Math 572 Numerical Methods for Differential Equations Winter 2024

hw
5 $\,$, due : Thursday April 4 at 4pm

1. Consider the difference scheme $\frac{u_j^{n+1} - u_j^n}{k} = D_+ D_- u_j^n - \frac{1}{12}h^2 (D_+ D_-)^2 u_j^n$ for the heat equation $v_t = v_{xx}$ on $-\infty < x < \infty$.

- a) Show that the local truncation error is $O(k^p) + O(h^q)$; find p, q.
- b) Find the amplification factor $\rho(\xi h)$.
- c) For which $\lambda = k/h^2$ is the scheme stable in the 2-norm?

2. Given u_j , $j = 0, \pm 1, \ldots$, define $\hat{u}(\xi h) = \sum_{j=-\infty}^{\infty} u_j e^{ij\xi h}$. Verify the following formulas.

a)
$$u_j = \frac{1}{2\pi} \int_{-\pi}^{\pi} \widehat{u}(\xi h) e^{-ij\xi h} d(\xi h)$$
, b) $\sum_{j=-\infty}^{\infty} |u_j|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\widehat{u}(\xi h)|^2 d(\xi h)$

3. Consider the difference scheme $u_j^{n+1} = u_j^n + kD_+D_-u_j^{n+1}$ for the heat equation $v_t = v_{xx}$, corresponding to backward Euler in time and 2nd order central differencing in space. Assume free-space boundary conditions on $-\infty < x < \infty$.

a) Find the amplification factor $\rho(\xi h)$; show that $0 \leq \rho(\xi h) \leq 1$ for all ξh ; plot $\rho(\xi h)$ for $0 \leq \xi h \leq \pi$ and $\lambda = 1/2, 1, 10$. Show that the scheme is unconditionally stable in the 2-norm using b) Fourier analysis, c) energy method.

4. Consider the heat equation $v_t = v_{xx}$ on the interval $0 \le x \le 1$ with zero Dirichlet boundary conditions v(0,t) = v(1,t) = 0 and initial condition $v(x,0) = 1 - 2|x - \frac{1}{2}|$. On page 39 of the notes the problem was solved using forward Euler in time and 2nd order central differencing in space with grid spacing h = 0.05 and time step k = 0.0013. Now solve the problem by the Crank-Nicolson method with the same values of h, k as before. Solve the linear system at each time step by the tridiagonal *LU* factorization scheme discussed in class. Compare the Crank-Nicolson and forward Euler results and explain any differences.

5. Consider the heat equation $v_t = v_{xx}$ on $0 \le x \le 1$ with Neumann boundary conditions, $v_x(0,t) = v_x(1,t) = 0$. In this case the boundary values v(0,t) and v(1,t) vary in time, but there is zero flux through the boundaries. Consider the method of lines, $u'_j = D_+ D_- u_j$ for j = 0 : N, Nh = 1; note that for j = 0 this calls for u^n_{-1} which falls outside the domain; in this case use a central difference for the boundary condition, $D_0 u^n_0 = (u^n_1 - u^n_{-1})/2h = 0$, which yields $u^n_{-1} = u^n_1$; use a similar treatment for j = N.

a) Write the system in the form u' = Au, where $u = (u_0, \ldots, u_N)^T$. (hint: A has a constant diagonal.) Find the eigenvalues and eigenvectors of A. Note that this is not the same matrix A that we examined in class for the case of Dirichlet boundary conditions.

b) Plot the eigenvectors for the case N = 16 and wavenumbers m = 0, 1, 2, 4, 8, 16 using a similar format as on page 42 of the notes.

c) Suppose forward Euler is used to solve u' = Au. Show that the scheme is absolutely stable if $\lambda \leq 1/2$, where $\lambda = k/h^2$.

d) The heat equation with Neumann boundary conditions also describes the diffusion of gas in a closed container, where v(x,t) is the gas density at location x and time t. Consider the initial condition $v(x,0) = \begin{cases} 0 & \text{if } 0 \le x < \frac{1}{2}, \\ 1 & \text{if } \frac{1}{2} < x \le 1, \end{cases}$ and set $v(\frac{1}{2},0) = \frac{1}{2}$. The initial condition defines a state in which the left half of the container is a vacuum and the right half contains gas of uniform density. Solve the problem numerically using the scheme described above with h = 0.05 and k = 0.001275, 0.001225. For each k plot the results at time t = 0, 25k, 50k, 100k. Explain the results. What is the long-time asymptotic state of the system?