
Math 572 Numerical Methods for Differential Equations Winter 2025

hw4 , due : Thursday, March 20 at 4pm

1. Consider the 2-step BDF method, ∇un + 1
2
∇2un = hf(un).

a) Find the characteristic roots ζ1(h), ζ2(h) for the test equation y′ = λy and plot their magni-
tudes over the interval −10 ≤ hλ ≤ 0 using software (e.g. Matlab, Python, your choice).

b) Show analytically that the negative real axis is contained in the region of absolute stability.

note 1 : part (a) is meant to help with part (b)

note 2 : the scheme is actually A-stable, but showing that is not required here.

2. The Lorenz system is

 y1y2
y3


′

=

 σ(y2 − y1)
ry1 − y2 − y1y3
y1y2 − by3

.

The system was originally derived as a low-dimensional model of thermal convection, where the
variables are related to the temperature and velocity of the fluid. It was discovered by numerical
computations that the parameters σ = 10, b = 8/3, r = 28 yield chaotic dynamics. Compute
the solution with these parameter values and initial conditions y1(0) = 0, y2(0) = 1, y3(0) = 0
up to time t = 100. If you know Matlab, use the ode45 solver; part of the problem is to read
the online documentation and figure out how this command works. If you don’t know Matlab,
then use an alternative ODE solver of your choice, but describe it. Plot the projection of the
orbit in the y1y3-plane; the object displayed there is a strange attractor; it should look like the
wings of a butterfly.

(Optional, not to be submitted) The full orbit in y1y2y3-space can be seen in Matlab using the
plot3 command; use the rotate tool to get a better sense of what the orbit really looks like.

For a discussion of the background to all this, click here.

3. Consider the heat equation vt = vxx on −∞ < x < ∞ with initial condition v(x, 0) = f(x).
No explicit boundary conditions are imposed as x → ±∞, but we assume there is a unique
solution v(x, t). Suppose the equation is discretized by the finite-difference scheme, un+1

j =
unj +kD+D−u

n
j with u0j = f(xj). Show that the numerical solution has an asymptotic expansion,

unj = vnj + kEn
j + O(k2) for k → 0, where vnj = v(xj, tn) is the exact solution, En

j = E(xj, tn) is
the principal error function, xj = jh, tn = nk, and λ = k/h2 ≤ 1/2. There are two steps: (a)
derive the equation satisfied by E(x, t), (b) prove the validity of the expansion. (hint: recall
the proof of the asymptotic expansion for Euler’s method applied to y′ = f(y) on page 7 of the
notes). Something special happens to the error unj − vnj when λ = 1/6; what is it?

4. Compute the solution of the heat equation vt = vxx on 0≤x≤ 1 with boundary conditions
v(0, t) = v(1, t) = 0 and initial condition (a) v(x, 0) = 1 − 2|x − 1

2
|, (b) v(x, 0) = sin πx. Use

forward Euler in time and 2nd order central differencing in space with h = 0.05 and two different
values of the time step k = 0.0013, 0.0012. Plot the solution at time t = 0, k, 25k, 50k. (Note
that case (a) reproduces a result in the notes). Explain the results.

https://www.quantamagazine.org/the-hidden-heroines-of-chaos-20190520/

