Math 557 Winter 2020 Homework 2 due: Thursday, February 13

1. Find the first three terms in the asymptotic expansion of $f(x)=\sqrt{1+x^{2}}-1$.
(a) as $x \rightarrow 0 \quad, \quad(b)$ as $x \rightarrow \infty$
(c) Plot $f(x)$ and the 1-term, 2-term, and 3-term approximations. Make one plot for (a) with
 curve for $f(x)$ and a dashed curve for the approximations, and label each approximation with the number of terms.
2. Show that $\int_{0}^{T} e^{-x t^{2}} d t \sim \int_{0}^{\infty} e^{-x t^{2}} d t=\frac{1}{2}\left(\frac{\pi}{x}\right)^{1 / 2}$ as $x \rightarrow \infty$ for all $T>0$.

Derive the result; don't just cite Watson's lemma.
3. In class we showed that $\int_{0}^{\infty} e^{-x \cosh t} d t \sim\left(\frac{\pi}{2 x}\right)^{1 / 2} e^{-x}\left(1-\frac{1}{8 x}\right)$ as $x \rightarrow \infty$.
a) Find the next term in the asymptotic expansion.
b) Explain why the same result holds for $\int_{0}^{T} e^{-x \cosh t} d t$ for all $T>0$.
4. Find the first three terms in the asymptotic expansion of $\int_{0}^{\infty} e^{-x \sinh t} d t$ as $x \rightarrow \infty$.
5. Let $f(x)=\int_{0}^{T} e^{x h(t)} g(t) d t$ and assume $h(0)=\max _{0 \leq t \leq T} h(t), h^{\prime}(0)=0, h^{\prime \prime}(0)=0, h^{\prime \prime \prime}(0)<0$.

Note that an example of this was given on hw1, problem 5a.
Find the first term in the asymptotic expansion of $f(x)$ as $x \rightarrow \infty$.
6. In class we showed that $n!\sim \sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n}$ as $n \rightarrow \infty$.
a) Find the next term in the asymptotic expansion.
b) Make a table with the following format.
column 1: $n=1: 10$
column 2: absolute error in 1-term asymptotic approximation column 3: relative error in 1-term asymptotic approximation column 4: absolute error in 2-term asymptotic approximation column 5: relative error in 2-term asymptotic approximation Summarize the results. Do they agree with what is expected from theory?
7. page $27 / 1$ (iii) (integration by parts or term-by-term integration)
8. page $38 / 1$ (i), (iii) (Laplace's method)

