}{0}, x_{2}=\binom{0}{1}, x_{3}=\binom{1}{1}$
(b) Find a vector x such that $\frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\|A\|_{\infty}$.
6. Let $A=\left(\begin{array}{ll}1.2969 & 0.8648 \\ 0.2161 & 0.1441\end{array}\right), b=\binom{0.8642}{0.1440}, x=\binom{2}{-2}, x_{1}=\binom{0}{1}, x_{2}=\binom{0.9911}{-0.4870}$.
a) Show that x is the exact solution of $A x=b$.
b) Think of x_{1}, x_{2} as approximations to the exact solution x. Compute the errors e_{1}, e_{2} and residuals r_{1}, r_{2}, corresponding to x_{1}, x_{2}.
c) Find $\|A\|_{\infty},\left\|A^{-1}\right\|_{\infty}, \kappa_{\infty}(A)$.
d) In class we proved the following theorem relating the relative error, relative residual, and condition number.

$$
\frac{\|e\|}{\|x\|} \leq \kappa(A) \frac{\|r\|}{\|b\|}
$$

Show that this result holds for the approximate solutions x_{1}, x_{2} given above.
7. Derive the following result, which was stated in class.

$$
\left.\begin{array}{l}
A x=b \\
\tilde{A} \tilde{x}=b
\end{array}\right\} \Rightarrow \frac{\|x-\tilde{x}\|}{\|\tilde{x}\|} \leq \kappa(A) \frac{\|A-\tilde{A}\|}{\|A\|}
$$

note: This result says that in solving a linear system $A x=b$, the condition number of the matrix controls the relative error in the solution due to perturbations in the matrix.

announcement

The midterm exam is on Friday October 30 in class. A review sheet with sample problems will be distributed before the exam. You may use a non-programmable calculator to do arithmetic, but to receive full credit you must show all intermediate steps. You may use one sheet of notes (i.e. one side of one page, $8.5 \mathrm{in} \times 11 \mathrm{in}$). Exam booklets will be provided.

