homework 1 , due: Thurs, Sept 25
0 . Give a brief description of your research or scientific interests (one paragraph is fine).

1. page $18 / 1,2$
2. Derive the following identities.
a) $\nabla \cdot\left(\rho u u_{i}\right)=\rho(u \cdot \nabla) u_{i}+(\nabla \cdot(\rho u)) u_{i}$
b) $\frac{D(\rho f)}{D t}=\rho \frac{D f}{D t}+\frac{D \rho}{D t} f$
c) $\frac{D}{D t}\left(\frac{1}{2}|\mathbf{u}|^{2}\right)=\mathbf{u} \cdot \frac{D \mathbf{u}}{D t}$
d) $(\mathbf{u} \cdot \nabla) \mathbf{u}=\nabla\left(\frac{1}{2}|\mathbf{u}|^{2}\right)-\mathbf{u} \times(\nabla \times \mathbf{u})$
e) $\mathbf{u} \cdot(\mathbf{u} \cdot \nabla) \mathbf{u}=\mathbf{u} \cdot \nabla\left(\frac{1}{2}|\mathbf{u}|^{2}\right)$
3. a) Let $\mathbf{u}=(u, v)=u \mathbf{e}_{\mathbf{x}}+v \mathbf{e}_{\mathbf{y}}$ be the velocity field of a 2 D flow expressed in Cartesian coordinates. Note that $u=u(x, y, t), v=v(x, y, t)$ and $\mathbf{e}_{\mathbf{x}}=(1,0), \mathbf{e}_{\mathbf{y}}=(0,1)$. Show that the acceleration is

$$
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=\left(u_{t}+u u_{x}+v u_{y}\right) \mathbf{e}_{\mathbf{x}}+\left(v_{t}+u v_{x}+v v_{y}\right) \mathbf{e}_{\mathbf{y}} .
$$

b) Let $\mathbf{u}=(u, v)=u \mathbf{e}_{\mathbf{r}}+v \mathbf{e}_{\theta}$ be the velocity field of a 2 D flow expressed in polar coordinates. Note that $u=u(r, \theta, t), v=v(r, \theta, t)$ and $\mathbf{e}_{\mathbf{r}}=\mathbf{e}_{\mathbf{r}}(r, \theta), \mathbf{e}_{\theta}=\mathbf{e}_{\theta}(r, \theta)$. Show that the acceleration is

$$
\mathbf{u}_{t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=\left(u_{t}+u u_{r}+\frac{v u_{\theta}}{r}-\frac{v^{2}}{r}\right) \mathbf{e}_{\mathbf{r}}+\left(v_{t}+u v_{r}+\frac{v v_{\theta}}{r}+\frac{u v}{r}\right) \mathbf{e}_{\theta} .
$$

4. Complete the proof of the lemma $J_{t}=(\nabla \cdot u) J$ by deriving the following results.
a) $\left|\begin{array}{ccc}\xi_{x} & \xi_{y} & \xi_{z} \\ \eta_{x t} & \eta_{y t} & \eta_{z t} \\ \zeta_{x} & \zeta_{y} & \zeta_{z}\end{array}\right|=v_{y} J$,
b) $\left|\begin{array}{lll}\xi_{x} & \xi_{y} & \xi_{z} \\ \eta_{x} & \eta_{y} & \eta_{z} \\ \zeta_{x t} & \zeta_{y t} & \zeta_{z t}\end{array}\right|=w_{z} J$
c) In class we derived the relation $\rho(\phi(x, t), t) J(x, t)=\rho(x, 0)$ using the transport theorem. Differentiate this relation wrt time t and rederive the relation $J_{t}=(\nabla \cdot u) J$.
5. Derive an evolution equation for $\frac{1}{2} \rho|u|^{2}$, the kinetic energy density per unit volume at a fixed point in space, for the case of incompressible stratified flow. Use this result to derive an expression for $\frac{d}{d t} \int_{W} \frac{1}{2} \rho|u|^{2} d V$, the rate of change of total kinetic energy in a fixed volume W. Interpret the expression in words.
6. For each flow given below, find the flow map $\phi(x, t)$, find the set $C_{1}=\phi\left(C_{0}, 1\right)$ (i.e. the image of the set C_{0} under the flow map at time $t=1$, where C_{0} is the unit circle centered at the origin), plot C_{0} and C_{1}, and describe in words what the flow does to C_{0}.
a) $(u, v)=(x, y)$,
b) $(u, v)=(x,-y)$,
c) $(u, v)=(y,-x)$
