Math 471 Fall 2009 Homework 5 due: Fri Nov 13

1. Find the eigenvalues and eigenvectors of the following matrices. Do this by hand, but you may check your answers using Matlab.
a) $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$
b) $\left(\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right)$
c) $\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right)$
d) $\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$
е) $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$

section 3.7 , special matrices

2. Show that the following matrices are positive definite.
a) $\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$
b) $\left(\begin{array}{rrr}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right)$

section 3.8 , iterative methods

3. Consider $A x=b$, where $A=\left(\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right), b=\binom{1}{1}$.
a) In class we showed that the error in the Gauss-Seidel method is given by

$$
e_{k}=\left(\frac{1}{4}\right)^{k}\binom{2}{1}
$$

for $k \geq 1$, using the eigenvalues and eigenvectors of the iteration matrix $B_{G S}$. Following the same procedure, derive an analogous expression for the error in Jacobi's method. Assume that the starting guess is the zero vector.
b) Use Matlab to plot $\rho\left(B_{w}\right)$, the spectral radius of the SOR iteration matrix, for $0 \leq \omega \leq 2$. Use the commands eig, abs, max to produce the plot. Make sure to use a fine enough mesh in the variable ω to resolve the details of the function (1000 points on the interval $0 \leq \omega \leq 2$ is sufficient.) This plot is typical for the type of matrices appearing in Young's theorem. Suppose we don't know the exact value of the optimal SOR parameter - in using an approximate value for the iterative method, is it better to overestimate or underestimate the value of ω_{*} ? Explain the reason behind your answer.
4. Consider the iteration $x_{k+1}=B x_{k}+c$ and assume that $\|B\|=\alpha<1$. We know that the error satisfies $\left\|x-x_{k+1}\right\| \leq \alpha\left\|x-x_{k}\right\|$, which is an important theoretical error bound, but the right side cannot be computed in practice because although we know x_{k}, we don't know x. Here we derive an alternative error bound that can be computed in practice.
a) Show that $I-B$ is invertible and that $\left\|(I-B)^{-1}\right\| \leq \frac{1}{1-\alpha}$.
b) Show that $\left\|x-x_{k+1}\right\| \leq \frac{\alpha}{1-\alpha}\left\|x_{k+1}-x_{k}\right\|$.

Note: this bound can be computed because we know x_{k+1} and x_{k}.

