hw3 , due: Tuesday, February 27 at 4pm

1. a) Find the coefficients γ_{i}, β_{i} in the 4 -step Adams-Bashforth method,

$$
\begin{aligned}
& u_{n+1}=u_{n}+h\left(\gamma_{0} f_{n}+\gamma_{1} \nabla f_{n}+\gamma_{2} \nabla^{2} f_{n}+\gamma_{3} \nabla^{3} f_{n}\right), \\
& u_{n+1}=u_{n}+h\left(\beta_{0} f_{n}+\beta_{1} f_{n-1}+\beta_{2} f_{n-2}+\beta_{3} f_{n-3}\right) .
\end{aligned}
$$

b) Find the coefficients $\gamma_{i}^{*}, \beta_{i}^{*}$ in the 3 -step Adams-Moulton method,

$$
\begin{aligned}
& u_{n+1}=u_{n}+h\left(\gamma_{-1}^{*} f_{n+1}+\gamma_{0}^{*} \nabla f_{n+1}+\gamma_{1}^{*} \nabla^{2} f_{n+1}+\gamma_{2}^{*} \nabla^{3} f_{n+1}\right), \\
& u_{n+1}=u_{n}+h\left(\beta_{-1}^{*} f_{n+1}+\beta_{0}^{*} f_{n}+\beta_{1}^{*} f_{n-1}+\beta_{2}^{*} f_{n-2}\right) .
\end{aligned}
$$

c) Which method is more accurate? Give a reason to justify your answer.
2. Solve the difference equation for u_{n}.
a) $u_{n}-2 u_{n-1}-3 u_{n-2}=0, u_{0}=0, u_{1}=1$
b) $u_{n}-3 u_{n-1}+3 u_{n-2}-u_{n-3}=0, u_{0}=1, u_{1}=0, u_{2}=-3$
3. Consider the following 2-step methods for $y^{\prime}=f(y)$,
scheme $1: u_{n}-u_{n-2}-\frac{h}{3}\left(f\left(u_{n}\right)+4 f\left(u_{n-1}\right)+f\left(u_{n-2}\right)\right)=0 \quad$ (Milne's method)
scheme $2: u_{n}+4 u_{n-1}-5 u_{n-2}-h\left(4 f\left(u_{n-1}\right)+2 f\left(u_{n-2}\right)\right)=0$
Answer the following questions for each scheme.
a) Find $\rho(\zeta), \sigma(\zeta)$. Is the scheme consistent? Is the root condition satisfied?
b) Find the local truncation error in the form $\tau_{n}=C y^{(r+1)}(t) h^{r+1}+O\left(h^{r+2}\right)$.

In parts (c) and (d), consider the test equation, $y^{\prime}=\lambda y$.
c) Find the characteristic roots $\zeta_{1}(h), \zeta_{2}(h)$ and show that they satisfy
scheme 1: $\zeta_{1}(h)=e^{h \lambda}+O\left(h^{5}\right), \zeta_{2}(h)=-e^{-h \lambda / 3}+O\left(h^{3}\right)$,
scheme $2: \zeta_{1}(h)=e^{h \lambda}+O\left(h^{4}\right), \zeta_{2}(h)=-5 e^{-3 h \lambda / 5}+O\left(h^{2}\right)$.
d) Take $y(0)=1$ for the exact solution and $u_{0}=1, u_{1}=e^{h \lambda}$ for the numerical solution. Derive the following expressions for u_{n}. Compute $\lim _{n \rightarrow \infty} u_{n}$ for fixed $t=n h$. Are the schemes convergent? Explain.
scheme $1: u_{n}=\left(1+O\left(h^{5}\right)\right) \cdot\left(e^{\lambda t}+O\left(h^{4}\right)\right)+O\left(h^{5}\right) \cdot\left((-1)^{n} e^{-\lambda t / 3}+O\left(h^{2}\right)\right)$
scheme $2: u_{n}=\left(1+O\left(h^{4}\right)\right) \cdot\left(e^{\lambda t}+O\left(h^{3}\right)\right)+O\left(h^{4}\right) \cdot\left((-5)^{n} e^{-3 \lambda t / 5}+O(h)\right)$
4. Consider the van der Pol equation, $y^{\prime \prime}+\left(y^{2}-1\right) y^{\prime}+y=0$, an oscillator with nonlinear damping. The key feature of the equation is that it has a limit cycle, i.e. an attracting periodic solution. Express the equation as a first-order system, take $y(0)=0.1, y^{\prime}(0)=0.1$ as initial data, and compute the numerical solution on the interval $0 \leq t \leq 40$ using the following schemes.
a) 2-step Adams-Bashforth
b) a predictor-corrector scheme using 2-step Adams-Bashforth as the predictor and one iteration of 1-step Adams-Moulton (trapezoid method) as the corrector; write out the equations
Take $h=0.3,0.15,0.075$. Use the exact initial data and one step of Euler's method for the starting values of the numerical solution. Plot the numerical solution two ways: (1) in physical space (y versus t), (2) in the phase plane (y^{\prime} versus y). Discuss the results. How do the two methods compare? What accounts for the difference between the two methods?
Announcement. The midterm exam is on Thursday, March 7 in class; it will cover everything up to the last lecture on ODEs; no calculators; 1 page of notes (1 side) is allowed; no photocopies of lecture notes.

