
1. Thur 1/9 1

functions : f(x) =
1

x+ 1
� 1

x� 1
, x!1

integrals : b
f(k) =

Z 1

�1
f(x)eikxdx , k !1

ODEs :
dy

dt
= f(y) , t!1

PDE : ut = f(u) + ✏uxx , ✏! 0

fluid dynamics : ut + u ·ru = �rp+ 1

Re
�u , Re! 0 , 1

1.1, 1.2 asymptotic expansions

def

1. f(z) = O(g(z)) as z ! z0 in D ,
������

f(z)

g(z)

������
is bounded as z ! z0

2. f(z) = o(g(z)) as z ! z0 in D ,
������

f(z)

g(z)

������
! 0 as z ! z0

ex

sin z = O(1) as z ! 0

sin z = o(1)

sin z = O(z)

sin z 6= o(z)

sin z = z +O(z3)

note : We can also consider z !1.

ex

e
�z

, D = {z : |z| > 0 , | arg z| < ⇡
4}

Then e
�z = o(z�n) as z !1 in D for all n � 0.

z-plane

pf

z = x+ iy , z 2 D ) x > 0
������

e
�z

z�n

������
= e

�x(x2 + y
2)n/2  e

�x(2x2)n/2 = 2n/2e�xxn ! 0 as z !1 in D ok
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def

f(z) is asymptotic to g(z) as z ! z0 in D , lim
z!z0

f(z)

g(z)
= 1

In this case we write f(z) ⇠ g(z) as z ! z0.

ex

sin z ⇠ z as z ! 0

sin z � z ⇠ � 1
3!z

3 as z ! 0

sinh z ⇠ 1
2e

z as z !1 , | arg z| < ⇡
4

sinh z ⇠ 1
2e
�z as z !1 , | arg z � ⇡| < ⇡

4

def

f(z) is analytic at z = z0 , f(z) =
1X

n=0
an(z � z0)

n for |z � z0| < R

, f(z) = lim
N!1

sN(z) for |z � z0| < R , where sN(z) =
NX

n=0
an(z � z0)

n

, f(z) = convergent power series

note : We can also consider z0 =1.

ex

1

z2 + 1
=
1X

n=0
(�1)nz2n = 1� z

2 + z
4 � · · · in |z| < 1 , z0 = 0

=
1X

n=0

(�1)n

z2n+2
=

1

z2
� 1

z4
+

1

z6
� · · · in |z| > 1 , z0 =1

1

z2 + 1
⇠ 1 as z ! 0

1

z2 + 1
� 1 ⇠ �z2 as z ! 0

1

z2 + 1
⇠ 1

z2
as z !1

1

z2 + 1
� 1

z2
⇠ � 1

z4
as z !1

1. Here there is no restriction on z !1.

2. Convergent series are not the only examples of asymptotic relations.
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ex

Ei(x) =
Z 1

x
e
�t
t
�1
dt : exponential integral , improper , converges for x > 0

pf

Z 1

x
e
�t
t
�1
dt 

Z 1

x
e
�t
x
�1
dt = �e�t x�1

����
1

x
=

e
�x

x
<1 ok

This shows that lim
x!1Ei(x) = 0, but precisely how fast does Ei(x)! 0 as x!1?

Ei(x) =
Z 1

x
e
�t
t
�1
dt = �e�t t�1

����
1

x
�

Z 1

x
e
�t
t
�2
dt : integration by parts

=
e
�x

x
�

Z 1

x
e
�t
t
�2
dt

=
e
�x

x
�

✓
�e�t t�2

����
1

x
� 2

Z 1

x
e
�t
t
�3
dt

◆

=
e
�x

x
� e

�x

x2
+ 2

Z 1

x
e
�t
t
�3
dt . . .

Ei(x) = sn(x) + rn(x)

sn(x) = e
�x

0

@1

x
� 1

x2
+

2

x3
� 3!

x4
+ · · ·+ (�1)n+1(n� 1)!

xn

1

A

rn(x) = (�1)nn!
Z 1

x
e
�t
t
�(n+1)

dt

1. lim
n!1 sn(x) =

1X

n=1

(�1)n+1(n� 1)!

xn
diverges for all x , pf . . .

2. Fix n � 1. Then |rn(x)|  n!
e
�x

xn+1
! 0 as x!1.

Hence sn(x) is an approximation to Ei(x) for large x.

In fact, it can be shown that
Ei(x)

sn(x)
= 1 +

rn(x)

sn(x)
! 1 as x!1 (hw),

so Ei(x) ⇠ sn(x) as x!1 for all n � 1; this answers the question above.

3. Even though the series diverges for all x, the partial sums sn(x) approximate
Ei(x) better and better as x!1.



2. Tues 1/14 4

question

Given x, we want to approximate Ei(x) by sn(x); what is the best choice of n?

ex : Ei(5) = 0.001148

n sn(5)
1 0.001348
2 0.001078
3 0.001186
4 0.001121
5 0.001173  
6 0.001121
7 0.001183
14 -0.003846
19 1.775902

answer

The best choice of n is the one that minimizes |rn(x)|.

note : we know that |rn(x)|  n!
e
�x

xn+1
, but in fact |rn(x)| ⇠ n!

e
�x

xn+1
as x!1

pf : hw

) the error in sn(x) ⇠ the 1st neglected term in the series as x!1

) rn(x)

rn�1(x)
⇠

n!
e
�x

xn+1

(n� 1)!
e
�x

xn

=
n

x
 1 , n  x

) the best choice is n = n(x) = [x] : largest integer  x

Given x, the error cannot be made arbitrarily small by increasing n; however as
x increases,

1. the minimum error decreases,

2. the optimal n increases,

3. the error versus n curve becomes flatter near the minimum, so the error is
small even for n<< [x], e.g. even n = 1 may be adequate in some applications.
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def : {�n(z) : n = 1, 2, . . .} is an asymptotic sequence as z ! z0

, �n+1(z) = o(�n(z)) as z ! z0 , lim
z!z0

�n+1(z)

�n(z)
= 0

ex : �n(z) = (z � z0)n as z ! z0

�n(z) = e
�nz as z !1

�n(z) = z
n log z as z ! 0

def : f(z) ⇠
1X

n=1
an�n(z) as z ! z0 : asymptotic expansion wrt {�n(z)}

, f(z) =
NX

n=1
an�n(z) + o(�N(z)) as z ! z0 for all N � 1

, f(z) =
NX

n=1
an�n(z) +O(�N+1(z)) as z ! z0 for all N � 1

In this case, the error has the same order of magnitude as the first term omitted.

ex 1 : If f(z) is analytic at z = z0, then f(z) ⇠
1X

n=0

f
(n)(z0)

n!
(z � z0)

n as z ! z0.

Hence a convergent power series is also an asymptotic expansion.

ex 2 : Ei(x) =
Z 1

x
e
�t
t
�1
dt ⇠ e

�x
1X

n=1

(�1)(n+1)(n� 1)!

xn
as x!1

pf : �n(x) = e
�x
x
�n : asymptotic sequence as x!1

������

Ei(x)� sn(x)

�n(x)

������
=

������

rn(x)

�n(x)

������
 n!e�xx�(n+1)

e�xx�n
=

n!

x
! 0 as x!1 ok

Hence even though the series diverges, it is still an asymptotic expansion.

properties of asymptotic expansions

1. If f(z) ⇠
1X

n=1
an�n(z) as z ! z0, then the an are unique.

pf : f(z) = a1�1(z) + o(�1(z))) lim
z!z0

f(z)

�1(z)
= a1

f(z) = a1�1(z) + a2�2(x) + o(�2(z))) lim
z!z0

f(z)� a1�1(z)

�2(z)
= a2 , . . . ok

2. If f(z) ⇠
1X

n=1

an

zn
as z !1, then f(z) + e

�z ⇠
1X

n=1

an

zn
as z !1.

Hence two di↵erent functions can have the same asymptotic expansion.

3.
1

z � 1
⇠
1X

n=1

1

zn
as z !1 ,

1

z � 1
⇠ (z + 1)

1X

n=1

1

z2n
as z !1 , pf . . .

Hence a function can have two di↵erent asymptotic expansions.


