Math 571 Numerical Linear Algebra Winter 2021
hw4 , due: Thursday, March 18

1. The following Matlab code computes the $Q R$ factorization of a matrix A by Householder's method. Copy the code into an m-file and fill in the missing variables (denoted by ...). Submit the completed code. Print out the resulting Q, R using format long. Also print out the Q, R from Matlab's command qr (A) and comment on any differences between the results.
```
A = [1 1; -1 0; 0 1]; [m,n] = size(A);
for k = 1:...
    x = A(k:m,k);
    e = zeros(\cdots,1); e(1) = 1;
    v = norm(x)*e - x; v = v/norm(v);
    for j = k:..
        A(k:\cdots,j) = A(k:\cdots,j) - 2*v*(v'*A(k:\cdots,j));
    end
    H = eye(...) - 2*v*v';
    Q(:,:,k) = zeros(m,m); Q(1:\cdots,1:\cdots,k) = eye(\cdots);
    Q(k:\cdots,k:\cdots,k) = H;
end
temp = eye(...); for k=1:\cdots; temp = temp*Q(:,:,k); end
Q = temp; R = A;
```

2. Consider the overdetermined linear system: $x-y=1, x+y=0, x=1$. Sketch the lines in the $x y$-plane. Find and plot the least squares solution.
3. The molecular weights of six nitric oxides $\left(\mathrm{N}_{a} \mathrm{O}_{b}\right)$ were measured experimentally, yielding the results below. Using this data, perform a least squares fit to estimate the atomic weight of nitrogen and oxygen. You may use any method to solve the least squares problem.
NO (30.006), $\mathrm{N}_{2} \mathrm{O}$ (44.013), NO_{2} (46.006), $\mathrm{N}_{2} \mathrm{O}_{3}$ (76.012), $\mathrm{N}_{2} \mathrm{O}_{4}$ (92.011), $\mathrm{N}_{2} \mathrm{O}_{5}$ (108.010)
4. Prove the following statements.
a) $\kappa(A) \geq 1$ for any induced matrix norm
b) If U is unitary, then $\kappa_{2}(U)=1, \kappa_{2}(U A)=\kappa_{2}(A U)=\kappa_{2}(A)$.
c) $\kappa_{2}(A)=\sigma_{\max } / \sigma_{\min }$ and if A is hermitian, then $\kappa_{2}(A)=|\lambda|_{\max } /|\lambda|_{\text {min }}$
d) If $A x=b$ and $(A+\delta A)(x+\delta x)=b$, then $\frac{\|\delta x\| /\|x+\delta x\|}{\|\delta A\| /\|A\|} \leq \kappa(A)$.
e) Consider the following example of $A x=b,(A+\delta A)(x+\delta x)=b$.

$$
\left(\begin{array}{rrrr}
10 & 7 & 8 & 7 \\
7 & 5 & 6 & 5 \\
8 & 6 & 10 & 9 \\
7 & 5 & 9 & 10
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
32 \\
23 \\
33 \\
31
\end{array}\right),\left(\begin{array}{llll}
10 & 7 & 8.1 & 7.2 \\
7.08 & 5.04 & 6 & 5 \\
8 & 5.98 & 9.89 & 9 \\
6.99 & 4.99 & 9 & 9.98
\end{array}\right)\left(\begin{array}{r}
-81 \\
137 \\
-34 \\
22
\end{array}\right)=\left(\begin{array}{l}
32 \\
23 \\
33 \\
31
\end{array}\right)
$$

Verify that the two equations are correct. Compute $\frac{\|\delta x\|_{\infty} /\|x+\delta x\|_{\infty}}{\|\delta A\|_{\infty} /\|A\|_{\infty}}, \kappa_{\infty}(A)$ using Matlab.
5. Let A_{h} be the tridiagonal matrix on page 35 of the notes (including the factor $1 / h^{2}$) associated with the difference equation $-D_{+} D_{-} u_{i}=f_{i}, i=1: N-1, u_{0}=u_{N}=0$, where $h=1 / N$ is the mesh spacing. In class we found the e-values and e-vectors of A_{h}. Show that A_{h} is invertible and find a constant c independent of h such that $\left\|A_{h}^{-1}\right\|_{2} \leq c$ for $0<h \leq 1$.

