functions : $f(x) = \frac{1}{x+1} - \frac{1}{x-1}$, $x \to \infty$ integrals : $\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{ikx}dx$, $k \to \infty$ ODEs : $\frac{dy}{dt} = f(y)$, $t \to \infty$ PDE : $u_t = f(u) + \epsilon u_{xx}$, $\epsilon \to 0$ fluid dynamics : $u_t + u \cdot \nabla u = -\nabla p + \frac{1}{Re} \Delta u$, $Re \to 0, \infty$ 1.1, 1.2 asymptotic expansions def 1. f(z) = O(g(z)) as $z \to z_0$ in $D \Leftrightarrow \left| \frac{f(z)}{g(z)} \right|$ is bounded as $z \to z_0$ 2. f(z) = o(g(z)) as $z \to z_0$ in $D \Leftrightarrow \left| \frac{f(z)}{g(z)} \right| \to 0$ as $z \to z_0$ ex $\sin z = O(1)$ as $z \to 0$ $\sin z = o(1)$ $\sin z = O(z)$ $\sin z \neq o(z)$ $\sin z = z + O(z^3)$ note : We can also consider $z \to \infty$. z-plane ex e^{-z} , $D = \{z : |z| > 0$, $|\arg z| < \frac{\pi}{4}\}$ Then $e^{-z} = o(z^{-n})$ as $z \to \infty$ in D for all $n \ge 0$. pf z = x + iy, $z \in D \Rightarrow x > 0$ $\left|\frac{e^{-z}}{z^{-n}}\right| = e^{-x}(x^2 + y^2)^{n/2} \le e^{-x}(2x^2)^{n/2} = 2^{n/2}e^{-x}x^n \to 0 \text{ as } z \to \infty \text{ in } D$ ok $\underline{\mathrm{def}}$

f(z) is <u>asymptotic</u> to g(z) as $z \to z_0$ in $D \Leftrightarrow \lim_{z \to z_0} \frac{f(z)}{g(z)} = 1$ In this case we write $f(z) \sim g(z)$ as $z \to z_0$.

$$\frac{ex}{\sin z \sim z \text{ as } z \to 0}$$

$$\sin z - z \sim -\frac{1}{3!} z^3 \text{ as } z \to 0$$

$$\sinh z \sim \frac{1}{2} e^z \text{ as } z \to \infty \quad , \quad |\arg z| < \frac{\pi}{4}$$

$$\sinh z \sim \frac{1}{2} e^{-z} \text{ as } z \to \infty \quad , \quad |\arg z - \pi| < \frac{\pi}{4}$$

$$\frac{\det}{f(z) \text{ is analytic at } z = z_0 \iff f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \text{ for } |z - z_0| < R$$

$$\Leftrightarrow f(z) = \lim_{N \to \infty} s_N(z) \text{ for } |z - z_0| < R \text{, where } s_N(z) = \sum_{n=0}^{N} a_n (z - z_0)^n$$

$$\Leftrightarrow f(z) = \text{ convergent power series}$$

note : We can also consider $z_0 = \infty$.

 $\underline{\mathbf{ex}}$

$$\frac{1}{z^2 + 1} = \sum_{n=0}^{\infty} (-1)^n z^{2n} = 1 - z^2 + z^4 - \dots \text{ in } |z| < 1 \quad , \ z_0 = 0$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{z^{2n+2}} = \frac{1}{z^2} - \frac{1}{z^4} + \frac{1}{z^6} - \dots \text{ in } |z| > 1 \quad , \ z_0 = \infty$$
$$\frac{1}{z^2 + 1} \sim 1 \text{ as } z \to 0$$
$$\frac{1}{z^2 + 1} - 1 \sim -z^2 \text{ as } z \to 0$$
$$\frac{1}{z^2 + 1} \sim \frac{1}{z^2} \text{ as } z \to \infty$$
$$\frac{1}{z^2 + 1} - \frac{1}{z^2} \sim -\frac{1}{z^4} \text{ as } z \to \infty$$

1. Here there is no restriction on $z \to \infty$.

2. Convergent series are not the only examples of asymptotic relations.

 $\mathrm{Ei}(x) = \int_x^\infty e^{-t} t^{-1} dt$: <u>exponential integral</u> , improper , converges for x>0 $\underline{\mathrm{pf}}$

$$\int_{x}^{\infty} e^{-t} t^{-1} dt \leq \int_{x}^{\infty} e^{-t} x^{-1} dt = -e^{-t} x^{-1} \Big|_{x}^{\infty} = \frac{e^{-x}}{x} < \infty \quad \underline{ok}$$

This shows that $\lim_{x \to \infty} \operatorname{Ei}(x) = 0$, but precisely how fast does $\operatorname{Ei}(x) \to 0$ as $x \to \infty$?

$$\operatorname{Ei}(x) = \int_{x}^{\infty} e^{-t} t^{-1} dt = -e^{-t} t^{-1} \Big|_{x}^{\infty} - \int_{x}^{\infty} e^{-t} t^{-2} dt : \text{ integration by parts}$$

$$= \frac{e^{-x}}{x} - \int_{x}^{\infty} e^{-t} t^{-2} dt$$

$$= \frac{e^{-x}}{x} - \left(-e^{-t} t^{-2} \Big|_{x}^{\infty} - 2 \int_{x}^{\infty} e^{-t} t^{-3} dt \right)$$

$$= \frac{e^{-x}}{x} - \frac{e^{-x}}{x^{2}} + 2 \int_{x}^{\infty} e^{-t} t^{-3} dt \quad \dots$$

$$\begin{aligned} \operatorname{Ei}(x) &= s_n(x) + r_n(x) \\ s_n(x) &= e^{-x} \left(\frac{1}{x} - \frac{1}{x^2} + \frac{2}{x^3} - \frac{3!}{x^4} + \dots + \frac{(-1)^{n+1}(n-1)!}{x^n} \right) \\ r_n(x) &= (-1)^n n! \int_x^\infty e^{-t} t^{-(n+1)} dt \\ 1. \quad \lim_{n \to \infty} s_n(x) &= \sum_{n=1}^\infty \frac{(-1)^{n+1}(n-1)!}{x^n} \text{ diverges for all } x \ , \ \text{pf } \dots \end{aligned}$$

$$2. \quad \operatorname{Fix} n \geq 1. \quad \operatorname{Then} |r_n(x)| \leq n! \frac{e^{-x}}{x^{n+1}} \to 0 \text{ as } x \to \infty. \\ \text{Hence } s_n(x) \text{ is an approximation to } \operatorname{Ei}(x) \text{ for large } x. \\ \text{In fact, it can be shown that } \frac{\operatorname{Ei}(x)}{s_n(x)} = 1 + \frac{r_n(x)}{s_n(x)} \to 1 \text{ as } x \to \infty \text{ (hw)}, \\ \text{so } \operatorname{Ei}(x) \sim s_n(x) \text{ as } x \to \infty \text{ for all } n \geq 1; \text{ this answers the question above.} \\ 3. \quad \operatorname{Even though the series diverges for all } x, \text{ the partial sums } s_n(x) \text{ approximate } \\ \operatorname{Ei}(x) \text{ better and better as } x \to \infty. \end{aligned}$$

above.

<u>ex</u>

question

Given x, we want to approximate Ei(x) by $s_n(x)$; what is the best choice of n? <u>ex</u> : Ei(5) = 0.001148

n	$s_n(5)$	
1	0.001348	
2	0.001078	
3	0.001186	
4	0.001121	
5	0.001173	\leftarrow
6	0.001121	
7	0.001183	
14	-0.003846	
19	1.775902	

answer

The best choice of n is the one that minimizes $|r_n(x)|$.

note : we know that $|r_n(x)| \le n! \frac{e^{-x}}{x^{n+1}}$, but in fact $|r_n(x)| \sim n! \frac{e^{-x}}{x^{n+1}}$ as $x \to \infty$ pf : hw

 \Rightarrow the error in $s_n(x) \sim$ the 1st neglected term in the series as $x \to \infty$

$$\Rightarrow \frac{r_n(x)}{r_{n-1}(x)} \sim \frac{n! \frac{e^{-x}}{x^{n+1}}}{(n-1)! \frac{e^{-x}}{x^n}} = \frac{n}{x} \le 1 \Leftrightarrow n \le x$$

 \Rightarrow the best choice is n = n(x) = [x] : largest integer $\leq x$

Given x, the error cannot be made arbitrarily small by increasing n; however as x increases,

- 1. the minimum error decreases,
- 2. the optimal n increases,

3. the error versus n curve becomes flatter near the minimum, so the error is small even for $n \ll [x]$, e.g. even n = 1 may be adequate in some applications.

$$\underline{\operatorname{def}}: \{\phi_n(z): n = 1, 2, \ldots\} \text{ is an asymptotic sequence as } z \to z_0$$

$$\Leftrightarrow \phi_{n+1}(z) = o(\phi_n(z)) \text{ as } z \to z_0 \Leftrightarrow \lim_{z \to z_0} \frac{\phi_{n+1}(z)}{\phi_n(z)} = 0$$

$$\underline{\operatorname{ex}}: \phi_n(z) = (z - z_0)^n \text{ as } z \to z_0$$

$$\phi_n(z) = e^{-nz} \text{ as } z \to \infty$$

$$\phi_n(z) = z^n \log z \text{ as } z \to 0$$

$$\underline{\operatorname{def}}: f(z) \sim \sum_{n=1}^{\infty} a_n \phi_n(z) \text{ as } z \to z_0 : \underline{\operatorname{asymptotic expansion}} \text{ wrt } \{\phi_n(z)\}$$

$$\Leftrightarrow f(z) = \sum_{n=1}^N a_n \phi_n(z) + o(\phi_N(z)) \text{ as } z \to z_0 \text{ for all } N \ge 1$$

$$\Leftrightarrow f(z) = \sum_{n=1}^N a_n \phi_n(z) + O(\phi_{N+1}(z)) \text{ as } z \to z_0 \text{ for all } N \ge 1$$

In this case, the error has the same order of magnitude as the first term omitted.

$$\underline{\text{ex 1}} : \text{ If } f(z) \text{ is analytic at } z = z_0, \text{ then } f(z) \sim \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n \text{ as } z \to z_0.$$

Hence a convergent power series is also an asymptotic expansion.

$$\underline{\operatorname{ex} 2} : \operatorname{Ei}(x) = \int_x^\infty e^{-t} t^{-1} dt \sim e^{-x} \sum_{n=1}^\infty \frac{(-1)^{(n+1)}(n-1)!}{x^n} \text{ as } x \to \infty$$

$$\underline{\operatorname{pf}} : \phi_n(x) = e^{-x} x^{-n} : \text{ asymptotic sequence as } x \to \infty$$

$$\left| \frac{\operatorname{Ei}(x) - s_n(x)}{\phi_n(x)} \right| = \left| \frac{r_n(x)}{\phi_n(x)} \right| \le \frac{n! e^{-x} x^{-(n+1)}}{e^{-x} x^{-n}} = \frac{n!}{x} \to 0 \text{ as } x \to \infty \quad \underline{\operatorname{ok}}$$

Hence even though the series diverges, it is still an asymptotic expansion. properties of asymptotic expansions

1. If $f(z) \sim \sum_{n=1}^{\infty} a_n \phi_n(z)$ as $z \to z_0$, then the a_n are unique. $\underline{pf}: f(z) = a_1 \phi_1(z) + o(\phi_1(z)) \Rightarrow \lim_{z \to z_0} \frac{f(z)}{\phi_1(z)} = a_1$ $f(z) = a_1 \phi_1(z) + a_2 \phi_2(x) + o(\phi_2(z)) \Rightarrow \lim_{z \to z_0} \frac{f(z) - a_1 \phi_1(z)}{\phi_2(z)} = a_2 , \dots \underline{ok}$ 2. If $f(z) \sim \sum_{n=1}^{\infty} \frac{a_n}{z^n}$ as $z \to \infty$, then $f(z) + e^{-z} \sim \sum_{n=1}^{\infty} \frac{a_n}{z^n}$ as $z \to \infty$. Hence two different functions can have the same asymptotic expansion.

3.
$$\frac{1}{z-1} \sim \sum_{n=1}^{\infty} \frac{1}{z^n} \text{ as } z \to \infty$$
, $\frac{1}{z-1} \sim (z+1) \sum_{n=1}^{\infty} \frac{1}{z^{2n}} \text{ as } z \to \infty$, pf...

Hence a function can have two different asymptotic expansions.