Math 557 Winter 2020 Homework 7 due: Tuesday, April 28
method of matched asymptotic expansions

1. page $150 / 2(\mathrm{i}): \epsilon u^{\prime}+u=1, u(0)=0$
2. page $150 / 2(\mathrm{ii}): \epsilon u^{\prime \prime}-u=-1, u(-1)=u(1)=0$
3. page $150 / 2(\mathrm{iii}): \epsilon u^{\prime \prime}+u^{\prime}=a+b x, u(0)=0, u(1)=1$
4. Consider the nonlinear boundary value problem discussed in class,

$$
\epsilon u^{\prime \prime}+u u^{\prime}-u=0, u(0)=A, u(1)=B
$$

Find the uniform asymptotic approximation for the boundary conditions given below. Use the functions $f_{ \pm}(s), g_{ \pm}(s)$ defined in class. Sketch the solution in each case (by hand, MatLAB, or other software). Describe in words any special features of the solution, e.g. "The solution has a boundary/corner/internal layer at $x=\ldots$. .
(a) $A=-1 / 2, B=-1($ region 8$)$
(b) $A=1, B=-1($ region 9$)$

In problem (b) there are actually two solutions; this is possible because the problem is nonlinear; try to find both of them.
method of multiple scales
5. page $159 / 1: u^{\prime \prime}+2 \epsilon u^{\prime}+u=0, u(0)=0, u^{\prime}(0)=1$

Do the problem in the form stated above (this is slightly different than in the textbook, but the algebra is a bit simpler). Find the exact solution and the uniform asymptotic approximation, and plot them for $\epsilon=0.5,0.1$ and $0 \leq t \leq 10 \pi$. The textbook says "find the first two terms" in the approximation; show that the second term $u_{1}(r, s)$ vanishes in this case, so the first term $u_{0}(r, s)$ is actually accurate to order $O\left(\epsilon^{2}\right)$.

Poincaré-Lindstedt method

6. Consider the initial value problem, $u^{\prime \prime}+u=\epsilon u^{3}, u(0)=1, u^{\prime}(0)=0, \epsilon>0$, which describes a weakly nonlinear oscillation. In class we showed that the period is $T(\epsilon)=2 \pi\left(1+\frac{3}{8} \epsilon+O\left(\epsilon^{2}\right)\right)$ as $\epsilon \rightarrow 0$. Find the coefficient of the $O\left(\epsilon^{2}\right)$ term in $T(\epsilon)$.
