Math 558 Applied Dynamical Systems Winter 2023
hw5 , due: Thursday, April 6, 4pm

1. Consider the equation $\frac{d x}{d t}=A(t) x$ with $A(t)=\left(\begin{array}{lc}-1+\frac{3}{2} \cos ^{2} t & 1-\frac{3}{2} \sin t \cos t \\ -1-\frac{3}{2} \sin t \cos t & -1+\frac{3}{2} \sin ^{2} t\end{array}\right)$.
a) Show that $A(t)$ is periodic with period $T=\pi$.
b) Show that the eigenvalues of $A(t)$ have negative real part for all t.
c) Show that $x(t)=\binom{-\cos t}{\sin t} e^{t / 2}$ is a solution.

Hence despite part b, the equation has a positive Floquet exponent.
Chapter 3, page 109
2. Q3.34 2-cycles of the Hénon map
3. Q3.44 fixed points of a complex map

Chapter 4, page 144
4. Q4.20 Lyapunov exponents for the Arnol'd cat map

Chapter 5, page 164
5. Q5.4 a rigid rotating body
6. Q5.11 finite-difference approximation of an ODE

Omit part (d), but in parts (a) and (b), determine whether the system is area-preserving.
Chapter 6, page 199
7. Q6.3 a saddle-node bifurcation

