Homework \#2 Due: Thursday, October 23

1. Consider steady homogeneous ideal 2D flow with zero body force.
a) Consider the velocity field $(u, v)=\gamma(x,-y)$ with strain rate $\gamma$. Show that the pressure has the form $p(r)=p_{0}-\frac{1}{2} \rho_{0} \gamma^{2} r^{2}$, where $r^{2}=x^{2}+y^{2}$.
b) Consider the velocity field $(u, v)=\frac{\omega}{2}(-y, x)$ with vorticity $\omega$. Show that the pressure has the form $p(r)=p_{0}+\frac{1}{8} \rho_{0} \omega^{2} r^{2}$.
(Note that the pressure is maximum at $r=0$ in (a) and minimum at $r=0$ in (b)).
2. Let $S=\frac{1}{2}\left(\nabla \mathbf{u}-\nabla \mathbf{u}^{T}\right)$ and $\omega=\nabla \times \mathbf{u}$. Show that $S \omega=0$. Find the eigenvalues of $S$.
3. Prove the following identities.
a) $\nabla \times(\mathbf{F} \times \mathbf{G})=\mathbf{F}(\nabla \cdot \mathbf{G})-\mathbf{G}(\nabla \cdot \mathbf{F})+(\mathbf{G} \cdot \nabla) \mathbf{F}-(\mathbf{F} \cdot \nabla) \mathbf{G}$
b) $\nabla \cdot \nabla u=\Delta u, \nabla \cdot \nabla u^{T}=\nabla(\nabla \cdot u)$
c) $\mathbf{u} \cdot \Delta \mathbf{u}=\nabla \cdot\left((\nabla \mathbf{u})^{T} \mathbf{u}\right)-|\nabla \mathbf{u}|^{2}$, where $|\nabla \mathbf{u}|^{2}=|\nabla u|^{2}+|\nabla v|^{2}+|\nabla w|^{2}$
d) $\nabla \times \mathbf{u}=\left(\frac{1}{r} \frac{\partial u_{z}}{\partial \theta}-\frac{\partial u_{\theta}}{\partial z}\right) e_{r}+\left(\frac{\partial u_{r}}{\partial z}-\frac{\partial u_{z}}{\partial r}\right) e_{\theta}+\left(\frac{1}{r} \frac{\partial\left(r u_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial u_{r}}{\partial \theta}\right) e_{z}$
4. Show that the vorticity relation $\omega(\phi(\mathbf{x}, t), t)=\phi_{\mathbf{x}}(\mathbf{x}, t) \omega(\mathbf{x}, 0)$ in 3D ideal flow reduces to $\omega(\phi(\mathbf{x}, t), t)=\omega(\mathbf{x}, 0)$ in 2D ideal flow.
5. Consider 2D incompressible flow with stream function $\psi(x, y, t)$ in a flow domain $D$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ be two points in $D$ and assume $\rho=1$. Show that $\psi\left(x_{2}, y_{2}, t\right)-\psi\left(x_{1}, y_{1}, t\right)$ is the total mass flux across any curve in $D$ connecting the two points.
6. page $45 / 2$ (Navier-Stokes equations in cylindrical coordinates; use results from hw\#1)
7. Consider steady incompressible viscous flow between two cylinders, $R_{1} \leq r \leq R_{2}$, in the following two cases. Find the velocity $u(r)$ and vorticity $\omega(r)$ in each case.
a) The cylinders are stationary and the flow is driven by a constant pressure gradient $p_{z}$ in the axial direction (axisymmetric annular Poiseuille flow). Assume that $\mathbf{u}(r, \theta, z)=u(r) \mathbf{e}_{z}$.
b) The cylinders are rotating (axisymmetric Couette flow). Assume that $p=p(r), \mathbf{u}(r, \theta, z)=$ $u(r) \mathbf{e}_{\theta}, u\left(R_{1}\right)=U_{1}, u\left(R_{2}\right)=U_{2}$.
8. Plot the streamlines associated with the following streamfunctions. Use a contour plot command in Matlab. Use subplot to conserve paper and axis square to get correct scaling.
a) $\psi(x, y)=\gamma x y-\frac{\omega}{4}\left(x^{2}+y^{2}\right)$

This is a strained vortex. Take $\gamma=1, \omega=0,0.4,1,2,3,40$.
b) $\psi(x, y)=\frac{\Gamma_{1}}{2 \pi} \log \left(\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}\right)^{1 / 2}+\frac{\Gamma_{2}}{2 \pi} \log \left(\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}\right)^{1 / 2}+V x$

This is a pair of point vortices. Take $x_{1}=-x_{2}=1, y_{1}=y_{2}=0$.
case 1: $\Gamma_{1}=\Gamma_{2}=2 \pi, V=0$ (co-rotating)
case 2: $\Gamma_{1}=-\Gamma_{2}=2 \pi, V=0$ (counter-rotating)
case 3: $\Gamma_{1}=-\Gamma_{2}=2 \pi, V=0.5$ (counter-rotating in a uniform stream)

