Math 557 Winter 2020 Homework 3 due: Tuesday, February 25

1. page $38 / 1$ (iv) (Laplace's method)
2. It follows from the work on page 1, chapter 3 of the lecture notes that

$$
\int_{-\infty}^{\infty} e^{-\lambda y^{2}} \cos \left(2 \lambda x_{0} y\right) d y=e^{-\lambda x_{0}^{2}}\left(\frac{\pi}{\lambda}\right)^{1 / 2} \text { for all } x_{0} \in \mathbb{R} \text { and all } \lambda>0 .
$$

The method there used Cauchy's theorem to shift the path of integration. Now derive the formula using the following two methods. You may use the fact that $\int_{-\infty}^{\infty} e^{-\lambda y^{2}} d y=\left(\frac{\pi}{\lambda}\right)^{1 / 2}$. method 1: Define $f\left(x_{0}, \lambda\right)=\int_{-\infty}^{\infty} e^{-\lambda y^{2}} \cos \left(2 \lambda x_{0} y\right) d y$, compute $\frac{\partial f}{\partial x_{0}}$, write the resulting formula as a differential equation for $f\left(x_{0}, \lambda\right)$, solve the equation to obtain $f\left(x_{0}, \lambda\right)$.
 Is there another method? If you know one, please tell me.
3. Use the method of steepest descent to find the first three terms in the asymptotic expansion of $\int_{C} \frac{e^{\lambda\left(z^{2}-1\right)}}{z-1 / 2} d z$ as $\lambda \rightarrow \infty$, where C is the vertical line from $z=1-i \infty$ to $z=1+i \infty$. Draw the z-plane with the curve C and paths of steepest ascent and descent, as in class. Note that the process of deforming C into the steepest descent path yields a residue term due to the pole at $z=\frac{1}{2}$.
4. page $69 / 3(\operatorname{Bi}(\lambda)$ as $\lambda \rightarrow \infty)$
5. page $69 / 4(\operatorname{Ai}(-\lambda), \operatorname{Bi}(-\lambda)$ as $\lambda \rightarrow \infty)$

In the last problem also draw a plot of the z-plane, indicate the saddle points and paths of steepest descent of ϕ, and shade the regions in which $\phi>\phi_{0}$. Explain how the curves C_{1}, C_{2}, C_{3} are deformed so that Laplace's method can be applied.

Note that the asymptotic properties of $\operatorname{Ai}(\lambda)$ and $\operatorname{Bi}(\lambda)$ for $\lambda \rightarrow \pm \infty$ will be used when we study turning points later in the course.

