homework 1, due: Thurs, Sept 25

- 0. Give a brief description of your research or scientific interests (one paragraph is fine).
- 1. page 18 / 1 , 2
- 2. Derive the following identities.

a)
$$\nabla \cdot (\rho u u_i) = \rho(u \cdot \nabla) u_i + (\nabla \cdot (\rho u)) u_i$$

b)
$$\frac{D(\rho f)}{Dt} = \rho \frac{Df}{Dt} + \frac{D\rho}{Dt}f$$

c)
$$\frac{D}{Dt}(\frac{1}{2}|\mathbf{u}|^2) = \mathbf{u} \cdot \frac{D\mathbf{u}}{Dt}$$

d)
$$(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla(\frac{1}{2}|\mathbf{u}|^2) - \mathbf{u} \times (\nabla \times \mathbf{u})$$

e)
$$\mathbf{u} \cdot (\mathbf{u} \cdot \nabla)\mathbf{u} = \mathbf{u} \cdot \nabla(\frac{1}{2}|\mathbf{u}|^2)$$

3. a) Let $\mathbf{u} = (u, v) = u\mathbf{e_x} + v\mathbf{e_y}$ be the velocity field of a 2D flow expressed in Cartesian coordinates. Note that u = u(x, y, t), v = v(x, y, t) and $\mathbf{e_x} = (1, 0)$, $\mathbf{e_y} = (0, 1)$. Show that the acceleration is

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} = (u_t + uu_x + vu_y)\mathbf{e}_{\mathbf{x}} + (v_t + uv_x + vv_y)\mathbf{e}_{\mathbf{y}}.$$

b) Let $\mathbf{u} = (u, v) = u\mathbf{e_r} + v\mathbf{e_\theta}$ be the velocity field of a 2D flow expressed in polar coordinates. Note that $u = u(r, \theta, t), v = v(r, \theta, t)$ and $\mathbf{e_r} = \mathbf{e_r}(r, \theta), \mathbf{e_\theta} = \mathbf{e_\theta}(r, \theta)$. Show that the acceleration is

$$\mathbf{u}_t + (\mathbf{u} \cdot \nabla)\mathbf{u} = \left(u_t + uu_r + \frac{vu_\theta}{r} - \frac{v^2}{r}\right)\mathbf{e}_\mathbf{r} + \left(v_t + uv_r + \frac{vv_\theta}{r} + \frac{uv}{r}\right)\mathbf{e}_\theta.$$

4. Complete the proof of the lemma $J_t = (\nabla \cdot u)J$ by deriving the following results.

- c) In class we derived the relation $\rho(\phi(x,t),t)J(x,t)=\rho(x,0)$ using the transport theorem. Differentiate this relation wrt time t and rederive the relation $J_t=(\nabla \cdot u)J$.
- 5. Derive an evolution equation for $\frac{1}{2}\rho|u|^2$, the kinetic energy density per unit volume at a fixed point in space, for the case of incompressible stratified flow. Use this result to derive an expression for $\frac{d}{dt} \int_W \frac{1}{2}\rho|u|^2 dV$, the rate of change of total kinetic energy in a fixed volume W. Interpret the expression in words.
- 6. For each flow given below, find the flow map $\phi(x,t)$, find the set $C_1 = \phi(C_0,1)$ (i.e. the image of the set C_0 under the flow map at time t=1, where C_0 is the unit circle centered at the origin), plot C_0 and C_1 , and describe in words what the flow does to C_0 .

a)
$$(u, v) = (x, y)$$
, b) $(u, v) = (x, -y)$, c) $(u, v) = (y, -x)$